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ladder subject to effective magnetic field

Ai-Xia Zhang,* Wei Zhang, Ya-Hui Qin, Xiao-Wen Hu, Xin Qiao, and Ju-Kui Xue †

College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, 730070, China

(Received 17 August 2022; accepted 12 October 2022; published 28 October 2022)

The two-leg magnetic ladder is the simplest and ideal model to reflect the coupling effects of lattice and
magnetic field. It is of great significance to study some novel phases, topological characteristics, and chiral
characteristics in condensed matter physics. In particular, the left-right leg degree of freedom can be regarded as a
pseudospin, and the two-leg magnetic ladder also provides an ideal platform for the study of spin dynamics. Here
the ground state, Bloch oscillations (BOs), and spin dynamics of the interacting two-leg magnetic ladder subject
to an external linear force are studied by using variational approach and numerical simulation. In the absence of
the external linear force, the critical condition of transition between the zero-momentum state and plane-wave
state is obtained analytically, and the physical mechanism of the ground-state transition is revealed. When the
external linear force presents, the occurrence of BOs excites the spin dynamics, and we reveal the chiral BOs
and the accompanied spin dynamics of the system in different ground states. In particular, we further study the
influence of periodically modulated linear force on BOs and spin dynamics. The frequencies of the linear force
corresponding to the resonances and pseudoresonances are obtained analytically, which result in rich nonlinear
dynamics. In resonances, stable and strong BOs (with larger amplitude) are observed. In pseudoresonances,
because the pseudoresonance frequencies are related to the initial momentum and phase of the wave packet, a
dispersion effect takes place and strong diffusion of wave packet occurs. When the frequency is nonresonant,
drift and weak dispersion of wave packet occur simultaneously with the wave-packet oscillation. In all cases, the
wave-packet dynamics is accompanied with periodic but anharmonic pseudospin oscillation. The BOs and spin
dynamics are effectively controlled by periodically modulating the linear force.
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I. INTRODUCTION

In recent years, the artificial gauge field [1] induced by
the coupling between light and cold atoms (i.e., Raman
coupling between the spin states of ultracold atoms), includ-
ing artificial electric field [2], artificial magnetic field [3],
spin-orbit coupling [4], etc., has generated a series of rich
physical properties and derived some new research fields.
Among them, the combination of optical lattice and artifi-
cial gauge field to realize effective magnetic field of cold
atoms in optical lattice has become a hot field in cold atom
physics [5–11].

The physics of cold atoms in optical lattices subject to
artificial magnetic fields is a spatial high-dimensional problem
that poses challenges to theoretical studies. In recent years,
more attention has been paid to pure and highly controllable
low-dimensional nontrivial topology models. Since the one-
dimensional system under the effect of magnetic field does
not have the orbital effect, the ladder model with two-leg
structure [12–14] has become one of the simpler ideal physical
models to study the orbital magnetic field effects and lattice
coupling effects in low-dimensional quantum systems. It also
provides a great research environment for in-depth revealing
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some novel phases, topological characteristics, and chiral
characteristics in condensed matter physics. Furthermore, it
provides a new and effective way to explore a new method to
realize spin-orbit coupling in one-dimensional quantum gas.

Experimentally, there are many ways to implement the
magnetic ladder in cold atom systems. In 2014, Atala
et al. [12] realized the bosonic ladder system of ultracold
atoms in artificial gauge field by using superlattice and laser-
induced tunneling technology [4,15]. The current research
has proved the existence of novel quantum phases includ-
ing superfluid phase, Mott-insulator phase, charge density
wave phase, vortex density wave phase, biased ladder phase,
etc. [16–21]. In addition to the complex phase transition
process, the two-leg magnetic ladder system has abundant
dynamic characteristics. In actual experiments, due to the ex-
istence of magnetic field gradient and gravity, the ladder tends
to tilt, and the condensate propagates through directed center-
of-mass motion, which leads to a series of rich and interesting
quantum phenomena, such as chiral Landau Zener tunnel-
ing, Bloch oscillation, localization, coherent transformation,
superfluid characteristics, etc. [22–30]. When a harmonic con-
finement potential is applied, the critical slowing down in the
collective mode dynamics of the two-leg magnetic ladder sys-
tem is also found [25]. More interestingly, the characteristics
of these rich dynamic phenomena can be used to visually
distinguish the phases of the system. Obviously, the study
of dynamics phenomena of magnetic ladder system provides
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FIG. 1. The sketch of the two-leg ladder with magnetic flux.

more opportunities for exciting new dynamic phase transi-
tions, accurately controlling and identifying particle dynamics
and ground-state phase transitions of the system. However,
there are still many problems to be explored in depth. Con-
sidering the atomic interaction, the competition relationship
among atomic interaction, magnetic field, and rung-to-leg
coupling ratio for inducing the ground-state phase transition is
not clear. Especially, the nonequilibrium dynamics in different
ground states under external modulation is still open subject.

In this paper, the ground state and the dynamics of the inter-
acting bosonic ladder system subject to a synthetic magnetic
field under the action of a static and periodically modulated
linear force are studied analytically and numerically. In the
absence of the external linear force, the ground state of the
system is studied, two states, i.e., zero-momentum state and
plane-wave state, are presented, and the threshold for transi-
tion of the two states are obtained analytically. The physical
mechanism of ground-state transitions is revealed explicitly.
In the presence of the external linear force, the Bloch os-
cillations (BOs) and spin dynamics initialized in different
ground states are discussed. The results show that BOs ex-
hibits the chiral characteristics and depends on the ground
state. Moreover, we addressed the phenomenon of dynamic
localization of Bloch wave packets subjected to a periodically
modulated linear force. Rich Bloch and spin dynamics are
presented, including strong BOs with larger amplitude, drift
of Bloch wave packet, and significant dispersion of the wave
packet. Accordingly, periodic but anharmonic spin dynamics
are observed.

The paper is organized as follows. In Sec. II, we introduce
the model of the two-leg ladder with an artificial magnetic
field and an external linear force. In Sec. III, the ground-state
transition of the system are analyzed with a variational ap-
proach, and the dispersion relation and ground-state diagram
are presented in detail. In Sec. IV, the chiral BOs and corre-
sponding spin dynamics are presented, and the influence of
system parameters on BOs and spin dynamics is discussed.
In Sec. V, we study the modulation of BOs, and the con-
trollable wave-packet dynamics and spin dynamics are clearly
presented. Finally, in Sec. VI, a brief summary is given.

II. THE MODEL AND VARIATIONAL APPROACH

We study the ground-state and Bloch dynamics of two-
leg bosonic ladder subject to an artificial magnetic field (see
Fig. 1). With a linear force F̃ applied along the legs and a
magnetic flux φ piercing the each unit cell, the Hamiltonian

of the interacting bosonic ladder system is [12,16,29,31–33]

Ĥ = −J̃
∑

m

(eiφ âm,Lâ†
m+1,L + e−iφ âm,Râ†

m+1,R + H.c.)

− K̃
∑

m

(â†
m,Lâm,R + H.c.) + g̃

2

∑
m

(â†
m,Lâ†

m,Lâm,Lâm,L

+ â†
m,Râ†

m,Râm,Râm,R) + F̃
∑

m

m(â†
m,Lâm,L + â†

m,Râm,R).

(1)

Here the operator âm,σ refers to annihilating a particle at site
m in the left or right leg of the ladder (corresponding to σ = L
or R). J̃ and K̃ represent the tunneling strengths along the legs
and rungs of the ladder, respectively, and F̃ is the external
linear force. g̃ is the strength of the interatomic interaction.
In this paper, we take the case of g̃ > 0, where the atoms
repel each other. Experimentally, this ladder system can be
readily realized by using a superlattice structure together with
effective magnetic field (created by laser-assisted tunneling
technology) in a two-dimensional optical lattice [12]. The
rung-to-leg coupling ratio K̃ can be controlled by adjusting
the intensity of the lasers which create the lattice potential,
while the effective magnetic field φ can be turned by chang-
ing the wavelength of the running-wave beams or the angle
between them. The external linear force F̃ can be realized
by modulating the lattice potential [34]. To avoid parametric
and interband excitations, weak linear force is considered,
i.e., F̃/J̃ � 1. The strength of the atomic interaction g̃ can
be easily manipulated by the Feshbach resonance technol-
ogy [35]. As shown in experiment [12], the values of these
parameters can be adjusted in a wide range and 0 < K̃/J̃ < 4
and 0 < φ < π are realized. The values of these parameters
used in our work are all in experimental accessible range.
This system is equivalent to a spin-orbit coupling system by
regarding the left-right leg degree of freedom as a pseudospin.

Under the mean-field approximation, am,σ = 〈âm,σ 〉 is the
probability amplitude of atoms on the ladder leg at position m,
and the Hamiltonian has the following form:

H = −J̃
∑

m

(eiφam,La∗
m+1,L + e−iφam,Ra∗

m+1,R + H.c.)

− K̃
∑

m

(a∗
m,Lam,R + H.c.) + g̃

2

∑
m

(|am,L|4 + |am,R|4)

+ F̃
∑

m

m(|am,L|2 + |am,R|2). (2)

In the meantime, according to the Heisenberg equation of mo-
tion (ih̄dam,σ /dt = ∂H/∂a∗

m,σ ), our system can be expressed
by a set of discrete nonlinear Schrödinger equations:

iȧm,L = −(e−iφam+1,L + eiφam−1,L ) − Kam,R

+ g|am,L|2am,L + Fmam,L,

iȧm,R = −(eiφam+1,R + e−iφam−1,R) − Kam,L

+ g|am,R|2am,R + Fmam,R, (3)

where h̄ = 1, K = K̃/J̃ , g = g̃/J̃ , and F = F̃/J̃ . Note that the
time t is readjusted to [h̄/J̃]t . They are dimensionless.
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The ground-state and BOs dynamics of the system can
be well studied by using a variational method. We use the
Gaussion distribution of the wave packet with a radius Rσ ,

am,L(t ) =
√

1 + s

2

1

R1/2
L (π/2)1/4

× exp

[
− (m − ξL )2

R2
L

+ ipL(m − ξL ) + i
θ

2

]
,

am,R(t ) =
√

1 − s

2

1

R1/2
R (π/2)1/4

× exp

[
− (m − ξR)2

R2
R

+ ipR(m − ξR) − i
θ

2

]
, (4)

where ξσ (t ) and pσ (t ) represent the center-of-mass position
and the related momentum in the corresponding legs, respec-
tively. The degree of freedom of the left-right in the ladder
can be considered a pseudospin. Hence, the parameters θ (t )
and s(t ) represent, respectively, the phase difference and the
spin population difference of atoms between the two legs of
the ladder. The average spin polarization 〈σz〉 = s ranges from
−1 to 1.

By means of variational method, the differential
equation of motion can be obtained from the Lagrangian
density L = ∑

m
i
2 (ȧm,La∗

m,L − am,Lȧ∗
m,L + ȧm,Ra∗

m,R −
am,Rȧ∗

m,R) − H , the dot means the first derivatives with respect
to t , and the asterisk means the complex conjugate. Specially,
we assume ξL = ξR = ξ , pL = pR = p, RL = RR = R to
simplify the calculation and the sum over m in the Lagrangian
density is replaced by an integral in the computational
process. Under this circumstance and inserting Eq. (4) into
the Lagrangian, we can get

L = pξ̇ − 1

2
sθ̇ + 2e− 1

2R2 (cos p cos φ + s sin p sin φ)

+ K
√

1 − s2 cos θ − g(1 + s2)

4
√

πR
− Fξ, (5)

and the effective Hamiltonian is

H = −2e− 1
2R2 (cos p cos φ + s sin p sin φ)

− K
√

1 − s2 cos θ + g(1 + s2)

4
√

πR
+ Fξ . (6)

Then we solve the Euler-Lagrangian equations d
dt

∂
∂q = ∂L

∂q ,
and the differential equations of motion associated with the
variational parameters q(t ) = ξ, p, θ, s can be worked out

ξ̇ = 2e− 1
2R2 (sin p cos φ − s cos p sin φ), (7)

ṗ = −F, (8)

θ̇ = −2Ks cos θ√
1 − s2

+ 4e− 1
2R2 sin p sin φ − gs√

πR
, (9)

ṡ = 2K
√

1 − s2 sin θ. (10)

Equations (7) and (8) characterize the evolution of the center-
of-mass position and the momentum of the condensate,
respectively. That is, the BOs are controlled by Eqs. (7)

and (8). The Eqs. (9) and (10) describe, in dynamic evolution,
the change of the phase difference and the spin population
difference between the two-leg ladder. In other words, the spin
dynamics is characterized by the internal Josephson Eqs. (9)
and (10). Equations (7)–(10) indicate that the BOs and spin
dynamics are strongly coupled by the magnetic filed φ. In the
next sections, we will study the ground-state transition and the
BOs dynamics of the system.

III. THE GROUND-STATE TRANSITION WITHOUT TILT

First, we analytically study the ground state of the sys-
tem in the absence of external linear force (F = 0) based on
the variational equations. Equations (7)–(10) have the ground
state q0 when F = 0. We set that the center-of-mass position
of the wave packets is at the origin of the coordinate, i.e.,
ξ0 = 0. Meanwhile, using stationary solutions q̇0 = 0, we ob-
tain θ0 = 0, p0 = arctan(s0 tan φ), and

s0 f = 0

⎛
⎝ f = − 2K√

1 − s2
0

+ 4e− 1
2R2 cos p0 sin φ tan φ − g√

πR

⎞
⎠. (11)

Equation (11) determines the phase transition condition. s0 =
0 means that p0 = 0 and the distribution of particles in two
legs is same, that is, the system is in the zero-momentum
state. Additionally, s0 �= 0 (s0 is determined by f = 0) means
p0 �= 0 and the system is in the plane-wave state, where the
particles are unevenly distributed in the two legs. Then, setting
s0 = 0 and f = 0, we get the critical condition of ground-state
transition between the zero-momentum state and the plane-
wave state,

K = 2e− 1
2R2 sin φ tan φ − g

2
√

πR
, (12)

which explicitly depicts the competition relationship among
atomic interaction, magnetic field and rung-to-leg coupling
ratio for inducing the ground-state transition. It can be clearly
seen from Eq. (12) that atomic interaction g, rung-to-leg cou-
pling ratio K and the magnetic filed φ can modify the ground
state.

In the ground state, the energy of the system is described
as follows:

H = −2e− 1
2R2 (cos p cos φ + s sin p sin φ) − K

√
1 − s2

− g(1 + s2)

4
√

πR
, (13)

with the relationship of p = arctan(s tan φ). Then the disper-
sion relation of the band can be obtained. As the rung-to-leg
coupling ratio K decreases, the band minimum shifts from
p0 = 0 to two nonzero p0 values, and the two nonzero p0

are degenerate and symmetric around p0 = 0. The ground
states of these two band structures correspond to the zero-
momentum state and the plane-wave state, respectively.
Figure 2 shows the energy spectra under different states for
g = 0.5 and g = 1.5. It can be clearly seen that the energy
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FIG. 2. Energy band structures of the ladder system under g =
0.5 (the left column) and g = 1.5 (the right column). The red line and
blue line indicate that the ground state of the system is in the zero-
momentum state and the plane-wave state, respectively. The black
line is the energy spectrum at the transition point. We set R = 5.

spectra have a parabola structure with only one minimum
in the zero-momentum state and the energy spectra have a
double-well structure with two minimums in the plane-wave
state. In addition, the energy band structure gradually transi-
tions from the zero-momentum state to the plane-wave state
with the decrease (increase) of K (φ).

The ground-state diagrams in K-g and φ-g planes for dif-
ferent φ and K are plotted in Fig. 3. It can be clearly seen
that the transition from zero-momentum state to plane-wave
state occurs with decreasing K , increasing φ or decreasing
g. With the increase of g, the region of the zero-momentum
state increases, indicating that the atomic interaction promotes
the system to be in the zero-momentum state. In a word, the
rung-to-leg coupling ratioK , magnetic flux φ, and the atomic

FIG. 3. The ground-state diagram in K-g plane under different φ

(a) and in φ-g plane under different K (b).

FIG. 4. The chiral current jc, the initial spin population differ-
ence of atoms s0 and the momentum p0 corresponding to the ground
state as function of the rung-to-leg coupling ratio K .

interacting g play important roles in the ground-state transi-
tion. Thus, we can control the ground state of the system by
adjusting the strength of g, K , and φ.

In particular, we calculate the chiral currents, which can
be observed experimentally and allow one to characterize the
different ground state of the system [12]. We define the chiral
current [36,37],

jc =
∑

m

( jm,L − jm,R)

= 2e− 1
2R2 (s0 sin p0 cos φ − cos p0 sin φ), (14)

where the local currents on legs are jm,σ =
i(e±iφa†

m+1,σ am,σ − H.c.).
Figure 4 shows the chiral current jc, the initial population

difference of atoms s0 and the momentum p0 corresponding
to the ground state as a function of the rung-to-leg coupling
ratio K to visualize the ground-state transition. As can be
seen from Figs. 4(a) and 4(b), jc increases with the increase
of K in the plane-wave state until it reaches saturation in
the zero-momentum state. The greater the magnetic flux φ

is, the greater the saturated chiral current jc is. It can be
seen from Figs. 4(c)–4(f) that the density is higher on one
leg than the other (s0 �= 0), and the momentum is nonzero
(p0 �= 0) in the plane-wave state. In addition, the density is
uniform (s0 = 0), and the momentum is zero (p0 = 0) in the
zero-momentum state. The ground-state transition is a second-
order-state transition because jc, s0, and p0 are continuous
across the boundary between the different states.

IV. THE CHIRAL BLOCH OSCILLATION
AND SPIN DYNAMICS

When the bosonic ladder is tilted (F �= 0), the system
will not be in the ground state, causing interesting dynamics
phenomena such as BOs of lattice system. Moreover, the
features of the dynamics phenomena can directly differentiate
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FIG. 5. Temporal evolutions of the left leg density (the first col-
umn), the right leg density (the second column) and the sum density
(the third column) for oscillatory mode of a Gaussian wave packet in
the zero-momentum state (the first row) and the plane-wave state (the
second row). [(a)–(c)] With φ = 0.20π ; [(d)–(f)] with φ = 0.25π .
The other system parameters are g = 0.5, K = 1.2, and F = 0.2.

the novel state. In order to further elucidate the state transition
of the magnetic ladder system, we study the BOs caused by
a constant external force. We discuss the weak force case
F � 1 to ensure that the characteristics of the ground state
of the system are not affected strongly. Furthermore, it is
known that strong repulsive atomic interaction can cause the
decoherence of the condensates, which will result in damping
of the BOs after a certain time. The damping rate is propor-
tional to the strength of atomic interaction. So, to observe
significant BOs in sufficiently long time, here we consider
weak repulsive atomic interaction, i.e., 0 < g < 1. This also
is consistent with the experiment [12], where the strength
of the atomic interaction can be easily manipulated by the
Feshbach resonance technology. According to Eq. (8), the
quasimomentum p = p(t ) satisfies the classical equation of
motion,

p(t ) = p0 − Ft . (15)

In this case, the external linear force plays the role of restoring
force.

To survey the BOs started in different ground states, we
have employed direct numerical simulations of the GP Eq. (3)
using the fourth-order Runge-Kutta method. The results of the
simulation for the cases started initially in different ground
states are presented in Fig. 5.

As is shown, atoms exhibit the oscillatory mode of BOs.
The chiral characteristics of the BOs are exhibited intuitively:
When moving down (up) during the first (second) half of the
BOs period, the particles are mainly distributed on the right
(left) leg of the ladder. The degree of freedom of the left-right
in the ladder is equivalent to pseudospin, and the different
stages of the BOs period can be considered as different mo-
menta [36]. That is, the spin-momentum locking results in
the chirality of the system. On the other hand, comparing the
first and second rows in Fig. 5, it can be seen that the BOs
started in different ground states have dissimilar trajectories.
Specifically, when the wave packet oscillates back to the ini-
tial site, it stays near the initial position for a longer time in
the plane-wave state. Therefore, the oscillation characteristics

FIG. 6. The BOs and the spin dynamics in the regime of the zero-
momentum state for g = 0.5 under different parameters F , K , and
φ. [(a)–(c)] The temporal evolutions of the center of wave packets.
[(d)–(f)] The temporal evolutions of the spin polarization.

of the magnetic ladder system can be used to distinguish the
ground states of the system.

Instead, the BOs of the condensates are described by the
dynamic of center-of-mass of wave packets ξ . Then we can
obtain an equation describing the BOs by combining Eqs. (6)–
(10),

ξ̈ + F 2ξ = FH + F

[
K cos θ

√
1 − s2 − g(1 + s2)

4
√

πR

]

− 2e− 1
2R2 ṡ cos p sin φ. (16)

It illustrates that the corresponding oscillatory period TB =
2π/F . Equation (16) indicates that the BOs and the spin
dynamics are strongly coupled in the presence of artificial
magnetic flux. To obtain the amplitude of the BOs analyt-
ically, we solve the Eq. (7) approximatively. According to
Figs. 6 and 7, we can assume s(t ) = s̄ = ∫ TB

0 s(t )dt ≈ 0 when
ξ → ξmax, and then from Eq. (7), the maximal displacement
ξmax is obtained,

ξmax = −2e− 1
2R2 cos φ[1 + sin(p0 + π/2)]

F
. (17)

Equation (17) indicates that, the amplitude of the BOs is de-
termined by F , p0, and φ. Particularly, ξmax depends on initial
momentum p0 = arctan(s0 tan φ), which means the ampli-
tudes of BOs started in two ground states should be different.

FIG. 7. The same as in Fig. 6 but in the regime of the plane-wave
state.
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The amplitude of BOs depends on K in the plane-wave state,
while it does not in the zero-momentum state.

To reveal the BOs more clearly, we are interested in the
evolution of the center-of-mass of wave packet, which can
be characterized by its coordinate ξσ (t ) defined as ξσ (t ) =∫

a∗
m,σ mam,σ dm/a∗

m,σ am,σ dm. And we formulate the spin dy-
namics with s(t ) = ∫

(a∗
m,Lam,L − a∗

m,Ram,R)dm, as displayed
in Figs. 6 and 7. The results shown in Figs. 6 and 7 are the
numerical solutions of Eq. (3), and only the center-of-mass of
left leg ξL is shown. One can find that, because of the coupling
of BOs and spin dynamics, the BOs and spin oscillation are all
anharmonic. Whether the BOs is started in zero-momentum
state (Fig. 6) or plane-wave state (Fig. 7), the frequencies
of the BOs and spin oscillation indeed increase with the in-
creasing F [see Figs. 6(a)–6(d) and Figs. 7(a)–7(d)], and the
amplitudes of the BOs increase with the decrease of F and
φ [see Figs. 6(a), 7(a) and Figs. 6(c), 7(c)], while they are
independent of K in the zero-momentum state [see Fig. 6(b)]
and have a weak dependence on K in the plane-wave state
[see Fig. 7(b)] for fixed φ and F . The periodic spin dynamics
is enhanced by the increase of φ [see Fig. 6(f) and Fig. 7(f)].
In particular, the influence of φ on s in the zero-momentum
state is stronger than that in the plane-wave state. Interestingly,
the amplitudes of s do not vary with F [see Fig. 6(d) and
Fig. 7(d)], and K has very little impact on s [see Fig. 6(e) and
Fig. 7(e)]. Those are all well predicted by Eq. (17). One can
see more clearly that the centers of the Gaussian wave packets
have different trajectories in two different ground states (see
the first row in Figs. 6 and 7). Note that the numerical results
in Figs. 6 and 7 show that ξ indeed approaches its maximum
when s → 0. This further confirm the validation of Eq. (17).

V. THE MODULATION OF BOs AND SPIN DYNAMICS

We turn to investigate the impact of a periodic modulation
of the amplitude of the linear force on the dynamics of bosonic
ladder. We consider a general harmonic force of the form
F (t ) = F0 sin(ωt + ϕ), where F0 and ϕ are the amplitude and
the initial phase, with frequency ω and period T = 2π/ω. The
variational equation of momentum (8) becomes

ṗ = −F0 sin(ωt + ϕ). (18)

By integrating the above formula, we get p = p0 +
F0
ω

[cos(ωt ) − cos ϕ]. After inserting the integral result into
Eq. (7), the dynamics of the wave-packet center is governed
by the equation

ξ̇ = 2e− 1
2R2

√
cos2 φ + s2 sin2 φ

× sin
[F0

ω
cos(ωt ) − F0

ω
cos ϕ + p0 − arctan(s tan φ)

]
.

(19)

If the average velocity of the wave packet over a period
T is zero, then the wave-packet shape is restored after each
period, i.e., no dispersion occurs, then the condition should be
satisfied when

∫ T

0
ξ̇dt = 0. (20)

FIG. 8. Temporal evolutions of the left leg density (the first
column), the right leg density (the second column) and the sum
density (the third column) for oscillatory mode of a Gaussian wave
packet in the zero-momentum state. The fourth column shows the
corresponding time evolution of the spin polarization. The first row:
ω = ωk = F0

ν1
= 0.0832; the second row: ω = ωn = F0

π
= 0.0637;

the third row: ω = 0.0450. The other system parameters are g = 0.5,
K = 1.2, φ = 0.20π , and F0 = 0.2.

Actually, when Eq. (20) is satisfied, the dynamic localization
occurs [38]. Now we also approximately assume

∫ T
0 s(t )dt ≈

0, and the integral in Eq. (20) is worked out in the condition

sin
(F0

ω
cos ϕ − p0

)
× J0

(F0

ω

)
= 0, (21)

where J0(·) is the zero-order Bessel function of the first kind.
When Eq. (21) is satisfied, the resonant frequencies ω = ωk

at which dynamic localization occurs can be found. Setting
J0( F0

ω
) = 0, ωk can be approximately provided by ωk = F0

ν
,

where ν1 ≈ 2.405, ν2 ≈ 5.520, etc., are zeros of J0(ν). With
the frequencies ωk , the wave packet varies periodically in
time, i.e., stable BOs occurs. The condition (21) is also sat-
isfied at the case F0

ω
cos ϕ − p0 = nπ , i.e., ω = ωn = F0 cos ϕ

nπ+p0
,

where n is an integer. But these zeros reflect the adiabatic
theorem [39] ensuring a change in the quasimomentum due to
slowly changing weak external force. The zeros ωn depend on
the initial momentum p0 and the initial phase of the external
force ϕ, so the dynamics of the wave packets will be accom-
panied with the effective dispersion at ω = ωn. Hence the
frequencies ωn do not represent authentic resonant frequen-
cies corresponding to the dynamic localization, the resonances
at ω = ωn will be set to pseudoresonances to isolate from
ω = ωk . Through calculation, it is found that there is always
a pseudoresonance between two resonances, i.e., ωk and ωn

alternate.
To confirm the results of the analytical predictions, we

perform the direct numerical simulations of Eq. (3). For this
purpose, we set F0 = 0.2 and ϕ = 0, i.e.,

F (t ) = F0 sin(ωt ). (22)

In Figs. 8 and 9, the time evolution of the wave packets
started from zero-momentum state (Fig. 8) and plane-wave
state (Fig. 9) with different modulating frequencies of the
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FIG. 9. The same as in Fig. 8 but in the regime of the plane-wave
state with g = 0.5, K = 1.2, φ = 0.25π , F0 = 0.2, and ωn = F0

π+p0
=

0.0575.

linear force are shown. In Figs. 8 and 9, the first rows show
the evolutions in the first resonance, i.e., ω = ωk = F0

ν1
. It is

clear that, there is no diffusion but weak drift in a resonance,
i.e., stable BOs occurs. In this case, strong BOs with larger
amplitude is observed. In a pseudoresonance (the second rows
in Figs. 8 and 9), the wave packets have no drift, but we can
see obvious diffusion, i.e., dispersion of wave packet takes
place. The third rows in Figs. 8 and 9 show the considerable
drift and the slow diffusion of the wave packets at nonresonant
frequencies. The resonance frequency and pseudoresonance
frequency obtained by analytical predictions are well con-
firmed by numerical simulations.

Importantly, the motion of the wave packet is also accom-
panied by periodic but anharmonic spin oscillations in all
cases. As shown in the fourth columns in Figs. 8 and 9, the
spin oscillations take different forms at different frequencies.
Additionally, the duration of s < 0 is different from that of
s > 0 in each oscillation period. Particularly, the duration
of s < 0 is always longer than that of s > 0 at nonresonant
frequencies [Fig. 8(c4) and Fig. 9(c4)]. In the resonances
cases [Fig. 8(a4) and Fig. 9(a4)], the duration of s < 0 is
longer in the zero-momentum state, but in the plane-wave
state the situation is completely reversed. Because of the
spin-momentum locking, the features of spin evolution have
a direct effect on the oscillation of wave packet. Compared
with Fig. 5, we find the chirality of BOs in the presence of
periodic modulation (Fig. 8 and Fig. 9) is obviously different
from that of conventional BOs (Fig. 5): during the oscillation,
the particles are always mainly distributed on one (left or
right) leg of the ladder, but the particles mainly occupy the
right (left) leg for more time than the left (right) leg in the
zero-momentum (plane-wave) state in one period. Moreover,
like conventional BOs, the wave packet oscillates back to
near its initial position and stay here longer in the plane-
wave state than in the zero-momentum state after a period,
too.

Figures 10 and 11 show the evolutions in the second
resonance (i.e., ω = ωk = F0

ν2
) and pseudoresonance (i.e.,

ωn = F0
2π+p0

) and the drift of the wave packet at a smaller

FIG. 10. Temporal evolutions of the left leg density (the first
column), the right leg density (the second column) and the sum
density (the third column) for oscillatory mode of a Gaussian wave
packet in the zero-momentum state. The fourth column shows the
corresponding time evolution of the spin polarization. The first row:
ω = ωk = F0

ν2
= 0.0362; the second row: ω = ωn = F0

2π
= 0.0318;

the third row: ω = 0.0250. The other system parameters are g = 0.5,
K = 1.2, φ = 0.20π , and F0 = 0.2.

nonresonant frequency. As shown in the figures, the smaller
the modulating frequency is, the more complex the spin dy-
namics is. Indeed, the corresponding oscillatory mode is also
more complex. Interestingly, the direction of motion of the
wave packet changes more times in one oscillatory period.
Because the drift of the wave packet is accompanied by oscil-
lation, this results in the fact that the wave packet drags more
slowly at a smaller nonresonant frequency [see Figs. 10(c1)–
11(c3) and Figs. 11(c1)–11(c3)]. Those results are obviously
different from the results shown in Figs. 8 and 9 for the
first resonances. The BOs, the wave-packet dynamics and the

FIG. 11. The same as in Fig. 10 but in the regime of the plane-
wave state with g = 0.5, K = 1.2, φ = 0.25π , F0 = 0.2, and ω =
ωn = F0

2π+p0
= 0.0302.
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corresponding spin dynamics can be well controlled by the
periodic modulation of the external force.

Note that the Bloch dynamics considered in our work is
at zero temperature. However, real experiment is always at
finite temperature. The Bloch dynamics considered in our
work is based on the ground state of the system. Because of
thermal fluctuations, the ground-state phases and the coherent
Bloch dynamics will be destroyed as temperature increases.
Finite temperature has a blurring effect on the ground-state
phases [40,41]. However, it is shown that [40,41], at finite
temperature T and when T/J < 1, the ground-state phases
obtained at zero temperature can still be clearly resolved. This
condition can be well satisfied by the current experiment [12],
where, the distinct ground-state phases are observed at finite
temperature. Furthermore, in studying the Bloch dynamics,
we consider weak external force, i.e., F � 1, then, parametric
and interband excitations are avoided safely and the charac-
teristics of the ground state of the system are not affected
strongly. Hence, the Bloch dynamics predicted in our work
should be readily observed in current experiment.

VI. CONCLUSION

In conclusion, based on the variational method and nu-
merical simulation, we have studied the Bloch dynamics
and its modulation in bosonic ladder with magnetic flux. In
the absence of the external linear force, we investigate the
quantum-state transition of the system. The energy spectrum,
chiral current diagram and ground-state diagram in the pa-
rameter space which clearly reflect the state transition process
of the system are provided. The BOs in the magnetic ladder

exhibit chiral characteristics under the action of an exter-
nal linear force. The coupling of the linear force, artificial
magnetic field, the rung-to-leg coupling ratio of the ladder
results in rich BOs and spin dynamics. In addition, we discuss
the effects of a time-periodic modulation of the amplitude
of the linear force on the dynamics of bosonic ladder. The
Bloch wave-packet dynamics in authentic resonances, pseu-
doresonances, and nonresonances are studied. The motion of
Bloch wave packet presents rich features, and the oscillations
are accompanied by anharmonic pseudospin dynamics in all
cases. Compared with traditional Bloch oscillations under a
static linear force, dynamic localization under a periodically
modulated linear force offers more opportunities for control-
ling the particle dynamics. Indeed, it allows changing the law
of motion of the particles simply in ladder system by varying
the frequency of the linear force.
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[5] G. Gligorić, A. Maluckov, L. Hadžievski, Sergej Flach, and
Boris A. Malomed, Phys. Rev. B 94, 144302 (2016).

[6] S. Gautam and S. K. Adhikari, Phys. Rev. A 90, 043619 (2014).
[7] C. Hamner, Yongping Zhang, M. A. Khamehchi, Matthew J.

Davis, and P. Engels, Phys. Rev. Lett. 114, 070401 (2015).
[8] Y. Zhang, Y. Xu, and T. Busch, Phys. Rev. A 91, 043629 (2015).
[9] Y. Zhang and C. Zhang, Phys. Rev. A 87, 023611 (2013).

[10] F. K. Abdullaev and M. Salerno, Phys. Rev. A 98, 053606
(2018).

[11] Y. V. Kartashov, V. V. Konotop, D. A. Zezyulin, and L. Torner,
Phys. Rev. Lett. 117, 215301 (2016).

[12] M. Atala, M. Aidelsburger, M. Lohse, J. T. Barreiro, B. Paredes,
and I. Bloch, Nat. Phys. 10, 588 (2014).

[13] M. E. Tai, A. Lukin, M. Rispoli, R. Schittko, T. Menke, D.
Borgnia, P. M. Preiss, F. Grusdt, A. M. Kaufman, and M.
Greiner, Nature (Lond.) 546, 519 (2017).

[14] F. A. An, E. J. Meier, and B. Gadway, Sci. Adv. 3, e1602685
(2017).

[15] A. Dhar, T. Mishra, M. Maji, R. V. Pai, S. Mukerjee, and A.
Paramekanti, Phys. Rev. B 87, 174501 (2013).

[16] R. Wei and E. J. Mueller, Phys. Rev. A 89, 063617
(2014).

[17] S. Uchino and A. Tokuno, Phys. Rev. A 92, 013625
(2015).

[18] M. Piraud, F. Heidrich-Meisner, I. P. McCulloch, S. Greschner,
T. Vekua, and U. Schollwöck, Phys. Rev. B 91, 140406(R)
(2015).

[19] S. Greschner, M. Piraud, F. Heidrich-Meisner, I. P. McCulloch,
U. Schollwöck, and T. Vekua, Phys. Rev. A 94, 063628 (2016).
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