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Nontrivial twisted states in nonlocally coupled Stuart-Landau oscillators
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A twisted state is an important yet simple form of collective dynamics in an oscillatory medium. Here we
describe a nontrivial type of twisted state in a system of nonlocally coupled Stuart-Landau oscillators. The non-
trivial twisted state (NTS) is a coherent traveling wave characterized by inhomogeneous profiles of amplitudes
and phase gradients, which can be assigned a winding number. To further investigate its properties, several
methods are employed. We perform a linear stability analysis in the continuum limit and compare the results
with Lyapunov exponents obtained in a finite-size system. The determination of covariant Lyapunov vectors
allows us to identify collective modes. Furthermore, we show that the NTS is robust to small heterogeneities
in the natural frequencies and present a bifurcation analysis revealing that NTSs are born or annihilated in a
saddle-node bifurcation and change their stability in Hopf bifurcations. We observe stable NTSs with winding
number 1 and 2. The latter can lose stability in a supercritical Hopf bifurcation, leading to a modulated 2-NTS.
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I. INTRODUCTION

The collective dynamics of an ensemble of coupled os-
cillators is key to the functioning of many systems in
practically all scientific fields [1,2]. Accordingly, the dy-
namics of ensembles of oscillators with different couplings
has been studied intensively during the last decades. One
coupling topology that has proven important for discovering
new synchronization patterns and revealing the mechanisms
that give rise to them is nonlocal coupling in a ring ge-
ometry, the most prominent example being a chimera state
[3,4]. When the coupling between the oscillators is weak,
the dynamics can be captured by considering only the evo-
lution equations of the phases of the oscillators [5–7]. For
somewhat stronger coupling, the amplitudes of the oscilla-
tors along the ring might exhibit variations decisive for the
dynamics, as found in amplitude-mediated chimera states
[8–11].

Another prominent and compared to the chimera state
simpler collective dynamics found in a ring of nonlocally
coupled oscillators is a so-called twisted state [12–16]. In
a “traditional” twisted state, the phase difference between
adjacent oscillators is always the same such that the phase
winds around the ring an integer multiple of 2π whereas the
amplitude of all the oscillators attains the same constant value.
A twisted state has thus been seen as a typical phenomenon
that is fully captured by a phase-reduced model. The phase
profile evolves according to φ(x, t ) = 2πq

L x + �t , where �

is a collective frequency and L is the length of the medium.
Correspondingly, the phase gradient is everywhere given
by ∂xφ(x, t ) = 2πq

L = const with q ∈ Z defining a winding
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number, while the trivial amplitude dynamics obeys r(x, t ) =
r0 ∈ R>0 for all x ∈ [0, L].

In this paper, we show that in a ring of nonlocally coupled
oscillators another type of a twisted state might form. This
state is characterized by a nonconstant gradient of the phase
profile and an inhomogeneous amplitude profile which travels
along the ring with a fixed shape and a constant speed. The
phase still advances by a multiple of 2π when going once
around the ring so that the solution can be characterized by a
winding number and the state be considered a twisted state.
Due to the spatiotemporal variations of the amplitude the
state does not exist in the classical phase-reduced model, but
its description requires a priori planar oscillators. In order
to contrast this type of twisted state from the so far known
constant phase-gradient and constant amplitude twisted state,
we coin a twisted state with nonuniform amplitude and phase
gradient profiles a nontrivial twisted state (NTS) and a twisted
state with uniform profiles of amplitude and phase gradient
a trivial twisted state (TTS). Both these states are discussed
with a system of nonlocally coupled identical Stuart-Landau
oscillators in a 1D ring, with an emphasis on the dynamical
and spectral properties of the NTS.

In Sec. II we first discuss the dynamical properties of NTSs
in the original space and time coordinates. Then we perform a
linear stability analysis in a moving and corotating reference
frame where both amplitude and phase profiles become sta-
tionary. Finally, we compare the stability results with those
of the TTS. In Sec. III we address the stability of finite-size
ensembles and study how the spectral properties of the finite-
size state converge to those of the continuum limit as the
system size increases. The stability of the finite-size ensemble
is obtained from the numerical determination of the Lyapunov
exponents (LEs). In addition, covariant Lyapunov vectors
(CLVs) are considered to confirm the existence of collective
Lyapunov modes [17–22]. Next, in Sec. IV we demonstrate
that the NTS is robust with respect to small heterogeneities
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in the natural frequencies of the Stuart-Landau oscillators
[13,23]. Finally, a bifurcation analysis is performed in Sec. V,
following the procedure described in [24]. It reveals that the
NTS is stable in a large parameter range. We summarize the
results in Sec. VI.

II. NONTRIVIAL TWISTED STATE

A. Governing equation and observable dynamics

We consider nonlocally coupled, identical Stuart-Landau
oscillators along a 1D ring of length L. The oscillators are
described by complex-valued dynamical agents W (x, t ) =
r(x, t )eiφ(x,t ) ∈ C where x ∈ [0, L]. The oscillator field is gov-
erned by

∂

∂t
W (x, t ) =F (W (x, t )) + εe−iα(H (x,t ))H (x, t )

= (1 + iω)W (x, t ) − |W (x, t )|2W (x, t )

+ εe−iα(H (x,t ))
∫ L

0
G(x − x′)W (x′, t ) dx′, (1)

where periodic boundary conditions are imposed. The uncou-
pled local dynamics is given by a Stuart-Landau oscillator
F (W ) = (1 + iω)W − |W |2W and the nonlinear phase-lag
function is assumed to be α(H (x, t )) = α0 + α1|H (x, t )|2
with real parameters α0, α1 ∈ R [25–27]. The coupling
strength ε is a real parameter, and the frequency of the identi-
cal oscillators is set to ω = 0.

The forcing field is defined as an integral convolution op-
erator,

H (x, t ) = (GW )(x, t ) :=
∫ L

0
G(x − x′)W (x′, t ) dx′. (2)

The nonlocal coupling kernel is given by

G(y) = κ

2sinh(κL/2)
cosh(κ (|y| − L/2)) (3)

for |y| � L/2 so that both the normalization condition∫ L/2
−L/2 G(y) dy = 1 and the Green’s function of the inhomoge-

neous Helmholtz equation [25,28](
∂2

x − κ2
)
H (x, t ) = −κ2W (x, t )

satisfy the periodic boundary conditions: H (0, t ) = H (L, t )
and ∂xH (0, t ) = ∂xH (L, t ). Note that κ is a real parameter and
κ−1 determines the coupling range and has the dimension of a
length. Thus, κ−1 also characterizes the length of the medium
[23,25,28]. In the limit of κL → ∞, the coupling kernel be-
comes G(x) = κe−κ|x|/2, as used in [3]. In the following (up
to Sec. V), we use the following parameter values: ε = 1,
κ = 4.874, L = 1, α0 = −0.4π and α1 = −(π/2 + α0)/0.36.
Note that ε is no longer small such that the amplitude variables
may follow nontrivial dynamics.

For the chosen parameter values, the microscopic dynam-
ics of the finite-size approximation with N = 200 oscillators
may exhibit an NTS along the ring, as depicted in Fig. 1.
In Figs. 1(a) and 1(b) the amplitude dynamics r j (t ) and in
Figs. 1(c) and 1(d) the phase dynamics φ j (t ) is shown where
r j (t )eiφ j (t ) = Wj (t ) at x j = j−1

N−1 ∈ [0, 1] such that φ j (t ) and

FIG. 1. Nontrivial twisted state dynamics obtained from a ran-
dom initial condition. (a) Amplitude profiles at t = 104 (gray) and
t + 2 (black), (b) spatiotemporal evolution of the amplitude (t � 105),
(c) phase profiles at t = 104 (gray) and t + 2 (black), (d) spatiotem-
poral evolution of the phase (t � 105). Other parameter values: ε = 1,
κ = 4.874, L = 1, α0 = −0.4π , and α1 = −(π/2 + α0)/0.36.

r j (t ) are governed by

dφ j

dt
= ω + ε

r j
Im

[
Hj (t )e−iφ j e−iα(Hj (t ))] (4)

and

dr j

dt
= r j − r3

j + εRe
[
Hj (t )e−iφ j e−iα(Hj (t ))], (5)

and Hj (t ) = H (x j, t ) for j = 1, 2, . . . , N .
As apparent from the two amplitude snapshots in Fig. 1(a),

the amplitudes form a smooth time-dependent curve as a
function of x. The spatiotemporal evolution of the amplitude
profiles shown in Fig 1(b) evidence that the profiles travel
along the ring with a fixed shape and a constant speed. The
amplitude dynamics thus constitutes a traveling wave solu-
tion. As apparent from the two snapshots of the phase profiles
depicted in Fig. 1(c), the phase appears to be smooth along
x and exhibits large variations in the region where the am-
plitude variations are large and shallow variations where the
amplitude varies only slightly. If we define the phase differ-
ence modulo 2π in the interval [−π, π ) as 
i, j := φi − φ j

with φN+1 ≡ φ1, then we can assign a winding number to the
observed state according to q = 1

2π

∑N
j=1 
 j+1, j ∈ Z. In the

example shown in Fig. 1, q = −1 (but note that depending
on the initial condition q can also be +1). Besides, 
 j+1, j �=
const. The dynamics thus constitutes an NTS as defined in
the introduction. Furthermore, the phase profile is uniformly
rotating with a collective frequency �, and, like the amplitude
profile, it travels to the left with the lateral speed c [Figs. 1(c)
and 1(d)]. In an appropriately rotating frame, an NTS thus
constitutes a traveling wave, just as a TTS does, which is a
coexisting solution at the same parameter values, as demon-
strated below.

In order to validate that the NTS is in fact a coherent
traveling wave, as a TTS is, we determined the Kuramoto local
order parameter z(x, t ) defined as [29,30]

z(x, t ) = lim
N→∞

1∣∣BN
δ (x)

∣∣ ∑
j∈BN

δ (x)

eiφ j (t ) (6)
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FIG. 2. (a) Red curve: Snapshot of the amplitude profile of an NTS on the ring, r( 2π

L x)cos( 2π

L x) vs r( 2π

L x)sin( 2π

L x) for x ∈ [0, L] and
N = 200; black line: trajectory of the first oscillator in the complex plane: Re[W1(t )] vs Im[W1(t )]. (b) Instantaneous phase velocity of the
individual oscillators as a function of time for N = 6. (c) Time evolution of Re[W (t )] for N = 200. The black line highlights the time series
of one of the oscillators. (d) Poincaré map of W10 [blue (dark gray)] and W90 [red (light gray)] in the complex plane where the Poincaré
section is defined by φ1(t ) ≡ 0 (mod2π ). (e) Modulus of the global Kuramoto order parameter as a function of time for different system sizes
N (increasing from bottom to top). All numerical values shown for t � 104. (f) Period of the modulus of the global Kuramoto order parameter
as a function of the system size N . The numerically obtained value (red circle) coincides with T/N (blue square).

with BN
δ (x) = { j : 1 � j � N, |x − x j | < δ} for small enough

0 < δ � 1. Equation (6) directly shows how to calculate the
local order parameter numerically from the finite-size micro-
scopic dynamics. In the continuum limit, Eq. (6) is equivalent
to the more intuitive version defined for a spatially extended
1D system, which reads

z(x, t ) = 1

2δ

∫ x+δ

x−δ

eiφ(x′,t ) dx′ (7)

for 0 < δ � 1 [12,25]. Hence, the local order parameter
provides a coarse-grained macroscopic observable that is con-
tinuous both in x and t , even though φ(x, t ) in general is not,
and characterizes a local degree of coherence in a small neigh-
borhood around x [5,7,31]. In fact, we obtain |z(x, t )| = 1 for
all x ∈ [0, 1], ensuring that the NTS is a coherent traveling
wave.

In Fig. 2(a) the trajectory of one of the oscillators (black
line) is depicted together with a snapshot of the amplitude
profile (red curve) in the complex plane. The trajectories
encircle the origin, but exhibit a backward motion in phase
when the amplitude of the oscillation exhibits a pronounced
deformation from a circular structure (akin to the apparent
retrograde motion of a planet from the earth’s viewpoint)
[cf. also Fig. 1(d)]. The reversal of the direction of phase
change reflects the negative values the instantaneous phase
velocity attains when the oscillation amplitude goes through
the hump [Fig. 2(b)]. The time evolution of Re(W ) of the

oscillators is shown in Fig. 2(c). We notice that each indi-
vidual oscillator exhibits some apparently irregular oscillation
(illustrated by the black highlighted curve) while the mo-
tion of the entire ensemble displays a periodically oscillating
envelope. In Fig. 2(d) the trajectories of two representative
oscillators (W10 and W90) are depicted in a Poincaré sec-
tion defined by φ1(t ) ≡ 0 (mod 2π ). Clearly, all points of the
trajectory of each oscillator lie on two closed curves, which
reveals that the oscillators exhibit in fact a quasiperiodic mo-
tion in phase space.

Further dynamical properties of the NTS can be derived
from the modulus of the global Kuramoto order parameter �

defined as

�(t ) := 1

L

∫ L

0
eiφ(x,t )dx, (8)

which corresponds to 1
N

∑N
j=1 eiφ j (t ) in the finite-size approx-

imation. In Fig. 2(e) |�| exhibits a periodic motion for small
system size N whereby the period and amplitude of its oscil-
lations decrease as N increases. For large N , |�| eventually
attains a constant value, and �(t ) rotates uniformly with �,
i.e., �(t ) = |�|ei�t . The behavior of |�| with system size can
be understood from the observation that the instantaneous
phase velocities {φ̇i(t )}N

i=1 of all oscillators are periodic func-
tions with the same period T ≈ 23, and identical shapes while
being shifted in time by equal amounts, as can be seen in
Fig. 2(b). A similar phenomenon was reported for a so-called
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Poisson chimera state in a two-population network [19]. Fol-
lowing the same argument as given therein, it is assumed that
φ̇i(t − j

N T ) = φ̇i+ j (t ) for an arbitrary j ∈ {1, . . . , N}, which
gives φi(t − T

N ) = φi+1(t ) + 0 for i = 1, . . . , N with a com-
mon constant shift 0 ∈ R and φ1 ≡ φN+1. Substituting this
into Eq. (8),

|�(t )| =
∣∣∣∣∣ 1

N

N∑
j=1

eiφ j+1(t )

∣∣∣∣∣ =
∣∣∣∣∣e−i0

N

N∑
j=1

eiφ j

(
t− T

N

)∣∣∣∣∣
=

∣∣∣∣�
(

t − T

N

)∣∣∣∣ = |�(t − τ )|,

we obtain |�(t )| = |�(t − T
N )| for ∀t , that is, the modulus

of the global order parameter is periodic with the period
τ = T

N decreasing with increasing N . This is also numerically
verified in Fig. 2(f): The period of |�| numerically obtained
from Eq. (8) coincides with T/N , i.e., the period T of each
instantaneous phase velocity divided by the system size N .
Hence, the modulus of the global Kuramoto order parameter
of an NTS has a nonzero constant value for a sufficiently
large system size and oscillates around a nonzero mean for
small system sizes. This is in contrast to a TTS which has
a zero global Kuramoto order parameter |�(t )| = 0 for all
N ∈ N.

B. Linear stability of the nontrivial twisted states

The linear stability of an NTS can be obtained by going
to a reference frame moving with a constant speed c and
rotating uniformly with �. In this reference frame, both phase
and amplitude profiles are stationary. Therefore, we make the
ansatz

W (x, t ) = W0(ξ )ei�t , (9)

where ξ = x − ct . The winding number of the NTS is then
given by q = 1

2π

∑N
j=1(� j+1 − � j ) where � j = arg[W0(ξ j )]

at ξ j = ( j−1)
N−1 ∈ [0, 1] for j = 1, . . . , N , and the NTS satisfies

−c∂ξW0(ξ ) = (1 + i
)W0(ξ ) − |W0(ξ )|2W0(ξ )

+ εe−iα((GW0 )(ξ ))(GW0)(ξ ), (10)

where ∂ξ := d
dξ

and 
 = ω − � is a real unknown constant.
Here the integral convolution operator reads

(GW0)(ξ ) = H0(ξ ) =
∫ L

0
G(ξ − ξ ′)W0(ξ ′) dξ ′, (11)

where G(y) is defined in Eq. (3).
Since in the reference frame defined above the NTS

is a stationary solution, we can obtain its linear stability
by linearizing the evolution equation around the stationary
wave profile and determining the eigenvalues of the lin-
earized equations. To do so, we first consider the coordinate
transformation

W0(ξ ) = X0(ξ ) + iY0(ξ ),

where ReW0 = X0 and ImW0 = Y0 are real-valued
functions that are periodic in ξ : X0(ξ + L) = X0(ξ ) and

Y0(ξ + L) = Y0(ξ ). Then we rewrite Eq. (10) as follows:

−c∂ξ

(
X0

Y0

)
=

[(
1 −



 1

)
− (

X 2
0 + Y 2

0

)
I2

](
X0

Y0

)

+ ε

(
cosα sinα

−sinα cosα

)(
(GX0)(ξ )
(GY0)(ξ )

)
,

α = α0 + α1|H0(ξ )|2, (12)

where I2 is a 2×2 identity matrix. Next, we consider a
small deviation from W0(ξ ): v1 = X (ξ, t ) − X0(ξ ) and
v2 = Y (ξ, t ) − Y0(ξ ) with |vi| � 1 for i = 1, 2. Note that we
treat ξ here as a time-independent spatial variable. Then the
linearized equation is given by

dV

dt
= LV, (13)

where V = (v1, v2)� and L := M + K is a time-independent
linear operator that governs the tangent space dynamics of
the perturbation whose point and continuous spectra σ (L) =
σpt(L) ∪ σcont(L) determine the linear stability of the profiles
of the NTS. To numerically investigate the spectral properties
of an NTS profile, we consider uniformly discretized opera-
tors that are calculated at each ξ = ξ j for j = 1, . . . , M with
M  1 [28]. The operator given by a multiplication then reads

(MV )(ξ ) =M(ξ )V (ξ ) =
[(

cD + 2Y 2
0 −



 cD + 2X 2
0

)

+
(

Reη(ξ ) Imη(ξ )
Imη(ξ ) Reη(ξ )

)]
V (ξ ),

η(ξ ) =1 − 3
(
X 2

0 + Y 2
0

) − i2X0Y0,

where D ≡ ∂ξ is a differential operator which in our numerical
approach we evaluate spectrally following Ref. [32]. It is
approximately treated as a constant matrix operator. From
the numerical evaluation of the eigenvalues of M it follows
that we obtain only a discretization of continuous eigenvalue
branches so that σ (M) = σcont(M) holds [5]. On the other
hand, the compact integral operator K is given by

(KV )(ξ ) = ε(A(ξ ) + 2α1B(ξ ))

(
(Gv1)(ξ )
(Gv2)(ξ )

)
,

A(ξ ) =
(

cosα sinα

−sinα cosα

)
, α = α0 + α1|H0(ξ )|2,

B(ξ ) =
(−sinα cosα

−cosα −sinα

)(
Re2H0 0

0 Im2H0

)

+ ImH0ReH0

(
cosα −sinα

−sinα −cosα

)
,

(Gvi)(ξ ) =
∫ L

0
G(ξ − ξ ′)vi(ξ

′) dξ ′, i = 1, 2,

where Re2H0 = (ReH0)2 and Im2H0 = (ImH0)2 are also
discretized with the same method [28].

In Fig. 3(a) the eigenvalues of the linear operator L are
shown in the complex plane. Figure 3(b) shows a mag-
nification of Fig. 3(a) highlighting the eigenvalues with
small imaginary part. The eigenvalues are composed of two
branches corresponding to phase and amplitude dynamics,
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FIG. 3. (a) Eigenvalues of the linearized system around the NTS
solution in a reference frame moving with c and rotating with �.
(b) Magnification of (a) to highlight the eigenvalues with small
imaginary part. The blue filled dots indicate the eigenvalues which
do not coincide with the eigenvalues of the multiplication operator,
σ (L) \ σ (M), and the black dots display a discretization of the
continuous spectrum. These eigenvalues are obtained from the dis-
cretization of the linear operator with M = 210. (c) Some eigenvalues
of the unstable, coexisting TTS near the origin of the complex plane.
The parameters are specified in Sec. II A.

respectively, which can be identified with the discretized form
of the continuous spectrum. These continuous branches nu-
merically obtained from the entire linear operator, i.e., σ (L)
coincide with the eigenvalues of the multiplication operator,
i.e., σ (M), which means the continuous branches are invari-
ant under the operator K [5,7]. In addition, there are a few
scattered eigenvalues in σ (L), which are marked in blue (dark
gray). According to σ (L) \ σ (M), we can identify them as
the point spectrum [5,7]. The latter determines the stability of
the NTS. The point spectrum has one zero eigenvalue which
comes from the translational invariance and does not affect the
stability of the solution. All other eigenvalues have a negative
real part, so that the observed NTS is linearly stable.

At the same parameter values, also a TTS exists. However,
its linearization has two complex conjugate eigenvalues with
positive real part. It is thus an unstable solution [Fig. 3(c)].

III. LYAPUNOV EXPONENTS AND COLLECTIVE MODES

In a finite-size system, an NTS cannot be represented as a
stationary solution in an appropriate reference frame. Rather,
we have to treat an NTS as a time-evolving reference trajec-

FIG. 4. (a) Lyapunov exponents of the NTS as a function of the
rescaled index ν for various system sizes. The red dots reproduce
the real parts of the eigenvalues obtained from the continuum limit
analysis. The inset depicts the first half of the Lyapunov spectrum for
N = 40. (b), (c) The IPR as a function of system size N correspond-
ing to the discrete Lyapunov exponents around ν = 0.0 and ν = 1.0,
respectively.

tory in phase space. Then we can obtain its spectral properties
from a Lyapunov analysis, which yield information about its
stability. Therefore, we consider the Jacobian matrix evaluated
along a reference trajectory in phase space

(J)i j =
(

∂φ̇i

∂φ j

∂φ̇i

∂r j
∂ ṙi
∂φ j

∂ ṙi
∂r j

)
∈ R2N×2N , i, j = 1, . . . , N. (14)

Defining the tangent linear propagator M(t, t0) =
O(t )O−1(t0) where O(t ) is the fundamental matrix solution
of Ȯ(t ) = J(t )O(t ) with the identity matrix O(0) = I2N

[19–21], we obtain the Lyapunov exponents �i as an
exponential growth rate

�i = lim
t→∞

1

t
log

||M(t, t0)u(t0)||
||u(t0)|| (15)

along the perturbation vector in the tangent space
TxNTS(t )(R

2N ) where xNTS(t ) is a given NTS reference
trajectory in phase space, and u(t0) is a perturbation vector
belonging to each Oseledets’ splitting for i = 1, . . . , 2N
[18,22,33].

In Fig. 4(a) we show numerically obtained Lyapunov spec-
tra �(ν) for different system sizes N as a function of the
rescaled index ν = i−1

2N−1 (black and gray tone) together with
the real part of the point and continuous eigenvalues from the
continuum limit analysis (red points). All Lyapunov spectra
have two zero Lyapunov exponents which arise from the two
continuous symmetries: the time shift invariance due to the au-
tonomous governing equations, and the phase shift invariance,
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W → Weiχ for χ ∈ R, due to the Kuramoto-type phase cou-
pling [17,19,22]. These two perturbations do not affect the
stability of the NTS reference trajectory. Apart from these
two, all other Lyapunov exponents are negative, confirming
that the NTS trajectory is stable in all perturbation directions
in tangent space. Furthermore, we can distinguish two groups
of Lyapunov exponents: discrete Lyapunov exponents and
continuous branches, respectively. As apparent from Fig. 4(a),
with increasing system size N , some of the exponents ap-
proach continuous lines with nearly identical values, while
others remain discrete points. Among the discrete Lyapunov
exponents, some are just single exponents, others form pairs
of two nearly identical Lyapunov exponents, similar to the
point spectrum in Sec. II B, which consists of real eigenval-
ues and pairs of complex conjugate ones, respectively. Taken
together, the Lyapunov analysis strongly suggests that the
continuous and discrete parts of the spectrum correspond to
the real part of the point and continuous spectra of the con-
tinuum limit analysis in Figs. 3(a) and 3(b), implying that for
N → ∞ the Lyapunov spectrum converges to the real part of
the eigenvalues of the linearized continuum limit equation, as
was also found for chimera states [29].

In general, one intuitively expects any propagating wave
to be dominated by collective modes since all elements be-
have in the same way and their entirety forms a propagating
structure. Lyapunov analysis also allows one to measure the
“collectivity” of the different Lyapunov modes. The covariant
Lyapunov vectors (CLVs), which are the spanning set of the
Oseledets’ splittings, directly indicate the perturbation direc-
tions in which the Lyapunov exponents exhibit an exponential
growth rate in phase space [20,21,33]. From the CLVs, we can
derive the time-averaged inverse participation ratios (IPRs) for
various system sizes, which in turn make it possible to identify
collective modes [19,22,34]:

IPR(i)(N ) =
〈

exp

(
1

q − 1
log

2N∑
j=1

∣∣v(i)
j (t )

∣∣2q

)〉
t

, (16)

where q = 2 and IPR(i) ∈ [(2N )−1, 1] and v
(i)
j is the jth

component of the CLV v(i) ∈ TxNTS(t )(R
2N ) corresponding to

a certain Lyapunov exponent �i(N ) in Eq. (15) for i =
1, . . . , 2N . When the components of a CLV spread out
through all the oscillators, IPR(i)(N ) ∼ 1

N as N → ∞ and the
CLV is a collective Lyapunov mode [34]. In contrast, when
IPR(i)(N ) ∼ const, as N increases, the vector is well localized.

In Figs. 4(b) and 4(c), we show the IPRs as a function
of N for the first and the last few Lyapunov modes, which
correspond to the discrete LEs near ν � 0.0 and ν � 1.0, re-
spectively. Their IPR decreases as N increases with IPR(N ) ∼
1
N , classifying these modes as collective Lyapunov modes.
Also the discrete LEs around ν = i−1

2N−1 ≈ 0.5 show the same
scaling, so that they too are collective Lyapunov modes. From
this, we conclude that an NTS trajectory is indeed governed by
collective modes that can be captured by Lyapunov analysis.

IV. HETEROGENEOUS NATURAL FREQUENCIES

In this section, we demonstrate the robustness of the NTS
by adding a small heterogeneity to the natural frequencies of

FIG. 5. NTS in a system with heterogeneous natural frequencies
(γ = 0.002). (a) Phase snapshot and (b) amplitude snapshot with
N = 1600. (c) Lyapunov exponents for N = 40, 60, 80, 100, and 120.
Inset: IPR as a function of the system size for the first five modes in
ν � 0.5.

the up to now identical Stuart-Landau oscillators. Therefore,
we consider the Cauchy-Lorentz distribution

g(ω) = γ

π

1

ω2 + γ 2

and generate the frequencies according to

j − 1
2

N
=

∫ ω̃ j

−∞
g(ω)dω = 1

2
+ 1

π
tan−1

(
ω̃ j

γ

)
(17)

for j = 1, . . . , N .
Then we mix {ω̃ j = γ tan( π (2 j−1−N )

2N )}N
j=1 to assign one of

the randomly distributed natural frequencies to each oscillator
{ω j}N

j=1 so that
∑

j ω j = 0 exactly. Here we use γ = 0.002 to
reflect a sufficiently small heterogeneity.

Figures 5(a) and 5(b) depict numerically obtained snap-
shots of phase and amplitude profiles of a solution of Eqs. (4)
and (5) with heterogeneously distributed natural frequencies.
The overall dynamics closely resembles the NTS shown in
Fig. 1. However, the profiles are no smooth curves anymore;
rather the oscillators are distributed around the wave profile
and resemble a partially coherent twisted state reported in
Refs. [12,13,23]. Note that this partially coherent NTS only
exists for sufficiently small γ . For example, with γ = 0.02,
we could not find an NTS solution anymore.

From the Lyapunov spectrum shown in Fig. 5(c) we can
deduce that the NTS remains a stable solution also in the
heterogeneous system. All Lyapunov exponents are negative
as in the identical system, except for the two zero exponents
which also correspond to the two continuous symmetries not
influencing the stability of the trajectory. However, the con-
tinuous parts of the Lyapunov spectrum seem to differ from
the identical case: They are no longer a set of nearly identical
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FIG. 6. (a) Bifurcation diagrams of the TTS (black and gray
lower lines; black: unstable states, gray: stable states) and NTS (blue
(dark gray) and red (light gray) upper lines; blue: unstable states,
red: stable states) with ε the speed c characterizing the NTS solution.
The panels in the middle row depict some of the eigenvalues of the
linearized equation around the wave profiles in the complex plane
close to points (A)–(C) in (a). (b) Bifurcation diagram of the NTS
solution with κ as bifurcation parameter. The color code is as in (a).
The remaining parameters are the same as in Fig. 1.

values; rather, the values tend to decrease as a function of
the rescaled index. This is reflected in the standard deviation
of the LEs between ν = 0.6 and 0.9, which is approximately
10−4 (considered zero within our numerical accuracy) for the
system of identical oscillators, and approximately 0.028 for
the heterogeneous system. Furthermore, we cannot observe
collective modes based on the Lyapunov analysis, as appar-
ent from the inset in Fig. 5(c): There is no Lyapunov mode
whose IPR decreases with 1/N . The incoherent motion at the
microscopic level caused by the heterogeneity of the natural
frequencies apparently overshadows the collective response of
the oscillators that causes the propagation of the profiles.

V. BIFURCATION SCENARIO

A. Trivial twisted states and nontrivial twisted state
with winding number q = 1

In this section we perform a bifurcation analysis of the
TTS and the NTS, based on pseudo-arclength continuation
combined with the Newton-Raphson method. The algorithm
is described in detail in Ref. [24], and applications can be
found in Refs. [35,36].

First, we look at a continuation of the TTS with the cou-
pling strength ε as a bifurcation parameter. In Fig. 6(a) the
TTS is depicted by the black and gray lines, where black
indicates unstable TTSs and gray stable ones. The TTS is
unstable for low values of ε and becomes stabilized in a Hopf

bifurcation at the point HB, i.e., at a comparatively high value
of ε. Our numerical results strongly suggest that the Hopf bi-
furcation is subcritical. Furthermore, the bifurcation analysis
predicts that the velocity c of the TTS depends linearly on
ε. This can be easily understood from the properties of the
TTS together with Eq. (4): Since all amplitudes r j ≈ 1 and
all phase differences of adjacent oscillators are the same, the
coupling term in Eq. (4) is identical for all oscillators for a
given ε and scales linearly with ε, resulting in a linear increase
of |c| with ε. The branch of unstable TTS continues actually
up to ε = 0, where also c = 0.

Let us now focus on the continuation of the NTS with
winding number q = ±1 as a function of ε. The correspond-
ing bifurcation diagram is depicted by the red (light gray) and
blue (dark gray) lines in Fig. 6(a). Stable states are shown in
red (light gray), unstable ones in blue (dark gray). Coming
from small values of ε, the unstable NTS is stabilized in a
Hopf bifurcation at point A, as judged from the course of the
eigenvalues with ε in the complex plane (see the left panel
in the middle row of Fig. 6). Beyond the Hopf bifurcation,
the stable NTS exists in a large ε interval, ensuring that its
existence is not restricted to a practically inaccessible param-
eter range. Along this stable curve, the difference between
the maximum and minimum values of the amplitude hump
increases with increasing ε. The fully synchronized state is
stable for ε � 0.773. Thus, the NTS coexists with the uniform
oscillation in most of its existence range. However, in 30
simulations with random initial conditions, 28 and 29 tra-
jectories approached the NTS state at ε = 1.0 and ε = 1.2,
respectively. This suggests that the basin of attraction of the
NTS is considerably larger than the one of the synchronized
oscillation.

At the high-ε end of its existence interval, the NTS solution
is annihilated in a saddle-node bifurcation (SN) at point B (cf.
the middle panel in the middle row). Continuing the unstable
NTS branch that is born in the SN bifurcation B, we observe
that it is further destabilized in a series of Hopf bifurcations
starting at C. At the same time, the amplitude profile becomes
flatter and flatter approaching the uniform profile as c ap-
proaches zero.

Obviously, stable NTS and stable TTS do not coexist. Their
existence range is separated by the ε interval between points
B and HB where none of them is stable. In this interval, more
precisely, in 100 numerical integration with ε = 1.6 as well as
ε = 1.8 and random initial conditions, the trajectory always
approached the fully synchronized oscillation. In comparison,
when doing the same numerical experiment for ε = 2.0 and
ε = 2.2, 95% of the initial conditions end up on the TTS and
only 5% on the uniform oscillation. For ε = 1.0 and ε = 1.2,
where the NTS is stable, none and two out of 30 simulations
with random initial conditions approach the uniform state,
respectively. Furthermore, in the shown range of ε the bi-
furcation diagrams for TTS and NTS remain well separated,
suggesting that the two solutions do not interact directly at any
bifurcation point. We note that we were not able to continue
the NTS for values of ε smaller than the ones shown in Fig. 6
due to convergence problems.

Besides the region between B and HB, there is a second
region in which neither NTS nor TTS are stable, namely, for
ε < ε(A). In this parameter interval we observed states with
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FIG. 7. (a), (b) Phase and amplitude dynamics of the NTS with |q| = 2 for N = 200, and ε = 0.6. The other parameters and the color code
is the same as in Fig. 1. (c) Lyapunov exponents of the 2-NTS for N = 40, 60, 80, 100, and 120. (d) Bifurcation diagrams of the 2-NTS with
ε as bifurcation parameter and the propagation speed c characterizing the NTS with the same color scheme as in Fig. 6. (e) Full eigenvalue
spectrum in the complex pane of the Jacobian matrix evaluated at the stationary 2-NTS at A. (f) The eigenvalues near zero in the complex
plane at the Hopf bifurcation (HB1). (g) Temporal evolution of the amplitude profile of the modulated 2-NTS at B after HB1; ε = 0.67. (h),
(i) The first half of the Lyapunov exponents of 2-NTS and modulated 2-NTS for N = 80, respectively. Insets show a magnification close to the
origin and highlight the first six Lyapunov exponents.

discontinuous amplitude dynamics. Thus, here the ampli-
tudes do not form a smooth curve. Examples include states
where the phase dynamics seems similar to the one of
the irregular inhomogeneous states reported in Ref. [25],
amplitude-mediated chimera states [8], as well as different
kinds of NTS solutions, as discussed in the next subsection.

Finally, a continuation of the NTS with the parameter κ

(the inverse of the interaction range) reveals that the solution
is restricted to a certain interaction range, or certain length of
the system [Fig. 6(b)].

B. Nontrivial twisted states with winding number q = 2

So far, we discussed only an NTS with a winding number
|q| = 1. However, as apparent from the definition, just as a
TTS, an NTS may also have a winding number |q| > 1. In
this section, we address an NTS solution of Eq. (1) with
winding number |q| = 2, and call it a 2-NTS. In Figs. 7(a) and
7(b) such a 2-NTS solution is depicted. The amplitude profile
features two humps and the phase winds twice along the ring,
changing in total by 4π . From the Lyapunov exponents, we
can conjecture that the 2-NTS, too, is a stable solution. How-
ever, it is less stable than the 1-NTS since the first half of the
Lyapunov exponents are closer to zero than in the case of the
1-NTS [compare Figs. 7(c) and 7(h) to Fig. 4(a)]. This can be
also verified by determining the eigenvalues of the linearized
equation in the continuum limit analysis [Fig. 7(e)]: One of

the continuous parts of the spectrum of the 2-NTS is closer to
the imaginary axis than that of the 1-NTS.

A bifurcation analysis reveals that the stable 2-NTS solu-
tion can be observed in some parameter region, ensuring it is
a robust solution [Fig. 7(d)]. However, the parameter interval
is smaller than the one in which the stable 1-NTS solution
exists. Moreover, it is found at lower values of the coupling
strength ε ≈ 0.6, and its speed tends to be lower than the one
of the stable 1-NTS. At both ends of its existence interval the
stable 2-NTS becomes destabilized through Hopf bifurcations
[cf. Fig. 7(f) for HB1]. Furthermore, we numerically verified
that one of them (HB1) is indeed a supercritical Hopf bifur-
cation. Before HB1, the 2-NTS solution exhibits a stationary
amplitude profile in a moving reference frame [Fig. 7(b-2)].
Beyond HB1, e.g., at ε = 0.67, a 2-NTS state is still ob-
served, but now its amplitude profile oscillates periodically,
rendering the state a modulated traveling wave [Fig. 7(g)].
The modulated NTS features three zero Lyapunov exponents,
two of which arise from the continuous symmetries, the third
originating from the modulation frequency [Fig. 7(i)].

VI. DISCUSSION AND CONCLUSION

In this work, we reported an alternative type of collec-
tive behavior in a ring of nonlocally coupled Stuart-Landau
oscillators, which we named a nontrivial twisted state. It is
characterized by nonuniform profiles of amplitude and phase
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gradient as well as a winding number q. The latter char-
acterizes it as a twisted state and implies that the structure
is a coherent traveling wave. From a macroscopic point of
view, the modulus of the local order parameter of an NTS
[see Eq. (6)] |z(x, t )| = 1 for all x ∈ [0, L] and all t while
the global order parameter [see Eq. (8)] 0 < |�(t )| < 1 for
all t . In contrast, the well-known trivial twisted state has a
constant phase gradient and uniform amplitude profile, which
renders the global order parameter zero |�(t )| = 0 while the
modulus of the local order parameter remains 1, |z(x, t )| = 1
for all x and t . Linear stability analysis, Lyapunov analysis,
and bifurcation analysis revealed that NTS solutions with
winding number |q| = 1, 2 are attracting states which exist in
wide ranges of parameter sets and for many initial conditions.

In the literature, there are some examples of coher-
ent spatiotemporal patterns of coupled oscillators in a
ring geometry that resemble an NTS in some respect.
Most of them were observed in studies of phase models.
A coherent traveling wave solution in a model of coupled
phase oscillators with a nonconstant phase gradient profile
was reported in [37] (see Fig. 24 there). However, it is not
a twisted state since the difference of phases does not add
up to an integer multiple of 2π but rather to 0. In other
words, the phase does not form complete cycles when going
once around the ring so that one cannot assign a winding
number. In the Kuramoto-Sakaguchi phase model with non-
linear phase-lag function, initial conditions close to a TTS
led transiently to an evolution of the phase profile that re-
sembles the one in our NTS solutions before settling down
to a chimera state. However, this NTS-like dynamics was
not obtained as a stable state [see Fig. 2(c) in [12]]. In the
Kuramoto-Sakaguchi phase-reduced model with a trigono-
metric nonlocal coupling kernel, coherent wave solutions
with nonconstant phase gradient profile coming closest to the
ones discussed here are reported [Fig. 1(c) in [7]]. However,
these traveling waves are again not stable solutions but long-
lived transients with many neutrally stable directions [38].

Finally, in a model of Stuart-Landau oscillators with time
delay, a traveling wave solution possessing a winding number
and a slightly varying phase gradient was found [Fig. 2(d) in
[39]], so that the modulus of the global order parameter was
close to zero, yet finite.

As we indicated in Sec. V, besides the NTS solutions,
the system of nonlocally coupled Stuart-Landau oscillators
on a ring seems to possess various kinds of further coherent
traveling wave solutions. Many of them represent apparently
unique types of collective behaviors such as a solitary state
presenting discontinuities at some locations in an otherwise
smooth profile. In the future, further studies of nonlocally
coupled Stuart-Landau oscillators may therefore reveal other
unique types of collective behaviors.

Finally, it is worthwhile also to compare the NTS to the
partial synchrony observed in globally coupled oscillators
[40–44] as a splay state in the globally coupled system is
similar to the TTS in the spatially extended system. The
amplitude profiles of some partially synchronized states in
globally coupled oscillators form a smooth closed curve as
a function of phase φ ∈ [−π, π ) in the complex plane [45].
Similarly, the amplitude of the NTS forms a smooth closed
curve in the complex plane as a function of spatial variable
x ∈ [0, L]. In both cases, the individual oscillators behave
quasiperiodically while the collective dynamics is periodic.
However, a prominent difference between them seems to be
that the partial synchrony in globally coupled systems bifur-
cates from the splay state, whereas the NTS does not bifurcate
from the TTS but rather emerges in a saddle-node bifurcation.
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