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Periodic and localized waves in parabolic-law media with third- and fourth-order dispersions
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Considering the higher-order nonlinearity is essential in a broad range of real physical media as it significantly
influences the wave dynamics in these systems. We study the propagation of femtosecond light pulses inside
an optical fiber medium exhibiting higher-order dispersion and cubic-quintic nonlinearities. Pulse evolution in
such a system is governed by a higher-order nonlinear Schrödinger equation incorporating second-, third-, and
fourth-order dispersions as well as cubic and quintic nonlinearities. The periodic and solitary wave solutions are
identified using the equation method. Results presented indicated the potentially rich set of periodic waves in
the system under the combined influence of higher-order dispersive effects and cubic-quintic nonlinearity. The
velocity of these structures is uniquely dependent on all orders of dispersion. Conditions on the optical fiber
parameters for the existence of these exact stable solutions are found by analytical stability analysis.
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I. INTRODUCTION

A soliton in an optical fiber medium can form when the
group velocity dispersion is exactly balanced by self-phase
modulation. This localized pulse is found in two distinct
types called bright and dark solitons which are existent in
the anomalous and normal dispersion regimes, respectively.
The unique property of optical solitons, either bright or dark,
is their particlelike behavior in interaction [1]. Because of
their robust nature, such wave packets have been successfully
utilized as the information carriers (optical bits) to transmit
digital signals over long propagation distances.

Studies of soliton formation in the femtosecond time scale
is an important direction of research in nonlinear optics.
This because femtosecond duration pulses are required for
wide-ranging potential applications such as ultrahigh-bit-rate
optical communication systems, optical sampling systems,
infrared time-resolved spectroscopy, and ultrafast physical
processes [2,3]. But when these ultrashort pulses are injected
in a fiber medium, several higher-order nonlinear effects come
into play along with dispersive effects which may signifi-
cantly change the physical features and stability of optical
soliton propagation. Important higher-order effects include
third-order dispersion, self-steepening, and self-frequency
shift which become important if light pulses are shorter than
100 fs [2]. Taking into account the influence of various pro-
cesses appearing in the femtosecond regime, the description
of signal propagation through an optical fiber medium can
be achieved by use of the NLS family of equations incorpo-
rating additional higher-order terms. Compared with solitons
in Kerr-like media, solitary waves supported by higher-order
nonlinear and dispersive effects when they exist can demon-
strate much richer dynamics as they propagate through the
system. The contribution of these higher-order effects can also
lead to the formation of novel structures in optical media,

including for example dipole solitons [4], W-shaped solitons
[5], and multipole solitons [6].

It is worth pointing out that the necessity to take into
account higher-order Kerr nonlinearity (see, e.g., Refs. [7,8])
involves a broad range of nonlinear phenomena in different
physical media like organic materials [9], semiconductor-
doped fibers [10], and metal-dielectric nanocomposites [11].
Such higher-order Kerr effect plays a key role for the un-
derstanding of filamentation [12], high-harmonic generation
[13], plasma dynamics in both bulk and gases [14], and the
formation of dissipative solitons [15]. Interestingly enough,
the higher-order nonlinearities such as those occurring in
cubic-quintic media may help to achieve stability of spatial
solitons [16] and dissipative solitons [17]. Recent results on
metamaterials also showed that the modulation instability gain
is enhanced due to the simultaneous contributions of higher-
order nonlinearities (such as cubic-quintic nonlinearity) [18].
All those pertinent studies demonstrate important results re-
lated to nonlinear phenomena arising due to the presence of
higher-order Kerr nonlinearity in real physical systems.

Recently, attention has been focused on analyzing the dy-
namic behavior of soliton pulses in optical fibers exhibiting
second-, third-, and fourth-order dispersions [19–21]. In ad-
dition to localized pulses, periodic waves play a significant
role in the analysis of the data transmission in fiber-optic
telecommunications links [22]. Because of their structural
stability with respect to the small input profile perturbations
and collisions [23], this kind of nonlinear wave serves as a
model of pulse train propagation in optics fibers [22]. It is
relevant to mention that the occurrence of periodic waves is
not only restricted to optical fibers [24,25], but also to other
physical systems such as Bose-Einstein condensates [26,27],
nonlinear negative index materials [28,29], and nonlocal me-
dia [30]. The significant results have been obtained within the
framework of the high dispersive cubic-quintic NLSE [31].
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For example, Xie et al. [32] employed the complete discrim-
ination system method to obtain distinct exact solutions to
the high dispersive cubic-quintic NLSE. Furthermore, Xie and
Tang [33] applied the bifurcation theory of dynamical systems
and obtained exact solutions, and particularly solitary wave
solutions for this model. The dark and bright solitary wave
solutions for this NLSE were also obtained by Hua-Mei et al.
[34] and Sultan et al. [35] have found the soliton solutions
in various forms of the model. In addition, Hosseini et al. [36]
utilized the special scheme to derive dark and periodic solitary
wave solutions.

In this paper, we present different periodic and solitary
waves which can be formed in an optical fiber medium ex-
hibiting all orders of dispersion up to the fourth order as well
as cubic and quintic nonlinearities. We introduced a special
procedure, whereby it becomes possible to derive periodic and
localized wave solutions of the envelope equation explicitly
and to determine the conditions under which these struc-
tures exist. We especially note that the finding of localized
waves is greatly desired as these pulses are ideal instruments
for data transmission over fiber-optic communications lines.
Moreover, the conditions on optical fiber parameters for the
existence of these stable solutions are found by analytical
stability analysis.

This paper is organized as follows. Section II presents
the method used for obtaining traveling wave solutions of
the higher-order NLSE that governs the propagation of fem-
tosecond light pulses through a highly dispersive optical
cubic-quintic medium. In Sec. III, we identify classes of
periodic wave solutions based on an appropriate differential
equation. We also find the solitary wave solutions of the model
in the long wave limit and present the conditions on the optical
fiber parameters for their existence. In Sec. IV, we present
the analytical stability analysis of those periodic and soli-
tary wave solutions based on the theory of optical nonlinear
dispersive waves. Numerical results for the stability of the
solutions are reported in Sec. V. Subsequently, in Sec. VI,
we present a physical discussion and some applications of the
studied theoretical model. Finally, we summarize our work in
Sec. VII.

II. MODEL AND TRAVELING WAVES

Ultrashort light pulse propagation in a highly dispersive
optical fiber exhibiting a parabolic nonlinearity law obeys the
following high dispersive cubic-quintic NLSE [31]:

i
∂ψ

∂z
= α

∂2ψ

∂τ 2
+ iρ

∂3ψ

∂τ 3
− ν

∂4ψ

∂τ 4
− γ |ψ |2ψ + μ|ψ |4ψ,

(1)

where ψ (z, τ ) is the complex field envelope, z represents the
distance along direction of propagation, and τ = t − β1z is
the retarded time in the frame moving with the group velocity
of wave packets. Also α = β2/2, ρ = β3/6, and ν = β4/24,
with βk = (dkβ/dωk )ω=ω0 , denotes the k-order dispersion of
the optical fiber with β(ω) being the propagation constant de-
pending on the optical frequency. Parameters γ and μ govern
the effects of cubic and quintic nonlinearity, respectively.

For relatively long optical pulses having width more than
10 ps, all three parameters of third- and fourth-order disper-
sions and quintic nonlinearity are so small that the model
(1) reduces to the standard NLSE which is completely inte-
grable by the inverse scattering method [37]. In the absence
of quintic nonlinearity (μ = 0), solitonlike solution having a
sech2 shape and dipole soliton solution of Eq. (1) have been
found by employing a regular method [19,20]. In practice,
however, the quintic nonlinearity plays a significant role in the
response of many optical materials and can therefore affect
the temporal evolution of optical fields. We therefore ana-
lyze the situation in which the effect of quintic nonlinearity
is important and should be taken into account along with
all orders of dispersion up to the fourth order, as described
by the underlying equation (1). It is worth mentioning here
that the nontrivial contribution of the quintic nonlinearity has
been demonstrated experimentally in many optical materials
such as chalcogenide glasses [38], polydiacctylene toluene
sulfonate (PTS) [39], semiconductors (e.g., AlxGa1−xAs,
CdS, and CdS1−xSex) waveguides, and semiconductor-doped
glasses (see, e.g., Ref. [40]). From a theoretical standpoint,
such a nonlinear process occurs from the expansion of the
refractive index in powers of the light pulse intensity I as [41]
n = n0 + n2I − n4I , where n0 is the linear refractive index
coefficient and n2 is the cubic nonlinearity coefficient which is
related to third-order susceptibility as n2 = 3χ (3) /8n0, while
n4 is the quintic nonlinearity coefficient which is related to the
fifth-order susceptibility as n4 = 5χ (5) /16n0. Physically, this
kind of nonlinearity becomes important when the intensity
of the light pulse exceeds a certain value, thus leading to a
change in the features and stability of propagating waves.

In order to determine the exact traveling wave solutions of
Eq. (1), we consider a solution of the form

ψ (z, τ ) = u(ξ ) exp[i(κz − δτ + θ )], (2)

where u(ξ ) is a real amplitude function which depends on the
variable ξ = τ − qz, with q = v−1 being the inverse velocity.
Also the real parameters κ and δ represent the wave number
and frequency shift, respectively, while θ represents the phase
of the pulse at z = 0.

From substitution of the representation (2) into Eq. (1), one
finds the following system of ordinary differential equations:

ν
d4u

dξ 4
− (α + 3ρδ + 6νδ2)

d2u

dξ 2
+ γ u3 − μu5

− (κ − αδ2 − ρδ3 − νδ4)u = 0, (3)

(ρ + 4νδ)
d3u

dξ 3
+ (q − 2αδ − 3ρδ2 − 4νδ3)

du

dξ
= 0. (4)

Then from Eq. (4), we find that nontrivial solutions for
Eqs. (3) and (4) with ν �= 0 can exist for values of the
frequency shift δ and inverse velocity q satisfying the
relations

δ = − ρ

4ν
, q = 2αδ + 3ρδ2 + 4νδ3. (5)
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We can make use of the parameters in (5) to determine the
wave velocity v = q−1 as

v = 8ν2

ρ(ρ2 − 4αν)
. (6)

Relation (6) shows that the velocity of propagating waves
is uniquely dependent on the parameters of second-, third-,
and fourth-order dispersions and it does not depend upon the
nonlinearity parameters. Therefore, a natural way to control
the velocity of a pulse is to vary various dispersion parameters
in the fiber.

On further substitution of Eq. (5) into Eq. (3), we obtain an
evolution equation for u(ξ ) as

d4u

dξ 4
+ λ0

d2u

dξ 2
+ λ1u + λ2u3 + λ3u5 = 0, (7)

where the parameters λn (n = 0, . . . , 3) are defined by

λ0 = 3ρ2

8ν2
− α

ν
, λ1 = −κ

ν
− ρ2

16ν3

(
3ρ2

16ν
− α

)
, (8)

λ2 = γ

ν
, λ3 = −μ

ν
. (9)

It is critically important to find exact analytical local-
ized and periodic solutions of the amplitude equation (7) in
the most general case, when all parameters of Eq. (1) have
nonzero values and no constraint for them. This enables us
to examine the individual influence of each type of dispersive
and nonlinear effect on the characteristics of propagating non-
linear waves. It is interesting to point out that the finding of
such closed form solutions is greatly desired to experiments
as they give a precise formulation of the existing solitary and
periodic pulses.

We observe that the nonlinear differential equation (7) in-
cludes two coexisting cubic u3 and quintic u5 nonlinear terms
in addition to two even-order derivative terms. In general, it
would be very difficult to find solutions in analytic form for
such an equation. In the present study, we have been able to
find different types of periodic and localized wave solutions
by using an appropriate equation method. Remarkably, we
have found that integration of Eq. (7) leads to physically
relevant solutions satisfying the following equation:(

du

dξ

)2

= a + bu2 + cu4. (10)

The corresponding second- and fourth-order differential equa-
tions for u(ξ ) read

d2u

dξ 2
= bu + 2cu3, (11)

d4u

dξ 4
= (b2 + 12ac)u + 20bcu3 + 24c2u5. (12)

The substitution of Eqs. (11) and (12) to Eq. (7) leads to the
system of algebraic equations as

b2 + 12ac + λ0b + λ1 = 0, (13)

20bc + 2λ0c + λ2 = 0, 24c2 + λ3 = 0. (14)

The solution of these algebraic equations yields the parame-
ters for Eq. (10) in an explicit form as

c = ±1

2

√
μ

6ν
, b = α

10ν
− 3ρ2

80ν2
∓ γ

10ν

√
6ν

μ
, (15)

a = ∓1

6

√
6ν

μ
(λ1 + λ0b + b2). (16)

Thus the parameters c, b, and a have two different forms
with the top and bottom signs, respectively. The equa-
tion d3u/dξ 3 = (b + 6cu2)du/dξ follows from (11). We
emphasize that substitution of this equation to (4) yields the
relations given in Eq. (5) for arbitrary parameters b and c with
c �= 0 and nontrivial function u(ξ ) [u(ξ ) �= const].

We present below a number of periodic (or elliptic) so-
lutions of the model (1) based on solving the nonlinear
differential equation (10). These closed form solutions are
expressed in terms of Jacobean elliptic functions of modulus
k. We further show that special limiting cases of these families
include the bright and dark solitary wave solutions.

III. PERIODIC AND SOLITARY WAVE SOLUTIONS

Before discussing the precise nature of periodic and soli-
tary wave solutions of the model (1), we first consider the
transformation of Eq. (10) based on function y(ξ ) as

u2(ξ ) = − 1

4c
y(ξ ). (17)

Thus we have found the nonlinear differential equation as(
dy

dξ

)2

= f (y), f (y) = σ1y + σ2y2 − y3, (18)

where σ1 = −16ac and σ2 = 4b. The function f (y) can also
be written in the form f (y) = −y(y − y−)(y − y+), which
yields the nonlinear differential equation(

dy

dξ

)2

= −y(y − y−)(y − y+). (19)

The polynomial f (y) has tree roots as

y0 = 0, y± = 2(b ± g), g =
√

b2 − 4ac. (20)

Using the above results we present numerous periodic and
solitary wave solutions for high dispersive cubic-quintic
NLSE (1).

1. Periodic (A + B cn2)1/2 waves

We can order the roots of polynomial f (y) as y1 < y2 < y3,
where y1 = y0, y2 = y−, and y3 = y+. In this case Eqs. (17)
and (18) yield the periodic solution as

u(ξ ) = ±[A + B cn2(w(ξ − ξ0), k)]1/2. (21)

The parameters of this solution are

A = b(k2 − 1)

c(2 − k2)
, B = − bk2

c(2 − k2)
, (22)

w =
√

b

2 − k2
. (23)
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FIG. 1. Propagation of nonlinear waves (a) cn2-type periodic
wave solution (25) with parameters ρ = 0.25, α = −0.3125, ν =
0.25, γ = 1.5, μ = 0.6144, ξ0 = 0, and k = 0.6, (b) bright soli-
tary wave (28) with parameters α = 0.4, ρ = 1, ν = 0.5, γ = 0.8,
μ = 0.75, and ξ0 = 0, (c) cn-type periodic wave (32) with parame-
ters α = 0.25, ρ = 0.5, ν = −0.5, γ = −0.56875, μ = −0.75, and
ξ0 = 0, and (d) dark solitary wave (36) with parameters α = 0.4,
ρ = 1, ν = 0.5, γ = 1.075, μ = 0.75, and ξ0 = 0.

Here cn(w(ξ − ξ0), k) is Jacobi elliptic function where the
modulus k belongs the interval 0 < k < 1. The conditions for
parameters as b > 0 and c < 0 follow from this solution. In
this solution the parameter a depends on modulus k by relation
as a = b2(1 − k2)/c(2 − k2)2. Thus the wave number κ by
Eqs. (15) and (16) is

κ = b

(
3ρ2

8ν
− α

)
− ρ2

16ν2

(
3ρ2

16ν
− α

)

+ νb2 + 12νb2(1 − k2)

(2 − k2)2
. (24)

Substitution of the solution (21) into the wave function (2)
yields the following family of periodic wave solutions for the
high dispersive cubic-quintic NLSE (1):

ψ (z, τ ) = ± [A + B cn2(w(ξ − ξ0), k)]1/2

× exp[i(κz − δτ + θ )], (25)

where modulus k is an arbitrary parameter in the interval
0 < k < 1 and ξ0 is the position of pulse at z = 0. We note that
in the limiting cases with k = 1 this periodic wave reduces to a
bright-type soliton solution. Figure 1(a) presents the evolution
of the cn2-type periodic wave (25) for the physical param-
eter values ρ = 0.25, α = −0.3125, ν = 0.25, γ = 1.5, and
μ = 0.6144. To satisfy the parametric conditions c < 0 and
b2 > 4ac, we considered the case of bottom signs in all the
parameters given in Eqs. (15) and (16). Also, the value of
the elliptic modulus k is taken as k = 0.6. As concerns the
inverse group velocity q = v−1 of this cn2-type periodic wave,
it can be determined from the relation (5) as q = 0.1875.
Additionally, the position ξ0 of the periodic waves at z = 0
is chosen to be equal to zero. As is seen from this figure, the

intensity profile presents an oscillating character which makes
the wave a setting of light pulse train propagation in optical
fibers. A particularly interesting property of this type of peri-
odic waves is that its oscillating behavior is superimposed at a
nonzero background, which is advantageous for a wide range
of practical applications.

2. Bright solitary waves

We consider the limiting case of solution in Eq. (21) with
k = 1. Thus we have the soliton solution of Eqs. (17) and (18)
as

u(ξ ) = ±
(

−b

c

)1/2

sech(
√

b(ξ − ξ0)). (26)

The condition k = 1 in Eq. (24) leads to the wave number κ

as

κ = b

(
3ρ2

8ν
− α

)
− ρ2

16ν2

(
3ρ2

16ν
− α

)
+ νb2. (27)

Thus the bright solitary wave solution can be obtained for the
high dispersive cubic-quintic NLSE (1) using Eqs. (2) and
(26) as

ψ (z, τ ) = ±
(

−b

c

)1/2

sech(
√

b(ξ − ξ0))

× exp[i(κz − δτ + θ )], (28)

with b > 0 and c < 0.
Figure 1(b) depicts the evolution of the intensity wave pro-

file of the solitary wave solution (28) for the parameter values
α = 0.4, ρ = 1, ν = 0.5, γ = 0.8, μ = 0.75, and ξ0 = 0. We
have also considered the case of bottom signs in Eqs. (15) and
(16) for the condition c < 0 to be fulfilled. It is interesting to
see that this localized pulse exhibits a sech-type field profile
like the traditional bright solitons of Kerr media.

3. Periodic cn waves

We can order the roots of polynomial f (y) as y1 < y2 < y3,
where y1 = y−, y2 = y0, and y3 = y+. In this case Eqs. (17)
and (18) yield the periodic solution as

u(ξ ) = ±� cn(w(ξ − ξ0), k), (29)

where the modulus k is an arbitrary parameter in the interval
0 < k < 1. Here � and w are real parameters given by

� =
√

−bk2

c(2k2 − 1)
, w =

√
b

2k2 − 1
. (30)

In this solution the parameter a depends on modulus k by rela-
tion as a = b2k2(k2 − 1)/c(2k2 − 1)2. Thus the wave number
κ by Eqs. (15) and (16) is

κ = b

(
3ρ2

8ν
− α

)
− ρ2

16ν2

(
3ρ2

16ν
− α

)

+ νb2 + 12νb2k2(k2 − 1)

(2k2 − 1)2
. (31)

Substitution of the solution (29) into the wave function (2)
yields the following family of periodic wave solutions for the
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high dispersive cubic-quintic NLSE (1):

ψ (z, τ ) = ±� cn(w(ξ − ξ0), k) exp[i(κz − δτ + θ )], (32)

where modulus k is an arbitrary parameter in the interval
0 < k < 1. The conditions for parameters as b > 0 and c < 0
follows from this solution. In the limiting case with k = 1 this
solution reduces to the soliton solution given by Eq. (28).

In Fig. 1(c), we have shown the evolution of the cn-type pe-
riodic wave solution (32) for the parameter values α = 0.25,
ρ = 0.5, ν = −0.5, γ = −0.56875, μ = −0.75, and ξ0 = 0.
To satisfy the condition c < 0, we have considered the case of
bottom signs in Eqs. (15) and (16). Unlike the periodic wave
in (25), the periodic wave in the present case propagates on a
zero background.

4. Dark solitary tanh waves

In the case with g = 0 or b2 = 4ac we can order the roots
of polynomial f (y) as y1 = y2 < y3, where y1 = y−, y2 = y+,
and y3 = y0. Note that for this case we have the condition b <

0. Thus the solution of Eqs. (17) and (18) has the kink wave
solution as

u(ξ ) = ±� tanh(w(ξ − ξ0)). (33)

The parameters of this solution are

� =
(

− b

2c

)1/2

, w = 1

2

√−2b, (34)

where b < 0 and c > 0. The condition b2 = 4ac yields the
wave number κ by Eqs. (15) and (16) as

κ = b

(
3ρ2

8ν
− α

)
− ρ2

16ν2

(
3ρ2

16ν
− α

)
+ 4νb2. (35)

Hence one obtains a kink solution for Eq. (1) of the form

ψ (z, τ ) = ±� tanh(w(ξ − ξ0)) exp[i(κz − δτ + θ )]. (36)

Note that this kink solution has the form of a dark soliton for
intensity I = |ψ (z, τ )|2 = �2tanh2(w(ξ − ξ0)).

Figure 1(d) displays the intensity profile of the solitary
wave solution (36) for the parameter values α = 0.4, ρ = 1,
ν = 0.5, γ = 1.075, μ = 0.75, and ξ0 = 0. To satisfy the
conditions b < 0 and c > 0, we have considered the case of
top signs in Eqs. (15) and (16).

5. Periodic sn/(1 + cn) waves

We have also found the periodic solution of Eq. (10) of the
form

u(ξ ) = ± A sn(w(ξ − ξ0), k)
1 + cn(w(ξ − ξ0), k)

. (37)

The parameters for this periodic solution are

A =
√

b

2c(1 − 2k2)
, w =

√
2b

1 − 2k2
, (38)

where the modulus k is an arbitrary parameter for intervals
0 < k < 1/

√
2 and 1/

√
2 < k < 1. The parameters of this

solution are b > 0 and c > 0 when 0 < k < 1/
√

2, and these
parameters are b < 0 and c > 0 when 1/

√
2 < k < 1. This
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FIG. 2. (a) Intensity of the solitary wave profile |ψ (0, τ )|2 as a
function of τ and its (b) evolution as computed from Eq. (41) for the
values α = 0.4, ρ = 1, ν = 0.5, γ = 1.075, μ = 0.75, and ξ0 = 0.

solution takes place for condition a = b2/4c(1 − 2k2)2, which
yields the wave number κ by Eqs. (15) and (16) as

κ = b

(
3ρ2

8ν
− α

)
− ρ2

16ν2

(
3ρ2

16ν
− α

)
+ νb2 + 3νb2

(1 − 2k2)2
.

(39)

Now, taking into account the representation (2), the higher-
order NLSE (1) has the following periodic wave solution:

ψ (z, τ ) = ± A sn(w(ξ − ξ0), k)
1 + cn(w(ξ − ξ0), k)

exp[i(κz − δτ + θ )].

(40)

6. Dark solitary tanh/(1 + sech) waves

The limit k → 1 in Eq. (40) leads to a solitary wave of the
form

ψ (z, τ ) = ± A0tanh(w0(ξ − ξ0))
1 + sech(w0(ξ − ξ0))

exp[i(κz − δτ + θ )].

(41)
The parameters for this solitary wave are

A0 =
√

− b

2c
, w0 = √−2b, (42)

with b < 0 and c > 0 and a = b2/4c. This solitary wave has
the form of a dark soliton for intensity I = |ψ (z, τ )|2. The
wave number κ for this solitary wave follows from Eq. (39)
with k = 1:

κ = b

(
3ρ2

8ν
− α

)
− ρ2

16ν2

(
3ρ2

16ν
− α

)
+ 4νb2. (43)

Figure 2(a) presents the intensity profile of the optical solitary
wave solution (41) for the parameter values α = 0.4, ρ = 1,
ν = 0.5, γ = 1.075, μ = 0.75, and ξ0 = 0, while Fig. 2(b)
shows its evolution. Here we considered the case of top signs
in Eqs. (15) and (16). It is interesting to see that this nonlinear
waveform is a dark solitary wave, which can be formed in the
fiber medium due to a balance among all orders of dispersion
up to the fourth order and both third- and fifth-order nonlin-
earities. Remarkably, the functional form of this solitary wave
is different from the simplest dark solitary wave that has the
form tanh.
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7. Periodic cn/(1 + sn) waves

We have found the periodic solution of Eq. (10) of the form

u(ξ ) = ± A cn(w(ξ − ξ0), k)
1 + sn(w(ξ − ξ0), k)

, (44)

where 0 < k < 1. The parameters for this periodic solution
are

A =
√

b(1 − k2)

2c(1 + k2)
, w =

√
2b

1 + k2
, (45)

with b > 0 and c > 0. This solution takes place for condition
a = b2(1 − k2)2/4c(1 + k2)2, which yields the wave number
κ by Eqs. (15) and (16) as

κ = b

(
3ρ2

8ν
− α

)
− ρ2

16ν2

(
3ρ2

16ν
− α

)

+ νb2 + 3νb2(1 − k2)2

(1 + k2)2
. (46)

The substitution of solution (44) into Eq. (2) yields the family
of periodic solutions for the higher-order NLSE (1) of the
form

ψ (z, τ ) = ± A cn(w(ξ − ξ0), k)
1 + sn(w(ξ − ξ0), k)

exp[i(κz − δτ + θ )],

(47)

where modulus k is an arbitrary parameter in the interval 0 <

k < 1.

8. Periodic sn/(1 + dn) waves

We have found the exact periodic bounded solution of
Eq. (10) of the form

u(ξ ) = ± A sn(w(ξ − ξ0), k)
1 + dn(w(ξ − ξ0), k)

. (48)

The parameters for this periodic solution are

A =
√

−bk4

2c(2 − k2)
, w =

√ −2b

2 − k2
, (49)

where b < 0 and c > 0. This solution takes place for param-
eter a = b2k4/4c(2 − k2)2, which yields the wave number κ

by Eqs. (15) and (16) as

κ = b

(
3ρ2

8ν
− α

)
− ρ2

16ν2

(
3ρ2

16ν
− α

)
+ νb2 + 3νb2k4

(2 − k2)2
.

(50)

Thus the appropriate periodic bounded solutions of Eq. (1) are

ψ (z, τ ) = ± A sn(w(ξ − ξ0), k)
1 + dn(w(ξ − ξ0), k)

exp[i(κz − δτ + θ )],

(51)
where modulus k is an arbitrary parameter in the interval 0 <

k < 1. It should be noticed that the limit k → 1 in this solution
yields the solitary wave solution given in Eq. (41).

An important finding is that the nonlinear waves given in
this paper are stable and hence should be observable. The
main interesting property of the reported structures is that

they propagate with a velocity which is uniquely dependent
on all orders of dispersion up to the fourth order and is not
affected by any nonlinearity parameter. Hence the velocity of
the obtained propagating waves can be significantly reduced,
enabling slow-light pulse propagation by appropriate manip-
ulation of the dispersion parameters. This result may find
application in developing slow-light systems [19]. Figure 3(a)
depicts a typical example of the time evolution of intensity
of the periodic wave (40) for the parameter values α = 1.64,
ρ = −0.3, ν = 1, γ = −0.1, and μ = 1.5. Then the velocity
of the wave can be determined by using the relation (6) as
v ≈ 4.12. The results for the unbounded periodic wave (47)
are illustrated in Fig. 3(b) for the values α = 0.305, ρ =
−0.2, ν = 0.5, γ = −1, and μ = 0.3072. The velocity of this
wave can be calculated with the help of Eq. (6) resulting in
v ≈ 17.54. The intensity profile of the periodic wave solution
(51) is shown in Fig. 3(c) for the values α = 0.21, ρ = −1,
ν = 1.5, γ = 1, and μ = 0.0576. Accordingly, the velocity
of the wave is obtained as v ≈ 69.23. Here we considered the
case of top signs in all the parameters given in Eqs. (15) and
(16) and the initial position ξ0 of the periodic waves is chosen
to be equal to zero. Also, the value of elliptic modulus k is
taken as k = 0.6 for the solutions (40) and (47) and k = 0.8
for the solution (51). We can see from this figure that the
profile of nonlinear waves presents the periodic property as
it propagates through the optical fiber. It is also interesting to
note that the oscillating behavior of this kind of periodic wave
is superimposed at a zero background.

In view of the above results, we thus see that, in addition to
the simplest periodic waves, periodic waves taking the forms
(40), (41), (47), and (51) can also be formed in the fiber
medium in the presence of various higher-order effects. This
may be helpful for extending the applicability for periodic
wave propagation through highly dispersive optical fibers. We
should note here that the periodic structures are of increasing
interest, particularly after the first experimental observation of
the evolution of an arbitrarily shaped input optical pulse train
to the shape preserving Jacobean elliptic pulse train corre-
sponding to the Maxwell-Bloch equations [42]. Undoubtedly,
such ultrashort solitary pulses could find potential applica-
tions in optical communication systems since dark solitons are
more stable against Gordon-Haus jitters in a long communica-
tion line, less influenced by noise, and less sensitive to optical
fiber loss [43,44].

Before we leave this section, we would like to compare
the results presented in our study with those obtained for
the generalized complex quintic Swift-Hohenberg (CQSH)
equation [45], which models dissipative systems. The high
dispersive cubic-quintic NLSE (1) presents an extra term with
respect to the generalized CQSH equation, which is the third-
order dispersion term iρ ∂3ψ

∂τ 3 . We have seen that this additional
term has a significant influence on the characteristics of the
obtained periodic and localized wave solutions. All the wave
parameters (e.g., velocity, amplitude, inverse temporal width,
and wave number) are dependent on the third-order dispersion
coefficient ρ as well as the other system parameters. We
should note here that all the involved coefficients in the CQSH
model are complex parameters, unlike in the case of the model
(1) where the equation parameters are real. The difference

044214-6



PERIODIC AND LOCALIZED WAVES IN PARABOLIC-LAW … PHYSICAL REVIEW E 106, 044214 (2022)

−15 −10 −5 0 5
0

1

2

τ

⏐ψ
⏐2

(a)

−10 −5 0 5
0

2

4

6

τ

⏐ψ
⏐2

(b)

−15 −10 −5 0 5
0

1

2

τ

⏐ψ
⏐2

(c)

FIG. 3. Intensity profiles of (a) the periodic wave solution (40) with parameters α = 1.64, ρ = −0.3, ν = 1, γ = −0.1, μ = 1.5, ξ0 = 0,
and k = 0.6, (b) the periodic wave solution (47) with parameters α = 0.305, ρ = −0.2, ν = 0.5, γ = −1, μ = 0.3072, ξ0 = 0, and k = 0.6,
and (c) the periodic wave solution (51) with parameters α = 0.21, ρ = −1, ν = 1.5, γ = 1, μ = 0.0576, ξ0 = 0, and k = 0.8.

in the nature of coefficients in the two models defines the
dissimilarity in the behavior of the propagating waves. For
instance, it is found that the CQSH model admits a bright
soliton solution with a sech-type wave form [see Eq. (73) in
Ref. [45]] but the parameters of this solution such as phase,
amplitude, and width are markedly different from those in the
bright solitary wave (28).

IV. ANALYTICAL STABILITY ANALYSIS

We present in this section the stability analysis of the high
dispersive cubic-quintic NLSE (1). Our approach is based
on the theory of optical nonlinear dispersive waves [20]. We
develop the dynamics of nonlinear dispersive waves in the
form

ψ (z, τ ) = U (ω) exp[i�(z, τ )], (52)

where the amplitude U (ω) and phase �(z, τ ) are the real
functions. We define the wave number k(z, τ ) and frequency
ω(z, τ ) of the nonlinear dispersive waves by equations

k(z, τ ) = ∂�(z, τ )

∂z
, ω(z, τ ) = −∂�(z, τ )

∂τ
. (53)

We also assume here that the functions k(z, τ ) and ω(z, τ ) are
slowly varying functions of slow variables Z = εz and T =
ετ : k(z, τ ) = k̃(Z, T ) and ω(z, τ ) = ω̃(Z, T ), where ε � 1.
We note that the dimensionless small parameter ε is the same
as that used for derivation of high dispersive cubic-quintic
NLSE (1) in the approximation of slowly varying amplitude
ψ (z, τ ) [2]. The substitution of Eq. (52) to generalized NLSE
(1) yields the series of nonlinear equations. Two equation in

zero and first order to small parameter ε can be written in the
form

k(ω) = k0(ω) + γU 2(ω) − μU 4(ω),

k0(ω) = αω2 + ρω3 + νω4, (54)

∂

∂z
U 2(ω) + ∂

∂τ
[k′

0(ω)U 2(ω)] = 0, (55)

where k′
0(ω) = dk0(ω)/dω. Here Eq. (54) is the nonlinear

dispersion equation and Eq. (55) describes the evolution of
amplitude U (ω). Using Eq. (53) we have the relations as
�zτ = kτ and �τ z = −ωz. Thus the relation �zτ = �τ z leads
to the equation for varying frequency ω(z, τ ) and wave num-
ber k(z, τ ) as

∂ω(z, τ )

∂z
+ ∂k(z, τ )

∂τ
= 0. (56)

Using Eq. (54) and relation Uτ = U ′ωτ (with U ′ = dU/dω)
we can rewrite Eqs. (55) and (56) in the following form:

∂U

∂z
+ k′(ω)

∂U

∂τ

= −1

2
k′′

0 (ω)U
∂ω

∂τ
+ (2γU − 4μU 3)(U ′)2 ∂ω

∂τ
, (57)

∂ω

∂z
+ k′(ω)

∂ω

∂τ
= 0, (58)

where k′(ω) = k′
0(ω) + (2γU − 4μU 3)U ′. This system of

equations can be hyperbolic or elliptic. We first consider
the case when this system of equations is hyperbolic. The
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characteristics to the hyperbolic system of Eqs. (57) and (58)
are given by

dU

dz
= −1

2
k′′

0 (ω)U
∂ω

∂τ
+ (2γU − 4μU 3)(U ′)2 ∂ω

∂τ
, (59)

dω

dz
= 0,

dτ

dz
= k′(ω). (60)

The relation dU/dz = U ′dω/dz = 0 follows from Eq. (60).
Hence Eq. (59) leads to the nonlinear differential equation as

(γ − 2μU 2)

(
dU

dω

)2

= 1

4
k′′

0 (ω),

k′′
0 (ω) = 2α + 6ρω + 12νω2. (61)

Thus Eqs. (60) and (61) lead to the following characteristic
equation:

dτ

dz
= k′

0(ω) ± [γU (ω) − 2μU 3(ω)]

×
√

k′′
0 (ω)

γ [1 − 2(μ/γ )U 2(ω)]
. (62)

The functions k′
0(ω) and k′′

0 (ω) for ω = δ = −ρ/4ν are

k′
0(δ) = ρ(ρ2 − 4αν)

8ν2
= v−1, k′′

0 (δ) = 8αν − 3ρ2

4ν
. (63)

Thus the characteristic in Eq. (62) at ω = δ is given by

dτ

dz
= v−1 ± 1

2
[γU (δ) − 2μU 3(δ)]

×
√

8αν − 3ρ2

νγ [1 − 2(μ/γ )U 2(δ)]
. (64)

The wave solutions of generalized NLSE (1) are stable
when they cannot radiate the nonlinear dispersive waves.
Moreover, the outgoing nonlinear dispersive waves exist only
in the case when the system of Eqs. (57) and (58) is hyperbolic
[20]. We emphasize that in the case of elliptic equations the
problem of optical pulse radiation is not correct from the
mathematical point of view. The system of Eqs. (57) and
(58) is elliptic when the square root in Eq. (62) is imaginary
because in this case the characteristics given by Eqs. (59) and
(60) do not exist.

Thus it follows from (64) that the criterion of stability of
solutions for generalized NLSE (1) at ω = δ is

8αν − 3ρ2

νγ [1 − 2(μ/γ )U 2(δ)]
< 0. (65)

We have two cases for the stability criterion of solutions of
Eq. (65). In the first case we assume μ/γ < 0 and hence the
criterion of stability is given by

8αν − 3ρ2

νγ
< 0. (66)

In the second case with μ/γ > 0 we assume that U 2(δ) <

γ/2μ. This case occurs for appropriate realistic values of
parameter γ /2μ because the intensity I = U 2(δ) of disper-
sive waves is sufficiently small. Thus, in this second case,
the criterion of stability of solutions is given by Eq. (66)

as well. However, we note that in the case when μ/γ > 0
and U 2(δ) > γ/2μ the stability criterion has the following
form: (8αν − 3ρ2)/νγ > 0. We present below the domains of
parameters for which the solutions 1–8 are stable. These do-
mains are found using appropriate conditions for parameters
b and c and the stability criterion given in Eq. (66).

(1) Stability condition for solutions with b > 0 and c < 0.
The solutions 1–3 are found for parameters b > 0 and c < 0. It
follows from Eq. (15) that μ/ν > 0 and c = −(1/2)

√
μ/6ν.

Hence we should use in Eq. (15) the bottom signs. The condi-
tion b > 0 yields the relation

8αν − 3ρ2 > −8νγ

√
6ν

μ
. (67)

Thus Eqs. (66) and (67) lead in the first case [with νγ > 0 and
μ/ν > 0] the stability condition for solutions 1–3 as

−8

√
6ν

μ
<

8αν − 3ρ2

νγ
< 0. (68)

In the second case (with νγ < 0 and μ/ν > 0) Eqs. (66)
and (67) yield the stability condition for solutions 1–3 as

8αν − 3ρ2

νγ
< −8

√
6ν

μ
. (69)

(2) Stability condition for solutions with b < 0 and c > 0.
The solutions 4, 6, 8, and 5 (in the domain 1/

√
2 < k < 1

of modulus k) are found for parameters b < 0 and c > 0. It
follows from Eq. (15) that μ/ν > 0 and c = (1/2)

√
μ/6ν.

Hence we should use in Eq. (15) the top signs. The condition
b < 0 yields relation

8αν − 3ρ2 < 8νγ

√
6ν

μ
. (70)

Hence Eqs. (66) and (70) lead in the first case (with νγ > 0
and μ/ν > 0) the stability condition for solutions 4, 6, 8, and
5 (in the domain 1/

√
2 < k < 1 of modulus k) as

8αν − 3ρ2

νγ
< 0. (71)

In the second case (with νγ < 0 and μ/ν > 0) Eq. (70)
yields (8αν − 3ρ2)/νγ > 8

√
6ν/μ. However, this inequality

disagrees with stability criterion in Eq. (66). Thus in this
second case (with νγ < 0 and μ/ν > 0) the solutions 4, 6,
8, and 5 (in the domain 1/

√
2 < k < 1 of modulus k) are

unstable.
(3) Stability condition for solutions with b > 0 and c > 0.

The solutions 7 and 5 (in the domain 0 < k < 1/
√

2 of mod-
ulus k) are found for parameters b > 0 and c > 0. It follows
from Eq. (15) that μ/ν > 0 and c = (1/2)

√
μ/6ν. Hence we

should use in Eq. (15) the top signs. The condition b > 0
yields relation

8αν − 3ρ2 > 8νγ

√
6ν

μ
. (72)
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In the first case (with νγ > 0 and μ/ν > 0) Eq. (72) yields
(8αν − 3ρ2)/νγ > 8

√
6ν/μ. This inequality disagrees with

stability criterion in Eq. (66). Thus in the first case (with νγ >

0 and μ/ν > 0) the solutions 7 and 5 (in the domain 0 < k <

1/
√

2 of modulus k) are unstable.
In the second case (with νγ < 0 and μ/ν > 0) Eqs. (66)

and (72) yield the stability condition for solutions 7 and 5 (in
the domain 0 < k < 1/

√
2 of modulus k) as

8αν − 3ρ2

νγ
< 0. (73)

In the conclusion, we note that the numerical stability analysis
presented in the following section is consistent with analytical
criteria developed here.

V. NUMERICAL STABILITY ANALYSIS

We now employ the direct numerical simulations to verify
the stability of our analytical solutions against small perturba-
tions. It is observed that competing nonlinearities which occur
in a cubic-quintic nonlinear optical medium can lead to sta-
bilization of soliton solutions [16]. The present higher-order
NLSE (1) includes the contribution of such cubic-quintic
nonlinearity in addition to the effects of second-, third-, and
fourth-order dispersions. In order to strictly answer the ques-
tion of robustness of the obtained solutions, much further
analysis is needed which we have presented below.

To examine stability with respect to finite perturbations
for the solutions, we take as examples the first types of pe-
riodic wave (25), bright solitary wave (28), and dark solitary
wave (36). Then, we perform a direct numerical simulation of
Eq. (1) using the standard split-step Fourier method [46], to
test the stability of solutions (25), (28), and (36) with initial
white noise, as compared to Figs. 1(a), 1(b), and 1(d). As
usual, we put the noise onto the initial profile; then the per-
turbed pulse reads [47] ψpert = ψ (τ, 0)[1 + 0.1 random(τ )].
The numerical results of periodic wave, bright. and dark
solitary wave solutions under the perturbation of 10% white
noise are displayed in Figs. 4(a), 4(b), and 4(c), respectively.
From Fig. 4, we can see that under finite initial perturbations
of the additive white noise, the solitary and periodic waves
still propagate in a stable way, thereby further confirming the
validity of our solutions. Although we have shown here the
results of stability study only for three examples of NLSE
model (1), similar conclusions hold for other solutions as well.
Therefore, we can conclude that the solutions we obtained
are stable and should be observable in optical cubic-quintic
materials with higher-order dispersion.

VI. DISCUSSION

Before arriving at a conclusion, let us discuss some practi-
cal application of the considered theoretical model. With the
rapid advancement in optical materials research and avail-
ability of high power laser systems, there are new photonic
waveguides that show complicated dispersion and nonlinear
properties. For instance, it was reported recently that it is
possible to realize a pure quartic soliton just by the balance
of the nonlinearity with higher-order dispersion of order four
[48]. The authors experimentally demonstrated the existence

FIG. 4. Numerical evolution of (a) the periodic wave solution
(25), (b) the bright solitary wave solution (28), and (c) the dark
solitary wave solution (36) under the perturbation of white noise
whose maximal value is 0.1. The parameters are the same as in
Figs. 1(a), 1(b), and 1(d), respectively.

of pure-quartic solitons in a silicon photonic crystal waveg-
uide (PhC-wg) at a carrier frequency where the quadratic
and cubic dispersion parameters β2 and β3 were practically
negligible. Such waveguides exhibit fourth-order dispersion
and researchers successfully demonstrated various nonlinear
phenomenalike pulse compression, slow light degeneration
[49,50], etc.

Recently, Roy and Biancalana [51] demonstrated that it
is possible to observe quartic solitons in specially designed
silicon-based waveguides when both β2 and the quartic disper-
sion parameter β4 are negative (anomalous). By considering
the case when β4 is negative and β2 can have either sign,
Tam et al. [52] numerically found that single-hump solitons
exist for some positive β2 values as well. The existence of
quartic solitons in the presence of third-order dispersion (i.e.,
β3 �= 0), for which the phase depends on the time variable,
was recently reported by Kruglov and Harvey [19], who found
the stability region of this class of solitons as β2 < 0, β4 < 0,
and 2β2β4 > β2

3 . At this point it should be noted that such
dependence of the phase on time τ can be interpreted as a
shift �ω in the carrier frequency away from the expansion
frequency ω0, where the three dispersion parameters β2, β3,
and β4 were defined by Taylor expansion [52]. According to
these recent works, the formation of temporal solitons arises
from the interplay between Kerr nonlinearity and all orders of
dispersion up to the fourth order.

But when the power of the light pulse exceeds a threshold
value, the quintic nonlinearity coming from fifth-order sus-
ceptibility contributes significantly in the nonlinear response
of the medium and at the same time the effect of higher-
order dispersion cannot be neglected [53]. In this context,
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considering the combined influence of third-order dispersion
and cubic-quintic nonlinearity, results showing the pulse evo-
lution in a non-Kerr type medium have been recently reported
[53]. It is noteworthy that for such cubic-quintic media, the
nonlinear change in the refractive index of optical media can
be modeled by a linear and quadratic dependence on wave
intensity as [54] �n = n2|E |2 + n4|E |4, which with nega-
tive nonlinear coefficients n2n4 < 0 results in bistable soliton
propagation [55,56]. Note that here the nonlinear refractive
indices n2 and n4 are proportional to the third- [χ (3)] and
fifth-order [χ (5)] nonlinear susceptibilities, respectively, as
[56] n2 = 3χ (3)/(8n0) and n2 = 5χ (5)/(16n0), with n0 being
the linear refractive index coefficient. This change in the re-
fractive index indicates that the quintic nonlinearity plays a
crucial role in the response of the system.

Considering the fact that the silicon photonic crystal
waveguide (PhC-wg) allow for the most degrees of freedom
in dispersion engineering [57,58], this medium is also able to
support quintic nonlinearity by appropriately exciting it with
suitable high powers. It is relevant to note that, for the up to
the fourth-order dispersion and the quintic nonlinearity to be
taken into account, the light pulse should be extremely narrow
and the optical intensity should be very high [59].

Now we consider a limit when solutions of Ref. [19] are
recovered. This is connected with a condition which permits
one to neglect the last term in Eq. (1). It is apparent that such
condition is given by (|μ|/|γ |)|ψ (z, τ )|2 � 1, which can also
be written as |μ|Im � |γ |, where Im = max|ψ (z, τ )|2 is the
maximal intensity of optical pulse. It is relevant to mention
that appropriate scaling of Eq. (1) leads to a two-parameter
canonical form of generalized NLSE, which allows one to
formulate the above condition in a different form (see the
Appendix).

For the completeness of the investigation, we now discuss
the influence of quintic nonlinearity on the dynamical behav-
iors of the obtained periodic and localized waves. Here we
still take the periodic wave (25), bright solitary wave (28),
and dark solitary wave (36) as examples to study the effect
of quintic nonlinearity on the dynamical properties of the
derived structures. From the above results, we see that the
quintic nonlinearity coefficient μ included in the parameters
b and c affects the width, amplitude, and wave number of
the obtained propagating waves. It should be noted that these
wave parameters take nonzero values only for b �= 0 and
c �= 0 (i.e., μ �= 0). In Fig. 5, we have shown the temporal
intensity profiles of the nonlinear wave solutions (25), (28),
and (36) for different values of μ and α = 0.2, ρ = 0.4,
ν = 0.1, and γ = 1. Here, the value of the elliptic modulus
k is taken as k = 0.6 for the cn2 periodic wave (25) and
ξ0 is chosen to be equal to zero. Also we considered the
case of bottom signs in all the parameters given in Eqs. (15)
and (16) for the periodic and bright solitary wave solutions
(25) and (28), while the top signs are considered for the
dark solitary wave solution (36). From Figs. 5(a) and 5(b),
one can observe that, with increasing the quintic nonlinearity
parameter μ, the intensity of the periodic and bright solitary
waves decreases continuously. We also see that this param-
eter influences the background intensity of the dark solitary
wave, as shown in Fig. 5(c). We can then conclude that the
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FIG. 5. Intensity profiles of the (a) periodic wave (25), (b) bright
solitary wave (28), and (b) dark solitary wave (36) for different values
of μ: μ = 0.6 (thick line), μ = 0.7 (dashed line), and μ = 0.8 (dot-
ted line). The selected coefficients are α = 0.2, ρ = 0.4, ν = 0.1,
and γ = 1.

quintic nonlinearity plays a sensitive role in the evolutional
dynamics of propagating waves.

VII. CONCLUSION

We have studied the femtosecond light pulse propagation
in a highly dispersive optical fiber governed by a higher-order
nonlinear Schrödinger equation incorporating all orders of
dispersion up to the fourth order as well as cubic and quintic
nonlinearities. With use of an appropriate equation, exact pe-
riodic wave solutions have been identified for the model in the
presence of various dispersive and nonlinear effects. Solitary
waves have been also obtained which include both bright and
dark localized solutions. It is found that the velocity of these
structures is uniquely dependent on all orders of dispersion.
Moreover, all solutions presented in the paper are stable to
small perturbations which follows from appropriate stability
analysis. The conditions on the optical fiber parameters for
the existence of these exact stable solutions are found by
analytical stability analysis as well. It is apparent that the
exact nature of the nonlinear waves presented here can lead
to different applications in optical communications.

APPENDIX: DIMENSIONLESS
FORM OF GENERALIZED NLSE

We present in this Appendix the scaling of Eq. (1) leading
to the dimensionless form of generalized NLSE. Thus we de-
fine the complex field envelope as ψ (z, τ ) = QU (ζ , ξ ), where
U (ζ , ξ ) is a dimensionless complex valued function and
the dimensionless variables are ζ = z/L and ξ = τ/T . We
also define here the characteristic length L, time T , and
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amplitude Q as

L = ρ2

|α|3 , T = |ρ|
|α| , Q = |α|

|ρ|

√
|α|
|γ | . (A1)

The above definitions lead to a two-parameter canonical form
of generalized NLSE given by

i
∂U

∂ζ
= S(α)

∂2U

∂ξ 2
+ iS(ρ)

∂3U

∂ξ 3
− σ

∂4U

∂ξ 4

− S(γ )|U |2U + λ|U |4U, (A2)

where S(α) ≡ sgn(α), S(ρ) ≡ sgn(ρ), and S(γ ) ≡ sgn(γ ).
Thus we have S(α) = α

|α| , S(ρ) = ρ

|ρ| , and S(γ ) = γ

|γ | , where
it is assumed that α �= 0, ρ �= 0, and γ �= 0. Hence the param-
eters S(α), S(ρ), and S(γ ) in this dimensionless NLSE can

accept only two values as ±1. The dimensionless parameters
σ and λ are given here as

σ = ν|α|
ρ2

, λ = μ|α|3
γ 2ρ2

. (A3)

It follows from Eq. (A2) that one can neglect the last term in
this equation when the condition |λ||U |2 � 1 is satisfied. This
condition can also be written as

|μ||α|3Jm � γ 2ρ2, (A4)

with Jm = max|U(ζ , ξ )|2. However, a more precise condition
allowing one to neglect the last term in Eq. (A2) with fixed
parameters α, ρ, ν, γ , μ and for initial complex field U (0, ξ )
can be found by numerical simulations of (A2).
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