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Mechanical signaling cascades
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Mechanical computing has seen resurgent interest recently owing to the potential to embed sensing and
computation into new classes of programmable metamaterials. To realize this, however, one must push signals
from one part of a device to another and do so in a way that can be reset robustly. We investigate the propagation
of signals in a bistable mechanical cascade uphill in energy. By identifying a penetration length for perturbations,
we show that signals can propagate uphill for finite distances and map out parameters for this to occur.
Experiments on soft elastomers corroborate our results.
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I. INTRODUCTION

Mechanical devices that compute have apparently existed
for thousands of years [1], yet have fallen out of favor since
the advent of the modern electronic computer. However, the
recent interest in mechanical metamaterials has led to a resur-
gence of interest in new forms of mechanical computing using
modern—and predominantly soft—materials [2,3], resulting
in demonstrations of stable memory [4], boolean logic [5–11],
and pattern recognition [12], among other computational and
logical tasks. The dream is to create materials that change
their behavior based on simple logic in response to external
stimuli. To achieve that, in addition to logical elements, one
requires convenient methods to transmit signals from one part
of a material to another and a way to reset the state of a device
or signal.

Recent work has demonstrated devices that can propagate
mechanical signals by taking advantage of a series of inter-
acting bistable elements of varying designs [13–20]. Previous
work has shown that for asymmetric bistable units, transition-
ing from a higher to lower energy state allows for propagation
over arbitrarily long distances [21–24]. When utilizing sym-
metric bistable units, a decreasing grading of the interaction
energy between bistable elements [25] or the energy barrier of
the element itself [26] allows for stable propagation. Specif-
ically designed bistable elements [26] or active components
[27] can produce reversible signal propagation.

In this paper, we focus on a horizontal chain of bistable
units [Fig. 1(b)] which act as relays that can each be in either a
left (no signal) or ‘right (signal) state [19,24]. To perform mul-
tiple computations using chains with these bistable elements,
we will need the ability to reset our system by sending a signal
in both directions along the chain, indicating that it is impor-
tant to also understand whether signals can propagate along
uniform chains with no bias or a bias in favor of the left state.

To further explore this signaling cascade and gain insight
into how many mechanical computations can really be per-

formed using coupled, bistable elements, we consider this
problem for finite chains of bistable elements as a function
of both the difference in minimum energies, �, and barrier
height E [Fig. 1(b)]. Specifically, we look at cases where the
potential is symmetric and favors neither state and cases where
the potential favors the left state. Since we imagine working
primarily with soft materials, we focus on the overdamped
limit. This provides us with a set of simple scaling laws
governing when signals propagate in terms of the number of
elements and the energy of the bistable elements and provides
limits on the number of computations that could be conceiv-
ably performed and reset.

II. MECHANICAL SIGNALLING CASCADES

A. Bistable elements

We consider a series of mechanical relays whose state is
represented by a scalar variable x subject to a bistable poten-
tial, V (x) [Fig. 1(a)]. The potential is characterized by two
minima having a difference in energy, �. The energy barrier
between them is given by E and measures the barrier height
with respect to the higher energy minimum. Though we will
pursue a theoretical approach that is agnostic on the detailed
form of the bistable elements, it is helpful to have a particular
mechanical model in mind that can be implemented both
experimentally and in simulations. We will model bistable
elements as two linear springs [Fig. 1(b)] with ends attached
to fixed points [19].

The potential energy of this two-spring bistable element is

V (x) = b(
√

x2 + h2 −
√

h2 + d2)2, (1)

where x is the horizontal displacement of the point mass, 2h
is the distance between fixed vertices, and

√
h2 + d2 is the

equilibrium length of the two springs. The two minima are at
x = ±d , and the energy barrier height is E = b[

√
h2 + d2 −

h]2. To bias the bistable element toward one of the two stable
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FIG. 1. (a) The general shape of a bistable potential. The black
line represents a symmetric potential with barrier height E . The blue
(light gray) line represents an asymmetric potential biased to the
left, where � is the potential difference between the two states. We
measure the barrier height E with respect to the higher minimum.
(b) An elastic bistable unit at equilibrium. The linear springs each
have stiffness k. The torsional spring located at the point mass m
(filled circle) has torsional modulus s and equilibrium angle θ0. The
potential minima for the bistable units are located at x = ±d . The
potential barrier is located at x = 0.

states, we can add a torsional spring at the mass. This adds an
additional term of the form

Vtor(θ ) = 1
2 s(θ − θ0)2 (2)

to the potential energy of the bistable element, where s is the
torsional modulus, θ0 is the equilibrium angle of that modulus,
and tan(θ/2) = h/x.

Since we are interested primarily in signals driven up a
potential barrier, we will choose the equilibrium angle to
yield zero torsional energy when the bistable element is in the
leftmost state. This leads to an approximate barrier height,

E = b(h −
√

h2 + d2)2 + s

2
(π − θ0)2 + O(s2), (3)

and asymmetry,

� = s

2

(
2π − 4 tan−1 h

d

)2

+ O(s2). (4)

Thus, b predominantly controls the barrier height E while s
controls the energy difference between minima, � [Fig. 1(a)].

B. Equations of motion

To form the one-dimensional chain of bistable elements,
we connect neighboring elements together at the point masses
with linear springs of rest length a and spring constant k
(Fig. 2) [19]. The position of the nth point mass with respect
to the fixed end points of the beam is given by xn. Writing out
Newton’s second law for the ith mass gives

m
d2xi

dt2
− k[xi+1 − 2xi + xi−1] + γ

dxi

dt
+ dV (xi )

dxi
= 0, (5)

where γ is a friction coefficient. To obtain the continuum
limit, we make the variable change xi±n = u(y ± na, t ). The
function u(y, t ) now represents the displacement of the beam

FIG. 2. A finite length wire in the left (no signal) state. Each
bistable element is at the x = −d potential minimum. When the
leftmost point mass is pushed over the energy barrier and into the
x = +d energy minimum, the interaction spring connecting adjacent
point masses allow that transition to propagate along the wire. If the
rightmost mass moves to the right, the entire wire is in the right
(signal) state, and we say that the signal is fully propagated along
the wire. If only a portion of the bistable elements transition to the
x = +d energy minimum, we say that the signal only propagated a
finite distance.

at location y along the wire. Taking the limit where a → 0,
the equation of motion for the ith mass becomes

m
∂2u

∂t2
− ka2 ∂2u

∂y2
+ γ

∂u

∂t
+ dV

du
= 0. (6)

Before we analyze the equation of motion, we replace y, t ,
and u with dimensionless variables. First, we rescale u → aũ,
y → aỹ, and t → τ t̃ , where a is the length of the interaction
springs and τ is some characteristic time:

ma

τ 2

∂2ũ

∂ t̃2
− ka

∂2ũ

∂ ỹ2
+ γ a

τ

∂ ũ

∂ t̃
+ 1

a

dV

dũ
= 0. (7)

Rescaling V → EV ′ by the barrier height of the potential, E ,
as defined in Fig. (1), we obtain

ma

τ 2

∂2ũ

∂ t̃2
− ka

∂2ũ

∂ ỹ2
+ γ a

τ

∂ ũ

∂ t̃
+ E

a

dV ′

dũ
= 0. (8)

Finally, we multiply the entire equation by the ratio a/E :

ma2

Eτ 2

∂2ũ

∂ t̃2
− ka2

E

∂2ũ

∂ ỹ2
+ γ a2

Eτ

∂ ũ

∂ t̃
+ dV ′

dũ
= 0. (9)

All terms in the equation of motion for the nth mass are
now dimensionless. When ma2/Eτ 2 � 1, the system is over-
damped and the first term of Eq. (9) can be neglected. We will
predominantly restrict ourselves to this limit in the remainder
of the paper, as it corresponds to the experimental regime
we are interested in. However, we explore the validity of this
approximation in more detail in Appendix B.

To reduce the number of coefficients in Eq. (9), we rescale
ỹ and t̃ again in the following way:

y′ =
√

E

ka2
ỹ, t ′ = Eτ

γ a2
t̃ . (10)

The equation of motion in the overdamped limit is now

− ∂2ũ

∂y′2 + ∂ ũ

∂t ′ + ∂V ′

∂ ũ
= 0. (11)
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with all dimensionless terms and variables. We have the fol-
lowing relationships between our physical variables and the
new dimensionless variables:

y′ =
√

E

ka2
ỹ =

√
E

ka2

1

a
y = 1

a2

√
E

k
y,

t ′ = Eτ

γ a2
t̃ = Eτ

γ a2

1

τ
t = E

γ a2
t .

(12)

Thus, given a solution to Eq. (11), ũ(y′, t ′), we have

u(y, t ) = aũ

(√
E

k

y

a2
,

E

γ a2
t

)
. (13)

Finally, if the last element of the chain is free, this requires
∂u/∂y|y=L = 0 on the rightmost boundary at y = L. There-
fore, ∂ ũ/∂y′ = 0 when y′ = L′ = √

E/kL/a2. On the leftmost
boundary at y = y′ = 0, we fix the initial displacement, ũ(0).

Using Eq. (13), we can estimate the validity of the contin-
uum approximation, which requires the spacing a to be much
less than the characteristic length scale of our solution. This
approximation is valid when a2√k/E � a, or equivalently
when k � E/a2.

C. Solutions

Since Eq. (11) is in the overdamped limit and the potential
is symmetric or “uphill,” we look for stationary solutions. We
can find a first-integral for Eq. (11), resulting in

−1

2

(
∂ ũ

∂y′

)2

+ V ′(ũ(y′)) = C (14)

for some constant C. Applying the boundary condition on the
right, we see that C = V ′(ũ(L′)). Thus, we obtain a general
solution

∂ ũ

∂y′ =
√

2
√

V ′[ũ(y′)] − V ′[ũ(L′)], (15)

where the choice of positive sign outside the square root is
consistent with our boundary conditions.

When ũ(0) = d/a, one solution to Eq. (15) is ũ(y′) = d/a:
The signal will propagate completely from one side to the
other. The difference in elastic energy from the ground-state
solution (with ũ(y′) = −d/a) will scale with L and, thus, we
expect it to be prohibitive for particularly long cascades. How-
ever, we also expect solutions with ũ(0) = d/a but ũ(L′) < 0,
with a characteristic, dimensionless length η governing the
penetration of a signal into the chain. Thus, we expect solu-
tions, u(y), will transition over a length scale 	 = ηa2

√
k/

√
E .

The elastic energy cost, in this case, will scale with 	 rather
than L. We thus expect two regimes of behavior: When 	 < L,
an initial perturbation initiated on the left of the signaling
cascade will penetrate only a finite distance 	; when 	 > L,
we expect all elements to be on the right—the signal will
propagate through the entire network. Therefore, the equation

L = ηa2

√
k

E
(16)

represents the boundary between an initial perturbation prop-
agating a finite distance and propagating through the entire

network. This equation tells us the scaling relationship be-
tween various wire parameters and can be used to predict the
general location and shape of the 	 < L and 	 > L regions for
a given set of wire parameters.

It is instructive to consider a specific example, for which
V ′(ũ) = (ũ2 − d2/a2)2/2, and Eq. (11) takes the form of the
generalized Fisher equation [28,29],

∂u′(y′, t )

∂t
− D

∂2u′(y′, t )

∂y′2 + u′(u′n − 1) = 0, (17)

with n = 2. Based on solutions presented in Ref. [30], we
construct the stationary solution

u′(y′) = −1 + 2
1

1 + ae
√

2(y′ )
, (18)

valid for a half infinite line starting at y′ = 0, where a =
(1 − u0)/(1 + u0), ũ(0) = u0. Putting this back into the elastic
energy yields

E = (u0 − 2)(1 + u0)3

3
√

2
(19)

for −1 < u0 � 1. This expression is minimized when u0 =
−1, implying that a signal never propagates in a symmetric,
infinitely long chain. Despite this, finite-sized chains are likely
to behave differently. Indeed, these results hint that chains
with length L < a2√k/E—shorter than the intrinsic scale of
Eq. (18)—may still propagate signals.

III. RESULTS

A. Simulations

To corroborate our scaling analysis, we performed simula-
tions of the dynamical system in Fig. 2 directly by integrating
Eq. (5). To obtain the overdamped limit, we set m = 0. Con-
sider a wire of length L consisting of bistable elements with
equilibrium positions at x + i = ±d . The wire is initially in
the ground state with all beams in the xi = −d left position.
To initiate a signaling cascade, we applied a displacement of
2d to the first beam to move it into the x1 = +d right position.
After a sufficient length of time that the motion has stopped,
we recorded the position xL of the last beam in the wire. As
detailed in Appendix B, we used a time of t = 15 000E/(γ a2)
for our simulations to ensure the simulation had reached equi-
librium. If xL < 0, the signal only propagated a finite distance.
If xL > 0, the signal propagated through the entire network,
as indicated by the simulation relaxing into a stationary state
in which all bistable elements were in the right position,
xi = d .

We show the relationship between the barrier height E and
the length of the wire L in Fig. 3(a). To verify the scaling
relationship between L and E in Eq. (16), we fit the boundary
between the finite and full propagation regions to an expres-
sion of the form E = C1L−2 + C2, with C2 ≈ −2 × 10−4 and
C1 ≈ 0.79. This suggests a scaling relationship

E − E0 = η2a4

L2
k, (20)
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FIG. 3. For all three plots, the wire length parameters are h = 1, a = 1, and d = 1/4.(a) Scaling relationship between the potential barrier
height E and the length of the wire when varying the beam stiffness. The beam stiffness b ranges from 0 to 5. The interaction spring stiffness
k is set to 1, and the torsional modulus s is set to 0. Each boundary point (white circle) corresponds to a simulated wire with a specific choice
of length L and characteristic energy E . (b) Scaling relationship between the potential difference between minima � and the length of the wire
when varying the torsional modulus. The torsional spring stiffness s ranges from 0 to 0.3. The interaction spring stiffness k and beam stiffness
b are both set to 1. Each boundary point (white circle) corresponds to a simulated wire with a specific choice of length L and torsional modulus
s. (c) Scaling relationship between the interaction spring stiffness and the length of the wire. The interaction spring stiffness k ranges from 0
to 5. The beam stiffness b is set to 1 and the torsional modulus sis set to 0. Each boundary point (white circle) corresponds to a simulated wire
with a specific choice of length L and interaction spring stiffness k.

with E0 ≈ −2 × 10−4. Turning this around,

k = E − E0

η2a4
L2. (21)

We also show the relationship between the potential differ-
ence between minima � and the length of the wire in Fig. 3(b).
We find � ≈ C1L−2 + C2, with C2 = 0 and C1 ≈ 0.58.

The relationship between k and wire length is depicted
in Fig. 3(c) for E ≈ 10−3. An expression of the form k ≈
C1L2 with C1 ≈ 1.4 × 10−3 fits the boundary between the
finite and full propagation regions well. Using the previous
results for η2a4, E and E0, we see that C1 is consistent with
(E − E0)/(η2a4) ≈ 1.4 × 10−3.

We also investigated the effect of the inertial term in Eq. (9)
on the results of Fig. 3(c), as detailed in Appendix B. We find
few differences so long as ma2/(Eτ 2) < γ a2/Eτ .

B. Experiments

To validate our results experimentally, bistable elements
were designed using Fusion 360 CAD software and fabricated
using a Formlabs Form2 SLA 3D printer with the Formlabs
Elastic 50A resin, which has flexible and stretchable proper-
ties after curing. The design for the wires is shown in Fig. 4.
The bistable elements were elastic beams that buckle under
compression, and the nearest-neighbor interactions were facil-
itated by linear springs. The wire was printed in an unstressed
state and compressed using a rigid frame, printed using Form-
labs Grey resin (Fig. 4).

To bias the beams to buckle either to the left or right,
precurvature was added to the elastic beams by changing the
angle of the beam at the fixed end points and midpoint as

shown in Fig. 5(e). For wires with biased beams, there was
no need to compress the wire before sending a signal.

The wire model used for simulations had seven parameters,
L, h, d , a, k, b, and s, where values were selected for each.
When verifying the scaling relationship found with Eq. (16)
with simulations, we picked default values for each parameter
that simplified our analysis as much as possible. We measured
each of these parameters directly from the printed beams to
run simulations that approximated the behavior of the printed
wires. The height of the beam h and the distance between
beams a were found through direct measurement of the wire.
We determined values for the location of the two potential
minima d , the beam stiffness b, the interaction spring stiff-

(a)

(b)

(c)

FIG. 4. 3D models of wire components. (a) The initial state of
a wire with symmetric bistable beam elements. (b) Wire slotted
into a holding device (frame) that compresses all bistable beam
elements to buckle them uniformly. (c) Interaction springs of varying
thickness. Different spring stiffnesses are achieved through changing
the thickness of the spring. Individual interaction springs are printed
specifically for measuring their stiffness.
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(a)

(b)

(c)

(d) (e)

(f) (g) (h) (i)

FIG. 5. A wire before (a), during (b), and after (c) a signal is fully
propagated through manual displacement of the first bistable beam in
the wire. Comparison between a wire with symmetric (d) and asym-
metric (e) bistable beam elements when mounted in the frame. (f)–(h)
Recording the force-displacement data for a single bistable beam.
(i) The interaction spring mounted and ready for force-displacement
measurements. All beams shown have an end-to-end distance of
24 mm. All interaction springs have a rest length of 11.2 mm. The
length of the full wires shown in (a)–(e) is approximately 10 cm.

ness k, and the torsional modulus s using force-displacement
measurements of the bistable beams and interaction springs.

Force-displacement measurements were performed using a
custom setup composed of a linear displacement stage (Zaber
Technologies Inc., T-LSM 100) and a load cell (Loadstar
Sensors Inc., RPG-10). The wire was placed in the rigid
frame and compressed to buckle the beams and set the wire
into one of two stable states. The frame was mounted ver-
tically and a signal passed from top to bottom during the

test with a mechanical push. Using the linear displacement
stage, we slowly pushed on the bistable wire with the load
cell and recorded the force exerted on the wire as a function
of displacement as the beams transitioned between stable con-
figurations [Figs. 5(f)–5(h)]. To apply the force to the beam,
we used a rigid component printed out of the same material as
the frame and attached it directly to the midpoint of the beam.
The rigid component was fixed to the wire so the snap-through
transition did not cause the device to lose contact with the load
cell.

We conducted force-displacement measurements for the
linear interaction springs using a TA.XTplus texture analyzer
(Stable Micro Systems). Each end of the spring was mounted
directly in the texture analyzer, as shown in Fig. 5(i), and the
spring was slowly compressed and stretched.

To determine the stiffness k of the linear interaction
springs, we fit a straight line to the force-displacement data
and recorded the slope. To determine an approximate value
of b for symmetric beams, we fit the derivative of Eq. (1) to
the force-displacement data. For precurved beams, we added
the torsional spring term Eq. (2) to Eq. (1) before taking the
derivative and fitting it to the force-displacement data. Details
of the methods used to determine b and s for both symmetric
and biased beams are discussed in Appendix A.

To gather data on what wire parameter combinations allow
for finite or full signal propagation, we sent a signal down the
wire by hand by pushing on the first beam until it reached the
right-buckled position. The beam was held in that position us-
ing tweezers for a few seconds to allow the wire to settle into a
final position. If the initial displacement caused all subsequent
beams to snap through to the right-buckled position, then the
signal was considered to have fully propagated along the wire.
If the initial displacement moved some of the beams but not all
of them, then the signal only propagated a finite distance. By
changing the length of the wire and the stiffness of the beams
and springs, we then plotted our experimental data the same

FIG. 6. Comparison between signal propagation experiments and numerical simulations. (a) Qualitative comparison between simulations
and experiments for varying interaction spring stiffness. The wire parameter values used for simulations are h = 0.012m, d = 0.0055m,
a = 0.0112m, b = 120N/m, and s = 0N/m. (b) Direct comparison between simulations and experiments for varying minima difference � of
the bistable beam potential. In simulations, this was done by varying the torsional stiffness on each bistable element. In experiments, this was
done by changing the angle of the beam at its fixed endpoints [see Fig. 5(e) for example]. The wire parameter values used for simulations are
h = 0.012m, d = 0.0043m, a = 0.0112m, b = 230N/m, and k = 30N/m.
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way we plotted the simulation data in Fig. 3 and compared the
results.

Figure 6 compares the finite and full propagation regions
from experiments and simulations for different values of the
interaction spring stiffness and torsional modulus. Compar-
ing the regions produced by varying the interaction spring
stiffness shows only a qualitative match between simulations
and experiments. When measuring the stiffness of the printed
springs, they were only compressed a small amount and were
not allowed to buckle side to side. When sending a sig-
nal along the printed wires, however, there was substantial
buckling of the interaction springs, as shown in Fig. 5(b).
Thus, the additional buckling lowered the effective barrier
height from what was measured. Indeed, we found quantita-
tive agreement between simulation and experimental results
if we reduced the simulation interaction spring stiffness by a
factor of 6 from what was initially estimated from deforma-
tions that do not buckle.

Using this result, we used a rescaled value for the inter-
action spring stiffness for the simulations in Fig. 6(b). When
the torsional modulus was negative, so propagating a signal
causes the beams to transition from a higher energy state to a
lower energy state, we confirmed that signals always propa-
gate fully for any number of elements. For positive values of
the torsional modulus, however, signal propagation depended
on the number of elements and was consistent with predictions
from simulations.

IV. CONCLUSION and DISCUSSION

In this paper, we analyze signaling cascades of bistable
mechanical elements coupled by springs triggered by the im-
position of a fixed displacement on one of the elements in
the overdamped limit. This limit is relevant to soft devices [2]
which show high dissipation. While signals can propagate at
any distance when the bistable elements switch from a higher
energy to lower energy state, here we find that signals can
only propagate a finite distance when the elements transition
to either a higher energy state or a state with the same energy.
Numerical analysis of simulation data in the overdamped limit
shows that signals can propagate when

L < ηa2

√
k

E − E0
, (22)

even for a completely symmetric signaling cascade. This con-
straint on the length of the system may serve to limit the size
and complexity of signaling cascades as even cascades and
soft mechanical devices that operate “downhill” must be reset
if they are to be used multiple times.

TABLE I. Interaction spring stiffness for various beam thicknesses.

Thickness (mm) Stiffness (N/m)

0.6 30.77
0.8 187.12
1.0 715.47
1.2 1123.95

TABLE II. Dimensions for symmetric bistable beams

End-to-end distance (mm) h (m) d (m)

22 0.011 0.0066
24 0.012 0.0055
26 0.013 0.0043

Though our analysis studied a simple signaling cascade,
one expects even more complex digital mechanical logic ele-
ments to also present energy barriers that must be overcome
by a propagating signal. For true reversible logic, this finite
propagation length might present a true limitation to the size
and complexity of a passive device realizing repeatable, com-
plex logic. It would be interesting to explore the differences in
active devices—even those fabricated from highly dissipative
materials—in which additional energy input can potentially
overcome these limitations.
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APPENDIX A: FIT FOR SIMULATION PARAMETERS

1. Interaction springs

We fit a straight line that crosses the origin to the force-
displacement data for springs of varying thicknesses. The
slope of the line is the linear spring stiffness of the printed
springs. Stiffness values are shown in Table I.

2. Symmetric bistable beams

We recorded force-displacement data for a single bistable
beam and integrated it numerically using a custom MATLAB
program to get the potential-displacement data for our printed
beams. We measured h directly from the wire. We calculated
d by taking half the distance between the two minima in
the potential-displacement data. All dimensions are shown in
Table II.

We then took the beam potential V (x) from Eq. (1) and
fit it to our force- and potential-displacement data in one of
five ways: fit −dV/dx to the maximum of the force data, fit
−dV/dx to the minimum of the force data, fit V (x) to the
energy barrier of the potential data, or by using the built-in
MATHEMATICA function FindFit with both the force and po-
tential data. The first three values of b are averaged together
to give an approximate beam stiffness, and the last two are left
as-is. All stiffness values are shown in Table III.

TABLE III. Beam stiffness for symmetric bistable beams.

Find Fit stiffness (N/m)
End-to-end Average Force Potential
distance (mm) stiffness (N/m) data data

22 80 83 83
24 119 135 123
26 187 211 178
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TABLE IV. Beam parameters for asymmetric bistable beams.
First row: Beam transitions from a lower minimum to a higher
minimum (uphill push). Second row: Beam transitions from a higher
minimum to a lower minimum (downhill push).

h (m) d (m) b (N/m) s (J)

Uphill push 0.012 0.0043 233 0.00013
Downhill push 0.012 0.0047 162 0.00013

3. Asymmetric bistable beams

For the bistable beams printed with pre-curvature, we need
to determine the torsional modulus s and the beam stiffness
b. Just as with the symmetric beams, we measured h directly
from the wire and calculated d by taking half the distance
between the two minima in the potential-displacement data.
We took the beam potential V (x) that included the terms in
both Eqs. (1) and (2) and used the built-in MATHEMATICA

function FindFit to solve for both b and s at the same time.
All stiffness values are shown in Table IV.

APPENDIX B: SIMULATION VERIFICATION

1. Determining simulation run time

In our simulations, we set γ a2/Eτ = 1 so time is measured
in units of τ = E/(γ a2) (lengths are measured in units of a).
We choose a time to let the initial displacement propagate
through the wire. To determine this time, we run a series of
simulations on a wire of length L = 20 where we vary the
interaction spring stiffness k and the simulation run time t .
After initiating a signal from the left end of the wire, we
allow the signal to propagate for the prescribed run time t and
plot the displacement of the final beam (Fig. 8). We tested
run times between 100 and 1000 in intervals of 100, between
1000 and 10 000 in intervals of 1000, and between 10 000 and
100 000 in intervals of 10 000.

FIG. 8. Re-creations of the plot from Fig. 3(c) with increasing
values of the mass. The interaction spring stiffness k ranges from
0 to 5. The beam stiffness b is set to 1, and the torsional modulus
s is set to 0. A displacement of −0.25 [purple (dark gray) region]
corresponds to finite propagation, and a displacement of 0.25 [light
blue (light gray) region] corresponds to full propagation. For all
plots, the coefficient on the damping term is equal to 1. The first
plot with mass = 0 is what was used in Fig. 3(c).

The boundary between full and finite propagation becomes
sharper with increasing run time (Fig. 7) and the critical spring
stiffness, k, at which the transition between partial and full
propagation reaches an apparent plateau by t = 15 000.

2. Analysis of the overdamped limit

In the simulations shown in Fig. 3, the coefficient of the
inertial term in Eq. (9) is set to zero. To relax the overdamped
constraint, we consider nonzero values of mass = ma2/(Eτ 2)
while holding γ a2/Eτ = 1. While the purple (dark gray) re-
gion (finite propagation) decreases in area as we increase the
magnitude of the inertial term, our simulations still produce
the same qualitative behavior so long as mass remains compa-
rable 1.

FIG. 7. Sending a signal along a wire of length 20 with h = 1, a = 1, and d = 1/4. The x axis plots the run time for the simulation. For
each choice of run time, we vary the interaction spring stiffness k from 0 to 5 and plot the displacement of the final beam in the wire. A
displacement of −0.25 (purple/dark gray region) corresponds to finite propagation and a displacement of 0.25 (light blue/light gray region)
corresponds to full propagation.
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