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Forward and inverse cascades by exact resonances in surface gravity waves
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We study the energy transfer by exact resonances for deep-water surface gravity waves in a finite periodic
spatial domain. Based on a kinematic model simulating the generation of active wave modes in a finite discrete
wave number space SR, we examine the possibility of direct and inverse cascades. More specifically, we set
an initially excited region which iteratively spreads energy to wave modes in SR through exact resonances. At
each iteration, we first activate new modes from scale resonances (which generate modes with new lengths),
then consider two bounding situations for angle resonances (which transfer energy at the same length scale): the
lower bound where no angle resonance is included and the upper bound where all modes with the same length
as any active mode are excited. Such a strategy is essential to enable the computation for a large domain SR with
the maximum wave number R ∼ 103. We show that for both direct and inverse cascades, the modal propagation
to the boundaries of SR can be established when the initially excited region is sufficiently large; otherwise a
frozen turbulence state occurs, with a sharp transition between the two regimes especially for the direct cascade.
Through a study on the structure of resonant quartets, the mechanism associated with the sharp transition and
the role of angular energy transfer in the cascades are elucidated.
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I. INTRODUCTION

Wave turbulence theory (WTT) describes the statistical
behavior of a large number of dispersive waves subject to
nonlinear interactions [1]. In the framework of WTT, the wave
system is described by a kinetic equation (KE) which has
stationary solutions of the Kolmogorov-Zakharov power-law
spectra in the inertial range. Analogous to the Kolmogorov
description of hydrodynamic turbulence, WTT predicts en-
ergy cascades through scales with a constant energy flux in the
inertial range. This methodology has been applied to a wide
variety of physical systems including surface gravity waves
[2], capillary waves [3], internal gravity waves [4], plasma
waves [5], and gravitational waves [6].

In spite of its fruitful applications, WTT is based on the
assumption of an infinite spatial domain, which is usually not
achieved in both numerical and laboratory experiments. For a
finite system, the wave number space becomes discrete with
the spacing between adjacent wave modes �k = 2π/L, where
L is the size of the domain. Under this situation, it has been
understood that the predictions from KE can be obtained only
if the nonlinearity level is sufficiently high. The dynamics in
this regime is governed by the so-called kinetic wave turbu-
lence, where quasiresonances play a dominant role in energy
transfer, as shown in numerical simulations [7–11] and pure
analysis [12,13]. When the nonlinearity level is sufficiently
low for a fixed domain size (or the domain size is sufficiently
small for a given nonlinearity level), the discreteness in the
wave number space becomes dominant over nonlinear broad-
ening and the quasiresonances are prohibited. Such situations
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may occur in both experiments and simulations, as discussed
in [14,15] for a wave tank of realistic size. Physically, this dy-
namical regime is called the discrete wave turbulence regime
(see simulation evidence in [8,16] and pure analysis in [17]),
where the cascade can be excited only through exact reso-
nances, i.e., modal interactions satisfying

k1 ± k2 ± · · · ± ks = 0,

ω1 ± ω2 ± · · · ± ωs = 0, (1)

where ki = (mi, ni ) (after canceling the common factor �k as-
suming a square spatial domain for simplicity) is the discrete
wave number vector with mi, ni ∈ Z and ωi is the angular
frequency determined from the dispersion relation, say, ωi ∼
kα

i with ki = |ki|. The importance of (1) in understanding
the wave dynamics at low nonlinearity has been demon-
strated in capillary wave turbulence [18–20], MMT turbulence
[16], and surface gravity wave turbulence [21–23] (also see
review in [24]).

The study on the exact resonances in discrete wave number
space is a main subject of discrete wave turbulence (DWT),
introduced first by Kartashova [25–27]. In general, the prob-
lem of computing exact resonances in a discrete wave number
space is to find integer solutions of (1), which is essentially a
system of Diophantine equations. The properties of solutions
in different wave systems are determined by the values of s
in (1) and α in the dispersion relation. In particular, there are
certain wave systems in which no exact resonance exists (e.g.,
capillary waves with s = 3, α = 3/2) [27], as well as systems
containing a large number of exact resonances so that the
energy can be transferred to arbitrarily large wave numbers
[e.g., the nonlinear Schrödinger (NLS) equation with s = 4,
α = 2] [28,29].
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The situation for deep-water surface gravity waves (s = 4,
α = 1/2) is much more complicated. Previous studies have
shown that exact resonances exist, but are sparse other than
some trivial quartet solutions (which do not excite new modes
in scale) [15,30,31]. However, it is not clear what should
be expected from these exact resonances in a discrete wave
number domain SR (given some initially active modes), i.e.,
whether a state of unlimited cascade or frozen turbulence is
relevant. More precisely, here we define the propagation of
wave modes generated by exact resonances from the initial
region to the maximum wave number R in SR as an “unlimited
cascade (in SR)” and otherwise as “frozen turbulence”. We
note that the concept of “frozen turbulence” was originally
provided in [18] for capillary waves, which indicates a state
where no new modes can be generated by exact resonances
so that the turbulent cascade has to be “frozen”. Here we
use a generalized definition to describe the bounded genera-
tion of wave modes by exact resonances. For R → ∞, this
is a very hard number theoretical problem (through private
communication with number theorists), which is beyond our
scope in this paper. We will instead consider an SR with finite
R ∼ 103 (the maximum R in this study is 2500), which is
compatible with (or beyond) most state-of-the-art simulations
[8,23,30,32–37] performed for wave turbulence (with the only
exception of [38] to the authors’ knowledge).

An effective approach to study the above problem numeri-
cally is the so-called kinematic method, i.e., with an initial set
of active modes, the generation of new modes to outer regions
is computed iteratively by finding solutions to (1). Under the
kinematic method, we consider the modal propagation toward
higher and lower wave numbers direct and inverse cascades
respectively. This method has been applied to capillary waves
[39], gravity waves [30], and NLS [40], which, however,
mainly focus on the effect of exact or quasiresonances in a
small domain, i.e., with small R. As an example, for gravity
waves, the only available result is for R = 64 with initially
active modes in k ∈ [6, 9] (i.e., wave number magnitude in
the interval from 6 to 9), where it is shown in [30] that a
frozen turbulence state is observed. The difficulty in extending
the existing kinematic method to our interest of R ∼ 103 lies
in the computational cost. A brute-force search of solution
of (1), as applied in [30], exhibits a computational cost that
grows fast with the increase of the number of active modes
(in particular the cost scales as the cubic of active mode
numbers for each iteration). Therefore, in order to make cases
of R ∼ 103 computationally tractable, a much more efficient
numerical method needs to be developed for the kinematic
study.

One way to save some computational cost is to precompute
the set Q of all exact resonances within SR using a fast generic
method [31,41,42]. With the invariant set Q available, we
can loop over Q to compute the energy spreading in each
iteration, instead of a much larger set of all combinations of
the activated modes (that expands up to O(1018) if all modes
in SR are excited when R = 1000). However, this is still not
sufficient due to the large number of elements in Q, with
|Q| ∼ 108. In order to further reduce the computational cost,
we consider a small subset Qs of Q (with |Qs| ∼ 104) that
includes only the scale resonances, i.e., resonances generating
wave modes with new length that are of vital importance to

the cascade. The remaining set Qa (with |Qa| ∼ 108) contains
only angle resonances with pairwise equal lengths (|k1| =
|k3| and |k2| = |k4|; or |k1| = |k4| and |k2| = |k3|) that are
less important (but may play a role in connecting different
scale resonances). Accordingly, we can formulate an efficient
computational scheme to loop over Qs in each iteration and
account for the resonances in Qa by its two bounds: an lower
bound that no angle resonances are included and an upper
bound that all modes with equal length with any active one
are excited. Using this scheme, the computational cost for
R ∼ 103 becomes affordable, and we are certain that the true
solution lies between the two bounds of the computation,
which is sufficient for the physical purpose in this study.

In this paper, we apply the computational method outlined
above to study the resonant energy transfer of surface gravity
waves in a finite discrete wave number space with R = 2500.
The initially active modes are placed in a circular region with
radius rD for the direct cascade. We show that for small rD,
a state of frozen turbulence is observed with the maximum
reachable wave number kmax linearly proportional to rD. At
rD ∼ [60, 110], a sharp transition to unlimited cascade oc-
curs where kmax ∼ R is established for both upper and lower
bounds. In addition to the direct cascade, we also study the
inverse cascade with initial active modes in a ring-shaped
area, and we show the transition from frozen turbulence to
unlimited cascade (under their corresponding definitions in
the context of inverse cascade) with the increase of the thick-
ness of the ring. Finally, we analyze the structure of resonant
quartets, through which the sharp transition from frozen turbu-
lence to unlimited cascade is explained, and the role of angle
resonances in determining the extent of the modal propagation
is elucidated for both direct and inverse cascades.

II. METHODOLOGY

We consider the surface gravity wave system with resonant
conditions in the form

k1 + k2 = k3 + k4,
√

k1 +
√

k2 =
√

k3 +
√

k4, (2)

where ki = (mi, ni ) and ki = |ki| (i = 1, 2, 3, 4) with mi, ni ∈
Z and

√
m2

i + n2
i � R for a given R ∈ N. The solutions of (2)

correspond to the exact resonances in a finite wave number
domain SR = {k ∈ Z2 : k � R}. In our kinematic model, we
specify the initial condition by defining a set of active modes
denoted by S0. For the direct cascade, the initially active
modes are placed in a circular area S0 = {k ∈ Z2 : k � rD}
where 0 < rD < R. For the inverse cascade, they are placed
in a ring-shaped area S0 = {k ∈ Z2 : rI � k � R} where
0 < rI < R.

The solution for the direct or inverse cascade problem now
amounts to iteratively finding the solution of (2) for energy
spreading; i.e., for each iteration, we loop over all combina-
tions of three active modes and check whether there exists
a fourth mode satisfying (2). Such a brute-force method, as
reviewed, is not computationally affordable for large R ∼ 103.
Here we propose an efficient method for this computation
providing the upper and lower bounds of the true solution
that are sufficient for our physical purpose. The first step is to
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precompute (before the start of the iterations) the set of scale
resonances Qs inside the spectral domain SR:

Qs = {(k1, k2, k3, k4) : k1 + k2 = k3 + k4,
√

k1 +
√

k2 =
√

k3 +
√

k4,

k1 �= k3, k1 �= k4,

ki ∈ SR, ∀ i = 1, 2, 3, 4}. (3)

As shown by Kartashova, the scale resonances in Qs are
substantially sparser compared to all resonances (or angle
resonances) [43,44] and can be computed by a fast algorithm
[31]. The principle of this algorithm is that only a small
subset of numbers need to be considered for frequency ω

according to the irrationality of the dispersion relation, which
substantially reduces the number of searches (since only the
small subset and the corresponding wave numbers need to be
searched instead of all wave numbers). We present the detailed
algorithm to compute Qs in the Appendix mainly following
[31]. The overall computational complexity can be estimated
as O(R2), which needs to be performed only once for all
kinematic calculations in this paper.

With Qs available, we can iteratively update the set of
active modes Si (i = 1, 2, . . . , N) starting from S0 with op-
eration Si+1 = Ps(Si ). In particular, in performing Ps, we
loop over all the quartets in Qs, and if there exist three (and
only three) active modes (according to Si) in one quartet, we
activate the fourth one. The set Si+1 is then taken as the union
of Si and all newly activated modes. Since Qs is invariant
and sparse, the number of calculations at each iteration is a
small constant, as opposed to the situation in the brute-force
approach.

To further account for the effects of angle resonances, two
bounds of the result can be considered. The lower bound
can be simply taken as S l

i = Si (i = 1, 2, . . . , Nl ), i.e., re-
sult of spreading only from scale resonances. For the upper
bound, we consider the situation that at each iteration, after
the spreading by scale resonances, we activate all modes in SR

that have the same length with any active modes (defined as
operation Pa). More precisely, we perform Su

i+1 = Ps(Su
i ) ∪

Pa[Ps(Su
i )] (i = 1, 2, . . . , Nu) from Su

0 = S0, where the op-
eration Pa is defined as Pa[S∗] = {k : k = k1,∀k1 ∈ S∗}. The
full algorithm for the computation is presented in Algorithm 1,
with the code available on Github [45].

III. RESULTS

We first present results for direct cascade in a wave number
domain of R = 2500 using our kinematic model. Figure 1
shows the upper and lower bounds of final distributions of
active modes (i.e., no more activated modes in the next iter-
ation) for three cases with rD = 50, 80, 120. For rD = 50 as
in Figs. 1(a) and 1(b), the results from the upper and lower
bounds are identical, indicating a true solution of frozen tur-
bulence with maximum reachable wave number kmax = 243.
For rD = 80 as in Figs. 1(c) and 1(d), a difference in the
upper and lower bounds of the solution is observed, showing
that the true solution kmax lies in a relatively large range of
[729,2401], still a state of frozen turbulence according to our
definition. Finally, for rD = 120 as in Figs. 1(e) and 1(f), the
upper and lower bounds become much closer, both close to

Algorithm 1. Kinematic model.

Input: size of domain R, the radius rD for direct cascades or the
inner radius rI for inverse cascades

Output: the final sets of active modes S l
Nl for lower bound and Su

Nu

for upper bound
Initialization initialize the set of active modes S0 = {k∈Z2 : k�
rD} for direct cascades or S0 = {k ∈ Z2 : rI � k � R} for inverse
cascades
Calculate Qs from (2)
i ← 0, S l

0 ← S0

while S l
i �= Ps(S l

i ) do
S l

i+1 ← Ps(S l
i )

i ← i + 1
end while
Nl ← i
i ← 0, Su

0 ← S0

while Su
i �= Ps(Su

i ) do
Su

i+1 ← Ps(Su
i ) ∪ Pa[Ps(Su

i )]
i ← i + 1

end while
Nu ← i

FIG. 1. The distribution of active wave modes (red dots) in the
final state of direct cascades in a domain with R = 2500, for (a) rD =
50, lower bound, (b) rD = 50, upper bound, (c) rD = 80, lower
bound, (d) rD = 80, upper bound, (e) rD = 120, lower bound, and (f)
rD = 120, upper bound. The initially excited region is indicated by
a red area circled by a black solid line. The maximum wave number
kmax of the active modes is indicated by a circle with cyan dashed
line.
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FIG. 2. The maximum wave number kmax as a function of the
radius of the initial region rD in direct cascades with R = 2500.
Both upper (red line with squares) and lower (blue line with squares)
bounds are shown.

the outer boundary of the domain with kmax ∼ R, indicating a
state of unlimited cascade. This is in spite of the fact that the
upper-bound solution is associated with a much denser active
modes excited by angle resonances.

A more complete view of the relation between kmax and
rD is shown in Fig. 2 with both upper and lower bounds
of the solution. We see that there exists a sharp transition
between frozen turbulence and unlimited cascade for a critical
value of rD ∼ [60, 110] (considering the uncertainty exhibited
between upper and lower bounds). For rD below the critical
value, a frozen turbulence state is observed with exact match
of upper and lower bounds of the solution, showing a lin-
ear relation fitted by kmax ≈ 5.5rD − 35.9. For rD above the
critical value, the state quickly transits to unlimited cascade
with kmax  rD (and eventually kmax ∼ R). Such a transition
implies a bifurcation of solutions depending on the initial
condition of energy distribution in discrete turbulence of sur-
face gravity waves. In addition, we remark that the frozen
turbulence observed here for small rD is consistent with the
simulation of primitive Euler equations at low nonlinearity
level [23], which suggests a frozen turbulence state when the
forcing is located in the range of k ∈ [1, 19].

We next present the results for inverse cascade with initial
active modes placed in a ring with radius [rI , R]. Our interest
is to understand the effect of ring thickness on the minimum
wave number kmin reachable in the cascade. For this purpose,
we keep rI = 1000 as a constant and vary R to examine its
effect on the inverse cascades. Figure 3 shows the upper and
lower bounds of final distributions of active modes in inverse
cascades for R = 1400, 1700, and 2200. For R = 1400 as
in Figs. 3(a) and 3(b), a frozen turbulence state is observed
with no new active modes generated (for both upper and
lower bounds). For R = 1700 as in Figs. 3(c) and 3(d), kmin

reaches [492.4,176.7] according to the two bounds of solution,
indicating again a state of frozen turbulence. The unlimited
cascade is enabled as in Figs. 3(e) and 3(f) for R = 2200,
where kmin ∼ 1 (the fundamental mode) from both the upper
and lower bounds.

We show a more complete view of the relation between
kmin and R in Fig. 4. For R � 1500, no new modes can

FIG. 3. The distribution of active wave modes (red dots) in the fi-
nal state of inverse cascades with rI = 1000, for (a) R = 1400, lower
bound, (b) R = 1400, upper bound, (c) R = 1700, lower bound,
(d) R = 1700, upper bound, (e) R = 2200, lower bound, and (f)
R = 2200, upper bound. The initially excited region is indicated by
the ring-shaped red area. The minimum wave number kmin of the
active modes is indicated by a circle with cyan dashed line.
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FIG. 4. The minimum wave number kmin as a function of the
outer radius R in inverse cascades with rI = 1000. Both upper (red
line with squares) and lower (blue line with squares) bounds are
shown.

044213-4



FORWARD AND INVERSE CASCADES BY EXACT … PHYSICAL REVIEW E 106, 044213 (2022)

FIG. 5. The distribution of (a) Ms and (b) Os in the (kx, ky ) plane, and (c) M̃s and Õs as functions of k with R = 2500. In (a) and (b), the
values are averaged over the modes with nonzero Ms(k) in a 50 × 50-grid area to avoid large discrete peaks in the original field.

be generated. As R increases beyond 1500, discrepancy
between upper and lower bounds occurs, with stepwise tran-
sition behavior shown in the solutions. The frozen turbulence
state transits to unlimited cascade for R ∈ [1800, 2000], after
which the upper and lower bounds become close to each other
with kmin close to unity. We note that in numerical simulation
of gravity-wave primitive equations with forcing in [28,32],
a condensate forms at low wave numbers [14] indicating that
quasiresonances are disabled toward large scales. Our study,
with placement of initial modes in [28,32] and both direct
or inverse cascades activated, further shows there is no exact
resonance reaching unity in this corresponding case.

Finally, by examining the behavior of the upper and lower
bounds in direct and inverse cascades, the role of angle res-
onances in the modal propagation can be inferred. It is clear
in both cases that discrepancy between the two bounds occurs
mainly when the initially active region is of appropriate size
(i.e., not too small or too large). This is partly expected due
to the finite wave number space, i.e., if the scale-resonance
cascade can reach the boundary, angle resonances are not
needed (so that the upper and lower bounds for large initial
regions are guaranteed to be the same). However, it will be
beneficial to conduct a more rigorous analysis to elucidate the
full mechanism, as well as the sharp transition from frozen
turbulence to unlimited cascade above rD ≈ 60 for direct cas-
cade. Such an analysis is presented in Sec. IV.

IV. STRUCTURE OF RESONANT QUARTETS

In order to understand the state transition and role of angle
resonances, it is necessary to discuss the structure of scale
resonances in Qs. In particular, we aim to quantify the capa-
bility of a given mode in connecting smaller and larger scales
through scale resonances, which also provides a hint on the
role of angle resonances at this scale.

For this purpose, we define the scale-resonance multiplicity
index Ms(k) and order index Os(k):

Ms(k) = |{q : k ∈ q}|, Os(k) = {RK[k; q] : k ∈ q}, (4)

where q = {k1, k2, k3, k4} is a set taken from the quartets in
Qs, | · | is the cardinality of the set, which in this context
counts the number of q for which k is an element, RK[k; q]
gives the ranking index of k in set q (1,2,3,4 for length from
smallest to largest), and · calculates the average of the num-

bers in the set, and in this context the average of ranking
indices. With definition (4), Ms(k) measures the number of
scale resonances including mode k and Os(k) measures the
average ranking of k (in terms of length) among all scale-
resonant quartets. For a favorable situation of cascade crossing
k, it is desired that Ms(k) is large and Os(k) is in the middle
range (say, around 2.5).

Figures 5(a) and 5(b) show Ms(k) and Os(k) in the domain
SR=2500. We note that in the plot we consider only those modes
for which Ms(k) is nonzero, i.e., there exist some quartets in
Qs for which k is an element. In general, it can be seen that the
function Ms(k) peaks around the middle range of k, whereas
Os(k) increases from 1 to 4 as k increases. The behaviors of
Ms(k) and Os(k) at large k can be partly explained by the finite
wave number space SR, which eliminates many quartets (with
modes beyond R), leading to Ms(k) ≈ 0 and Os(k) ≈ 4. In or-
der to more precisely quantify the two indexes at each (scalar)
scale k, we further define the angle-averaged quantities:

M̃s(k) = {Ms(k
∗) : ||k∗| − k| < δk/2, Ms(k

∗) �= 0}, (5)

Õs(k) = {Os(k
∗) : ||k∗| − k| < δk/2, Ms(k

∗) �= 0}, (6)

with δk = 20 used in our calculation. We plot M̃s(k) and Õs(k)
in Fig. 5(c), which shows consistent behavior as Figs. 5(a) and
5(b) and helps elucidate the transition from frozen turbulence
to unlimited cascade, as well as the role of angle resonances,
as explained below.

In both direct and inverse cascades, if the initial active
region is small (i.e., rD and R are small for respectively the
direct and inverse cascades), the cascade dies out close to the
initial region. This is because the index Õs(k) is close to either
1 and 4 for the direct and inverse cascade, and the index M̃s(k)
is small for both cases, resulting in an unfavorable situation
of generating new scales (by scale resonances). Under this
situation, even if many angle resonances are included (in fact,
for initial state the modes are already dense in the angular
direction), the cascade will not be further excited. As the
initial active region grows to appropriate size, kmax and kmin

can reach the middle range in SR, where the scale of favorable
cascade becomes active, i.e., scales with Õs(k) ≈ 2.5 and
large M̃s(k). We see from Fig. 5(c) that this favorable scale
of energy transfer occurs as k grows above 250. Referring to
Fig. 2, k = 250 corresponds to rD ≈ 60, which is exactly the
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starting point of the sharp transition from frozen turbulence
to unlimited cascade. For these cases, angle resonances be-
come important as they excite more modes in the favorable
scale k to sustain the cascade, leading to discrepancies in the
upper and lower bounds of the solution. Finally, as the initial
active region becomes large enough so that scale resonances
themselves can sustain an cascade to the boundary of the
domain (i.e., kmax reaching R and kmin reaching 1), angle
resonances become unimportant for the extent of cascades.
More precisely, they result in a difference in the density of
active modes but do not affect kmax and kmin.

V. CONCLUSIONS AND DISCUSSION

In this paper, we have studied the cascade of surface gravity
waves by exact resonances in a finite discrete wave number
space. A kinematic model is developed based on the scale res-
onances and the upper and lower bounds of angle resonances,
which significantly reduces the computational cost compared
to the brute-force searching method used in previous studies.
Both direct and inverse cascades are examined with different
sizes of initially active regions. For direct cascade, we find
that there exists a critical radius of the initial region within
the range [60,110], above which the dynamics transits from
frozen turbulence to unlimited cascade (with cascade extend-
ing to the boundary R = 2500). For inverse cascade, states
of frozen turbulence and unlimited cascade are also observed
but with a somewhat less sharp transition. We finally analyze
the structure of resonant quartets, which helps to elucidate the
sharp transition in [60,110] and the role of angle resonances in
the extent of the cascades observed in the kinematic studies.

We remark that although the current study is for finite
R, certain results obtained in the paper also apply for the
case with R → ∞. For example, the frozen turbulence state
observed for k <∼ 60 applies because our value of R is suf-
ficiently large to capture all possible four-wave resonances.
So does the linear scaling kmax ≈ 5.5rD − 35.9 obtained in
the frozen turbulence regime. Physically if an experiment or
simulation is conducted in domain size L with sufficient weak
forcing or initial energy concentrated within wave number
120π/L, the highest wave number that can be excited is de-
scribed by the linear scaling.

APPENDIX: COMPUTATION OF SCALE RESONANCES

To find all the scale resonances satisfying the constraints in
(3), we follow a generic method proposed in [31] to the system
of surface gravity waves with the resonant conditions taking
the form (2). The main idea of this method is to partition the
spectral domain into disjoint classes of k, which allows us to
search for solutions in each class efficiently.

We first rewrite (2) in the following form:

m1 + m2 = m3 + m4,

n1 + n2 = n3 + n4,

ω1 + ω2 = ω3 + ω4, (A1)

where ωi = |ki|1/2 = (m2
i + n2

i )1/4 (i = 1, 2, 3, 4).

Now let’s consider a set of algebraic numbers ω = t1/4, t ∈
N. Any such number ω can be represented by

ω = γ q1/4, γ ∈ N, (A2)

where q is a product

q = pe1
1 pe2

2 · · · pen
n , (A3)

with p1, p2, . . . , pn different primes and the powers
e1, e2, . . . , en ∈ N all smaller than 4. Then we define the set
of numbers ω with the same q as the q-class denoted by Clq,
where q is called the class index. For each ω = γ q1/4 ∈ Clq,
γ is called the weight of ω.

Based on these definitions, it can be shown that there are
two types of solutions for (A1).

Case 1. All the numbers ωi (i = 1, 2, 3, 4) belong to the
same class Clq. In this case the third equation of (A1) can be
written as

γ1q1/4 + γ2q1/4 = γ3q1/4 + γ4q1/4 (A4)

with γi ∈ N (i = 1, 2, 3, 4).
Case 2. The numbers ωi belong to two different classes Clq1

and Clq2 . In this case the third equation of (A1) can be written
as

γ1q1/4
1 + γ2q1/4

2 = γ1q1/4
1 + γ2q1/4

2 (A5)

with γi ∈ N (i = 1, 2).
It is evident that scale resonances, which generate modes

with new lengths, are possible only in Case 1 since Case 2
consists of modes with pairwise equal lengths. Therefore, we
concentrate on finding possible solutions in Case 1. The gen-
eral idea is to take all solutions of γ1 + γ2 = γ3 + γ4 with γ 4

i q
decomposable into the sum of two squares γ 4

i q = m2
i + n2

i
and then check the linear conditions [the first and second
equations in (A1)]. The detailed description of this algorithm
is as follows.

1. Procedures

a. Calculating class indexes

We first consider numbers ti = ω4
i = γ 4

i q. To obtain a so-
lution for (A1), ti must have a representation as the sum of
two squares of integers, i.e., ti = m2

i + n2
i . This requirement

restricts the class index q in the following way: according to
the Euler’s theorem [46], an integer can be represented by
the sum of two squares if and only if every factor with the
form p ≡ 4u + 3 (u ∈ N) contained in its prime factorization
is in an even degree. As γ 4

i already contains every prime
factor in an even degree (the degree of any factor is an integer
multiple of 4), this condition must be held for q. Note that by
construction, all prime factors of q are in degrees smaller than
4. Therefore, the restriction for q becomes: if q is divisible by
a prime p ≡ 4u + 3, it should be divisible by its square and
not be divisible by its cube.

Based on the above requirements, the possible class in-
dexes q for modes inside the spectral domain SR (q � R2)
are calculated as follows. We create a list of integers Aq =
{1, 2, . . . , R2} and make two passes over it. In the first pass,
we remove all the numbers divisible by the fourth power
of any prime. In the second pass, we examine the numbers
divisible by any prime satisfying p ≡ 3 mod 4: if the number

044213-6
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is not divisible by p2 or divisible by p3, we remove it from
Aq. Finally, Aq contains all the class indexes q that can be
represented by the sum of two squares.

b. Solving the equation for weights

The next step is to solve the equations for the weights
obtained from (A4),

γ1 + γ2 = γ3 + γ4, (A6)

with 1 � γi � M(q), where M(q) = �(R2/q)1/4� is the max-
imum possible weight γ for a given q with �·� being the
round-down operator. Let Sγ = γ1 + γ2 = γ3 + γ4. Without
loss of generality we can suppose

γ1 � γ3 � γ4 � γ2. (A7)

There are four possible cases for the weights:
(1) γ1 < γ3 < γ4 < γ2,
(2) γ1 = γ3 < γ4 = γ2,
(3) γ1 < γ3 = γ4 < γ2,
(4) γ1 = γ3 = γ4 = γ2.
Since our aim is to find the scale resonances, we need to

consider only cases (1) and (3) where the lengths of the four
modes are not pairwise equal. Then the search of the solutions
of (A6) is basically to find two partitions of Sγ (γ1 + γ2 and
γ3 + γ4) satisfying cases (1) and (3), which can be computed
straightforwardly by looping over all possible combinations
of the partitions of Sγ under the condition that 1 � γi � M(q)
(i = 1, 2, 3, 4).

Note that before this step, we can reduce the computa-
tional cost by discarding classes which consist of no solution
in cases (1) and (3). Consider the classes with M(q) = 1;
this means that all four weights γi = 1 (i = 1, 2, 3, 4). These
classes correspond to the case (4), which have all four modes
with the same length. Therefore, we can directly discard such
classes without any computation of solving (A6). Similarly,
we can also discard classes with M(q) = 2 since only cases
(2) and (4) are possible in this condition. According to our
calculation, there are 98.5% class with M(q) = 1, 2 among all
the classes obtained in the domain SR=1000. Thus, discarding
them significantly reduces the number of classes to be checked
in the following steps.

c. Decomposition into sum of squares

The aim of this step is to find the decompositions of
the number γ 4

i q with γi = 1, 2, . . . , M(q). The generalized
form of this problem has been investigated in [47], which
gives an efficient algorithm to search for all decompositions

Algorithm 2. Search for scale resonances.

Input: size of the domain R
Output: set of scale resonance quartets Qs

1. Compute the list of class indexes Aq = {q : q ∈ N+, q � R2;
∃ x, y ∈ N+, q = x2 + y2}.
2. Solve (A6) to obtain all possible γi (i = 1, 2, 3, 4) for each
q ∈ Aq.
3. Decompose γ 4

i q obtained in 1 and 2 into sum of two squares:
m∗2

i + n∗2
i (m∗

i , n∗
i ∈ N).

4. Check the linear conditions (A8) and put all qualified quartets
(k1, k2, k3, k4) with ki = (±m∗

i , ±n∗
i ) into Qs.

of b = x2 + y2 (x, y ∈ N). First, we search for all a ∈ N
satisfying a2 ≡ (−1) mod b, 0 < a < b/2. Then for each
a we construct a finite sequence {r j} with r0 = b, r1 = a,
r j+2 = β j r j+1 − r j , and β j = �r j/r j+1�. It can be shown that
∃N > 1 (N ∈ N) such that r0 > r1 > · · · > rN = 1 > rN+1 =
0. If we can find an integer k such that r2

k−1 > b > r2
k , then

b = r2
k + r2

k+1. Based on this method, we can obtain all the
decomposition of γ 4

i q into sum of two squares of integers.
Note that if b = c2(x2 + y2) with c > 1 (c ∈ N), the above
method cannot obtain such decomposition directly. Therefore,
we need to check if γ 4

i q is divisible by an integer square
before applying this method. In such conditions, we divide
b by c2 first and then compute the decomposition using the
above method.

d. Checking linear conditions

Finally, we check the linear conditions [the first and second
equations in (A1)] to find all solutions based on (m∗

i , n∗
i )

(m∗
i � 0, n∗

i � 0, i = 1, 2, 3, 4) satisfying the third equa-
tion of (A1) obtained from the previous steps. This is done
by taking all combinations of signs satisfying

± m∗
1 ± m∗

2 = ±m∗
3 ± m∗

4,

± n∗
1 ± n∗

2 = ±n∗
3 ± n∗

4. (A8)

There are 28 = 256 combinations in total for each set of
(m∗

i , n∗
i ). With the repeated solutions (e.g., some m∗

i or n∗
i

being 0) and the symmetric solutions (e.g., all signs become
opposite in the equations) taken into consideration, a correct,
exhaustive, and efficient search can be constructed.

2. Summary

The full computation process is summarized in
Algorithm 2.

[1] V. E. Zakharov, V. S. L’vov, and G. Falkovich, Kolmogorov
Spectra of Turbulence I: Wave Turbulence (Springer Science &
Business Media, Berlin, 2012).

[2] V. E. Zakharov, Stability of periodic waves of finite amplitude
on the surface of a deep fluid, J. Appl. Mech. Tech. Phys. 9, 190
(1972).

[3] V. E. Zakharov and N. Filonenko, Weak turbulence
of capillary waves, J. Appl. Mech. Tech. Phys. 8, 37
(1971).

[4] Y. V. Lvov, K. L. Polzin, and E. G. Tabak, Energy Spectra of the
Ocean’s Internal Wave Field: Theory and Observations, Phys.
Rev. Lett. 92, 128501 (2004).

[5] S. Galtier, S. Nazarenko, A. C. Newell, and A. Pouquet, A weak
turbulence theory for incompressible magnetohydrodynamics,
J. Plasma Phys. 63, 447 (2000).

[6] S. Galtier and S. V. Nazarenko, Turbulence of Weak Gravi-
tational Waves in the Early Universe, Phys. Rev. Lett. 119,
221101 (2017).

044213-7

https://doi.org/10.1007/BF00913182
https://doi.org/10.1007/BF00915178
https://doi.org/10.1103/PhysRevLett.92.128501
https://doi.org/10.1017/S0022377899008284
https://doi.org/10.1103/PhysRevLett.119.221101


ZHOU ZHANG AND YULIN PAN PHYSICAL REVIEW E 106, 044213 (2022)

[7] S. Y. Annenkov and V. I. Shrira, Role of non-resonant interac-
tions in the evolution of nonlinear random water wave fields,
J. Fluid Mech. 561, 181 (2006).

[8] A. Hrabski and Y. Pan, On the properties of energy flux in wave
turbulence, J. Fluid Mech. 936, A47 (2022).

[9] A. Pushkarev, On the Kolmogorov and frozen turbulence in
numerical simulation of capillary waves, Eur. J. Mech. B Fluids
18, 345 (1999).

[10] A. I. Dyachenko, A. O. Korotkevich, and V. E. Zakharov, Decay
of the monochromatic capillary wave, J. Exp. Theor. Phys. Lett.
77, 477 (2003).

[11] A. O. Korotkevich, A. I. Dyachenko, and V. E. Zakharov,
Numerical simulation of surface waves instability on a homo-
geneous grid, Physica D 321–322, 51 (2016).

[12] Y. Deng and Z. Hani, On the derivation of the wave kinetic
equation for NLS, in Forum of Mathematics, Pi, Vol. 9, e6
(Cambridge University Press, 2021).

[13] Y. Deng and Z. Hani, Full derivation of the wave kinetic equa-
tion, arXiv:2104.11204.

[14] A. Korotkevich, A. Pushkarev, D. Resio, and V. Zakharov,
Numerical verification of the weak turbulent model for swell
evolution, Eur. J. Mech. B Fluids 27, 361 (2008).

[15] V. E. Zakharov, A. O. Korotkevich, A. N. Pushkarev, and A. I.
Dyachenko, Mesoscopic wave turbulence, JETP Lett. 82, 487
(2005).

[16] A. Hrabski and Y. Pan, Effect of discrete resonant mani-
fold structure on discrete wave turbulence, Phys. Rev. E 102,
041101(R) (2020).

[17] E. Faou, P. Germain, and Z. Hani, The weakly nonlinear large-
box limit of the 2D cubic nonlinear Schrödinger equation,
J. Amer. Math. Soc. 29, 915 (2016).

[18] A. Pushkarev and V. Zakharov, Turbulence of capillary waves—
Theory and numerical simulation, Physica D 135, 98 (2000).

[19] Y. Pan and D. K. P. Yue, Direct Numerical Investigation of
Turbulence of Capillary Waves, Phys. Rev. Lett. 113, 094501
(2014).

[20] Y. Pan and D. K. Yue, Decaying capillary wave turbulence
under broad-scale dissipation, J. Fluid Mech. 780, R1 (2015).

[21] P. Denissenko, S. Lukaschuk, and S. Nazarenko, Gravity Wave
Turbulence in a Laboratory Flume, Phys. Rev. Lett. 99, 014501
(2007).

[22] R. Hassaini and N. Mordant, Confinement effects on gravity-
capillary wave turbulence, Phys. Rev. Fluids 3, 094805 (2018).

[23] Z. Zhang and Y. Pan, Numerical investigation of turbulence of
surface gravity waves, J. Fluid Mech. 933, A58 (2022).

[24] E. Falcon and N. Mordant, Experiments in surface gravity–
capillary wave turbulence, Annu. Rev. Fluid Mech. 54, 1 (2022).

[25] E. A. Kartashova, On properties of weakly nonlinear wave
interactions in resonators, Physica D 54, 125 (1991).

[26] E. A. Kartashova, Weakly Nonlinear Theory of Finite-Size Ef-
fects in Resonators, Phys. Rev. Lett. 72, 2013 (1994).

[27] E. Kartashova, Wave resonances in systems with discrete spec-
tra, Nonlinear Waves and Weak Turbulence, Amer. Math. Soc.

Transl. Ser. 2, Vol. 182 (Amer. Math. Soc., Providence, RI,
1998), pp. 95–129, doi: 10.1090/trans2/182/04.

[28] R. Carles and E. Faou, Energy cascades for NLS on the torus,
Discrete Contin. Dyn. Syst. S 32, 2063 (2012).

[29] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao,
Transfer of energy to high frequencies in the cubic defocus-
ing nonlinear Schrödinger equation, Invent. Math. 181, 39
(2010).

[30] Y. V. Lvov, S. Nazarenko, and B. Pokorni, Discreteness and its
effect on water-wave turbulence, Physica D 218, 24 (2006).

[31] E. Kartashova and A. Kartashov, Laminated wave turbulence:
Generic algorithms I, Int. J. Mod. Phys. C 17, 1579 (2006).

[32] M. Onorato, A. R. Osborne, M. Serio, D. Resio, A. Pushkarev,
V. E. Zakharov, and C. Brandini, Freely Decaying Weak Tur-
bulence for Sea Surface Gravity Waves, Phys. Rev. Lett. 89,
144501 (2002).

[33] A. I. Dyachenko, A. O. Korotkevich, and V. E. Zakharov, Weak
Turbulent Kolmogorov Spectrum for Surface Gravity Waves,
Phys. Rev. Lett. 92, 134501 (2004).

[34] N. Yokoyama, Statistics of gravity waves obtained by direct
numerical simulation, J. Fluid Mech. 501, 169 (1999).

[35] S. Nazarenko, M. Onorato, and D. Proment, Bose-Einstein con-
densation and Berezinskii-Kosterlitz-Thouless transition in the
two-dimensional nonlinear Schrödinger model, Phys. Rev. A
90, 013624 (2014).

[36] S. Galtier and S. V. Nazarenko, Direct Evidence of a Dual
Cascade in Gravitational Wave Turbulence, Phys. Rev. Lett.
127, 131101 (2021).

[37] M. Tsubota, K. Fujimoto, and S. Yui, Numerical studies of
quantum turbulence, J. Low Temp. Phys. 188, 119 (2017).

[38] G. Falkovich and N. Vladimirova, Cascades in nonlocal turbu-
lence, Phys. Rev. E 91, 041201(R) (2015).

[39] C. Connaughton, S. Nazarenko, and A. Pushkarev, Discreteness
and quasiresonances in weak turbulence of capillary waves,
Phys. Rev. E 63, 046306 (2001).

[40] A. Hrabski, Y. Pan, G. Staffilani, and B. Wilson, Energy transfer
for solutions to the nonlinear schrodinger equation on irrational
tori, arXiv:2107.01459.

[41] E. Kartashova and A. Kartashov, Laminated wave turbulence:
Generic algorithms II, Commun. Comput. Phys. 2, 783 (2007).

[42] E. Kartashova and A. Kartashov, Laminated wave turbulence:
Generic algorithms III, Physica A 380, 66 (2007).

[43] E. Kartashova, Exact and Quasiresonances in Discrete Water
Wave Turbulence, Phys. Rev. Lett. 98, 214502 (2007).

[44] E. Kartashova, S. Nazarenko, and O. Rudenko, Resonant inter-
actions of nonlinear water waves in a finite basin, Phys. Rev. E
78, 016304 (2008).

[45] https://github.com/joezhang13/ExactResonance.
[46] L. Euler, Theoremata arithmetica nova methodo demonstrata,

Novi Commentarii academiae scientiarum Petropolitanae 8, 74
(1763), https://scholarlycommons.pacific.edu/euler-works/271.

[47] J. M. Basilla, On the solution of x2 + dy2 = m, Proc. Jpn. Acad.
A 80, 40 (2004).

044213-8

https://doi.org/10.1017/S0022112006000632
https://doi.org/10.1017/jfm.2022.106
https://doi.org/10.1016/S0997-7546(99)80032-6
https://doi.org/10.1134/1.1591973
https://doi.org/10.1016/j.physd.2016.02.017
http://arxiv.org/abs/arXiv:2104.11204
https://doi.org/10.1016/j.euromechflu.2007.08.004
https://doi.org/10.1134/1.2150867
https://doi.org/10.1103/PhysRevE.102.041101
https://doi.org/10.1090/jams/845
https://doi.org/10.1016/S0167-2789(99)00069-X
https://doi.org/10.1103/PhysRevLett.113.094501
https://doi.org/10.1017/jfm.2015.487
https://doi.org/10.1103/PhysRevLett.99.014501
https://doi.org/10.1103/PhysRevFluids.3.094805
https://doi.org/10.1017/jfm.2021.1114
https://doi.org/10.1146/annurev-fluid-021021-102043
https://doi.org/10.1016/0167-2789(91)90112-M
https://doi.org/10.1103/PhysRevLett.72.2013
https://doi.org/10.1090/trans2/182/04
https://doi.org/10.3934/dcds.2012.32.2063
https://doi.org/10.1007/s00222-010-0242-2
https://doi.org/10.1016/j.physd.2006.04.003
https://doi.org/10.1142/S0129183106010042
https://doi.org/10.1103/PhysRevLett.89.144501
https://doi.org/10.1103/PhysRevLett.92.134501
https://doi.org/10.1017/S0022112003007444
https://doi.org/10.1103/PhysRevA.90.013624
https://doi.org/10.1103/PhysRevLett.127.131101
https://doi.org/10.1007/s10909-017-1789-8
https://doi.org/10.1103/PhysRevE.91.041201
https://doi.org/10.1103/PhysRevE.63.046306
http://arxiv.org/abs/arXiv:2107.01459
https://www3.risc.jku.at/publications/download/risc_2984/gen2_journal.pdf
https://doi.org/10.1016/j.physa.2007.02.098
https://doi.org/10.1103/PhysRevLett.98.214502
https://doi.org/10.1103/PhysRevE.78.016304
https://github.com/joezhang13/ExactResonance
https://scholarlycommons.pacific.edu/euler-works/271
https://doi.org/10.3792/pjaa.80.40

