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Multiple first-order transitions in simplicial complexes on multilayer systems
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The presence of higher-order interactions (simplicial complexes) on globally coupled systems yield abrupt
first-order transitions to synchronization. We discover that simplicial complexes on multilayer systems can
yield multiple basins of attraction, leading to multiple abrupt first-order transitions to (de)synchronization for
associated coupled dynamics. Using the Ott-Antonsen approach, we develop an analytical framework for simpli-
cial complexes on multilayer systems, reducing the high-dimensional evolution equation to a low-dimensional
manifold, which thoroughly explains the origin and stability of all possible dynamical states, including multiple
synchronization transitions. The study illustrating rich dynamical behaviors could be pivotal in comprehending
the impacts of higher-order interactions on dynamics of complex real-world networks, such as brain, social, and
technological, which have inherent multilayer architectures.
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I. INTRODUCTION

Functional performances of a wide range of real-world
complex systems, such as brain, social, and technological sys-
tems, are driven by underlying simplicial complexes defining
higher-order interactions [1–5]. A simplicial complex of order
one denotes pairwise interactions between a pair of nodes.
Similarly, a simplicial of order 2 represents a set of three
connected nodes forming a two-simplicial complex, and so
on. Considering such higher-order interactions, aka sim-
plicial complexes in interacting nonlinear dynamical units,
has brought forward many emerging phenomena [6], among
which, simplicial complexes that have been elucidated to
lead the abrupt first-order transition to synchronization are
of particular interest. Precisely, the simplicial complexes of
order 2 or higher have been demonstrated to cause the first-
order abrupt transition to synchronization in those systems
which otherwise (i.e., only with pair-wise interactions) depict
a smooth second-order transition to synchronization [7–10].

Furthermore, a set of nodes of a complex system connected
through different types of interactions form a multilayer sys-
tem. Investigations of real-world data, as well as both the
numerical simulations and theoretical analysis of nonlinear
models, have demonstrated that in complex systems repre-
sented by multilayer networks, activities of nodes in one layer,
connected through one type of interaction, affect or govern
dynamical activities of the nodes connected through other
types of interactions in the other layers [11–14]. Similar to the
first-order synchronization transition behavior exhibited by
coupled dynamics on simplicial complexes, appropriate mul-
tilayering schemes have also been shown to lead to the abrupt
first-order transition to synchronization in those networks
which, in isolation, depict smooth second-order transition to
synchronization [13,15,16].
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This article discovers the existence of multiple basins
of attractions yielding different routes to abrupt first-order
transitions to synchronization in simplicial complexes on mul-
tilayer systems with each layer represented by a globally
coupled network. Moreover, we develop a complete analytical
framework using the Ott-Antonsen approach to analytically
deduce the high-dimensional multilayer coupled dynamics to
low-dimensional coupled equations for the associated order
parameters of the individual simplicial layers. Such reduced
time-dependent coupled equations for the simplicial layer’s
order parameters facilitate analytical demonstration of dif-
ferent routes to first-order transitions and calculations of
different critical coupling strengths at which these transitions
occur. Notably, using the Ott-Antonsen approach, we first
derive the time-evolution equations for the order parameters
of the simplicial complexes of coupled Kuramoto oscillators
having pairwise (s1), triadic (s2), and tetra (s3) interactions
forming layers of the multilayer system. After that, we per-
form stability analysis for this set of the coupled differential
equations at all their fixed points. The analytical calculations
reveal the existence of one usual subcritical bifurcation lead-
ing to the first-order transition to synchronization, which is
accompanied by hysteresis, and an abrupt transition to syn-
chronization as a consequence of saddle-node bifurcation.
Notably, depending upon the choice of the initial conditions,
the setup leads to three additional saddle-node bifurcations,
giving birth to another second-order transition to synchro-
nization accompanied by a different critical coupling strength.
We perform numerical experiments which comply with the
analytical predictions.

II. MODEL AND RESULTS

Let us consider a multilayer system consisting of two
layers. The N number of nodes in each layer interacts not
only with the pairwise interactions (simplicial of order 1)
but also through triangular (two-simplicial) and tetrahedral
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FIG. 1. Schematic diagram for (left) multilayer system consist-
ing of simplicial layers, and (right) emerging dynamical phenomena
in absence (Dx = 0) and in presence of multilayering (Dx > 0). In-
tralayer connections are simplicial of orders 1, 2, and 3. Each node
in the first layer is connected with all the nodes in the second layer
with a multilayering strength Dx .

(three-simplicial) interactions (Fig. 1). The interlayer pairwise
interactions are considered all-to-all, i.e., each node of the first
simplicial layer interacts with all the nodes of the second sim-
plicial layer with a strength Dx, referred to as multilayering
strength. The dynamics of such a system can be studied with
an extension of the Kuramoto-Sakaguchi model [17] given as
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Here, the superscript k(k′), taking values 1 and 2, denotes
the index of the layer under consideration, and K (k)

i indicates
the overall coupling strength for the i-simplex interaction of
the kth layer. In the respective mean fields, the dynamical
evolution equations for the simplicial layers can be written as
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with the complex order parameters of the kth simplicial layer
defined as

z(k)
n = r (k)

n eι� (k)
n = 1
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which measures the strength of global synchronization of the
individual simplicial layers with with 0 � r (k)

n � 1. r (k)
1 ∼ 0

indicates a complete incoherent state, whereas r (k)
1 ∼ 1 in-

dicates global synchronization and �
(k)
1 measures the mean

phase of all the oscillators of the kth layer. In the absence
of any higher-order interaction, Eq. (1) leads to a smooth
second-order transition to synchronization for the individual
layer [13], i.e., starting from an incoherent state corresponding
to r (k)

1 ∼ 0, after a critical coupling strength r (k)
1 gradually

increases to 1 with an increase in K (k)
1 . An introduction of the

higher-order couplings (second and third terms in Ĥ (k)
i ) brings

about frustration in the system due to an interplay among the
phases of three and four oscillators, respectively, for the triadic
and tetrahedral term in the sinusoidal couplings. An increase
in the the pairwise intralayer coupling strength supports the
overall coherence between the connected pairs of nodes. As
soon as K (k)

1 becomes strong enough to overcome the frus-
tration caused by the higher-order interactions, there arises
an abrupt first-order transition to the global synchronization.
The implications of an inclusion of higher-order interactions
in coupled Kuramoto oscillators interacting through simpli-
cial complexes on single-layer networks are well-established,
accompanied by rigorous analytical explanations [9]. Here,
we consider systems in which simplicial layers are connected
via interlayer connections and develop a full analytical frame-
work to analyze the dynamical behavior of coupled Kuramoto
oscillators on simplicial complexes on multilayer networks.
We discover various emerging behaviors, namely, multiple
first-order transitions to synchronization accompanied by dif-
ferent routes and basins of attraction, the existence of multiple
saddle-node bifurcations in addition to the usual subcritical
pitch-fork bifurcation, and a gradual shift from the first- to
second-order transition to synchronization.

In the following, first we develop a rigorous analytical
framework for the complete accomplishment of the coupled
dynamical behaviors and their stability analyses. Then, we
present numerical results obtained through the direct sim-
ulations of Eq. (1) to demonstrate a full match with the
analytical calculations. We perform a linear stability analysis
of the reduced equations (8) and explore the entire r (1)

1 − r (2)
1

space. Further, we discuss the origin of the third bifurcation,
followed by an analysis of the impacts of intralayer coupling
strength of the second simplicial layer and interlayer coupling
strengths on the nature of transitions in the first layer. Next,
we present results for the dynamical evolution of the second
layer and discuss how the origin of multiple transitions lies in
the dynamical behaviors of the layer having only higher-order
interactions.

A. Analytical derivation for dimension reduction
to Ott-Antonsen manifold

Using the complex order parameters (3), Eq. (2) can be
written as
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In the thermodynamic limit N −→ ∞, the state of the
individual layer can be described by a density function
f (k)(θ (k), ω(k), t ) which measures the density of oscillators
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with the phase between θ (k) and θ (k) + dθ (k) having a natural
frequency lying between ω(k) and ω(k) + dω(k) at time t for
the kth layer. Since the number of oscillators in each layer is
conserved, the density functions will individually satisfy the
continuity equation:
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Assuming the natural frequency ω(k) of each oscillator drawn
from a distribution g(ω(k) ), the density function f (k) can be
expanded into Fourier series as
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where f̂n
(k)

(ω(k), t ) is the nth Fourier component and c.c.
are the complex conjugates of the former terms. Next, we
use the Ott-Antonsen [18] ansatz which assumes that all
the Fourier modes decay geometrically, i.e., f̂n

(k)
(ω(k), t ) =

αn(k)(ω(k), t ) for some function α(k) which is analytic in the
complex ω(k) plane. After inserting the Fourier expansion
of f (k)(θ (k), ω(k), t ) in the continuity equation (5), the dy-
namics of the two-layer network collapses into a complex
two-dimensional manifold (Ott-Antonsen manifold),

α̇(k) = −ιω(k)α(k) + 1
2 [H (k)∗ − H (k)α2(k)], (6)

with H (k) defined in Eq. (4). The order parameter in
the thermodynamic limit can then be given as z(k) =∫∫
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dθ (k)dω(k), which after inserting the

Fourier decomposition of f (k) becomes
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If we choose g(ω(k) ) to be a Lorentzian frequency distribution
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full width at half maximum of the kth layer, z∗(k) can be
calculated by contour integration in the negative half complex
plane, yielding, z∗(k) = α(k)(ω(k)

0 − ι	(k), t ). For simplicity,
we redefine the order parameters as z(1) = reι
 and z(2) =
ρeιχ , 
 and χ being the mean phases of layers 1 and 2,
respectively.

Upon scaling χ − 
 as ξ , dimensionality of the system
represented by Eq. (6) reduces to three:
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In the steady state, ṙ = ρ̇ = ξ̇ = 0. Note that since this
analytical derivation has considered the Cauchy frequency
distribution centered at zero, for ξ̇ to be zero, sin(ξ ) has
to be zero (since the quantity in square bracket cannot be
zero). Which means χ = 
, indicating synchronization of the
mean phases of both the layers. Consequently, the above three
coupled equations further reduce to
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(8)

Equation (8) provides a solution to the dynamically stable
states for the multilayer networks model (1) in terms of the
order parameters of the individual simplicial layers (r and ρ).
Ergo, a high-dimensional coupled dynamics is reduced to a
two-dimensional evolution equation. This set of the coupled
equations provides full understanding to the entire dynamics
of the multilayer network model represented by Eq. (1).

B. Multiple first-order transitions and basins of attraction

The coupled dynamics [Eq. (1)] is evolved using the
Runge-Kutta method of order 4, and after discarding an initial
transient, the system settles to a stable state. Additionally,
Eq. (8) is solved numerically, and steady-state behaviors of
r and ρ are analyzed as a function of K (1)

1 . To comprehend the
impact of dynamical behaviors of the nodes in one simplicial
layer on those of the other layer, we freeze the coupling
strengths of one layer (say, the second layer) to a set of values.
Additionally, the simplicial coupling of the layers are fixed
for all the results, unless stated otherwise. The frequency
distribution in both layers for all numerical simulations are
taken to be uniform Lorenzian distribution with mean 0 and
	(k) = 1.

For the multilayer simplicial system, we discover multiple
stable states accompanied by different basins of attraction
which in turn yield different routes to the first-order tran-
sition to synchronization. Figure 2(a) depicts a very good
match between the predictions based on the Ott-Antonsen
method (8) and numerical evolution of the system Eq. (1).
Note that the Ott-Antonsen manifold [Eq. (8)] has been
derived analytically from Eq. (1). Further, these two cou-
pled equations (low-dimensional manifold of 2N dimensional
equations) are solved to obtain different curves referred as
analytical predictions in figures.

Note that using the Ott-Antonsen approach analytically,
we have performed dynamical reduction from 2N dimen-
sional equations to two-dimensional Ott-Antenson manifold
[Eq. (8)]. First, we discuss the numerical results for the
two-layer networks having all-to-all intralayer couplings. As
illustrated in Fig. 2, depending upon the initial conditions,
there exist different routes to the first-order transitions and
various bifurcations. (1) The phase of the oscillators in both
layers are randomly distributed in [0 : π ]. For this set of initial
conditions [green open square Fig. 2(a)] and K (1)

1 , K (1)
2 , K (1)

3 ,
taking any positive small values leads to r = 0 as a stable
solution. Upon increasing K (1)

1 , there occurs a usual first-order
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FIG. 2. Multiple synchronization transitions or multistability
along with analytical predictions [Eq. (8)]. (a) Open circles (blue)
indicate adiabatic backward while closed circles (red) represent adi-
abatic forward direction, both combined making HT (see text). Open
squares (green) indicate forward direction corresponding to the ran-
dom initial conditions, also referred as WHT (see text). Solid lines
are numerical solutions of Eq. (8). (b) Stability diagram: Solid (blue)
and dashed (red) lines, respectively, indicate stable and unstable man-
ifolds. The stable blue curve in the middle is stable only in r and ρ

direction and unstable in third ξ direction. (c) Basins of attraction for
the entire r − ρ space, depicting three stable regions for Eq. (7) for
all possible initial conditions for r and ρ. At K (1)

1 = −1, black, grey
(purple), and white (yellow) correspond to the green open square, red
closed circle, and blue open circle, respectively, in (a). N = 1000,
and K (1)

2+3 = K (2)
2+3 = K2+3 = 10 for all the simulations results. Here

Dx = 0.5.

transition to synchronization at a critical coupling strength
(K (1)

1 = λ
f
c2) as a consequence of the subcritical bifurcation

as also observed for the isolated simplicial layer case [9].
(2) The initial condition corresponding to the synchronized
state (θi = θ j,∀i,) which is achieved for sufficiently large K (1)

1

values. Starting from this initial condition, as K (1)
1 decreases

adiabatically, the dynamical evolution of the first simplicial
layer lies in the coherent region (blue open circles) until the
critical coupling strength (K (1)

1 = λb
c1), where the stable coher-

ent state loses its stability as a consequence of a saddle-node
bifurcation. The trajectory jumps to a far distant attractor
corresponding to a state having r value close to zero and
referred as weakly synchronized (or weakly coherent) state
(blue open circles). This weakly synchronized state persists as
K (1)

1 decreases further. (3) The initial condition corresponding
to this weakly synchronized state (blue open circles), which
was achieved in the backward direction. Upon increasing K (1)

1
adiabatically from this initial condition, the order parameter
trajectory takes a different route than was followed while K (1)

1

was decreasing. The coupled dynamics keeps depicting the
weakly coherent behavior beyond λb

c1 until a specific value of
K (1)

1 (red closed circles). At λ
f
c1, this weakly coherent stable

state loses its stability again as a consequence of a saddle-node
bifurcation and giving birth to the first-order transition to the
coherent state.

Since this study demonstrates the existence of multiple
synchronization transitions as the prime result, we refer to
the transition corresponding to the hysteresis as HT and the
transition without hysteresis as WHT. Therefore, in Fig. 2(a),
blue open circles and solid lines correspond to backward HT,
red closed circles and dashed lines correspond to forward HT,
whereas green open squares correspond to WHT.

C. Origin of the third bifurcation

Equation (8) is numerically solved to obtain all the bifur-
cating lines depicted in Fig. 2(b). Furthermore, we perform the
linear stability analysis around all the fixed points of Eq. (6)
by evaluating the respective Jacobian matrices. A fixed point
is asymptotically stable if both the eigenvalues of the corre-
sponding Jacobian matrix have negative real parts [solid blue
line in Fig. 2(b)], and it is unstable if at least one eigenvalue
has a positive real part [red dashed line in Fig. 2(b)]. In
addition to the stable manifold observed numerically (blue
solid line), there exist three unstable manifolds (red dashed
line) and one more stable manifold (blue solid line in the
middle of two dashed red lines) which were not observed
numerically. Upon analyzing a cross section at ξ = 0 cor-
responding to K (1)

1 = −0.5, one finds the existence of four
stable manifolds. However, one stable state here corresponds
to the out-of-phase-synchronized solution between the layers
and is unstable in the ξ direction, and hence numerically in-
feasible. Therefore, this curve is not realized numerically from
the reduced coupled mean-field equations, which is solved for
ξ = 0. Figure 2(c) plots the basins of attraction for different
regions, in which only three stable regions are visible for
K (1)

1 = −1. (c) is plotted in the r-ρ parameter regime. To
obtain the initial conditions for phases corresponding to a
specific set of values of r or ρ, one can use an asymmetry
parameter η such that Nη oscillators start at the initial phase
0 and N (1 − η) oscillators start at the initial phase π . Then
η = (r, ρ + 1)/2.

D. Impact of two- and three-simplex interaction strengths

We next elucidate the impact of changes in higher-order
interaction strength on the nature of dynamical evaluations,
transitions points, and different basins of attraction. Figure 3
illustrates the emergence and disappearance of the stable
branches in K (1)

1 − r space for different values of K (1)
2+3 =

K (2)
2+3 = K2+3. For smaller values of K2+3, there exists only

one usual first-order transition route to synchronization as a
function of pairwise couplings [blue solid line in Fig. 3(a)].
This transition arises due to a subcritical pitch-fork bifurca-
tion leading to the bistable state for the simplicial layer. As
K2+3 increases, a new pair of stable-unstable states emerges
[Figs. 3(b) and 3(c)], which runs in very close vicinity (al-
most indistinguishable) to the existing stable coherent branch.
Upon increasing K2+3 and further for both simplicial layers
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FIG. 3. Effect of higher-order interactions strength: K (1)
1 versus

r. Subfigures illustrate the emergence and disappearance of a saddle-
node bifurcation leading to the emergence of the third stable state in
the system for different values of K2+3. (c) Zoomed part of (b) cor-
responding to the regime where a new branch emerges. Here Dx = 1
and K (2)

1 = 0.

simultaneously, this new emerged branch, which was running
along the existing stable curve, joins the incoherent state
gradually for large values of K2+3 [Fig. 3(d)]. Indeed, the pre-
viously existing stable branch gradually gets separated from
the new emerging one [Figs. 3(e) and 3(f)], and then vanishes
(not shown here), again restoring the same stability diagram
with only one first-order transition (hysteresis) as found for
the lower K2+3 values. Note that the figure is plotted only for
particular parameter values (Dx = 1 and K (2)

1 = 0). However,
this existence of multiple synchronization transitions is wit-
nessed for other lower values of K (2)

1 , and also as long as a
threshold value of K2+3 is crossed.

E. Impact of Dx: First- to second-order transition

Next, we analyze the effect of interlayer coupling strength
Dx on the dynamical evolution of the individual simplicial
layers. For Dx = 0, there exists one usual first order to syn-
chronization and one saddle-node bifurcation in the reverse
direction [9]. As simplicial layers are multilayered through
Dx, multiple first-order transitions and more stable-unstable
states arise. For lower values of Dx, two stable states near
r = 0 lie in very close vicinity to each other and are in-
distinguishable [Fig. 4(b)] and, consequently, two forward
direction first-order transitions [solid vertical lines corre-
sponding to solid circles (blue) and open square (green)]
lie very close to each other. As Dx increases gradually, two
events take place; first, the hysteresis width becomes smaller
[Figs. 4(a)–4(e)] and eventually vanishes, leading to a smooth
second-order transition from the incoherent to the coherent
state [Fig. 4(f)]. The larger Dx values intensify the impact
of pairwise interlayer interactions in the entire two-layer sys-
tem, driving the second-order transition to synchronization for
simplicial layers. Since the pairwise couplings are known to
favor synchronization among the connected nodes or, in other
words, for pure s1 complex, there endures emergence of a gi-
ant cluster with an increase in the pairwise coupling strength.
This cluster attracts more and more nodes into it, leading to a
second-order transition to synchronization [19]. For all nodes
in the first layer connected to all nodes in the second layer,
an increase in Dx readily dominates the interplay between the

FIG. 4. Loss of hysteresis as a result of an increase in Dx . r1

versus K (1)
1 for K2+3 = 10. (a)–(f) Backward (red open circle) HT,

forward (blue closed circle) HT and forward (green open square)
WHT transitions for Dx values 0, 0.1, 0.5, 1, 2, and 3, respectively.
The black solid curves represent theoretical prediction using Ott-
Antonsen method depicting all stable and unstable branches.

pairwise interactions and the two- and three-simplex interac-
tions. As a result, for large Dx values, the transition becomes
purely of the second order. Second, all the transition points
move toward larger negative K (1)

1 values as Dx increases,
i.e., synchronization endures for a more extensive range
of K (1)

1 .

F. Dynamical evolution of the second layer

Here, we systematically analyze the importance of higher-
order interactions (s2 and s3) in one layer in deciding a
particular dynamical behavior of another layer. We demon-
strate that the second layer plays a governing role in deciding
the nature of the synchronization transition in the first layer.
For the second layer consisting of s2 and s3 only, the setup
leads to one more stable state in the first layer, the origin of
which lies in the dynamical behavior of the second simplicial
layer. Starting from K (1)

1 values for which both the simplicial
layers are in the synchronized state, as K (1)

1 decreases, while
the first layer experiences a transition to an incoherent state,
the second layer, despite being extensively connected to the
first layer through the pairwise interlayer connections, does
not get desynchronized [Fig. 5(a)]. Next, starting with the
initial condition for the phases randomly distributed between
0 and π , as K (1)

1 increases, blue thick and black thin lines
overlap with each other and together they exhibit a jump to
a coherent state at K (1)

1 1.5 (black lines corresponding to the
first layer, explained in the previous section). Next, Fig. 5(b)
extends the K (1)

1 axis, incorporating more negative values to
demonstrate the robustness of the coherent behavior of the
second layer against a change in K (1)

1 values. Also, the dynam-
ical behavior of the second simplicial layer is robust against
the changes in Dx. For Dx being as high as 10, the simplicial
layer does not experience any de-synchronization transition,
even for very high negative K (1)

1 values [Fig. 5(c)]. Only for
very small K2+3 values the pure simplicial layer gets desyn-
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FIG. 5. Synchronization profile for the second layer (red dashed
line for stable and thick blue solid line for unstable manifold) as
compared to the first layer (black thin line) for both stable and unsta-
ble manifolds for different values of Dx and K (2)

2+3. (a) and (b) depict
robustness of ρ against a change in K (1)

1 . (b) is an extended scale of
(a). (c) depicts that only one stable state exists for higher values of
interlayer couplings. (d) illustrates that for a lower K (2)

2+3 value, pure
simplicial layer desynchronizes earlier as compared to higher K2+3

[(a)–(c)].

chronized soon after the pairwise interactions in the first layer
cross the origin, and that, too, this desynchronization happens
much after the first layer has desynchronized [Fig. 5(d)].
Therefore, it can be concluded that dynamical behaviors of
a layer consisting of pure higher-order interactions are robust
against changes in the multilayering parameters.

G. Role of pure simplicial layer in the birth
of multiple transitions

The absence of pairwise interactions, referred to as a pure
simplicial layer, causes multiple transition routes for the order
parameter of the first layer. Starting from the coherent state
[green open square, Fig. 2(a)], upon adiabatically decreasing
K (1)

1 , as the first layer undergoes a first-order transition to the
weakly coherent state [blue open circle, Fig. 2(a)], the second
layer also experiences a slight jump to a state that still is a
coherent state [Fig. 5(a)]. Thereafter, the evolution of Eq. (1)
with a set of the initial conditions for which the first layer
lies in the weakly coherent regime and the second layer in
the coherent state, with an adiabatic increase in K (1)

1 , shows
hysteresis and bistability [red closed circles of Fig. 2(a)] as a
consequence of the subcritical pitchfork bifurcation at λ

f
c2. At

this critical point, the first layer jumps to the coherent state,
and the second layer also keeps lying in the coherent state;
ergo, both layers evolve synchronously.

III. CONCLUSION

In summary, we have reported, analytically and numeri-
cally, the emergence of stable manifolds as a consequence
of connecting a simplicial layer to another simplicial layer.

Analytically, by employing the Ott-Antonsen approach, we
reduced the dimensionality of the two-layer system to a set
of two coupled differential equations of the order parame-
ters of the individual layer. Such a reduction facilitates a
straightforward way to comprehend the entire phase space
fully and access all the bifurcations points and phase tran-
sitions, notably the existence of a third stable state. We
found that an interplay of the interlayer strength and higher-
order interactions brings forward several emerging dynamical
behaviors, such as multiple routes to first-order transitions
to synchronization accompanied by corresponding basins of
attraction. With rigorous analytical calculations, we demon-
strated a rich phase-space structure consisting of several stable
and unstable manifolds arising from a subcritical pitch-fork
and three saddle-node bifurcations. Notably, after a critical
higher-order interaction strength value, connecting a simpli-
cial layer with another simplicial layer via Dx brings upon
one more stable route to the first-order transition to syn-
chronization, in addition to the previously existing route for
the isolated simplicial layer. Further, a simplicial complex
without pairwise couplings does not depict a forward tran-
sition to synchronization if the initial conditions for phases
are randomly drawn. Instead, it depicts a first-order tran-
sition to desynchronization in the backward direction [7].
This article has revealed that connecting such a simplicial
layer to another simplicial layer brings robustness to the
synchronization in the backward direction. In the absence
of pairwise interactions (K (2)

1 = 0), it does not get desyn-
chronized for the same values of the parameters for which
another simplicial layer, having pairwise interactions, exhibits
desynchronization.

The current article has only considered globally coupled
structures for both simplicial layers, whereas real-world sys-
tems have complex underlying network architectures. A more
realistic model should include such a feature among many
other features inspired by real-world systems, which could
be one of the future scopes of the present study. One could
also relax one to all multilayer connection setups and consider
a more general scheme represented by a multiplex matrix
[20,21]. Further, one can include various adaptive schemes
[22–24] for the simplicial interactions, for example, those
inspired by the Hebbian learning in brain [10].

These findings might find applications in a range of sys-
tems having inherent multilayer architectures. It has been
sufficiently emphasized that ignoring the impact of activities
of nodes in one layer having one type of interaction may have
wrong or inaccurate predictions of the dynamical evolution of
the nodes interacting with another type of interaction. So far,
all the investigations and analytical calculations on multilayer
systems have considered pairwise interactions in their layers.
This article, using coupled Kuramoto oscillators on simplicial
multilayer systems with each layer representing globally cou-
pled architecture as a prototype model, develops a rigorous
analytical framework supported by numerical simulations. We
have provided evidence of emerging dynamical behaviors,
notably multiple first-order abrupt transitions to synchroniza-
tion. A range of real-world complex systems, such as brain,
social [25,26], financial, and technological systems, have in-
herent multilayer architectures [27], and their constituents
units (nodes) interact with higher-order interactions forming
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simplex complexes [28]. The results presented in this article,
particularly the revelation of the occurrence of multiple tran-
sitions in simplicial complexes on multilayer networks, could
be pivotal in predicting and comprehending the dynamics of
such systems.
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