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Second- to first-order phase transition: Coevolutionary versus structural balance
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In social networks, the balance theory has been studied by considering either the triple interactions between
the links (structural balance) or the triple interaction of nodes and links (coevolutionary balance). In the structural
balance theory, the links are not independent from each other, implying a global effect of this term and it leads
to a discontinuous phase transition in the system’s balanced states as a function of temperature. However, in the
coevolutionary balance the links only connect two local nodes and a continuous phase transition emerges. In
this paper, we consider a combination of both to understand which of these types of interactions will identify
the stability of the network. We are interested to see how adjusting the robustness of each term versus the other
might affect the system to reach a balanced state. We use statistical mechanics methods and the mean-field theory
and also the Monte Carlo numerical simulations to investigate the behavior of the order parameters and the total
energy of the system. We find the phase diagram of the system which demonstrates the competition of these two
terms at different ratios against each other and different temperatures. The system shows a tricritical point above
which the phase transition switches from continuous to discrete. Also the superiority of the local perspective is
observed at low temperatures and the global view will be the dominant term in determining the stability of the
system at higher temperatures.
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I. INTRODUCTION

Signed networks with two types of positive and negative
interactions have been used to model dynamical processes
in a wide range of scientific fields including social science
[1–3], politics and international relationships [4–7], biology
[8–11], and ecology [12]. These networks exhibit the concept
of structural balance which was first proposed by Heider in
social science based on triple relations [13,14]. Heider defined
a triple as balanced if the product of its link signs is positive,
otherwise it is unbalanced. Later, Cartwright and Harary de-
veloped the mathematics of balance theory [15]. They showed
that a complete network is structurally balanced if either all
the link signs are positive, or the network is divided into two
clusters such that the signs of links are positive within each
cluster and links between the clusters have negative signs.

The social tension of a system is measured by summing
up all triple interactions in the network which can be defined
as the Hamiltonian of the system [15]. Antal et al. studied
the dynamics of structural balance in social networks such
that each link changes its sign in a way to decrease tension
[16]. In Ref. [17] a model is proposed that takes into account
the temperature, as a measure of tension tolerance, and its
effect on the dynamics of social networks is studied. Using
the mean-field analysis, they showed that a first-order phase
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transition emerges in the system’s balanced states as a func-
tion of temperature.

Further studies have been done considering the individuals’
attitude toward a specific issue. In this case, a state is assigned
to each node of the network besides the state of their relation-
ships [18]. The individuals may build up their idea according
to the idea of their friends [19,20], or they may update their
relations in a way to friendly connect to people with the same
idea of their own [21,22]. If we consider a unit of three objects
(two nodes and one link), then the agreement (disagreement)
in the state of the nodes while their relation is friendship
(enmity) will result in a balanced unit. In this model, called
the coevolutionary balance model, we can put a sum over
all such units in the network to obtain the social tension,
which is described mathematically as the Hamiltonian of the
system [18,23]. Despite the Heider balance model, this model
represents a continuous phase transition in the energy of the
system [24,25].

In later studies comparisons have been made between these
two structural and coevolutionary balance models to investi-
gate the role of each balance view [25–29]. The investigations
showed the coevolutionary term, considering node-link-node
interactions, supports local benefits for people in the network
as its concern is reducing the tension in each person’s neigh-
boring. While the structural balance, with emphasizing on the
triadic interactions, is in a direction to fulfill the global bal-
ance [30]. Researchers also studied the Network considering
pairwise and higher order interactions in which more than
two units are involved [31]. People also used hypergraphs
and simplicial complexes and showed that depending on the

2470-0045/2022/106(4)/044303(10) 044303-1 ©2022 American Physical Society

https://orcid.org/0000-0002-0448-5549
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.106.044303&domain=pdf&date_stamp=2022-10-20
https://doi.org/10.1103/PhysRevE.106.044303


M. GHANBARZADEH NOUDEHI et al. PHYSICAL REVIEW E 106, 044303 (2022)

order of interaction, phase transition of the system will be
continuous or discontinuous and this is similar to the com-
pression of the results obtained in investigation of described
balance models [32]. Here a question is raised that which of
these approaches finally determines the balance state of the
network. Thurner et al. studied a model for the energy of a
social network in which the Heider structural balance is eval-
uated in the presence of the coevolutionary balance [27]. They
have measured the ratio of the differences between the number
of balanced and unbalanced triangles to the total number of
triangles through simulating on a small-world network. Their
results indicated that a society may fall into a fragmented or
cohesive regime due to the dominance of each balance term.
The structural balance contribution, extend the global view by
constructing balanced triangles in the network and making the
whole network to interact even if people might have different
ideas and there is a cohesion in the society. However, the
coevolutionary balance implies a local view and it shows that
people are more likely to connect to those who have similar
ideas in their own neighboring and the society will be shifted
to a fragmented regime.

In this study, we consider the role of both balance terms
in the system’s evolution. We find the critical temperature and
phase transitions of the system through analytical methods.
Also we compare the results with the numerical simulations.
In the analytical approach, we use the statistical mechanics
methods, in equilibrium, to minimize the energy of the sys-
tem, considering both triad and node-link-node interactions.
The exponential random graph method [33–42] and the mean-
field approximation [43–45] enable us to solve the problem
for a fully connected network. We obtain the behavior of
the correlation functions of the network as well as the total
energy of the system versus temperature for different impacts
on each balance term. Our study shows that the type of phase
transitions changes from the continuous to the discontinuous
by increasing the role of the Heider structural balance versus
coevolutionary balance. We also present numerical simulation
results on a small-world network.

The paper is organized as follows. In the next section,
we define the model and two-point correlation functions. In
Sec. III, we present the analytical method and, within the
framework of mean-field theory, we find the average values of
network variables. We obtain the fixed points of the dynamics
and analyze their stability. In Sec. IV we present numerical
simulations and compare the results with the analytical solu-
tions. The paper is concluded in Sec. V.

II. MODEL

Let us consider a complete signed network with n nodes.
The state of each node i is denoted by si = ±1 which shows
the positive or negative opinion of each individual. Each link
(i, j), labeled with σi j , represents friendly (positive) and un-
friendly (negative) relation between the nodes i and j. Hence,
the number of total configurations is 2n2n(n−1)/2.

Considering the interaction of the links and also the in-
teraction of a link with the end nodes, the total energy
for a particular configuration G is given by the following

FIG. 1. Configurations of (a) structural balance, (b) coevolu-
tionary balance, and (c) combination of the two structural and
coevolutionary balance units. The solid (green) and the dashed (red)
lines show friendship and enmity connections, respectively. Also
the filled (green) and empty (red) circles represent the positive and
negative opinion of nodes, respectively.

Hamiltonian:

H(G) = −
∑
i< j

siσi j s j − g
∑

i< j<k

σi jσ jkσki. (1)

The first term on the right-hand side of Eq. (1) shows the
contribution of interactions of the links with their end nodes.
In a society, this term describes the interactions between
people’s opinions and reaches a minimum when the coevolu-
tionary balance occurs. Two friendly neighbors tend to share
the same opinion while two enemy neighbors keep opposing
opinions. This contribution of interactions implies how the
dynamics of the system makes an individual converges to the
opinion of his neighbors. The second term on the right-hand
side of Eq. (1) represents the energy contribution due to the
link interactions and implies the structural balance. The fac-
tor g controls the contribution of the structural balance with
respect to the coevolutionary balance. The opinion formation
and the sign of the links are in such a way that the total energy
is minimized and the whole network reaches a balance state.

In the Heider theory, a triple is structurally balanced if the
product of the link’s signs is positive. It occurs if all the links
are positive or if there exists only one positive link. Also, a
unit consisting of a link and two end nodes is balanced in
coevolutionary framework, if the product of the sign of the
link and its end nodes is positive. In combination of structural
and coevolutionary balance, a triple is defined as balanced
if: (1) all links are positive and the nodes either all positive
(agreement type I) or all negative (agreement type II), (2) there
is only one positive link with two end nodes which have the
same state. Both end nodes are connected with negative links
to the other node in the triple which has an opposite state. The
balanced configurations are illustrated in Fig. 1.

In addition to the total energy, we can obtain the average
value of some variables of the network. For instance, the
average sate of the nodes and the links are defined, respec-
tively, as m ≡ 〈si〉 and p ≡ 〈σi j〉. Also we define the following
two-point correlations:

q1 ≡ 〈siσi j〉, q2 ≡ 〈σi jσ jk〉, q3 ≡ 〈sis j〉, (2)
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where q1, q2, and q3 denote the node-link, the link-link, and
the node-node correlations, respectively.

In the following we obtain the total energy and correlation
functions of the model analytically and compare the results
with the numerical simulations on a fully connected network.

III. ANALYSIS

Statistical physics and exponential random graph method
give us the possibility to calculate the average value of a
desired parameter x on the all graph configurations using the
Boltzman probability distribution P(G) = e−βH(G)

Z , in which
Z = ∑

G e−βH(G) is the partition function and β = 1
T is the

inverse of temperature. Temperature T shows the society
tension and the fluctuation in opinion state or the type of rela-
tionship that people will make [46]. At low temperature, there
is less tendency to change the state but when the temperature
increases people show more interest in updating their states.
The updates will affect the tension in the society by getting
close to or far from the balance state of the system.

In general, the average value of a variable x is defined as
〈x〉 = ∑

G x P(G).
To calculate m = 〈si〉, we will extract all the terms includ-

ing an specific node si from the Hamiltonian. This part of
Hamiltonian is written as the following:

−Hi = si

∑
i �=l

σil sl . (3)

Hence, we can rewrite the Hamiltonian as H = H1 + Hi,
in which Hi is sum of all terms containing si and the H1

indicates all the remaining terms. With the above description,
the average state of a node is obtained by

m =
∑

G1
sie−βH(G1 )∑

G1
e−βH(G1 )

=
∑

s �=si
e−βH1

∑
s=si

sie−βHi∑
s �=si

e−βH1
∑

s=si
e−βHi

= 〈e−βHi (si=+1) − e−βHi (si=−1)〉G1

〈e−βHi (si=+1) + e−βHi (si=−1)〉G1

,

(4)

where G1 is the all network configurations in which the
term si is not included. We can apply the mean-field approxi-
mation and substitute siσi j with q1. Hence, we will have

m = eβ(n−1)q1 − e−β(n−1)q1

eβ(n−1)q1 + e−β(n−1)q1
= tanh[β(n − 1)q1]. (5)

Similarly, we can calculate the average value of a link,
p = 〈σi j〉, by rewriting the Hamiltonianas H = Hi j + H2, in
which Hi j implies the all terms in the Hamiltonian containing
the link between i and j,

−Hi j = σi j

(
si s j + g

∑
k �=i, j

σ jkσki

)
, (6)

and the H2 counts the remaining terms. Hence, the mean
value of p can be written as the following:

p =
∑

G2
σi je−βH(G2 )∑

G2
e−βH(G2 )

=
∑

σ �=σi j
e−βH2

∑
σ=σi j

sie−βHi j∑
σ �=σi j

e−βH2
∑

σ=σi j
e−βHi j

= 〈e−βHi j (σi j=+1) − e−βHi j (σi j=−1)〉G2

〈e−βHi j (σi j=+1) + e−βHi j (σi j=−1)〉G2

, (7)

where G2 is the all network configurations in which in σi j

is not included. Using the mean-field approximation (σi jσ jk =
q2, sis j = q3) we obtain

p = eβ(q3+g(n−2)q2 ) − e−β(q3+g(n−2)q2 )

eβ(q3+g(n−2)q2 ) + e−β(q3+g(n−2)q2 )

= tanh{β [q3 + g (n − 2) q2]}.
(8)

Using the same method, we are able to calculate the
two-points correlations q1, q2 and q3. To derive q1, we sep-
arate all terms that contain si, σi j and siσi j . Therefore, it is
obtained that

H = H3 + H◦−, (9)

in which H◦− indicates all the terms that contain si, σi j , and
siσi j , and H3 is the remaining terms. We can write H◦− as the
following:

−H◦− = si

∑
� �=i, j

σi� s� + gσi j

∑
� �=i, j

σ j�σ�i + si σi j s j . (10)

Therefore, we have

q1 =
∑

{σ �=σi j , s �=si} e−βH3
∑

σi j=±1, si=±1 si σi j e−βH◦−∑
{σ �=σi j , s �=si} e−βH3

∑
σi j=±1, si=±1 e−βH◦−

= 〈e−βH◦− (si=1,σi j=1) − e−βH◦− (si=−1,σi j=1) − e−βH◦− (si=1,σi j=−1) + e−βH◦− (si=−1,σi j=−1)〉G3

〈e−βH◦− (si=1,σi j=1) + e−βH◦− (si=−1,σi j=1) + e−βH◦− (si=1,σi j=−1) + e−βH◦− (si=−1,σi j=−1)〉G3

,

= e−β(n−2)(q1+gq2 )+βm + eβ(n−2)(q1+gq2 )+βm − e−β(n−2)(q1−gq2 )−βm − eβ(n−2)(q1−gq2 )−βm

e−β(n−2)(q1+gq2 )+βm + eβ(n−2)(q1+gq2 )+βm + e−β(n−2)(q1−gq2 )−βm + eβ(n−2)(q1−gq2 )−βm

≡ f1(q1, q2 ; β, n, g).

(11)

Similarly, we can separate the terms of Hamiltonian which contain links σi j and σ jk and show theses terms with H∨. The
remaining terms of Hamiltonian is represented by H4. Hence, we rewrite Hamiltonian H as follows:

H = H4 + H∨, (12)
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where H∨ is written as

−H∨ = σi j

(
si s j + g

∑
� �=i, j,k

σ j�σ�i

)

+ σ jk

(
s j sk + g

∑
� �=i, j,k

σ j�σ�i

)
+ g σi jσ jkσki. (13)

Consequently, the link-link correlation q2 is obtained as

q2 =
∑

{σ �=σi j , σ �=σ jk} e−βH4
∑

σi j=±1, σ jk=±1 σi j σ jk e−βH∨∑
{σ �=σi j , σ �=σ jk} e−βH4

∑
σi j=±1, σ jk=±1 e−βH∨

= 〈e−βH∨ (σi j=1,σ jk=1) − e−βH∨ (σi j=−1,σ jk=1) − e−βH∨ (σi j=1,σ jk=−1) + e−βH∨ (σi j=−1,σ jk=−1)〉G4

〈e−βH∨ (σi j=1,σ jk=1) + e−βH∨ (σi j=−1,σ jk=1) + e−βH∨ (σi j=1,σ jk=−1) + e−βH∨ (σi j=−1,σ jk=−1)〉G4

,

= e4βg(n−3)q2+4βq3 − 2 e2βg(n−3)q2+2βq3−2βgp + 1

e4βg(n−3)q2+4βq3 + 2 e2βg(n−3)q2+2βq3−2βgp + 1

≡ f2(q2, q3 ; β, n, g). (14)

Finally, we reach the node-node correlation q3, by separating the terms which contain the nodes si and s j . This part of
Hamiltonian is represented by H◦◦ :

− H◦◦ = si

∑
� �=i, j

σi� s� + s j

∑
� �=i, j

σ j� s� + si σi j s j . (15)

The remaining terms of the Hamiltonian is given by H5, such that the Hamiltonian is written as follows:

H = H5 + H◦◦ . (16)

Therefore, we can find q3 as follows:

q3 =
∑

{s �=si, s �=s j } e−βH5
∑

si=±1, s j=±1 si s j e−βH◦◦∑
{s �=si, s �=s j } e−βH5

∑
si=±1, s j=±1 e−βH◦◦

= 〈e−βH◦◦ (si=1,s j=1) − e−βH◦◦ (si=−1,s j=1) − e−βH◦◦ (si=1,s j=−1) + e−βH◦◦ (si=−1,s j=−1)〉G5

〈e−βH◦◦ (si=1,s j=1) + e−βH◦◦ (si=−1,s j=1) + e−βH◦◦ (si=1,s j=−1) + e−βH◦◦ (si=−1,s j=−1)〉G5

= e2β(n−2)q1+2βp + e−2β(n−2)q1+2βp − 2

e2β(n−2)q1+2βp + e−2β(n−2)q1+2βp + 2

≡ f3(q1, q2, q3 ; β, n, g). (17)

There is a set of self-consistence equations as the
following:

q1 = f1(q1, q2 ; β, n, g),

q2 = f2(q2, q3 ; β, n, g),

q3 = f3(q1, q2, q3 ; β, n, g). (18)

Solving Eq. (18) numerically, we obtain all possible so-
lutions as a set of (q∗

1, q∗
2, q∗

3 ). The stability condition for
solutions can be checked by calculating the eigenvalues of
Jacobian matrix of Eq. (18) (see the Appendix).

The stable and unstable fixed points are plotted as a func-
tion of T in Fig. 2. At g = 0, the two-point correlation
functions q1, q2, and g3 show a second-order phase transition,
whereas at g = 1 the first-order phase transition appears. It
means that with increasing g, the phase transition type changes
from second to first order at a tricritical point gc.

In a network of size n, the number of node-link-node inter-
actions is

(n
2

)
and there is

(n
3

)
of triangles. On this account, we

can estimate the tricritical point gc as follows:

gc 	
(n

2

)
(n

3

) = 3

(n − 2)
. (19)

Therefore, we expect the type of phase transition around
this point switches from continuous to discontinuous. This
is clearly shown in Fig. 2 where the order parameters of the
network are plotted at different values of g. Depending on g,
two types of phase transitions are observed, the continuous
type, at g = 0 with one critical point and the discontinuous
type, at g = 1 and g = 50, where we can see that there are
cold and hot critical temperatures. Actually, the cold critical
temperature is assigned to the point at which the two stable
fixed points existing at low temperatures, convert to three
stable fixed points. The hot critical temperature is the point
that three stable fixed points change to one stable fixed point.
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FIG. 2. Two-point correlation functions q1, q2 and q3 versus temperature T for different values of g. We have a fully connected network of
size n = 50. The solid (blue) and dashed (red) lines show stable and unstable fixed points respectively. Below the tricritical point gc at g = 0,
the phase transition is continuous and there is one critical temperature (a). At gc, the type of transitions changes (b), and above this point, at
g = 1 and g = 50, there is a discontinuous phase transition and we have a cold and a hot critical temperature (the lower critical temperature
is named as cold and higher critical temperature is named as hot)(c, d). At g = 50 that the node’s contribution is significantly small, the
parameters q1 and q3 become meaningless. Symbols show numerical simulation results for two different initial configurations, which are in
agreement with the mean-field approach (solid lines).

The number of stable fixed points is demonstrated in Fig. 3
in the plane (T, g). As illustrated in this figure, depending on
the changes in the number of stable fixed points at different
values of g and T , we can detect three areas distinguished

by different colors. At low temperatures, independent of the
value of g, there are two stable fixed points (q∗

1 = ±1, q∗
2 =

1, q∗
3 = 1). These solutions refer to situations in which all

members of society agree with each other and all relationships
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FIG. 3. Phase diagram of a fully connected network with n = 50
in the space (T, g). The phases with different number of stable fixed
points are specified with different colors. The model shows one, two
or three fixed points in the disorder phase (blue), ordered (yellow),
and coexistence (pink) areas, respectively. Below the tricritical point,
the solid line shows there is only one critical temperature where the
phase transition is continuous. The two dotted lines which restrict the
coexistence area is in respect of cold and hot critical temperatures
where there is a discontinuous phase transition.

between them are friendly. In this case, the system is at its
minimum overall tension or energy. This area is named as
ordered and has a yellow color in Fig. 3. With increasing T ,
below the tricritical point, a new fixed point (q∗

1 = 0, q∗
2 =

0, q∗
3 = 0) emerges. This fixed point shows a disorder phase

in which all correlations are zero and it is the only solution
for temperatures greater than the critical temperature Tc. The
disorder phase area is colored by blue in Fig. 3.

When g is increased, above the tricritical point, the term
of the structural balance becomes more important against the
coevolutionary balance. In this case, there are three stable so-
lutions and both of the balance terms have the chance to occur.
We call this area coexistence (pink area). Among these three
fixed points, for q1 two fixed points are symmetric and positive
and negative correlations can exist. q2 and q3 show a nonzero
positive solution and a trivial fixed point q∗

2 = q∗
3 = 0. As the

temperature increases, after passing the hot critical tempera-
ture the system will again get into the disorder phase area. We
can also see that with increasing g, the hot temperature critical
points shift to the higher values.

In Fig. 3 we have shown the tricrital point, obtained
through the mean-field approximation, where the coexistence
appears and the two regimes of second- and first-order phase
transitions switches. The critical temperature at continuous
phase transition regime are shown with solid black line and
at the discontinuous phase transition regime with black dotted
lines. Moreover, in comparison of two balance types, at high
enough amounts of g that structural balance is dominant, the
critical temperature occurs at higher temperatures rather than

the small amounts of g where the coevolutionary balance plays
more effective role.

Besides, we find the total energy using mean-field approx-
imation. For this purpose, we calculate average of each term
of the Hamiltonian [Eq. (1)]. To obtain the average of first
term of the Hamiltonian related to the contribution of the
node-link-node triplets which we represent it with notation
E◦� , we have considered all the terms in the Hamiltonian
containing node-link-node triplets as follows:

− H = si

∑
� �=i, j

σi� s� + s j

∑
� �=i, j

σ j� s� + si σi j s j . (20)

For the average of second term of the Hamiltonian, in
respect of the link-link-link triplets (triangles) contribution,
represented by E
 in the following, we will separate all the
terms in the Hamiltonian including link-link-link interactions.
Therefore, we write

−H
 = g

(
σi j

∑
� �=i, j,k

σi�σ� j + σ jk

∑
� �=i, j,k

σ j�σ�k

+ σki

∑
� �=i, j,k

σk�σ�i + σi jσ jkσki

)
. (21)

We approximate Eqs. (20) and (21) with the mean-field
method to reach the above-mentioned averages for E◦� and
E
 . Accordingly, we have E◦� as

E◦� = −1 + e2β

1 + e2β
(22)

and also E
 is calculated as

E
 = −1 − 3e4gβ(n−3)q2 + 3e2gβ(1+(n−3)q2 ) + e2gβ(1+3(n−3)q2 )

+1 + 3e4gβ(n−3)q2 + 3e2gβ(1+(n−3)q2 ) + e2gβ(1+3(n−3)q2 )
.

(23)

The normalized energy is

E = −nE + n
E


n + gn

, (24)

where n is the number of node-link-node triplets and n
 is
the number of triangles. In a fully connected network these
numbers are n = (n

2

)
and n
 = (n

3

)
.

Therefore, by substituting Eqs. (22) and (23) in Eq. (24)
the total energy will be obtained as

E =
3(−1+e2β )

1+e2β + g(n−2)(−1−3e4gβ(n−3)q2 +3e2gβ(1+(n−3)q2 )+e2gβ(1+3(n−3)q2 ) )
1+3e4gβ(n−3)q2 +3e2gβ(1+(n−3)q2 )+e2gβ(1+3(n−3)q2 )

3 + g(n − 2)
.

(25)

Figure 4 shows the behavior of the total energy as a func-
tion of temperature. It is clear in this figure that the type
of phase transition changes depending on the value of g. In
the other words, when the structural balance has more power
and the value of g is high enough, the phase transition is
discontinuous, however at low g values, below the triciritical
point the phase transition is continuous.
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FIG. 4. Total energy of a fully connected network of size n = 50 versus temperature T and for different values of g. The solid (blue) and
dashed (red) lines show stable and unstable fixed points, respectively. At g = 0, the system shows a continuous phase transition and there
is one critical temperature. For g = 1 and g = 50, a discontinuous transition emerges where there are a cold and a hot critical temperature
point. Symbols show numerical simulation results for two different initial configurations, which are in agreement with the mean-field approach
(solid lines).

IV. SIMULATION

To confirm the results we can perform numerical simu-
lations. First we consider a fully connected network with
n = 50. With an initial condition for the state of nodes and
links, we calculate Hamiltonian H from Eq. (1). We use the
Metropolis algorithm and update the state of the nodes and
links. At each time step with probability p a random node and
with probability (1 − p) a random link is chosen and flipped
its state. The probability p = n

n+n(n−1)/2 , is the ratio of the
number of the nodes to the total number of nodes and links. In
the new configuration Hamiltonian H is again calculated and
if it decreases, the flip is accepted. Otherwise with the prob-
ability e−(Ht+1−Ht )/T we keep the flip. The process continues
until the system reaches a stationary state.

In Fig. 2 we compare the mean-field solutions, obtained in
the previous section, with the simulation results for different
values of g. We consider two types of initial conditions: (1)
all the links and nodes are positive (agreement type I) and
(2) the links are all positive and the nodes are all negative
(agreement type II). The results show a good correspondence,
however for the low values of g (g < gc), the simulation dose
not properly confirm the mean-field approximation solutions.
With increasing g and reinforcing the contribution of struc-
tural balance term, the agreement between the mean-field
approximation and the numerical simulations is well observed
[Figs. 2(c)–2(d)].

In the following we consider the model on small-world
networks. Let us start with a ring having n = 50 nodes and

node degree k = 8. Moving clockwise, for every node we
select randomly a link that connects that node to one of its
neighbors, and rewire it with probability p. We continue this
process until each link in the original ring has been considered
once. The parameter p measures the randomness of the result-
ing network. For p = 0 the network is regular and there are
many triangles (high clustering coefficient), while for p = 1
all links are rewired and the resulting network is a random
network with low clustering coefficient. Hence, for the small
values of g, the degree of network’s randomness does not
have any effect. As we can see in Fig. 5 the behavior of
correlation functions q1, q2, q3 is independent on p. However,
with increasing g, the interaction of triangles find more contri-
bution and the structural balance become more effective. Thus
the correlation functions behave differently for the different
values of rewiring probability p. As we can see, the transition
points shift to the smaller temperature with increasing the
network randomness. Similar behavior is observed in the total
energy of the small-world networks (Fig. 6).

V. CONCLUSION

In this work we have considered the structural Heider bal-
ance in which the interactions have a global effect, as each
link contributes to so many triangles in the network struc-
ture and the coevolutionary balance in which the links only
connect the local nodes. Moreover, studies show structural
balance represents a discontinuous phase transition while the
coevolutionary balance results in a continuous phase transi-
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FIG. 5. Two-point correlations q1, q2, and g3 versus temperature T on small-world networks of size n = 50 and mean degree 〈k〉 = 8.
Symbols show the numerical simulation results for different rewiring probabilities p. In (a) g = 0.001, the network randomness has no effect
on the correlation behavior. In (b) g = 1, and critical temperature Tc shifts to the higher values for more ordered networks.

tion. Given the fact that one can not ignore the existence of
each term in any arbitrary system, we have simultaneously
considered both terms to evaluate the role of each balance
type in the final balance state of the system. The factor g in
the Hamiltonian of the model controls the contribution of the
structural versus the coevolutionary balance. Using statistical
mechanics methods and the mean-field approximation, we
presented analytical relations of the two point correlations
as well as the total energy of a fully connected network
and compared the results with the simulations. Finally, we

conclude our investigations in this study with the following
points:

—We found that in this competition, on equal condi-
tions, when factor g is equal to 1, the structural balance
term is the winner term and we can clearly observe the dis-
continuous phase transition in the system meaning that the
network is propelled by the triad interactions into a global
balance and there is more interest in fulfilling the total overall
benefits of the system rather than the local benefits of the
system agents.

FIG. 6. Total energy of small-world networks of size n = 50 and mean degree 〈k〉 = 8 versus temperature T and for different values of g.
Symbols show the numerical simulation results for different rewiring probabilities p. In (a) g = 0.001, the network randomness has no effect
on the energy behavior. In (b) g = 1, and critical temperature Tc shifts to the higher values for more ordered networks.
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—At low values of g, the coevolutionary term, expressing
the local balance, will get more power versus the Heider term
and thus it is the dominant term and the phase transition is
continuous.

—Due to the existence of two types of phase transitions, we
found a tricritical value for g, in which the type of transition
switches from continuous to discontinuous.

—Considering that the coevolutionary balance occurs at
lower temperatures rather than the Heider balance, we have
observed that in the competition between these two terms,
at low enough temperatures and for any values of g, the
system is in an ordered state. However, at any fixed value
of T , by increasing the factor g, which is equivalent to mag-
nifying the role of the structural balance, the competition is
in direction to move into a coexistence region where both
balance terms are probable. In a fully connected network the
fragmented and consensus phases are not detected. Thurner
et al. showed the simulations for an sparse network and they
have confirmed at large enough g values, when the structural
balance is the dominant term, the society will be in the state
that different ideas will be able to coexist. However, when
g is small and the coevolutionary balance is predominant,
the society will come to a fragmented state in which there
are clusters of people who are friendly with each other but
they are unfriendly with the people in other clusters. This
means that the society does not sustain the coexistence of
opposite ideas.

—The energy function is the normalization of the sum-
mation of the two structural and coevolutionary terms.
For g = 0, there exsits only the coevolutionary term
and the energy behavior is due to the local interac-
tions. However, for g > gc the triangle interactions (struc-
tural term) dominate and the coevolutionary term is not
effective.

The correlation function q2 is the order parameter re-
lated to the link-link interactions, which stands for the
Heider balance discipline, whereas q3 and q1 functions
show the order parameters of the node-link and node-node
interactions, respectively, and stand for the coevolution-
ary balance discipline. Our observations show that above
the tricritical point gc, where the structural balance wins
the competition, the parameters q1 and q3 still exist. In
other words, the dominance of structural balance pushes
the transition temperature of the node-node and node-link
order parameters to a higher value (the critical tem-
perature attributed to the structural balance). However,
for g < gc, the order parameter q2, obeying coevolution-
ary balance discipline, shows the same transition point
as the coevolutionary balance. In particular for g = 0,
where the effect of the structural balance is completely
removed, the order parameter q2 becomes zero in a
low temperature (the critical temperature attributed to the
coevolutionary balance).

APPENDIX: STABILITY ANALYSIS OF FIXED POINTS

Let us consider fixed point (q∗
1, q∗

2, q∗
3 ). To determine the

stability of the fixed point, we consider a nearby solution
by an infinitesimal perturbation such that (q∗

1 + δq1, q∗
2 +

δq2, q∗
3 + δq3). The fixed point will be mapped by Eq. (18)

to another point in (q1, q2, q3) space, as

q∗
1 + δq′

1 = f1(q∗
1 + δq1, q∗

2 + δq2 ; β, n, g),

q∗
2 + δq′

2 = f2(q∗
2 + δq2, q∗

3 + δq3 ; β, n, g),

q∗
3 + δq′

3 = f3(q∗
1 + δq1, q∗

2 + δq2, q∗
3 + δq3 ; β, n, g).

(A1)

For δq1 � 1, δq2 � 1 and δq3 � 1, we use the Taylor expan-
sion neglecting the nonlinear terms

q∗
1 + δq′

1 ≈ f1(q∗
1, q∗

2 ; β, n, g) + ∂ f1

∂q

∣∣∣∣
(q∗

1 ,q
∗
2 )
δq1

+ ∂ f1

∂q2

∣∣∣∣
(q∗

1 ,q
∗
2 )
δq2,

q∗
2 + δq′

2 ≈ f2(q∗
2, q∗

3 ; β, n, g) + ∂ f2

∂q2

∣∣∣∣
(q∗

2 ,q
∗
3 )
δq2

+ ∂ f2

∂q3

∣∣∣∣
(q∗

2 ,q
∗
3 )
δq3,

q∗
3 + δq′

3 ≈ f3(q∗
1, q∗

2, q∗
3; β, n, g) + ∂ f3

∂q1

∣∣∣∣
(q∗

1 ,q
∗
2 ,q

∗
3 )
δq1

+ ∂ f3

∂q2

∣∣∣∣
(q∗

1 ,q
∗
2 ,q

∗
3 )
δq2 + ∂ f3

∂q3

∣∣∣∣
(q∗

1 ,q
∗
2 ,q

∗
3 )
δq3.

(A2)
By linearization we have

⎛
⎝δq′

1
δq′

2
δq′

3

⎞
⎠ = J

⎛
⎝δq1

δq2

δq3

⎞
⎠, (A3)

where J is the Jacobian matrix in the fixed point:

J =
⎛
⎝∂ f1/∂q1 ∂ f1/∂q2 ∂ f1/∂q3

∂ f2/∂q1 ∂ f2/∂q2 ∂ f2/∂q3

∂ f3/∂q1 ∂ f3/∂q2 ∂ f3/∂q3

⎞
⎠

(q∗
1 ,q

∗
2 ,q

∗
3 )

. (A4)

By diagonalizing we obtain
⎛
⎝dδq′

1

dδq′
2

dδq′
3

⎞
⎠ =

⎛
⎝λ1 0 0

0 λ2 0
0 0 λ3

⎞
⎠

⎛
⎝dδq1

dδq2

dδq3

⎞
⎠, (A5)

where vector dδq′ (dδq) is actually the vector δq′ (δq) in di-
agonal space. If magnitude of all eigenvalues for a fixed point
are smaller than one (|λ1| < 1, |λ2| < 1 and |λ3| < 1), then
the fixed point is attractive or stable otherwise it is unstable.
This means that the entire vector field around the fixed point
is towards this point, and with each iteration we approach the
fixed point. In the case where all three eigenvalues are greater
than one, the vector field around the fixed point is completely
divergent, which means that by each iteration the magnitude
of difference vector |dδq′| will be bigger.
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