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We report on experiments that were performed with microwave waveguide systems and demonstrate that
in the frequency range of a single transversal mode they may serve as a model for closed and open quantum
graphs. These consist of bonds that are connected at vertices. On the bonds, they are governed by the one-
dimensional Schrödinger equation with boundary conditions imposed at the vertices. The resulting transport
properties through the vertices may be expressed in terms of a vertex scattering matrix. Quantum graphs with
incommensurate bond lengths attracted interest within the field of quantum chaos because, depending on the
characteristics of the vertex scattering matrix, its wave dynamic may exhibit features of a typical quantum
system with chaotic counterpart. In distinction to microwave networks, which serve as an experimental model of
quantum graphs with Neumann boundary conditions, the vertex scattering matrices associated with a waveguide
system depend on the wave number and the wave functions can be determined experimentally. We analyze
the spectral properties of microwave waveguide systems with preserved and partially violated time-reversal
invariance, and the properties of the associated wave functions. Furthermore, we study properties of the scattering
matrix describing the measurement process within the framework of random matrix theory for quantum chaotic
scattering systems.
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I. INTRODUCTION

Quantum graphs [1,2] have served for three decades as
a suitable system for the study of features of quantum sys-
tems, whose corresponding classical dynamic is fully chaotic.
Linus Pauling introduced them for the modeling of organic
molecules [3] and they are also employed to simulate a
large variety of other physical systems like, e.g., quantum
wires [4,5], optical waveguides [6], and mesoscopic quan-
tum systems [7,8]. They are constructed from bonds that are
connected at vertices [1,2,9–13]. Wave propagation in a quan-
tum graph is governed by the one-dimensional Schrödinger
equation along the bonds with boundary conditions at their
ends, that is, at the vertices, that ensure continuity of the
wave functions and current conservation. It has been proven
rigorously in Ref. [14] that, depending on the boundary con-
ditions, closed quantum graphs with incommensurate bond
lengths exhibit in their eigenvalue spectra the fluctuation
properties of typical quantum systems with chaotic classi-
cal dynamic [15–18]. According to the Bohigas-Gianonni-
Schmit conjecture (BGS) [15–18] these are described by the
Gaussian ensembles of random matrix theory (RMT) [19].
The boundary conditions can be expressed in terms of unitary
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vertex matrices [2,5,12,20,21], that characterize the transport
or scattering properties of the waves through the vertices. It
was shown based on an exact trace formula [2,22,23] that
ergodicity of the wave dynamic results from the scattering
characteristics of the waves entering and exiting a vertex
through the bonds connected to it [12]. Also the two-point
correlation functions of the scattering matrix associated with
the scattering dynamic of open graphs that are coupled to
their environment through leads, i.e., bonds that extend to
infinity, were shown to coincide with those of random matri-
ces applicable to typical quantum-chaotic scattering systems
[24–28]. Thus, even though closed and open quantum graphs
are basically described by the one-dimensional Schrödinger
equation, their wave dynamic may exhibit a rich variety of
features observed in quantum systems with a chaotic classical
dynamic. Furthermore, they are mathematically simple in the
sense, that a secular equation can be written down explicitly
for their eigenstates [2], so that these can be determined nu-
merically with much less efforts than is required, e.g., for
quantum billiards [10,17,29,30], which are also accessible
experimentally [31–37].

Another advantage of quantum graphs is that all three
universality classes associated with Dyson’s threefold way
[38] can be simulated experimentally for Neumann bound-
ary conditions or, generally, δ-type boundary conditions at
the vertices [1,2,9,11] with microwave networks [39], which
are composed of coaxial cables corresponding to the bonds
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that are coupled by joints at the vertices. Note that these are
wave-dynamical systems, however, the BGS conjecture also
applies to systems exhibiting wave chaos [30,40]. Experi-
ments with microwave networks with preserved time-reversal
(T ) invariance, which belong to the orthogonal universality

class, that is, with an antiunitary symmetry T̂ with T̂
2 = 1,

and with violated T invariance, i.e., unitary universality class,
revealed [39,41,42] that, indeed, the fluctuation properties in
their spectra agree well with those of random matrices from
the Gaussian orthogonal ensemble (GOE) and the Gaussian
unitary ensemble (GUE), respectively. Above all, microwave
networks can be employed to model experimentally quantum

systems with an antiunitary symmetry with T̂
2 = −1 [43–47],

whose spectral fluctuations coincide with those of random ma-
trices from the Gaussian symplectic ensemble (GSE) [17,48].
Only recently, the universality classes of microwave-network
realizations [49] could be extended to the tenfold way [50].
The properties of open quantum graphs with wave chaotic dy-
namic have been investigated experimentally in Refs. [51–56].

A drawback of microwave networks and quantum graphs
with Neumann boundary conditions is the presence of
backscattering at their vertices that leads to eigenstates that
are localized on single bonds or on loops formed by a fraction
of the bonds. These do not exhibit the complexity required
to achieve agreement with RMT predictions for typical quan-
tum systems with chaotic classical counterpart and they are
nonuniversal because they depend on the lengths of the bonds
they are confined to. They can be prevented by an appropri-
ate choice of the boundary conditions. This was one of the
motivations for designing quantum waveguide systems as a
model of quantum graphs. They consist of straight waveg-
uides with Dirichlet boundary conditions at the walls, that are
connected at junctions [57–59]. In the frequency range of a
single transversal mode the associated Schrödinger equation is
one-dimensional along the bonds. Furthermore, in distinc-
tion to microwave networks and Neumann quantum graphs,
the vertex scattering matrices describing the transport of the
waves through the junctions depends on the wave number.

We simulate such systems experimentally with flat, metal-
lic microwave waveguides, also referred to as waveguide
graphs in the sequel. Here, we exploit the analogy of the asso-
ciated Helmholtz equation with the Schrödinger equation of
the quantum waveguide system for microwave frequencies
below a maximum frequency which is inversely proportional
to the height of the waveguides [31–36]. Actually, in 2015
experiments were performed with superconducting waveguide
graphs in the quantum chaos group of Achim Richter and
BD and completed just before the laboratory was closed.
They have been presented in various presentations, however,
a publication is in preparation since then due to various in-
cidents that led to delays. The manuscript will be submitted
soon [60]. In these experiments the eigenvalues of the cor-
responding quantum waveguide graph could be determined
with high accuracy and also properties of the scattering matrix
describing the measurement process, which is directly related
to that of the corresponding open quantum graph. The waveg-
uide system was designed such that the k-dependence of the
vertex scattering matrix and backscattering in the junctions is
minimized, yielding a relative angle of 120◦, and thus vertex

valency three for planar waveguide systems. The lengths of
the waveguide graphs are incommensurate.

An advantage of the microwave waveguide systems used
in the present paper with respect to superconducting ones
and to microwave networks is that the wave-function inten-
sities are experimentally accessible. We analyze the spectral
properties and fluctuation properties of the scattering matrix
of closed and open waveguide graphs with preserved and
partially violated time-reversal (T ) invariance, and perform an
in-depth study of the properties of the wave functions for the
case of preserved T invariance. Furthermore, we investigate
the spectral properties in a frequency range where single and
double transversal modes exist. Here, the analogy to a conven-
tional quantum graph is lost [59]. We would like to mention
that, recently, photonic-crystal graphs where proposed as an-
other model for quantum graphs and studied numerically with
COMSOL Multiphysics [61]. In such a system the metal walls
are replaced by an arrangement of rods on a certain lattice
structure, and the waves simulating the quantum graph are
confined to a band gap, which occurs depending on the struc-
ture and defects introduced to realize the waveguide system.

The paper is organized as follows. In Sec. II we intro-
duce waveguide graphs, their experimental realization, and the
procedures that are used to determine wave functions and to
induce T -invariance violation. Then, in Sec. III we present our
experimental results on the spectral properties of waveguide
graphs in the regions of a single transversal mode and where
single and two transversal modes coexist, and we review our
results on statistical properties of the electric field intensity.
Furthermore, we followed Refs. [62,63] to analyze further sta-
tistical measures for the wave function properties of quantum
graphs, e.g., in terms of inverse participation ratios. In Sec. IV
we investigate spectral properties for the case of partial
T -invariance violation. Finally, in Sec. V we summarize the
results on the properties of the scattering matrix associated
with the measurement process which is employed to obtain
resonance spectra. In Sec. VI we summarize our findings and
discuss them.

II. THE MICROWAVE WAVEGUIDE NETWORK

The bonds of the microwave waveguide network are con-
structed from metallic rectangular waveguides of width w,
height h < w and incommensurate lengths lb � w, as illus-
trated schematically in Fig. 1(a) and in the left lower part.
Respectively, three of them are connected at a relative angle of
120◦ at the vertices of the network. Below the cutoff frequency
fmax = c/2h for the second mode in the vertical (z) direction,
only transverse-magnetic modes TMn,0, n = 1, 2, . . . are ex-
cited and the electric field strength �E = Ez�ez, is perpendicular
to the top and bottom of the waveguides. In that frequency
range the microwaves are governed by the two-dimensional
Helmholtz equation for a perfect electric conductor, that is,
with Dirichlet boundary conditions at the side walls,[

∂2

∂x2
+ ∂2

∂y2
+ k2

]
Ez = 0, (x, y) ∈ �, Ez|x,y∈∂� = 0, (1)

with x in the transversal direction and y in the longitudinal
one. Here, Ez is the electric field strength in z direction,
k = 2π f

c denotes the wave number and c the speed of light
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FIG. 1. (a) Schematic view of the waveguide graph used in the
experiment. Red (gray) numbers indicate the positions of the anten-
nas, black ones indicate those of the waveguide-to-coaxial adapters.
The black disks are at the positions of the ferrites that are inserted
into the waveguides and magnetized with exterior magnets to induce
T -invariance violation. (b) Bottom plate of the waveguide graph,
exhibiting the channel system, the screw holes, and the four cutouts,
where the waveguide-to-coaxial adapters are attached. The lower
part shows a sketch of the waveguides constructed by closing the
channels with a plate. Both plates are manufactured from aviation
aluminium and coated with a copper cover to attain higher quality
factors. (c) Top view of the waveguide graph. The lower part shows
a photograph of a waveguide-to-coaxial adapter.

in vacuum. The wave numbers in longitudinal direction corre-
sponding to the ordered eigenfrequencies fm, f1 � f2 � . . .

are given as

ky,m =
√(

2π fm

c

)2

−
(nπ

w

)2
, (2)

where the index n counts the number of modes excited
in transversal direction. For the width and height of the
waveguides chosen in the experiment, w = 22.86 mm, h =
10.16 mm the cutoff frequencies of the first and second
transversal mode and for the first excited transverse-magnetic
mode, TM01, are given as

fTM10 = c
2w

= 6.56 GHz, (3)

fTM20 = c
w

= 13.12 GHz, (4)

fTM01 = c
2h = 14.76 GHz, (5)

respectively. In the frequency range fTM10 � f � fTM20 of
single transversal modes the waveguide network simulates a
quantum graph constructed from vertices with valency two
at its bents and valency three at its junctions. The vertex
scattering matrices associated with the boundary conditions
at the vertices [2,11–13] are obtained from the wave-function
properties of the waveguide graph at the junctions. They
depend strongly on k and on the bending angle and were
designed such that back scattering is minimized [64]. This
is in contrast to the vertex scattering matrix in the quantum
graphs considered in Ref. [2] and realized in the experi-
ments with microwave networks [39], where it corresponds to
Neumann boundary conditions and thus is k-independent. In
Fig. 2 we show transmission [black dashed and red (gray)
solid line] and reflection spectra [(light gray) cyan line] that

FIG. 2. Computed transmission and reflection spectra (right part)
of a waveguide graph consisting of three waveguides of incommen-
surate lengths as shown schematically in the left part. Shown are the
reflection spectra [a = b = 1, cyan (light gray) lines] and transmis-
sion spectra (a = 1, b = 2, black dashed lines) and [a = 1, b = 3,
red (gray) lines]. The solid magenta (light gray) and dashed blue
(dark gray) curves around |Sba| � 2/3 and the solid green (light
gray) curve around |Sba| � 1/3 show the corresponding measured
transmission and reflection spectra, respectively, of a microwave
network consisting of three coaxial cables that are connected by a
conventional T joints. The spectra are shown in the frequency range,
where only TM10 modes exist, that is, where wave propagation takes
place in the (x, y) plane and is essentially one-dimensional.

were computed with COMSOL Multiphysics for a waveg-
uide graph consisting of three waveguides of incommensurate
lengths, that are joined at a 120◦ angle, as illustrated schemat-
ically in the lower left part of Fig. 2. They are shown in the
frequency range, where only TM10 modes exist, that is, where
wave propagation takes place in the (x, y) plane and is essen-
tially one-dimensional. The period of the oscillations depends
on the lengths of the waveguides and on the frequency f . They
result from the superposition of waves of incommensurate pe-
riods entering the vertex. The waveguide graph is constructed
from such subgraphs and the wave chaotic features revealed
in their spectral properties and in the fluctuation properties of
the scattering matrix are attributed to this multiconnectivity
yielding ergodicity of the microwave phases. For comparison
we also show the measured transmission and reflection spectra
of a microwave network consisting of three coaxial cables of
the same geometric lengths as the waveguides that are joined
by a conventional T joint [44], shown schematically in the
upper left part of Fig. 2, which is characterized by a constant
scattering matrix, Sab = 2/3 − δab [2,39]. For this case the
oscillations are much less pronounced. Note, that the lengths
of the waveguide graph correspond to the optical lengths of
the coaxial cables, which are filled with a dielectric medium.

The waveguide network comprising 48 waveguides with
total length L ≈ 5.814 m along its central line, is constructed
from a top (934 × 868 × 17 mm3) and a bottom (1200 ×
1000 × 17 mm3) aviation aluminium plate. For the realiza-
tion of the waveguides, channels of height h and width w

are milled out of the bottom plate. A photograph is shown
in Fig. 1(b). A good electrical contact between the top and
bottom plates is attained by screwing them tightly together
through holes at distances 13 mm along the channels as rec-
ognizable in Figs. 1(b) and 1(c). Furthermore, lead wire was
inserted into grooves with width 1.3 mm and depth 1 mm that
were milled out of the bottom plate along the channels.
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Resonance spectra of the waveguide network were mea-
sured with two procedures. For the first one eight wire
antennas were attached to the top plate at the positions marked
by red (gray) numbers in Fig. 1(a). They are positioned at a
distance of 1 mm from the central line. For the second proce-
dure the waveguide graph was opened at two of the four bents,
marked by black numbers, and waveguide-to-coaxial adapters
(Model HD-100WCASKPA from HengDa MicroWave) were
attached [64], referred to as ports in the sequel. The width
w and height h of the waveguides are, actually, dictated by
the impedance-matching condition with the adapters to ensure
a reflectionless escape of microwaves through the ports. For
the measurements, the antennas or the ports were connected
to an Agilent N5227A vector network analyzer (VNA) via
SUCOFLEX126EA/11PC35/1PC35 coaxial-cables sending
microwaves into the resonator via one antenna a or port and
receiving it at the same or the other one, b. The VNA measures
the relative phases φba and ratios of the microwave power
of the outcoming and ingoing radio frequency (rf) signal,
Pout,b

Pin,a
= |Sba|2. Thereby, the complex scattering matrix element

Sba = |Sba|eiφba describing the scattering process from antenna
a to antenna b through the waveguide graph is obtained.

It has been shown in Ref. [65] that the scattering matrix of
a resonator coupled to a measuring apparatus, which in our
case is the VNA, via M leads supporting one open channel
each, is given by

Ŝ( f ) = 1 − iŴ †
(

f 1 − ĤRes + i

2
ŴŴ †

)−1

Ŵ . (6)

Here, ĤRes denotes the Hamiltonian describing the closed
resonator and Ŵ accounts for the coupling of the resonator
modes to the M open channels. In the vicinity of an isolated
or weakly overlapping resonance at eigenfrequency fm, |Sba|
is well described by the complex Breit-Wigner form,

Sba( f ) = δba − i
√

γmaγmb

f − fm + i
2�m

, (7)

where γma and γmb are the partial widths associated with
antennas a and b and �m denotes the total width, which is
given by the sum of the partial widths and the width �abs

due to absorption in the walls of the waveguide. The partial
widths are proportional to the modulus of the wave functions
at the positions of the antennas. The resonance parameters,
that is, the resonance strengths γmaγmb, resonance widths �m

and eigenfrequencies fm are determined by fitting the complex
Breit-Wigner form Eq. (7) to the measured scattering matrix
elements [66]. This is feasible, if the widths of the resonances
are small compared to the average spacing between adjacent
resonances. Consequently, a cavity with a high-quality factor
Q is a prerequisite. It depends on the absorption of microwave
power in the walls, that is, the material, and it is proportional
to the ratio of the volume to the surface of the resonator, that
is, essentially to its height h which is fixed by the size of
the waveguide-to-coaxial adapters. To reduce absorption, both
plates were coated with a copper cover of high conductivity,
whose thickness 0.008 mm is much larger than the skin depth
δ ≈ 0.001 mm. Thereby we attained quality factors of up
to Q � 6500, which was sufficient to identify complete se-
quences of eigenfrequencies in the relevant frequency regions.

FIG. 3. Transmission spectra of the waveguide graph. The upper
part shows the spectrum measured from antenna 1 to antenna 2
(black line), the lower one the spectrum measured from port 1 to
port 2 [red (gray) line]. The latter has been multiplied with (−1)
to facilitate the comparison of the spectra. To the left and right are
exhibited examples of weakly overlapping and isolated resonances,
respectively.

Figure 3 shows parts of the transmission spectra measured
from antenna 1 to antenna 2 (black line, top), and from port
1 to port 2 [red (gray) line, bottom], respectively. The latter
was multiplied with (−1) to facilitate comparison of the spec-
tra. Both spectra comprise isolated and weakly overlapping
resonances, as illustrated to their right and left, respectively.
The amplitudes are generally higher and a stronger resonance
overlap is observed for the measurements with ports, which
may be attributed to a larger opening of the waveguide system
than in the measurements with antennas. Therefore, we used
antennas for the determination of the eigenfrequencies.

As compared to microwave networks, waveguide graphs
have the advantage that the wave function intensity distribu-
tion can not only be measured at the vertices but also along the
waveguide parts. It is obtained from the electric field intensity
distribution E2

z (x, y) which is determined based on Slater’s
theorem [67] by employing the perturbation body method
[31,68–70]. Namely, when introducing a metallic perturbation
body into a microwave resonator a frequency shift is induced
which depends on the squared electric and magnetic field at
the position of the perturbation body,

	 f (x, y) = f (x, y) − fm = fm[c1 �E2(x, y) − c2 �B2(x, y)].

(8)

The constants c1 and c2 depend on the geometry and material
of the perturbation body and fm denotes the resonance fre-
quency of the resonator before introducing the perturbation
body. The contribution of �B(x, y) is removed by choosing a
cylindrical perturbation body which is made from magnetic
rubber (NdFeB) [71]. It has a diameter of 8 mm and a height
of 6 mm and is moved with an external magnet, which is
fixed to a positioning unit which is described in Ref. [72],
in steps of 3 mm parallel to the waveguide walls through
the whole waveguide network. To determine the frequency
shift 	 f (x, y) we determine at the eigenfrequency f = fm

the difference 	φ of the relative phases between the received
and emitted rf signal for the cases without and with perturba-
tion body, which is proportional to 	 f , so that 	φ ∝ 	 f ∝
E2

z (x, y) [69].
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FIG. 4. Transmission spectra obtained in measurements with
ports for the waveguide graph containing the magnetized ferrites.
Shown are the amplitudes |Sba| (upper panel) and phases φba (lower
panel), respectively, for a = 1, b = 2 [red (gray) dashed lines] and
a = 2, b = 1 [blue (dark gray) lines].

To induce violation of T invariance in a microwave net-
work, vertices are partly replaced by circulators [39,41],
microwave devices with three ports which introduce a di-
rectionality in the sense that microwaves entering it at one
port may only exit at one of the two other ports, respectively.
Thereby, complete violation of T invariance is induced. In the
experiments with the waveguides we used the procedure of
Refs. [34,73,74], that is, we inserted in total 12 19G3 cylinder-
shaped ferrites made from Fe2O3 with diameter 5 mm and
height 10 mm at the positions marked by black dots in
Fig. 1(a). Their saturation magnetization is Ms = 0.1941 T.
Each ferrite is magnetized by two external cylindrical NdFeB
magnets of diameter 15 mm and height 20 mm, that are posi-
tioned above and below it to generate a uniform magnetic field
in z direction of strength B � 0.1264 T. The magnetic field
B induces a macroscopic magnetization in the ferrites, thus
causing a precession of the spins in the ferrite around it with
the Larmor frequency. Violation of the principle of reciprocity
[75–79], Sab( f ) = Sba( f ), is induced through the coupling
of the spins to the rf magnetic-field components of the res-
onator modes, whose size depends on the rotational direction
of polarization of the latter. Since the modes are circularly
polarized with unequal magnitudes of the two rotational
components [73], this implies a deterioration of reciprocity
between modes emitted at one antenna and received at an-
other one and the reversed modes. Figure 4 demonstrates that
violation of the principles of detailed balance and reciprocity
are attained when inserting the ferrites and magnetizing them.
However, the principles hold for the waveguide graph without
ferrites, since for that case the scattering matrix is symmetric.

III. PROPERTIES OF THE EIGENVALUES AND WAVE
FUNCTIONS OF QUANTUM WAVEGUIDE GRAPHS WITH

PRESERVED T INVARIANCE

We use the analogy between quantum waveguide graphs
[57,58] and microwave waveguide networks of correspond-
ing geometry to investigate their properties experimentally.
In the experiments with antennas the transmission and re-

flection spectra were measured in a frequency range fTM10 �
f � fTM01 in steps of 500 kHz, whereas the waveguide-to-
coaxial converters operate in the frequency range 8.2 � f �
12.4 GHz and spectra were measured in steps of 400 kHz.
The eigenfrequencies were determined by fitting the squared
modulus of the Breit-Wigner form Eq. (7) to the resonances
in the spectra |Sba( f )|2. For this their precise experimental
determination is indispensable, that is, all systematic negative
effects need to be removed. Dominant contributions to them
come from the coaxial cables connecting the VNA with the
cavity, which attenuate the rf signal and additional reflections
occur at their interconnections with the VNA and resonator
that complicate the extraction of the resonance parameters.
These effects are removed by a proper calibration of the VNA
before a measurement [66]. Furthermore, despite the coating
with copper, there is absorption in the cavity walls, which
leads to weakly overlapping resonances. The fitting proce-
dure might fail in cases, where it is too strong or where two
eigenfrequencies are lying too close to each other. Another
cause for missing resonances are situations where the electric
field strength is zero at the position of an antenna so that they
cannot be excited. To avoid this, we performed measurements
for various positions of the antennas.

In distinction to the experiments with microwave networks
the spectral density, and thus the mean spacing depends on the
eigenfrequency fm, i.e., eigen wave number km. In the relevant
frequency ranges, the smooth part of the integrated spectral
density is obtained from Eq. (2) as

N smooth(km) = L
π

√
k2

m −
(π

w

)2
(9)

for fTM10 � f � fTM20 , and

N smooth(km) = L
π

⎡⎣√
k2

m −
(

2π

w

)2

+
√

k2
m −

(π

w

)2

⎤⎦ (10)

for fTM20 � f � fTM01 . For frequencies much larger than the
associated cutoff frequency N smooth(k) approaches that for
the corresponding microwave network, N smooth(k) � L

π
k. To

locate missing eigenfrequencies we looked at the difference of
the number of identified eigen wave numbers below km and the
expected number, N (km). Missing levels manifest themselves
as jumps in the locally averaged fluctuating part of the in-
tegrated spectral density N (k), Nfluc(k) = N (k) − N smooth(k).
We identified them and then carefully inspected all reflec-
tion and transmission spectra to check whether we oversaw
a resonance because of the overlap with neighboring ones
which would be visible as a bump in a resonance curve. In
total 261 eigenfrequencies could be identified in the range
7.33–12.04 GHz for the antenna measurement, which coin-
cides to the expected number within the range of error bars for
the value of L. We confirmed that we found all eigenfrequen-
cies with simulations using COMSOL Multiphysics. In Fig. 5
we compare the analytical results Eqs. (9) and (10) (black line)
to the smooth part of the experimentally obtained integrated
spectral density [red (gray) circles]. The curves agree very
well, thus corroborating correctness of the unfolding proce-
dure.
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FIG. 5. Integrated spectral density deduced from the experimen-
tal data [red (gray) circles] in comparison to the analytical results
Eqs. (9) and (10) (black solid line). The blue, orange and yel-
low vertical lines indicate the locations of the cutoff frequencies
fTM10 , fTM20 , fTM01 , respectively.

A. Fluctuation properties in the eigenfrequency spectrum for
the single-mode case

The eigen wave numbers ky,m, obtained from the eigen-
frequencies by employing Eq. (2), were unfolded to mean
spacing unity, that is, system specific properties were re-
moved, by replacing them by N smooth(km) given in Eqs. (9)
and (10). Furthermore, we computed 4500 eigenvalues for the
corresponding quantum graph by proceeding as in Refs. [2,80]
and those of the waveguide graph by employing COMSOL
Multiphysics. Results for the spectral statistics are exhib-
ited in Fig. 6. Shown are the distribution of the spacings
between nearest-neighbor eigenvalues P(s) and the associ-
ated cumulative distribution I (s) as measures for short-range
correlations, the number variance 
2(L) and the Dyson-
Mehta statistics 	3(L), which gives the spectral rigidity of
a spectrum [19,81], as measures for long-range correlations.
Agreement between the curves for GOE statistics and those
of the quantum graph are good. For the experimental data
[red (gray) curves] small deviations are observed for P(s)
and I (s) which may be attributed to experimental inaccura-
cies. For 
2(L) the agreement with GOE is similar to that
for the simulations and for 	3(L) the curve lies below the
GOE curve for L � 5. A similar, but more pronounced, be-
havior has been observed for quantum graphs and microwave
networks and has been attributed to the contributions from
waves experiencing backscattering at vertices which leads to
their confinement to individual bonds or a fraction of them
[80]. These are nonuniversal, as they depend on the lengths
of the bonds and they do not exhibit the complexity of the
dynamic which leads to the GOE like spectral properties. In
the waveguides backscattering may result from reflections at
the inner corners formed by the waveguides at the vertices
[64]. The distribution of the ratios of consecutive spacings of
nearest-neighbor nonunfolded eigenfrequencies [82–84], and
the cumulative ratio distribution, plotted in Figs. 7(a) and 7(c),
respectively, are also quite well described by the RMT results
for the GOE. Agreement of the spectral properties of the
waveguide network with those of random matrices from the

FIG. 6. Spectral Properties of the unfolded eigenfrequencies.
Shown are the nearest-neighbor spacing distribution P(s), the cumu-
lative nearest-neighbor spacing distribution I (s), the number variance

2(L) and spectral rigidity 	3(L). The red (gray) histogram and
dashed lines, blue [dark gray] line and squares, and green (light
gray) lines and dots show the results deduced from the experimental
data, COMSOL Multiphysics simulations and the quantum graph
of corresponding geometry, respectively. The black full and dashed
lines show the results for the GOE and GUE, respectively.

GOE indicates that they exhibit similar wave chaotic features
as quantum graphs. In both cases the wave propagation is one
dimensional along the bonds, so that the complexity is in-
duced by the transport characteristics at the common junctions

FIG. 7. Comparison of the ratio distributions (upper panels) and
the cumulative ratio distributions (lower panels) of the experimen-
tally [green (light gray) histograms and dots] obtained results for
the waveguide graph without (a, c) and with (b, d) partial violation
of T invariance, for the frequency range 8.7–14.5 GHz, where the
T -invariance violation parameter equals ξ = 0.3. The corresponding
RMT curves are shown as red (gray) lines. The black solid and
dashed lines exhibit the results for random matrices from the GOE
and GUE, respectively.
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FIG. 8. Comparison of the length spectra deduced from the mea-
surements with antennas (black line) with those obtained from the
lowest 250 eigenvalues of the quantum graph of corresponding ge-
ometry [red (gray) line] and all computed eigenvalues [turquoise
(light gray) line] multiplied with (−1). The violet diamonds mark
twice the lengths of the bonds of the quantum graph and orange dots
those of bonds connected to bents in the waveguide graph that lead
to orbits not present in the corresponding quantum graph.

of the bonds. To further explore these features we investigated
length spectra and measured the wave functions.

The occurrence of backscattering can be seen, e.g., in a
length spectrum [39,80], which is obtained from the modulus
of the Fourier transform of the fluctuating part of the spectral
density from wave number to length and has the property
that it exhibits peaks at the lengths of the periodic orbits
of the corresponding classical system. In a quantum graph
orbits are composed of itineraries along successive bonds that
are uniquely defined by the sequence of the vertices con-
necting them. Similarly, in the waveguide graph the orbits
correspond to the paths of the waves through the waveguide
network. In Fig. 8 we compare length spectra deduced from
the eigenfrequencies which were determined from the antenna
measurements (black solid lines) with those obtained from
the eigenvalues of the quantum graph of corresponding ge-
ometry taking into account a similar number of eigenvalues
(red [gray] dashed lines) and also for all computed eigenval-
ues [turquoise (light gray) line] multiplied with (−1), where
the trace formula provides a very good approximation of the
spectral density. The length spectra of the quantum graph and
waveguide graph differ in amplitude because of the distinct
features of the vertex scattering matrices defining the wave
transport through the vertices. Furthermore, in distinction to
quantum graphs, the bents connecting two waveguides cor-
respond to vertices in the waveguide networks, leading to
additional peaks in their length spectra. The violet diamonds
mark twice the lengths of the bonds in the quantum graph,
orange dots twice the lengths of bonds connected to bents
in the waveguide graph corresponding to these additional
closed loops. Both length spectra exhibit peaks at lengths
corresponding to twice the length of the bonds, thus indicating
that backscattering is present.

FIG. 9. (a–c) Schematic view of the loops along which the per-
turbation body was guided. (d) Schematic view of the paths of the
perturbation body which was moved along seven lines parallel to the
waveguide walls.

B. Properties of the wave functions in the frequency range for
the single-mode case

We measured the electric field intensity distributions, i.e.,
wave-function intensities, for 154 well isolated resonances in
the frequency range fTM10 � f � fTM20 where only one mode
is excited in transversal direction of the waveguide, using the
ports to couple in microwaves. We tuned their frequency to
one of the corresponding eigenfrequencies and employed the
method explained in Sec. II. To avoid frequency shifts due
to temperature drifts the room temperature was kept constant
with an air conditioner. The perturbation body was moved
along three different loops, shown in Figs. 9(a)–9(c) along
seven straight lines parallel to the waveguide walls, shown
schematically in Fig. 9(d). Thus, some of the waveguides
were visited more than once. Then we averaged over the
intensities resulting from the different loop measurements.
Four examples of measured wave functions are shown in
Fig. 10. Along the straight waveguide parts, i.e., the bonds, the
wave function patterns exhibit sinusoidal oscillations with a
constant amplitude. Their transport properties at the junctions
are as illustrated in Fig. 2. They lead to the complex structure
of the intensity which can be vanishingly small in some of the
waveguides.

To further explore this structure, we analyzed the distribu-
tion of their intensities. For this we employed the experimental
data obtained from a measurement along the loop C of total
length L1 shown in Fig. 9(a), which comprises in total NB =
33 of the 48 waveguides, in the frequency range of a single
transversal mode, f � fTM20 . The top panel in Fig. 11 ex-
hibits the distribution of the normalized electric field intensity
|Ez(l )|2, with l giving the distance covered by the perturbation
body along the loop at each point of measurement,

v = N−1|Ez(l )|2, N =
∮
C

|Ez(l ′)|2 dl ′

L1
. (11)
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FIG. 10. Measured electric field intensities. For the measure-
ment, the microwave frequency was tuned to the eigenfrequen-
cies (a) 8.2202 GHz corresponding to state number m = 1,
(b) 9.0736 GHz with m = 31, (c) 10.0031 GHz with m = 56, and
(d) 11.9859 GHz with m = 116. The color scale is indicated in the
bar to the right.

According to the random-plane wave hypothesis [85,86] the
distribution P(v) of the thus normalized squared wave func-
tion components is expected to coincide with a Porter-Thomas
distribution P(v) = 1√

2πv
e−v/2 with mean value unity for

quantum systems with a fully chaotic classical dynamics. It
has a singularity at v = 0. Therefore, we transformed v to the
logarithmic variable z = log10(v). The result is exhibited in
the top panel of Fig. 11 [red (gray) histogram]. Deviations
from the Porter-Thomas distribution (black solid line) result
from wave functions exhibiting above-average intensities with
values beyond z � 1. These are localized on a few waveg-
uides. One example is depicted in the inset.

As illustrated in Fig. 10 the wave-function components
on the bonds j = 1, . . . , NB are well described for each
eigen wave number km by an ansatz of the form ψ j (y) =
a j (x; km)eikmy + a∗

j (x; km)e−ikmy with −w/2 � x � w/2, 0 �
y � Lj and Lj denoting the lengths of the bonds. Accordingly,
we proceeded as in Ref. [62] and analyzed wave-function
intensities in terms of the distribution of the squared modu-
lus of the amplitudes a j (x; km), which are complex numbers
with the star denoting complex conjugation. We determined
the amplitudes by identifying the maxima in the electric-
field intensity along the central line x = 0 of the waveguides.
Similar to Eq. (11) we introduce normalized amplitudes
ã j (km),

NB∑
j=1

Lj

L1
|ã j (km)|2 = 1, (12)

for the computation of the wave-function intensity distribu-
tion. Here, we suppress the argument x = 0. Essentially, in
distinction to the procedure Eq. (11), this one neglects the
y-dependence of the electric-field intensity, assuming that it
takes its maximal value along the whole bond. For quantum

FIG. 11. Top: Distribution of the wave-function intensities v

after normalization as in Eq. (11). Middle: Distribution of the
wave-function amplitudes |ã j |2 in the individual waveguides after
normalization as in Eq. (12). Bottom: Strength distribution (see main
text). The red (gray) histograms show the results deduced from
the experimental data and the black solid line the RMT prediction,
which is a Porter-Thomas distribution for the distributions of inten-
sities and squared amplitudes and given in Eq. (13) for the strength
distribution.

systems with fully chaotic counterpart the squared amplitudes
|ã j |2 are expected to be Porter-Thomas distributed. In the
middle panel of Fig. 11 we compare the experimental result
[red (gray) histogram] with the Porter-Thomas distribution
(black solid line). Like in the distribution of v the deviations
may be attributed to wave functions that are strongly local-
ized on a few waveguides, thus yielding the exceptionally
high peak. These results for the distributions of the squared
wave-function components v and their amplitudes |ã|2 suggest
that for a nonnegligible part of the waveguide modes the
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FIG. 12. Inverse participation ratio of the eigenmodes of the waveguide network computed according to Eq. (14) (a) and Eq. (15) (b).
In panels (c, d) are shown two further examples for measured electric-field intensities corresponding to state numbers m = 25 and m = 70,
respectively. The color scales are indicated in the bars to the right. The IPR values corresponding to these examples and to those exhibited in
Fig. 10 are marked by the red (gray), black and orange (light gray) circles, respectively.

complexity introduced at the junctions of the waveguide net-
work is not sufficient to generate the random-plane wave
behavior expected for quantum systems with a fully chaotic
classical counterpart. These are localized on part of the
waveguide network and thus do not comply with the random-
plane wave hypothesis.

Another possibility to extract information on statistical
properties of the wave function components is to exploit the
proportionality of the partial widths associated with antennas
a and b to the electric field intensities at the positions of the
antennas [30,87]. The partial widths cannot be determined
separately [66]. Therefore, we determined the strengths y =
γmaγmb by fitting Eq. (7) to the transmission spectra and an-
alyzed their distributions. We rescaled them to average value
unity, 〈ỹ〉 = 1. In the bottom panel of Fig. 11 we compare the
distribution of the transformed strength, z = log10 ỹ, with that
expected for quantum systems with a fully chaotic classical
counterpart, which is given as [66]

p(z) = ln(10)

π
10z/2K0(10z/2). (13)

Here, K0(x) denotes the modified Bessel function of order
zero [88]. The experimental results were obtained by aver-
aging over the distributions for three antenna combinations.
Agreement with the RMT prediction is good. In distinction
to the wave function measurements, only the wave-function
components at eight positions are taken into account at all
eigenfrequencies. There, the wave-function intensities are not
necessarily maximal; however, they are nonzero, because oth-
erwise the resonance would be missing in the transmission

spectra. The inverse participation ratio (IPR),

Im = 〈|ã j (km)|4〉, (14)

provides an additional statistical measure for the wave-
function intensity distribution applied in Ref. [62] to quantum
graphs, assuming that the amplitudes aj (km) are normalized as
in Eq. (12), which corresponds to the first nontrivial moment
of the distribution P(|ã|2) introduced above. The IPR gives
information on the degree of localization of a wave function
[62,63], i.e., the degree of deviation of it from a random
plane wave. In the limit of maximal ergodicity in configu-
ration space, where all intensities |a j | are equal, I = 1. The
other extremal situation corresponds to localization on indi-
vidual bonds (b), where it equals their number, I = NB. This
situation occurs in quantum graphs with Dirichlet boundary
conditions at the vertices [2]. Since the coefficients entering
the random plane-wave ansatz are complex, RMT predicts
I = 2 for time-reversal invariant quantum systems with a
fully chaotic classical dynamics. As shown in the top panel
in Fig. 12, the IPR values vary erratically with the eigenfre-
quency. Values of NB > I � 2 indicate localization in parts
of the waveguide network. In the right part of the figure are
shown two examples of measured electric-field intensities,
one which exhibits a complex intensity patter on a fraction
of the whole waveguide graph (a), and one for which the
intensities are similar on all bonds. The corresponding values
are larger than two and close to one respectively, as expected.
The orange circles indicate the IPR values for the wave func-
tions shown in Fig. 10. The wave function shown in panel
(a) has a value close to the RMT prediction I � 2 and the
others a value I � 1.5 between the ergodic and RMT cases.
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FIG. 13. Same as Fig. 6 for the frequency range above the cutoff
frequency of the second transversal TM20 modes. Shown are the
results deduced from the experimental data [red (gray) histogram
and dashed lines] and the COMSOL Multiphysics simulations [green
(light gray) line and dots].

The average over all IPR values equals 〈I〉 = 1.9724 which is
close to the RMT value. In Ref. [63] the IPR is defined as

Ĩm =
∑NB

j=1 |a j (km)|4[∑NB
j=1 |a j (km)|2]2 , (15)

which corresponds to a normalization of |aj (km)|2 to mean
value unity. It equals Ĩ = 1

NB
for the ergodic case, Ĩ = 2

NB
for

the random-plane wave case and Ĩ = 1
NL

, if the wave function
is localized on NL individual bonds. The resulting IPR values
are shown in the bottom panel. They reflect the features of the
wave functions as demonstrated for the wave function shown
in Figs. 10 and 12. The average value 〈Ĩ〉 = 0.0645 is closer
to that for the RMT case, Ĩ = 2/33 = 0.0606, than to that
for the ergodic case and well below that for localized wave
functions.

C. Fluctuation properties in the eigenfrequency spectrum above
the cutoff frequency for two transversal modes

We measured transmission and reflection spectra up to
the cutoff frequency fTM01 for the first excited transverse
magnetic mode which also comprises eigenfrequencies fm �
fTM20 corresponding to the second transversal mode. For these
eigenmodes wave propagation is no longer one-dimensional
and the analogy to the quantum graph of corresponding ge-
ometry is lost. We identified a complete sequence of 176
eigenfrequencies in the range from 13.5 to 14.7 GHz. Fur-
thermore, we computed the eigenfrequencies in that range
employing COMSOL Multiphysics. The spectral statistics de-
duced from the experimental and numerical data are shown
in Fig. 13. Their agreement with those of random matrices
from the GOE is similar to that for the frequency range of one
transversal mode shown in Fig. 6.

IV. FLUCTUATION PROPERTIES IN THE
EIGENFREQUENCY SPECTRUM WITH A SINGLE

TRANSVERSAL MODE IN THE PRESENCE OF PARTIAL
T -INVARIANCE VIOLATION

Quantum systems with partially violated time-reversal in-
variance and a classically chaotic counterpart are described
within RMT by random matrices interpolating between GOE
and GUE [89,90],

Hμν = H (S)
μν + i

πξ√
N

H (A)
μν . (16)

Here, Ĥ (S) is a real-symmetric random matrix drawn from the
GOE and Ĥ (A) is a real-antisymmetric matrix with Gaussian-
distributed matrix elements. The parameter ξ determines the
magnitude of T violation. For ξ = 0 Ĥ describes chaotic sys-
tems with preserved T invariance, whereas for πξ/

√
N = 1

Ĥ is a random matrix from the GUE, however, the transi-
tion from GOE to GUE already takes place for ξ � 1 [91].
Analytical expressions exist for the nearest-neighbor spac-
ing distribution P(s; ξ ) and the two-point cluster function
Y2(L; ξ ). They are given by [92]

P(s; λ) =
√

2 + λ2

2
sc2(λ)erf

[
sc(λ)

λ

]
e− s2c(λ)2

2 , (17)

with λ = π√
2
ξ ,

c(λ) =
√

π
2 + λ2

4

{
1 − 2

π

[
tan−1

(
λ√
2

)
−

√
2λ

2 + λ2

]}
(18)

and erf (x) denoting the error function, and [19,93,94]

Y2(L; ξ ) = det

[(
s(L) −D(L; ξ )

−J (L; ξ ) s(L)

)]
, (19)

with s(L) = sin πL
πL , D(L; ξ ) = 1

π

∫ π

0 dxe2ξ 2x2
x sin(Lx) and

J (L; ξ ) = 1
π

∫ ∞
π

dxe−2ξ 2x2 sin(Lx)
x . The number variance


2(L; ξ ) and spectral rigidity 	3(L; ξ ) are obtained from
the two-point cluster function [19,95]. The red [gray] curves
in Fig. 14 are deduced from these analytical expressions
for the values of the parameter ξ indicated in the panels.
To determine it we proceeded as in Refs. [74,91] using the
scattering matrix formalism for microwave resonators as
outlined in the next section, Sec. V.

For the measurement of the transmission and reflection
spectra of the waveguide graph containing the ferrites, that
are magnetized with external magnets as described in Sec. II,
only antennas at the positions marked by 1, 2, 7, and 8 were
used which are located outside the region of the ferrites.
Strongest T -invariance violation is observed for the single-
mode case in the frequency range 10–12 GHz, and above
the cutoff frequency for the second transversal mode in the
range 13–14 GHz. The spectral properties are presented in
Fig. 14, where we combined the results for these frequency
ranges. We show results for the ranges from 7.1–9.6 GHz and
8.7–14.5 GHz. Figures 7(b) and 7(d) show the ratio distri-
bution and cumulative ratio distribution of the nonunfolded
eigenfrequencies in the frequency range 8.7–14.5 GHz. For
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FIG. 14. Spectral properties of the waveguide graph in the fre-
quency ranges 7.1–9.6 GHz (top) and 8.7–14.5 GHz (bottom),
respectively, deduced from the experimental data [green (light gray)
dashed lines and dots]. The red (gray) lines show the curves obtained
from the corresponding analytical results Eqs. (17) and (19). The
strength of T -invariance violation ξ is indicated in the inset.

the nearest-neighbor spacing distribution and its cumulative
distribution differences between this model and the GOE and
GUE curves are clearly visible for ξ = 0.15, whereas they are
close to those of the GUE for ξ = 0.3. The ratio distribution is
close to that for the GUE for both values of ξ . They are shown
for ξ = 0.3 in Fig. 7. The spectral properties agree quite well
with those of the random-matrix model Eq. (16).

V. FLUCTUATION PROPERTIES
OF THE SCATTERING MATRIX

We also analyzed to what extent waveguide graphs ex-
hibit features typical for quantum-chaotic scattering systems.
Since the reflection and transmission spectra are measured
by emitting microwave power into the resonator via one an-
tenna or port—where, according to the results obtained for the
wave functions (see, e.g., Fig. 10) the microwaves experience

mainly in the regions of the junctions scattering from the res-
onator walls—and then receiving them at the same or another
antenna or port, the waveguide graph can be viewed as a scat-
tering system [65]. The associated scattering matrix is given in
Eq. (6). The scattering formalism is identical with that intro-
duced in Ref. [96] for the description of compound-nucleus
reactions. This analogy has been employed in numerous
experiments [74,91,97–104] to investigate universal proper-
ties of the scattering matrix for compound-nucleus reactions
and, generally, for quantum scattering processes with clas-
sically chaotic dynamics and preserved or partially violated
T invariance. Analytical results [24,105] were derived on the
basis of the supersymmetry and RMT approach and verified in
Refs. [74,91,102] for scattering-matrix correlation functions
and in Refs. [28,106,107] for distributions of the scattering-
matrix elements.

Within this RMT approach for quantum-chaotic scattering
systems with partially violated T invariance, the scattering
matrix is obtained by replacing in Eq. (6) the resonator
Hamiltonian by a random matrix of the form Eq. (16). Fur-
thermore, the matrix Ŵ accounts for the coupling of the N
internal modes to their environment through M open chan-
nels modeling the antennas or ports and � fictitious channels
[108,109] that mimic the absorption into the walls of the
resonator. Thus, it is a (M + �) × N-dimensional matrix with
real and Gaussian distributed entries Wcμ of which the sum∑N

μ=1 WcμWcμ = Nv2
c , c = 1, . . . , M + � yields the trans-

mission coefficients

Tc = 1 − |〈Scc〉|2, (20)

through the relation Tc = 4π2v2
c /d

(1+π2v2
c /d )2 , with d =

√
2
N 〈H2

μμ〉 π
N

denoting the mean resonance spacing [91]. They provide a
measure for the unitarity deficit of the average scattering ma-
trix 〈Scc〉. The frequency-averaged scattering matrix obtained
from the transmission and reflection measurements is diago-
nal, 〈Scc′ 〉 = 0, implying that direct processes are negligible.
This property is accounted for in the RMT model through the
orthogonality property

∑N
μ=1 WcμWc′μ = Nv2

c δcc′ . For indices
c denoting an antenna or port channel the parameter v2

c corre-
sponds to the average size of the electric field at the position of
the antenna or port [30]. For the RMT simulations we chose
an ensemble of 200 random matrices with M = 2, � = 30,

N = 300.
The input parameters of the RMT model for the scat-

tering matrix are the transmission coefficients T = Ta � Tb

associated with antennas or ports a and b, the transmission
coefficients Tf � T, f = 3, . . . , M + � accounting for the
absorption τabs = �Tf and the T -violation parameter ξ . The
transmission coefficients Ta and Tb associated with antennas a
and b are obtained with Eq. (20) from the measured reflection
spectra, whereas preliminary values for the absorption pa-
rameter τabs are obtained by fitting the complex Breit-Wigner
form Eq. (7) to the measured resonances and employing the
Weisskopf formula [110],

2π
�

d
=

∑
c

Tc = T1 + T2 + τabs. (21)
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This value for τabs is further refined by proceeding as
in Ref. [91] and comparing distributions of the ex-
perimental scattering-matrix elements Sab, a, b = 1, 2, and
the autocorrelation function

Cab(ε) = 〈
Sfl

ab( f )S∗fl
ab ( f + ε)

〉
, (22)

with Sfl
ab( f ) = Sab( f ) − 〈Sab( f )〉 and 〈·〉 denoting the spectral

average over a measured resonance spectrum and an ensemble
average over the different antenna or port measurements, to
the analytical results [28,74,91,106,107]. The size of ξ is
determined from the cross-correlation coefficients Ccross

12 (0) =
Ccross

12 (ε = 0; τabs, ξ ),

Ccross
12 (0) = Re

[〈
Sfl

12(ν) S∗fl
21 (ν)

〉]√
〈|(Sfl

12(ν)|2〉〈|(Sfl
21(ν)|2〉

, (23)

and the corresponding analytical result [74]. It equals unity
for T -invariant systems, and approaches zero with increasing
size of T -invariance violation.

In the RMT model obtained from Eq. (6) the coupling
matrix Ŵ is assumed to be frequency independent. Therefore,
to attain approximately frequency-independent resonance pa-
rameters, we divided the frequency range into windows of
1 GHz in the analysis of the experimental data [91,111].
The results for the transmission coefficients, τabs and ξ are
shown in Fig. 15. For the port measurements the transmission
coefficients are of the same size as in the experiments with
microwave networks and they are considerably larger than for
the antenna measurements and barely vary with frequency. A
similar behavior is observed for τabs, thus confirming our as-
sumption that in the measurements with ports the microwave
waveguide system is more opened than in those with antennas.
Nevertheless, the strength of T -invariance violation is similar
for both measurement procedures. This is expected because
the experimental setups are identical except of the procedure
of opening the resonator, that is, the number of ferrites, their
positions and the size of the external magnetic fields are the
same. We find good agreement between the experimental
curves for the autocorrelation functions and distributions of
the experimentally measured scattering-matrix elements and
the RMT prediction, both for the antenna and the port mea-
surements. Therefore, we show in Figs. 16 and 17 only results
obtained from the port measurements. The values of the input
parameters, T1, T2, τabs, and ξ , are indicated in the panels
showing distributions of the scattering amplitudes. These were
rescaled to average value unity. The same values were used
in the analysis of the RMT results for the autocorrelation
functions, shown in Figs. 18 and 19. We may conclude, that
the waveguide graph, when considered as an open system
exhibits the properties of a typical quantum-chaotic scattering
system without or with violated T invariance.

VI. CONCLUSION

We present experimental results for a waveguide network
constructed from waveguides of incommensurate lengths, that
are joined at junctions with a relative angle of 120◦. In part
of the experiments partial T -invariance violation was in-
duced. We analyzed spectral properties in the frequency range
where the analogy to the corresponding quantum waveguide

FIG. 15. Top: Variation of transmission coefficients T1 [black
squares and dots (cyan triangles down)], T2 [red squares and dots
(violet triangles up)], and τabs [green squares and dots (magenta
triangles left and right)] deduced from the antenna (port) measure-
ments without [dots (triangles down and left)] and with magnetized
ferrites [squares (triangles up and right)], obtained from averaging
over 1 GHz windows. Bottom: Cross-correlation coefficients [red
(gray)] and corresponding values of ξ (black) deduced from the
antenna (dots connected by dashed lines) and port (squares connected
by dashed-dotted lines) measurements.

graph holds. In distinction to quantum graphs with Neumann
boundary conditions at the vertices and to their experimental
realization, namely microwave networks, the vertex scattering
matrix describing the transport properties through the vertices
or junctions from one bond or waveguide to another one de-
pends on the microwave frequency. It needs to be derived from
the wave-function properties at the junctions. A drawback
of microwave networks and quantum graphs with Neumann
boundary conditions is the occurrence of backscattering at the
vertices which also takes place at the waveguide walls in the
junctions. The design of waveguide graph, that is, the relative
angle of 120◦ was developed in 2014–2015 [60] such that
the backscattering and frequency dependence are minimized
[64]. The waveguide graph is constructed from metal plates
with an extension of about 1 m2 and the surface was covered
with high-quality copper, so that high quality factors of up
to Q � 6500 were achieved, such that complete sequences of
eigenfrequencies could be identified.

We come to the conclusion that the spectral properties
coincide well with those of the corresponding quantum graph.
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FIG. 16. Distribution of the rescaled scattering amplitudes ob-
tained from the port measurements without ferrites (black his-
tograms). They are compared to the corresponding RMT results [red
(gray) histograms]. The corresponding values of T1, T2, and τabs are
given in the panels.

Backscattering is also present in them, however not as pro-
nounced as in quantum graphs with Neumann boundary
conditions. We also investigated statistical properties of the
wave functions and confirm the prediction made in Ref. [62]
that deviations from RMT predictions can be attributed to
wave functions that are localized on a part of the whole graph.
Yet, the strength distribution, which only incorporates wave-
function components at the positions of the antennas, agrees
well with the RMT prediction for quantum systems with a
classically chaotic counterpart. The fluctuation properties of
the scattering matrix describing the measurement process of
the resonance spectra are also well described by those pre-
dicted for typical quantum-chaotic scattering systems, both

FIG. 17. Same as Fig. 16 for the corresponding distributions with
magnetized ferrites (black histograms). They are compared to the
corresponding RMT results [red (gray) histograms]. The correspond-
ing values of T1, T2, τabs, and ξ are given in the panels.

FIG. 18. Scattering-matrix autocorrelation functions obtained
from the port measurements in the frequency intervals 9–10 GHz,
10–11 GHz, and 11–12 GHz without ferrites (black dots and lines).
They are compared to the RMT results [red (gray) histograms] for the
values of T1, T2, and τabs given in the panels of Fig. 16. The frequency
difference ε is plotted in units of the local mean level spacing d . All
curves are normalized to unity at ε = 0.

for the cases of preserved and partially violated T -invariance
violation.

These findings suggest, that microwave waveguide graphs
may serve as a suitable model for the investigation of fea-
tures of quantum chaos. Compared to microwave networks,
they have the advantage that the boundary conditions at the
junctions may be varied, by changing the relative angle of
the waveguides at the junctions or by changing material in a
controlled way. Furthermore, while in a waveguide graph the
electric field, i.e., wave function intensity can be measured
in the whole system, this is only possible at the vertices for
a microwave network. However, this part of the graph is the
most interesting one, because in the waveguides themselves
the wave propagation is sinusoidal.

As mentioned in the introduction, a new waveguide system,
constructed from a microwave photonic crystal with square
lattice structure, was studied numerically with COMSOL
Multiphysics [61]. A disadvantage of such systems is that the
number of modes that exist in the band gap is limited and

FIG. 19. Same as Fig. 18 with magnetized ferrites (black dots
and lines). They are compared to the RMT results [red (gray) his-
tograms] for the values of T1, T2, τabs, and ξ given in the panels
of Fig. 17.
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smaller than that of single transversal modes in a waveguide
graph of corresponding geometry.

The range relevant for the simulation of a quantum graph
coincides with that of a single transversal mode. We also per-
formed experiments in the frequency range above the cutoff
frequency for a second transversal mode. This region will be
further explored with focus on a recent work by Gnutzmann
and Smilansky [59].

ACKNOWLEDGMENTS

This work was supported by the National Natural Sci-
ence Foundation of China under Grants No. 11775100, No.
12047501, and No. 11961131009. W.Z. acknowledges finan-
cial support from the China Scholarship Council (Grant No.
CSC-202106180044). B.D. and W.Z. acknowledge financial
support from the Institute for Basic Science in Korea through
Project No. IBS-R024-D1.

[1] T. Kottos and U. Smilansky, Phys. Rev. Lett. 79, 4794 (1997).
[2] T. Kottos and U. Smilansky, Ann. Phys. 274, 76 (1999).
[3] L. Pauling, J. Chem. Phys. 4, 673 (1936).
[4] J. A. Sánchez-Gil, V. Freilikher, I. Yurkevich, and A. A.

Maradudin, Phys. Rev. Lett. 80, 948 (1998).
[5] V. Kostrykin and R. Schrader, J. Phys. A: Math. Gen. 32, 595

(1999).
[6] S. W. L. R. Mittra, Analytical Techniques in the Theory of

Guided Waves (Macmillan, New York, NY, 1971).
[7] D. Kowal, U. Sivan, O. Entin-Wohlman, and Y. Imry, Phys.

Rev. B 42, 9009 (1990).
[8] Y. Imry, Introduction to Mesoscopic Systems (Oxford Univer-

sity Press, Oxford, UK, 1996).
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Phys. Rev. E 89, 032911 (2014).

[55] M. Ławniczak, B. van Tiggelen, and L. Sirko, Phys. Rev. E
102, 052214 (2020).

[56] L. Chen, S. M. Anlage, and Y. V. Fyodorov, Phys. Rev. Lett.
127, 204101 (2021).

[57] O. Post, Spectral Analysis on Graph-like Spaces (Springer,
Berlin, 2012).

[58] P. Exner and H. Kovarik, Quantum Waveguides (Springer,
Berlin, 2015).

[59] S. Gnutzmann and U. Smilansky, J. Phys. A: Math. Theor. 55,
224016 (2022).

[60] B. Dietz, M. Miski-Oglu, T. Klaus, A. Richter, T. Skipa, and
M. Wunderle (unpublished).

[61] S. Ma, T. M. Antonsen, E. Ott, and S. M. Anlage,
arXiv:2112.05306 (2021).

[62] L. Kaplan, Phys. Rev. E 64, 036225 (2001).
[63] O. Hul, P. Šeba, and L. Sirko, Phys. Rev. E 79, 066204 (2009).
[64] S. Bittner, B. Dietz, M. Miski-Oglu, A. Richter, C. Ripp, E.

Sadurní, and W. P. Schleich, Phys. Rev. E 87, 042912 (2013).
[65] S. Albeverio, F. Haake, P. Kurasov, M. Kuś, and P. Šeba, J.
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