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Bounds for systems of coupled advection-diffusion equations
with application to the Poisson-Nernst-Plank equations
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We consider coupled systems of advection-diffusion equations with initial and boundary conditions and
determine conditions on the advection terms that allow us to obtain solutions that can be explicitly bounded above
and below using the initial and boundary conditions. Given the advection terms, using our methodology one can
easily check if such bounds can be obtained and then one can construct the necessary nonlinear transformation
to allow the bounds to be determined. We apply this technique to determine bounding quantities for a number of
examples. In particular, we show that the three-ion electroneutral Poisson-Nernst-Planck system of equations can
be transformed into a system, which allows for the use of our techniques and we determine the bounding
quantities. In addition, we determine the general form of advection terms that allow these techniques to be
applied and show that our method can be applied to a very wide class of advection-diffusion equations.
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I. INTRODUCTION

In this paper we will consider systems of partial differential
equations of the form

ut = uxx + [R(u, v)]x, (1)

vt = vxx + [Q(u, v)]x, (2)

where R(u, v) and Q(u, v) are at least once differentiable. We
will derive conditions on R(u, v) and Q(u, v) that allow us
to obtain solutions that can be explicitly bounded above and
below. We will focus on advection-diffusion systems in one
spatial dimension. However, the results presented here can be
readily extended to higher dimensions as discussed in the final
section.

Equations of this type are fundamental in describing
physical phenomena in which two species diffuse while ex-
periencing advection. A notable example is a model for the
densities of two different particle types in a bidisperse suspen-
sion. This model was originally derived by Esipov [1] and has
been subsequently studied by others [2–5]. Another important
example is the Poisson-Nernst-Planck (PNP) system of equa-
tions that describes the dynamics of electrical charges [6–14].
We will show that the electroneutral PNP equations can be
transformed into a format in which the theory we develop may
be applied.

Due to its simplicity and utility, the maximum principle has
become one of the most useful, well-known, and important
tools in analyzing elliptic and parabolic partial differential
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equations (PDEs) and is now regarded as an essential tool.
Maximum principles allow one to obtain important quan-
titative information about solutions of PDEs. In particular,
they can be used to derive bounds, to obtain results about
uniqueness, and provide necessary conditions for solvability.
Although the theory of maximum principles for a single PDE
is relatively well developed, there has been significantly less
work on determining such principles for systems of PDEs
such as (1) and (2). In this paper, we will show that a broad
class of equations of the form (1) and (2) admit a maximum
principle and we describe explicit techniques to determine the
quantities that obey the maximum principles.

In terms of applications, there are a number of reasons
that maximum principles are useful for equations used to
model physical phenomena. First, systems often require that
the quantities remain within certain bounds. For example,
if the PNP equations are used to model ion transport in
biological cells, then the healthy operation of the cell typ-
ically can only occur for ion concentrations within given
ranges [15,16]. If one can determine theoretical bounds for
the ranges of concentrations that can occur based on the
initial and boundary conditions, then one can derive explicit
criteria for maintaining safe concentration levels. Second, the
validity of models often depends on certain assumptions. For
example, the simplest form of the PNP equations assumes that
the ionic concentrations are sufficiently low that steric effects
are negligible [17]. Similarly, the equations for suspensions
often assume that the particles are sufficiently dilute [18,19].
In such cases, maximum principles can help us to be certain
that the solutions we obtain from the equations do not invali-
date the assumptions under which the equations were derived.
Third, when introducing new models, one may be unsure
about issues of uniqueness, possible singularities, or other
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fundamental problems that the model may exhibit. Maximum
principles can be extremely useful in determining important
theoretical properties of equations and thereby providing a
stronger foundation for new model equations [20].

As mentioned above, in this paper we will derive results
that are applicable to the PNP equations. The original moti-
vation for PNP was from solid-state electronics and so only
included two ion species. For the electroneutral two-ion case,
one can readily show that each ion species satisfies a max-
imum principle [21]. Recently biological applications have
become more important and the need to track more than two
ion types is critical to a number of phenomena [15,16]. In
contrast to the two-ion case, in the case of three-ion species
it is easy to see that each ion species does not satisfy a
maximum principle. In fact, the three-ion case is significantly
more complicated than the two-ion case and even for steady
states it is only recently that existence and uniqueness results
have been derived [22–24]. Here, in the fully time-dependent
three-ion case we will use our theory to derive quantities that
satisfy maximum principles and can hence bound the ionic
concentrations.

II. BOUNDS FOR SINGLE ADVECTION-DIFFUSION
EQUATIONS

We begin by reviewing the basic ideas that underlie
the maximum principle arguments for a single advection-
diffusion equation

ut = uxx + [S(u)]x, (3)

which can be rewritten in the form

ut = uxx + S′(u)ux. (4)

Here, we assume that S(u) is a differentiable function, and
that we have an initial condition, u0(x) = u(x, 0) that is twice
differentiable in space. We also assume a set of boundary
conditions prescribed at the edges of the spatial domain, x = 0
and x = �, that are differentiable in time.

In the case where S(u) = const. (the linear heat equation),
the maximum principle is well known (see, for example,
Ref. [20]). It states that on a bounded domain, u(x, t ) cannot
have a (local) maximum at any interior point in the space-
time domain. That is, in the space-time domain D = {0 � x �
�, 0 � t � T }, the maximum value of u(x, t ) will occur either
initially (t = 0) or on the sides (x = 0 or x = �). The proof is
relatively straightforward, although care must be taken with
the technical details to prove that the maximum cannot occur
at t = T (except if x = 0 or x = �, or if u ≡ const.).

A number of theoretical results have been derived that en-
sure existence and uniqueness for single advection-diffusion
equations [that is, when S(u) is not constant]. The case of
linear advection-diffusion equations has been widely studied
and the existence and uniqueness can be guaranteed as long
as the coefficients of the derivative terms are bounded. A nice
summary of these results can be found in the book by Protter
and Weinberger [20]; here we provide a brief overview and
refer the reader to the text for more detail.

Intuitively and simply, the maximum principle for
advection-diffusion equations may be understood in the fol-
lowing way. Suppose that a maximum occurs at a point (x0, t0)

that is in the interior of the space-time domain. Since this point
is a local maximum it must satisfy ut = ux = 0 and uxx � 0 at
(x0, t0). If uxx < 0, then evaluation of (4) at (x0, t0) leads to an
immediate contradiction since the left-hand side is zero while
the right-hand side is negative. Hence, a maximum cannot
occur in the interior of the space-time domain if uxx < 0
there. As a consequence, the maximum must occur on the
boundary of the space-time domain, where it is not necessary
that both ut and ux vanish. We note that in the nongeneric case
in which uxx = 0 the result also holds. The proof requires a
straightforward, but slightly more careful argument that we
will not provide here; see, for example, Ref. [20] for details.
The only situation that violates the maximum principle is
when u ≡ const., in which case the maximum is achieved ev-
erywhere. An associated minimum principle may be obtained
by setting u = −u.

Protter and Weinberger also argue that a similar theory can
be applied to a broad class of nonlinear advection-diffusion
equations as long as the coefficients of the derivative terms in
the equation remain bounded, that is, S′(u) must be bounded.
Pursuing this further, Guilding [25] considered a wide class
of nonlinear advection-diffusion equations and derived very
general conditions for existence and uniqueness results that
allow for the possibility that the coefficients of the derivative
terms oscillate wildly or are unbounded. We also note that it is
important to restrict ourselves to the case of finite time. This is
because, in the nonlinear case, the gradient of the solution can
tend to infinity as time tends to infinity even if the coefficients
of the derivative terms remain bounded [26]. Moreover, in the
case in which the coefficients of the derivative terms are not
bounded, blow up of the solution can occur in finite time [27].

III. MAXIMUM PRINCIPLE FOR SYSTEMS

The main idea explained in this section involves consider-
ing the equation satisfied by a general function of the fields
u and v in (1) and (2), assuming that the partial derivatives
of R(u, v) and Q(u, v) exist. We then consider which types of
functions satisfy maximum principles and what conditions on
the advection terms are required for this to be the case. We
begin by defining a general function W (U,V ). We will then
define w(x, t ) = W (u(x, t ), v(x, t )) where u(x, t ) and v(x, t )
are solutions of (1) and (2). A straightforward application of
the chain rule and eliminating terms involving time derivatives
of u and v using (1) and (2) gives

wt = WU ut + WV vt ,

= WU uxx + WV vxx + WU [RU ux + RV vx]

+ WV [QU ux + QV vx], (5)

where, in a slight abuse of notation, the advection terms in
Eqs. (1) and (2) are written as R(U,V ) and Q(U,V ). A
straightforward application of the chain rule also yields

wx = WU ux + WV vx, (6)

and

wxx = WU uxx + WV vxx + WUU u2
x + 2WUV uxvx + WVV v2

x .

(7)
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We next use (6) and (7) to eliminate vx from (5) to obtain

wt = wxx + 2
ux

W 2
V

[WUWVV − WV WUV ]wx

− WVV

W 2
V

w2
x + 1

WV
[WU RV + WV QV ]wx

− u2
x

W 2
V

[
W 2

V WUU − 2WUWV WUV + W 2
UWVV

]
+ ux

WV

[
WUWV RU − W 2

U RV + W 2
V QU − WUWV QV

]
. (8)

In what follows, we assume that ux and WVV are bounded,
and WV is bounded away from zero. In general, we will not
be able to apply a maximum principle argument to (8) for the
following reason. If we attempt to follow a similar argument
that we applied in Sec. II and assume that an internal maxi-
mum exists, then we must have wt = 0, wx = 0 and wxx � 0
at the maximum point. Substituting this into (8) does not lead
to a contradiction because we cannot control the last two terms
involving square brackets on the right-hand side of (8). This is
not surprising since, up to this point, we have not placed any
restrictions on the function W (U,V ). However, if we were
able to choose the function W (U,V ) such that both of these
square brackets are identically zero, then at an internal local
maximum with wt = 0, wx = 0, and wxx < 0 the left-hand
side of (8) would be zero and the right-hand side would be
negative. This would contradict the possibility of such a local
maximum existing. The nongeneric case in which a maximum
exists with wxx = 0 can be dealt with using similar techniques
to those mentioned in Sec. II.

Hence, if the square brackets on the right-hand side of (8)
are identically zero, then the resulting w = W (U,V ) would
satisfy a maximum principle. We hence need to choose
W (U,V ) such that

W 2
V WUU − 2WUWV WUV + W 2

UWVV = 0 (9)

and

WUWV RU − W 2
U RV + W 2

V QU − WUWV QV = 0. (10)

We note that (9) and (10) only depend on the function
W (U,V ) and do not depend on the particular form of the
solution u(x, t ) and v(x, t ).

IV. TEST IF ADVECTION TERMS ARE ADMISSIBLE
AND DETERMINATION OF W

In this section, we show that one can readily use (9)
and (10) to check if a given pair of functions R(U,V ) and
Q(U,V ) have the form such that we can obtain a function
W (U,V ) that obeys a maximum principle. From (10), we
immediately see that

−RV

(WU

WV

)2

+ (RU − QV )
(WU

WV

)
+ QU = 0. (11)

This is a quadratic in WU /WV that can be readily solved to
yield

WU

WV
= RU − QV ±

√
(RU − QV )2 + 4RV QU

2RV
. (12)

It remains to check if (12) is compatible with (9). At
first sight, this appears to be nontrivial. However, we can
rewrite (9) into the form

∂

∂U

[WU

WV

]
− WU

WV

∂

∂V

[WU

WV

]
= 0. (13)

Hence, the condition for compatibility is simply given by
substituting (12) into (13). If this condition is satisfied then
Eqs. (1) and (2) will have a quantity W (U,V ) that will satisfy
a maximum principle. We note that we want to apply maxi-
mum principle arguments to the quantity W and therefore we
require it to be real. Moreover, U and V are real-valued quan-
tities since they represent the solutions to (1) and (2). Hence,
we require the quantity WU /WV to be real. This implies that we
should require that the compatibility condition also ensures
that the expression in the square root in (12) is non-negative.
Hence, we must also require that (RU − QV )2 + 4RV QU � 0
for the ranges of U and V that we will encounter in the
problem.

If this condition is indeed satisfied, then one still needs to
obtain the function W (U,V ). At first sight, it seems as though
the most natural way to do this is by solving the first-order
hyperbolic equation given by (12). However, W (U,V ) must
also satisfy the compatibility condition (13). We note that (13)
is a first-order hyperbolic equation for the quantity WU /WV .
Applying the method of characteristics we obtain

d

dU

[WU

WV

]
= ∂

∂U

[WU

WV

]
+ dV

dU

∂

∂V

[WU

WV

]
. (14)

Comparing with (13) we find

d

dU

[WU

WV

]
= 0 on

dV

dU
= −WU

WV
. (15)

Integrating (15) we obtain

WU

WV
= p, (16)

where p is the constant of integration.
By comparing with (12), we see that

p = RU − QV ±
√

(RU − QV )2 + 4RV QU

2RV
. (17)

In general, when solving a hyperbolic equation of the
form (13) it is possible for shock formation to occur and for
the solution to become multivalued. However, in our case, the
solution we obtain in (16) must necessarily be single valued
because we are also requiring that it is compatible with (12).
Hence, any compatible solution must remain single valued
and hence characteristics cannot cross.

In the general case, the quantity on the right-hand side
of (17) will be a nontrivial function of U and V . Since this
function must be constant along characteristics, different val-
ues of p label different characteristic lines. However, there is a
special case in which the right-hand side of (17) is a constant
p0. In this case, the only relevant value of p for this problem
will be p0. We will deal with this special case separately later.

Equation (16) is also a first-order hyperbolic equation that
can be written in the form

WU − pWV = 0. (18)
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Applying the method of characteristics again we obtain

dW

dU
= ∂W

∂U
+ dV

dU

∂W

∂V
. (19)

Comparing with (18) we obtain

dW

dU
= 0 on

dV

dU
= −p. (20)

This implies that the function W must be constant along
characteristic lines given by dV

dU = −p. We note that these
characteristic lines are identical to the characteristic lines that
we obtained in (15). Therefore we can immediately rule out
the possibility of characteristics crossing and the solution
becoming multivalued. Since p is also constant along these
characteristic lines, we can conclude that W can be an arbi-
trary function of p,

W =Ŵ (p) = Ŵ

(
RU − QV ±

√
(RU − QV )2 + 4RV QU

2RV

)
,

(21)

where Ŵ is the arbitrary function. This is true as long as the
right-hand side of (17) is not a constant.

In the case in which the right-hand side of (17) is a constant
p = p0, we can directly solve (18) using characteristics to
obtain

W = Ŵ (V + p0U ). (22)

In general, the function Ŵ in (21) or (22) can be chosen
arbitrarily. However, it is most natural to choose the simplest
form of W so that a maximum principle can be obtained.
Therefore, in most cases, it will be most natural to choose Ŵ
to be the identity function.

In order to determine the bounds on W , one simply needs
to find the maximum and minimum values that W takes on
the union of the boundary and initial data. To illustrate this we
introduce some examples in the following sections.

A. Example 1: Three-ion electroneutral Poisson-Nernst-Planck
equations

The Nernst-Planck equations that govern the dynamics of
the ionic concentrations for three-ion types are given by

cit = [cix + ziciφx]x for i = 1, 2, 3, (23)

where c1(x, t ), c2(x, t ), and c3(x, t ) are the ionic concentra-
tions, z1, z2, and z3 are the valences of the ions and φ(x, t ) is
the electric field. The equation of electroneutrality is given by

z1c1 + z2c2 + z3c3 = 0. (24)

We will restrict our attention to the case of electroneutral
boundary conditions. The quantities c1(x, t ), c2(x, t ), and
c3(x, t ) represent concentrations and so are necessarily non-
negative.

Before continuing, we note that in the case of two-ionic
species, it has been shown that both of the ionic species indi-
vidually satisfy both maximum and minimum principles [21].
However, the three-ion case is considerably more compli-
cated. In fact it is straightforward to show that each individual
ionic species does not satisfy maximum and minimum prin-
ciples. For example, one can choose the boundary and initial

conditions for c1 to be the same constant everywhere and the
boundary and initial conditions for the other two ionic species
not to be constant everywhere. If the electric field difference
imposed across the boundaries is not always zero then, as
time evolves, c1 will deviate from the constant value that we
imposed initially and at the boundaries. This clearly illustrates
that c1 does not satisfy maximum and minimum principles
and naturally raises the question of whether it is possible to
find alternative bounds. However, we cannot directly use the
theory developed in this paper because the three-ion elec-
troneutral PNP equations (23) and (24) are clearly not in the
form of (1) and (2). Nevertheless, we will show that after some
manipulation we can still apply our theory. We begin by mul-
tiplying (23) by zi, summing over i = 1, 2, 3 and using (24) to
obtain [(

z2
1c1 + z2

2c2 + z2
3c3

)
φx

]
x = 0. (25)

Integrating (25) over x we obtain

φx = g(t )

z2
1c1 + z2

2c2 + z2
3c3

, (26)

where g(t ) is a function that must typically be chosen to satisfy
the boundary conditions on the electric field. We can now
use (24) to eliminate c3 from (26), and then eliminate φx from
the first two equations of (23) to obtain

c1t = c1xx +
[

g(t )z1c1

z1(z1 − z3)c1 + z2(z2 − z3)c2

]
x

c2t = c2xx +
[

g(t )z2c2

z1(z1 − z3)c1 + z2(z2 − z3)c2

]
x

These equations are in the same format as (1) and (2) with

R(c1, c2) = g(t )z1c1

z1(z1 − z3)c1 + z2(z2 − z3)c2
(27)

Q(c1, c2) = g(t )z2c2

z1(z1 − z3)c1 + z2(z2 − z3)c2
. (28)

Next we look for a function W ≡ W (C1,C2) that satisfies
a maximum principle. Substituting (27) and (28) into (12) we
obtain

WC1

WC2

= −C2

C1
or

z1 − z3

z2 − z3
.

It is straightforward to check that both of these solutions
satisfy the compatibility condition (13). Hence, w1 and w2

will satisfy maximum principles if

w1 = ŵ1

(c2

c1

)
and w2 = ŵ2[(z1 − z3)c1 + (z2 − z3)c2]

where ŵ1 and ŵ2 are arbitrary functions. To obtain the sim-
plest possible bounds, we choose the identity functions for ŵ1

and ŵ2 so that

w1 = c2

c1
and w2 = (z1 − z3)c1 + (z2 − z3)c2. (29)

To confirm that these two quantities do indeed satisfy maxi-
mum principles one can simply use the transformation (29) to
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eliminate c1 and c2 in favour of w1 and w2 to obtain

w1t = w1xx + 2

[
w1x

w1
+ (z2 − z3)w2x

(z1 − z3) + (z2 − z3)w1

]
w1x

+ g(t )(z2 − z1w1)

[
w1

z1(z1 − z3) + z2(z2 − z3)w1

]
x

w2t = w2xx.

In order for the various terms in the above equations to remain
bounded we require that w1 is bounded and that both w1 and
(z1 − z3) + (z2 − z3)w1 are bounded away from zero. In terms
of the original variables these conditions will be satisfied if c1,
c2, and c3 are bounded away from zero. We note that z1(z1 −
z3) + z2(z2 − z3)w1 can be rewritten in the form z2

1c1 + z2
2c2 +

z2
3c3 and so it must necessarily be bounded away from zero if

c1, c2, and c3 are bounded away from zero.
The equation for w2 is simply a diffusion equation and

therefore clearly satisfies a maximum principle. In fact, this
equation could have been obtained directly by summing (23)
over i = 1, 2, 3 and using (24). That is, upon use of (24), w2

is simply the sum of all three-ion concentrations, weighted by
the valence of ion three. On the other hand, on the right-hand
side of the equation for w1, the two terms involving square
brackets will be zero if w1x is zero. Hence we can directly
apply our theory and so the equation for w1 will also satisfy
maximum and minimum principles. This property is not at all
obvious from the form of (23) and (24). Note that w1 is the
ratio of concentrations of ions two and one. Since both w1 and
w2 are quantities with physical meaning, it follows that the
maximum principle could have direct physical applications.

B. Example 2: Coupled Burgers’ equations

We next consider the system derived by Esipov that models
bidisperse suspensions [1]. Mathematical aspects of this sys-
tem have been widely studied in the literature. For example,
the dynamics of this system have been studied in Ref. [2] and
the exact solutions were considered in Refs. [3–5]. After some
simple transformations, the convection terms in the model of
Esipov [1] take the form

R(u, v) = −u2 + auv and Q(u, v) = −v2 + buv.

Substituting these expressions into (12) we obtain

WU

WV
= 1

2aU
[(a + 2)V − (b + 2)U

±
√

((a + 2)V − (b + 2)U )2 + 4abUV ]. (30)

In the general case, these expressions do not satisfy the com-
patibility condition (13). However, in the special case in which
a = b = −1, the compatibility conditions are both satisfied.
This special case has actually been widely studied in literature
and a number of results have been obtained. In particular,
Soliman [5] carefully analyzed this case and obtained exact
solutions. If a = b = −1, then (30) becomes

WU

WV
= 1 or − V

U
.

Hence, we can determine two quantities w1 and w2 that satisfy
maximum principles. These are given by

w1 = v

u
and w2 = u + v,

where we have chosen the identity functions for ŵ1 and ŵ2.
The equations for w1 and w2 are then given by

w1t = w1xx +
[
2
w2x

w2
− 2

w1x

1 + w1
− w2

]
w1x

w2t = w2xx − 2w2w2x.

We note that u and v represent densities, which are necessarily
non-negative. So, as long as u is bounded away from zero,
w1 and w2 will remain bounded and w2 and 1 + w1will be
bounded away from zero. Hence, the equations clearly satisfy
maximum equalities for w1 and w2.

C. Example 3

We next consider the nonlinear coupled system with con-
vection terms given by

R(u, v) = uv and Q(u, v) = u + v2.

Substituting these expressions into (12) we obtain

WU

WV
= −V ± √

V 2 + 4U

2U
.

It is straightforward to verify that these expressions satisfy the
compatibility condition (13). Hence the quantities

w1 = v + √
v2 + 4u

u
and w2 = v − √

v2 + 4u

u
will satisfy maximum principles. Here we have chosen ŵ1 and
ŵ2 as twice the identity function. The equations for w1 and w2

are then given by

w1t = w1xx − 2

[
w1x

w1
+ w1w2x

w2(w1 − w2)
+ (w1 + 2w2)

w1w2

]
w1x

w2t = w2xx − 2

[
w2x

w2
+ w2w1x

w1(w2 − w1)
+ (w2 + 2w1)

w1w2

]
w2x.

In this case, we also need to impose initial and boundary
conditions to ensure that the terms in the square brackets
in the above equations remain bounded. First, we need to
assume that u is bounded away from zero to ensure that both
w1 and w2 remain bounded. Moreover, we will assume that
u > 0. In this case, w1 will be positive and bounded away
from zero and w2 will be negative and bounded away from
zero. Hence, w1 − w2 will also be bounded away from zero.
Therefore, all of the terms in the square brackets in the above
two equations will remain bounded. If the boundary and initial
conditions satisfy all of these criteria then the system will
satisfy maximum and minimum principles.

V. GENERAL FORM OF ADMISSIBLE ADVECTION
TERMS

In this section we obtain the general solution to (9) and (10)
to derive the most general form of the types of advection
terms R and Q for which our approach allows one to derive
maximum principles.

044208-5



JONATHAN J. WYLIE AND B. H. BRADSHAW-HAJEK PHYSICAL REVIEW E 106, 044208 (2022)

As mentioned above we can use the method of characteris-
tics on (13) to obtain

WU

WV
= p on lines defined by

dV

dU
= −WU

WV
. (31)

This can be solved to give

V = −p(ξ )U + ξ, (32)

where ξ is the value of V at U = 0. Here,

p(ξ ) = WU

WV
, (33)

which is an arbitrary function that is constant along character-
istics and hence can be a function of ξ . In fact, it will prove
to be convenient to allow arbitrary translations in U and V
in (32) so that we obtain

V − V0 = −p(ξ )(U − U0) + ξ, (34)

where V0 and U0 are arbitrary constants.
We further note that (33) can be solved along the same

characteristics defined in (31) to obtain

W (U,V ) = W0(ξ ), (35)

where W0 is an arbitrary function.
We now note that (10) can be written in the form

WU

WV

[
RU − WU

WV
RV

]
+ QU − WU

WV
QV = 0. (36)

This can also be solved along the same characteristics defined
in (31) to obtain

p(ξ )R(U,V ) + Q(U,V ) = F (ξ ), (37)

where F (ξ ) is an arbitrary function of ξ .
Equations (34) and (37) define the relationship between

R(U,V ) and Q(U,V ) that is required for the techniques de-
scribed in this paper to work. Therefore, given a function
R(U,V ) one has the freedom to choose two arbitrary functions
p(ξ ) and F (ξ ) (and the constants U0 and V0) and obtain the set
of possible functions Q(U,V ).

Here we give two simple examples. Choosing the con-
stant function p(ξ ) ≡ k and U0 = V0 = 0, we can use (34)
to obtain ξ = V + kU . In this case we obtain the condition
Q(U,V ) = F (V + kU ) − kR(U,V ) where F and R are ar-
bitrary functions. In fact, if this is satisfied one could have
immediately noticed that one can take a linear combination
of (9) and (10) and see that the quantity V + kU satisfies a
maximum principle.

Alternatively, we can choose p(ξ ) = −ξ , U0 = 1 − B, and
V0 = −A and use (34) to obtain ξ = (V + A)/(U + B), where
A and B are arbitrary constants. In this case, we obtain the
condition

Q(U,V ) = F
(V + A

U + B

)
+

(V + A

U + B

)
R(U,V ).

In the above expression, F and R can be arbitrary functions.
In this case the quantity (V + A)/(U + B) will satisfy a max-
imum principle.

VI. SUMMARY AND CONCLUSIONS

In many mathematical models, there is a requirement that
the physical quantities being described must stay within cer-
tain bounds. For example, there may be a requirement that
concentrations remain positive, or that particle densities re-
main below certain limits. As a consequence of these types of
requirements, it is important to understand the conditions that
must be satisfied by the model equations in order for specific
quantities to satisfy these conditions.

In this paper, we have considered a general system of
two advection-diffusion equations and determined conditions
on the advection terms that ensure that specific quantities
remain within certain bounds. Surprisingly we have shown
that this only requires that a function of the original variables,
W (u(x, t ), v(x, t )), can be found that satisfies Eq. (12) and the
compatibility condition (13). The simplicity of these condi-
tions is unexpected given that we have considered an arbitrary
system of advection-diffusion equations. That is, despite the
generality and possible nonlinearity of the advection terms,
we can still find specific quantities that remain within explicit
bounds. Given that this condition is satisfied, we also explic-
itly show how to construct the function W (u, v) and hence find
the explicit bounds.

In addition, we have provided some specific examples
where we find the combinations (that is, w1 and w2) of the
original variables that satisfy a maximum principle. These ex-
amples include an analysis of the three-ion electroneutral PNP
equations applicable for modeling ion transport in biological
cells where it is essential for healthy cell function that ion
concentrations remain within given ranges. A second example
shows that in the case of the coupled Burgers’ equations, the
compatibility condition is not in general satisfied. However,
there is a particular choice of parameter values for which two
simple combinations of the original variables satisfy maxi-
mum (and minimum) principles.

In Sec. V, we have found a relationship between the two
advection terms, R(u, v) and Q(u, v), that ensures that the
techniques described in this paper can be used. Given an
arbitrary R(u, v), a compatible Q(u, v) can be found using
Eqs. (34) and (37). This still allows for a broad class of
equations since, even once R(u, v) has been fixed, there is
still the freedom to choose two arbitrary functions of a single
variable to construct Q(u, v).

The theory developed here can be extended to higher
dimensions by considering the advection terms as vector func-
tions, R(u, v) and Q(u, v), so that

ut = ∇2u + ∇ · R, vt = ∇2v + ∇ · Q.

In this case one can readily show that Eq. (9) still holds, while
Eq. (10) is replaced by its vector equivalent given by

WUWV RU − W 2
U RV + W 2

V QU − WUWV QV = 0.

ACKNOWLEDGMENTS

J.J.W. was supported by the Research Grants Council of
Hong Kong Special Administrative Region, China (CityU
11302421).

044208-6



BOUNDS FOR SYSTEMS OF COUPLED … PHYSICAL REVIEW E 106, 044208 (2022)

[1] S. E. Esipov, Coupled Burgers equations: A model of polydis-
persive sedimentation, Phys. Rev. E 52, 3711 (1995).

[2] J. Nee and J. Duan, Limit set of trajectories of the coupled
viscous Burgers’ equation, Appl. Math. Lett. 11, 57 (1998).

[3] M. A. Abdou and A. A. Soliman, Variational iteration method
for solving Burgers and coupled Burger’s equations, J. Comput.
Appl. Math. 181, 245 (2005).

[4] M. Dehghan, A. Hamidi, and M. Shakourifar, The solution
of coupled Burgers’ equations using Adomian-Pade technique,
Appl. Math. Comp. 189, 1034 (2007).

[5] A. A. Soliman, The modified extended tanh-function method
for solving burgers-type equations, Physica A 361, 394 (2006).

[6] M. Burger, R. S. Eisenberg, and H. W. Engl, Inverse problems
related to ion channel selectivity, SIAM J. Appl. Math. 67, 960
(2007).

[7] D. P. Chen and R. S. Eisenberg, Charges, currents and potentials
in ionic channels of one conformation, Biophys. J. 64, 1405
(1993).

[8] R. D. Coalson, Discrete-state model of coupled ion permeation
and fast gating in ClC chloride channels, J. Phys. A: Math.
Theor. 41, 115001 (2008).

[9] R. S. Eisenberg, Computing the field in proteins and channels,
J. Membrane Biol. 150, 1 (1996).

[10] R. S. Eisenberg, Crowded Charges in Ion Channels, Adv. Chem.
Phys. 148, 77 (2011).

[11] D. Gillespie and R. S. Eisenberg, Modifed Donnan potentials
for ion transport through biological ion channels, Phys. Rev. E
63, 061902 (2001).

[12] D. Gillespie and R. S. Eisenberg, Physical descriptions of exper-
imental selectivity measurements in ion channels, Eur. Biophys.
J. 31, 454 (2002).

[13] V. Barcilon, Ion flow through narrow membrane channels. I,
SIAM J. Appl. Math. 52, 1391 (1992).

[14] V. Barcilon, D.-P. Chen, and R. S. Eisenberg, Ion flow through
narrow membrane channels. II, SIAM J. Appl. Math. 52, 1405
(1992).

[15] Z. Song, X. Cao, and H. Huang, Electroneutral models for
dynamic Poisson-Nernst- Planck systems, Phys. Rev. E 97,
012411 (2018).

[16] Z. Song, X. Cao, and H. Huang, Electro-neutral models for
a multi-dimensional dynamic Poisson-Nernst-Planck system,
Phys. Rev. E 98, 032404 (2018).

[17] T.-L. Horng, T.-C. Lin, C. Liu, and B. Eisenberg, PNP Equa-
tions with Steric Effects: A Model of Ion Flow through
Channels, J. Phys. Chem. B 116, 11422 (2012).

[18] J. J. Wylie, D. L. Koch, and A. J. C. Ladd, Rheology of sus-
pensions with high particle inertia and moderate fluid inertia,
J. Fluid Mech. 480, 95 (2003).

[19] J. J. Wylie and D. L. Koch, Particle clustering due to hydrody-
namic interactions, Phys. Fluids 12, 964 (2000).

[20] M. H. Protter and H. F. Weinberger, Maximum Principles in
Differential Equations (Springer, Berlin, 1984).

[21] J.-H. Park and J. W. Jerome, Qualitative properties of steady-
state Poisson-Nernst-Planck systems: Mathematical study,
SIAM J. Appl. Math. 57, 609 (1997).

[22] W. Liu, One-dimensional steady-state Poisson-Nernst-Planck
systems for ion channels with multiple ion species, J. Diff. Eqs.
246, 428 (2009).

[23] X.-S. Wang, D. He, J. Wylie, and H. Huang, Singular perturba-
tion solutions of steady-state Poisson-Nernst-Planck systems,
Phys. Rev. E 89, 022722 (2014).

[24] W. Liu and H. Xu, A complete analysis of a classical Poisson-
Nernst-Planck model for ionic flow, J. Diff. Eqs. 258, 1192
(2015).

[25] B. H. Guilding, Improved theory for a nonlinear degenerate
parabolic equation, Annali della Scuola Normale Superiore di
Pisa-Classe di Scienze 16, 165 (1989).

[26] G. Reyes, Asymptotic behaviour in convection-diffusion pro-
cesses, Nonl. Anal.: Theor. Meth. App. 37, 301 (1999).

[27] N. D. Alikakos, P. W. Bates, and C. P. Grant, Blow up for a
diffusion-advection equation, Proc. Roy. Soc. Edin. A 113, 181
(1989).

044208-7

https://doi.org/10.1103/PhysRevE.52.3711
https://doi.org/10.1016/S0893-9659(97)00133-X
https://doi.org/10.1016/j.cam.2004.11.032
https://doi.org/10.1016/j.amc.2006.11.179
https://doi.org/10.1016/j.physa.2005.07.008
https://doi.org/10.1137/060664689
https://doi.org/10.1016/S0006-3495(93)81507-8
https://doi.org/10.1088/1751-8113/41/11/115001
https://doi.org/10.1007/s002329900026
https://doi.org/10.1103/PhysRevE.63.061902
https://doi.org/10.1007/s00249-002-0239-x
https://doi.org/10.1137/0152080
https://doi.org/10.1137/0152081
https://doi.org/10.1103/PhysRevE.97.012411
https://doi.org/10.1103/PhysRevE.98.032404
https://doi.org/10.1021/jp305273n
https://doi.org/10.1017/S0022112002003531
https://doi.org/10.1063/1.870351
https://doi.org/10.1137/S0036139995279809
https://doi.org/10.1016/j.jde.2008.09.010
https://doi.org/10.1103/PhysRevE.89.022722
https://doi.org/10.1016/j.jde.2014.10.015
https://doi.org/10.1016/S0362-546X(98)00048-0
https://doi.org/10.1017/S0308210500024057

