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Stochastic synchronization induced by noise
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Random perturbations applied in tandem to an ensemble of oscillating objects can synchronize their motion.
We study multiple copies of an arbitrary dynamical system in a stable limit cycle, described via a standard phase
reduction picture. The copies differ only in their arbitrary phases φ. Weak, randomly timed external impulses
applied to all the copies can synchronize these phases over time. Beyond a threshold strength there is no such
convergence to a common phase. Instead, the synchronization becomes erratic: successive impulses produce
stochastic fluctuations in the phase distribution q(φ), ranging from near-perfect to near-random synchronization.
Here we show that the sampled entropies of these phase distributions themselves form a steady-state ensemble,
whose average can be made arbitrarily negative by tuning the impulse strength. A random-walk description of
the entropy’s evolution accounts for the observed exponential distribution of entropies and for the stochastic
synchronization phenomenon.
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I. INTRODUCTION

Many kinds of signal transmission from cell phone and
GPS signaling to magnetic resonance imaging [1] depend
on knowledge of the phase of a remote oscillator. Because
of this, it is valuable to find minimal ways to control such
phases. Remarkably, one can gain useful control by perturbing
two oscillators with random external forcing. In particular,
an ensemble of identical oscillators can be made to synchro-
nize to a common phase by exposing them all to the same
random forcing [2–7]. Behavior consistent with this mecha-
nism has been reported in cortical neurons [8] and electronic
circuits [9]. Here we examine a useful generalization of this
phenomenon in which the resulting synchronization is strong
but stochastic; the ensemble fluctuates between strong and
weak synchronization.

We numerically analyzed this stochastic synchronization
by repeatedly disturbing the state of the oscillators using
a specific common impulsive force at random times, as in
Ref. [9]. The oscillators are at different positions φ along
their orbits at the moment of the impulse and thus undergo
different responses. Nevertheless, after a transient, each os-
cillator returns to the limit-cycle orbit at some new position
ψ defined below. This ψ depends on the orbit position φ at
which the impulse occurred; that is, ψ is a function of φ. For a
given oscillator and a given impulsive force, this “phase map”
ψ (φ) is a fixed function.1 This function suffices to determine
the outcome after many impulses. Many synchronization phe-
nomena are amenable to this phase map or “phase-reduction”
analysis. One experimentally important type of forcing is ran-
domly timed impulses with a common phase map, discussed
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1This phase map is denoted F (θ ) in Ref. [9].

in Sec II. An initially random set of orbit positions φ thus
repeatedly transforms into a new set. Synchronization then
amounts to progressive bunching of these positions as the
iteration proceeds. By contrast, the stochastic synchronization
treated here is more ambiguous.

Figure 1 illustrates the distinctive behavior of stochastic
synchronization in an ensemble of 300 oscillators subjected
to a sequence of 380 randomly timed impulses, as described
above. Each numbered circle depicts a set of φ’s at some
iteration. Specifically, the light-colored (red) dots around each
circle depict a sampling of the probability densities q(φ)
inferred from the spacings of adjacent φ’s. Sharp spikes in-
dicate phase angles having high probability density. Thus,
synchronization of the ensemble would appear as a single
tall spike at each iteration, showing virtually the same phase
angle for all oscillators. However, in Fig. 1 there is no evident
convergence to an ordered, synchronized state. Instead, the
spikes continually sharpen and dissipate. Our aim in this paper
is to quantify this ongoing stochastic behavior of the ensemble
of phases.

This behavior is distinct from the variety of synchroniza-
tion phenomena reported in the literature. It is quite distinct
from the familiar synchronization caused by mutual interac-
tion of the oscillators, such as mechanical clocks, fireflies,
or applause [10–12]. Synchronization without such interac-
tion has been studied extensively by phase-reduction methods
[5,7]. Noisy perturbations such as weak Gaussian white noise
or weak random telegraph noise was shown to lead to com-
plete synchronization. The breakdown of this synchronization
for stronger perturbations has been characterized [6,10,13].
Our study below uses our methods previously developed to
study a colloidal realization of this transition [14–16].

In Sec. II to follow we provide a physical context for the
random-timed impulses and their statistical description. There
we formally define our main analytical tools: the Shannon
entropy H and average Lyapunov exponent �. In Sec. III
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FIG. 1. Polar plots of local density of phase angles during itera-
tion using a cubic phase map on the circle as described in Sec. III.
The phase map used has the form of Eq. (3) with A = 9.392 and
� = 0.445, for which the Lyapunov exponent � � +0.141 (Sec. II).
The initial ensemble {φ1, ..., φ300}0 consists of 300 positions sampled
randomly in an interval of width 0.00025 at the upper left side of
the circle. For each sample α, we denote the separation between φα

and its successor around the circle as �φα . We plot the log of the
sampled density log[1/(�φα )] the midpoint position of the pair on
the circle as a light-colored (red) dot. The �φ’s are measured relative
to that of uniformly spaced φ’s. Circle radius corresponds to this
uniform spacing. (a) Iterations 1, 21, 41,..., 381 are shown by rows
left to right. Radial spikes show regions of closely spaced angles,
contributing dominantly to the negative entropy −H [Eq. (4)]. For
comparison, dark-colored (blue) dots show analogous φ’s sampled
from a uniform distribution whose width is chosen to give the same
entropy as the phase-mapped φ’s. For definiteness, these distributions
are centered at the upper left of the circle, like the initial distribution.
(b) Detail of iterations 201–205, showing progressive evolution over
individual iterations.

we describe the simulations that produced Fig. 1 in terms
of H and �, noting that the distribution of H values is a
broad exponential. In Sec. IV we give an argument to account
for this observed behavior of H and predict how this distri-
bution depends on �. Last, in Sec. V, we relate stochastic
synchronization to similar known phenomena and suggest
implications for future work.

II. RANDOM-TIME IMPULSES AND CYCLIC MOTION

A. Phase coordinates

Our study considers physical systems that spontaneously
repeat a periodic cycle, such as a dripping faucet, a cooling
iron, a beating heart, or a firing neuron [8]. Such a system
executes a periodic orbit in its dynamical coordinate space in
time with some period T . In stable oscillators such as these,
a moderate transient disturbance may move its position away
from the periodic orbit, but it eventually returns to the orbit.
We define a phase variable φ by first identifying a convenient

starting point on the orbit designated φ = 0. The unperturbed
system advances from this point with time t and returns to
the φ = 0 point in one period T . We then label the orbit
point reached at time t by the “isochronous” phase coordinate
φ(t ) ≡ t/T . In a random assembly of such oscillators all times
t are equally represented. Therefore the probability distribu-
tion of φ, denoted q(φ) is uniform in φ; q(φ) = 1.

We may determine the probability q(φ) by tracking a hy-
pothetical ensemble of many identical copies of the oscillator
labeled by α. If the resulting system is ergodic, then this
same q(φ) describes a single oscillator over long times. Syn-
chronization over time corresponds to a long-time bunching
of the various φα toward a common value, which generally
varies in time. The corresponding q(φ) is sharply peaked.
The unperturbed motion simply advances all φ’s around the
phase circle at a uniform rate, leaving their relative positions
unchanged.

B. Lyapunov exponent and entropy

As noted above, the effect of a momentary disturbance
on such an ensemble can be summarized by a “phase map”
ψ (φ) giving the relative phase long after the disturbance,
depending on the phase φ where the impulse occurred [9].
Specifically, ψ is the final phase relative to that of a copy
whose φ(t ) = 0. It is convenient to designate the point φ = 0
to be a fixed point where ψ (φ) = φ. Then a phase map has
the general appearance of Fig. 4, passing through the origin
and through the (equivalent) point (1, 1). Weak disturbances
necessarily have phase maps lying close to the ψ = φ line.
No φ is changed very much by the impulse, and any bunching
or spreading effect is weak. The amount of spreading on a
small interval of points near a given φ is proportional to the
absolute derivative |ψ ′(φ)| there: the corresponding interval
of ψ is widened by a factor |ψ ′(φ)|. It is useful to define λ(φ)
to be the log of this widening factor. The average of this λ

over all φ is denoted � and is called the average Lyapunov
exponent [9][15]2

�[ψ (φ)] ≡
∫

dφ [λ(φ)] =
∫

dφ

[
log

∣∣∣∣dψ

dφ

∣∣∣∣
]
. (1)

Weak impulses in general have |ψ ′| near 1 and thus � values
near zero. The synchronization properties of a phase map
depend strongly on its � as we explain below.

Further iterations of the same type result in the same map-
ping being applied repeatedly to the ensemble. The result of
such iteration is well documented in textbooks on dynamical
systems. The effects depend on delicate details such as the
precise amount of time elapsed between impulses. However,
the effects on disorder are more robust when the amount
of time between impulses is random, so that a given oscil-
lator advances an arbitrary fraction of a cycle at the next

2Our λ(φ) and � denote quantities determined completely by the
map function ψ (φ). This differs from the dynamical Lyapunov ex-
ponents defined by many authors as quantities observed during a
particular noise sample. Dynamical Lyapunov exponents generally
vary with time and with the noise as well as depending on the map
function.
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impulse. We term this process “random-shift iteration.” One
may express this operation as an alternating iteration of two
maps. The first is the ψ (φ) described above—identical for
each iteration. The second is a simple shift map ψ̃ (φ) ≡
φ + βi, the same for all N oscillators, but random for each
iteration i. Thus, the random shifts βi produce a form of
noise common to the oscillators. This random shift limit
corresponds to Poisson-distributed time between pulses in
the limit when their average rate goes to 0, as discussed in
Ref. [9].

To quantify the growth of order or disorder among
the phase angles, we adopt the entropy measure that gives
the thermodynamic work needed to create the order [17]. The
entropy H of a probability measure q(φ) is defined [18] as

H[q(φ)] ≡ −
∫

dφ q(φ) log q(φ). (2)

This H has a maximum value of 0 for uniform q, q(φ) = 1,
with complete disorder. Conversely, strongly bunched distri-
butions have large, negative H . One may estimate the entropy
of an ensemble using a random sampling of φ values from that
ensemble, as detailed below.

C. Regimes of synchronization

Reference [15] showed that for random-time iteration of
a phase map, the average change of entropy 〈�H〉 in an
iteration is bounded above by the Lyapunov exponent � of
the map. For strongly ordered ensembles with large negative
H , these authors found that 〈�H〉 in an iteration approaches
its upper bound �. The study of Ref. [15] aimed to test these
predictions numerically using realistic phase maps calculated
for a specific soft-matter oscillator and a specific type of
forcing, ranging from weak to strong. As the amplitude of
the forcing increased from zero, the � decreased from zero,
thus driving H to arbitrarily negative values. Further increase
in the forcing gave a minimum �, where H decreased most
rapidly. Still further increase in the forcing led to increas-
ing � and slower decrease in H . Ultimately � increased
to positive values. For small positive � initial states with
small H initially showed the predicted positive 〈�H〉. But
after many iterations the ensemble reached a state of con-
stant average H , denoted 〈H〉∞. The authors noticed that this
final 〈H〉 could be made much smaller than the maximum
possible H by making � positive and close to zero. This is
the regime pictured in Fig. 1 that is the focus of the present
work.

III. SIMULATIONS

A. Methods

Our simulations aim to explore the transition between
small negative �, where 〈H〉 decreases indefinitely, and small
positive �, where 〈H〉 is nonzero but seemingly arbitrarily
small. We sought to verify that 〈H〉∞ could be arbitrarily small
yet nonzero. We sought to determine the functional depen-
dence of 〈H〉 on �. And we sought to explore the generality
of this behavior for various map functions.

Since we aimed to explore general behavior, we used
generic smooth phase map functions rather than the ex-

perimentally motivated maps of Ref. [15]. Accordingly, we
studied a qualitatively similar cubic function of the form

ψ (φ) ≡ φ + Aφ(1 − φ)(� − φ). (3)

Here the amplitude parameter A regulates the distance be-
tween φ and ψ , and φ = � is a fixed point where ψ (φ) = φ.
By increasing the amplitude A one could increase the value of
�. All ψ’s differing by an integer denote the same point on
the circle.

Given this map function, we formally describe the step-
by-step procedure for carrying out our numerical simulations.
This procedure allows us to judge the dependence on amount
of iteration, and its variation with the sequence of random
inputs βi.

(1) Ensemble initialization: An ensemble of N oscillator
phases {φα}0 where α = 1, 2, . . . N is drawn from a uniform
probability density q0(φ) supported on the interval [φ0, φ0 +
w) on the unit circle of width w. The left endpoint φ0 of this
interval is randomly selected.

(2) Ensemble iteration: Each phase φα in the ensemble
is mapped to an image phase under the phase map ψ (φ)
[Eq. (3)]. A random shift β0 is applied to all phase in the
ensemble to obtain φα

1 ≡ ψ (φα
0 ) + β0, with a corresponding

probability density q1(φ).
(3) Entropy estimation: The entropy H is estimated from

the discrete collection of phases {φα} [19]. When the number
of sampled positions N is large, this estimate can be written

H[{φα}] � 1

N

N∑
α=1

log δα + log [2N − 2] + γ , (4)

where δα is the nearest-neighbor distance for phases φα and
γ � 0.577 is the Euler-Mascheroni constant.

(4) Repeated iteration: Steps 2 and 3 are repeated for n
iterations, with a random sequence of shifts βi, to generate a
single sequence of {φα}i and corresponding entropies Hi, for
i = 1,2,...,n. We typically choose n = 200.

(5) Repeated sequence: Step 4 is repeated for k randomly
generated sets of n iterations, to obtain k independent trajec-
tories. We typically choose k=100.

(6) Averaging over sequences: The entropy at each itera-
tion averaged over all k sets of iterations gives a trajectory for
the average entropy 〈H〉i as a function of iteration i.

B. Results

In agreement with Ref. [15] we observe three types of
characteristic behavior for iterated phase maps ψ (φ) with
different �. We plot examples of these distinct behaviors in
Fig. 2.

The first class of behavior is for negative �, as shown in
Fig. 2(a). Here the average entropy decreases to arbitrarily
small values over time, so that the system becomes syn-
chronized. The 〈H〉 decreases at a rate consistent with �,
as explained, e.g., in Ref. [15]. Here, we note the entropy
floor in Figs. 2(a) and 2(b) just below H = −30 instead of
an indefinite decay toward −∞. Such a floor is an artifact of
our simulation implementation. When two neighboring phase
angles are indistinguishable up to machine precision, we man-
ually separate them by 1 × 10−15 to maintain finite values in
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FIG. 2. Entropy H vs iteration number i for randomly shifted
iterated circle maps as described in Sec. III A. Panels (a)–(c) were
made from maps of the form of Eq. (3) with three different values
of Lyapunov exponent � as indicated. Each color tracks the entropy
change over a single trajectory. Black trajectory shows the entropy at
each iteration averaged over all colored trajectories. Straight colored
line at left indicates slope �. Concentration of points for H � −33
is due to limited machine precision, as described in the text.

FIG. 3. Steady-state entropy vs average Lyapunov exponent.
Dark color (blue) dots plot simulated data for a selection of iterated
maps with near continuous range of �. Light color (red) curve is a fit
to the form 〈H〉∞ = a/� anticipated in Sec. IV with a = 0.77. Data
for small � was subject to distortion in the positive direction owing
to our treatment of small separations of the {φα} Sec. III B.

the the sum of Eq. (4).3 The floor is reached when all phase
angles in the ensemble are indistinguishable. These numerical
limitations produced significant distortions in our measured
〈H〉∞ for � � 0.14 (Fig. 3).

The second class of behavior is for large positive �, as
shown in Fig. 2(c). In this case, the average entropy ap-
proaches the maximally disordered state with 〈H〉 � 0. Such
behavior is also well understood [15,16].

The third class of behavior exists in a narrow regime be-
tween the previous two classes, where � is small, but still
positive, so that there is an initial upward slope in 〈H〉, as
shown in Fig. 2(b). The average change in entropy initially
follows the upper bound � but eventually reaches a steady
state. The small asymptotic value � −5 indicates states that
are on average much more ordered than a completely random
set of phases.

We made further statistical measurements of the entropy
in this steady-state regime of small average entropy. First,
we verified that 〈H〉∞ indeed extrapolates to −∞ as � → 0
in the undistorted range � > 0.14 (Fig. 3). The limiting be-
havior was consistent with 〈H〉∞ ∼ 1/�. Changing the map
while keeping � fixed had little effect on 〈H〉∞, as shown in
Fig. 4. Next, we measured the distribution of entropy values
P(H ), shown in Fig. 5. The measurements strongly indicate
an exponential falloff with |H |. Finally, we measured the
statistics of the incremental change hi ≡ Hi+1 − Hi, as shown
in Fig. 6. For the most negative range of H , the mean 〈h〉 of
this distribution approached �, as anticipated [15], while the
variance was of order unity. The h values fell off sharply on
both sides of the mean, with no apparent long tails.

3We expect that adding a small Langevin noise or heterogeneity in
the oscillators would have similar effects.
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FIG. 4. Phase maps ψ (φ) of the form of Eq. (3), used to study
the effect of varying the phase map with fixed � � 0.141. Fixing �

allows one free parameter within the class of cubic maps. The 〈H〉∞
values obtained from simulating 30 maps spanning this range was
the same within the statistical uncertainty, 〈H〉∞ = −5.5 ± 0.2.

IV. EXPLANATION OF H DISTRIBUTION
IN STEADY STATE

Here we show that the regime of stochastic fluctuations of
the phases with indefinitely small entropy is to be expected for
general random-shift phase maps with small positive �. We
present a scheme that accounts for this behavior. It accounts
for the observed broad distribution of H values in the steady
state. It also predicts that the average 〈H〉∞ varies as 1/� for
� → 0.

Both the asymptotic scaling of 〈H〉 for small Lyapunov
exponent � and the functional form of the distribution P(H )

�15 �10 �5
H

0.05

0.10

0.50

1
fraction

FIG. 5. Cumulative distribution of H as obtained in Sec. III un-
der conditions of Fig. 2(b), using a map with Lyapunov coefficient
� = 0.14, shown as a semilogarithmic plot. The P(H ) defined in
the text is the derivative of the cumulative distribution plotted. Dark
line shows for each entropy H the fraction of samples with entropy
smaller than H . Midsection of this curve is approximately a straight
line indicating exponential falloff. Light line is the exponential dis-
tribution with a scale height H0 matching this section: H0 = 3.85.

3 2 1 0 1 2
0

200

400

600

800

1000

1200

1400

FIG. 6. Histograms of the distribution of incremental changes
of H , p(h) for the map with � = 0.14. Light-colored histogram
includes the full sample. Middle color and foreground color show the
half of the sample with smallest H and the 20 percent of the sample
with the smallest H . The variances of all the samples were approxi-
mately unity. The mean for the whole sample was approximately 0,
as expected for a steady-state process. For the foreground sample,
the mean 〈h〉 � 0.16, is equal to � within sampling uncertainty. The
two sharp dropoffs near h = 0.4 and h = 1.8 correspond to extremal
slopes in ψ (φ).

can be understood in stochastic terms: the fluctuations of Hi

may be viewed as a random walk process. In this regime, the
typical H values and their average are indefinitely smaller than
the values observed for large �. Our description exploits the
following features of this small-� regime:

(1) The incremental changes in H in one iteration i, hi ≡
Hi+1 − Hi, vary significantly, but the range of this variation is
limited and is little dependent on Hi when Hi 
 0.

(2) The mean value of the increment h approaches � as
� → 0, as shown in Ref. [15].

(3) H can never exceed a maximum, namely its value for
a uniform probability distribution of phase angles. With our
conventions this maximum is 0.

These conditions suggest a simple diffusion-drift mecha-
nism [20,21] for the strong, steady-state entropy fluctuations
that we observe. We picture the changes of H as a slightly
biased random walk, whose steps hi are drawn independently
from a distribution p(h). This p(h) is taken to be independent
of H , as motivated by feature 1 above. The mean of this distri-
bution 〈h〉 approaches �, as dictated by feature 2. Finally, any
step that leads to H > 0 is withdrawn, as dictated by feature
3. In the absence of the drift, the entropy undergoes unbiased
excursions and ultimately reaches indefinitely negative values.
However, with small positive 〈h〉, these excursions are op-
posed by the drift. Then H can no longer decrease indefinitely,
and a steady state is reached in which the drift is balanced by
the random steps. This confinement is weaker and 〈H〉 is more
negative as 〈h〉 → 0. Thus, in the small-positive-� regime of
interest, �2 
 〈h2〉 
 〈H〉2

∞.
The behavior of such diffusion-drift processes is well

known [21]. In particular, in steady state, the probability dis-
tribution P(H ) obeys

d2P

d H2
= 2〈h〉

〈h2〉
dP

dH
, (5)
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so that

P(H ) = C exp (H/H0), (6)

where C is a normalizing constant and the scale height H0 is
given by

H0 = 〈h2〉/(2〈h〉). (7)

This predicted behavior is consistent with the simulations
described above. Figure 5 shows the observed distribution of
H values for � = 0.14 from Sec. III, incorporating 300 runs
of 200 time steps apiece. Time steps before step 100 were
discarded to avoid effects of the initial transient; the remaining
sample contained 104 measurements. The plotted distribution
is the fraction of samples with entropy more negative than
H . The picture shows a one-decade range consistent with an
exponential distribution as anticipated in Eq. (6), implying
H0 � 3.85.

For a more explicit test of the explanation, we measured
the distribution of step changes h observed in the simula-
tion. In general, this distribution depends on H . Since good
prediction is only expected for H 
 −

√
〈h2〉, we measured

incremental h values only for the smallest 20 percent of the
H values, as shown in Fig. 6. Here we obtained 〈h〉 ∼ 0.16.
This value violates the upper bound [15] on the true average
relative to the Lyapunov coefficient � of the map defined
in Eq. (1), viz. 〈h〉 < � = 0.14. We attribute this discrep-
ancy to statistical uncertainty in the simulation.4 Thus, we
regard the measured 〈h〉 as a crude consistency check. The
variance 〈h2〉 was approximately 1.0. These figures give an
expected H0 using Eq. (7): H0 = 3.1 using the measured 〈h〉,
or H0 = 3.5 using 〈h〉 = �. This is roughly consistent with
the observed H0 = 3.85 shown in Fig. 5, thus lending support
to the diffusion-drift picture.

The diffusion-drift picture also accounts for the depen-
dence of 〈H〉 on � reported in Sec. III. For asymptotically
small �, we may replace 〈h〉 by �. The diffusion-drift picture
then gives an exponential distribution P(H ) with scale height
H0 → 〈h2〉/(2�) and a mean value 〈H〉 − H0, which varies as
�−1, in agreement with Fig. 3.

Our actual � values did not reach this asymptotic regime.
Even our smallest � simulation had a P(H ) that departed sig-
nificantly from an exponential as seen in Fig. 5. It had a mean
〈H〉 = −4.8 that was somewhat smaller than −H0 (= −3.85).
The predicted 〈H〉 → 〈h2〉/(2�) is qualitatively consistent
with the measurements of Fig 3. We verified that 〈h2〉 � 1
for large negative H over the range of � studied. Thus, the
asymptotic formula predicts 〈H〉 of the form a/�, in agree-
ment with the fitted curve in Fig. 3. However, the predicted
value of the coefficient a is 0.5—only 64 percent of the fitted
value of a.

Overall, the asymptotic diffusion-drift picture appears
to account adequately for the limited simulations reported
above. In the next section we discuss the generality of this
picture.

4According to the diffusion-drift picture, we expect an uncertainty
in 〈h〉 of order 〈h2〉/√N , where N (= 2000) is the number of samples.
Thus, uncertainty is roughly 0.02, comparable to the discrepancy
between 0.16 and 0.14.

V. DISCUSSION

In the foregoing we have shown that nonsynchronizing
noise can produce the essential benefit of synchronizing noise.
Specifically, it can convert a random distribution of phases
into highly ordered distributions of low average entropy.
This behavior is implicit in many prior studies of common
noise in nonsynchronizing dynamical systems, as discussed
in Sec. V C below. In this discussion section we justify why
our low-entropy states can be viewed as a form of synchro-
nization. We argue that our system achieves a statistically
well-behaved though unusual steady state, and cite a similar
established example. Finally we review the practical limita-
tions of the method, and survey possible extensions of our
findings to more general forms of noise.

A. Entropy and synchronization

Synchronization is conventionally quantified by the uncer-
tainty spread in between the phase angles of two oscillators.
However, a single narrow interval of uncertainty is not neces-
sary in order to have useful knowledge about a phase. If the
probability is divided into two narrow intervals, then the phase
information does not degrade greatly simply by separating the
two intervals by a large spacing. Indeed, the number of trials
needed to determine the phase angle to a given tolerance is
equal for the single interval and the split interval regardless
of the size of the split. The difference in entropy of two
distributions is precisely the relative number of trials needed
on average for the two. Thus, for any given distribution q(φ)
one may identify a uniform distribution that is equivalent in
number of trials needed to determine the phase. This is the
uniform distribution whose entropy is equal to that of q(φ).
For many purposes of information transmission, this entropy
measure is what determines the transmitting capacity [18].

B. Statistical regularity

The erratic variability of the synchronization and of the
entropy in our system raises the question whether the pro-
cess is even statistically well-defined. Several tests gave us
positive reassurance on this point. The behavior of the simu-
lated entropy fluctuations appears consistent with a stationary
distribution P(H ). On the one hand, the measured average en-
tropy showed a variance that decreases inversely with number
of iterations or trials, as expected for averaging from a fixed
ensemble.

On the other hand, the distribution of λ(φ) (≡ log |ψ ′(φ)|)
values for generic functions ψ (φ) is also consistent with
a well-defined P(H ) distribution. When Hi is small, this
λ(φ) determines the distribution of Hi+1 values in one iter-
ation starting from a given distribution qi(φ). The particular
value of Hi+1 obtained depends on the randomly chosen shift
amount βi (Sec. II B). This dependence can be understood in
the limit where qi(φ) has support confined to a few narrow
intervals on the circle. Then the Hi+1(βi) for all βi can be
readily inferred from the properties of λ(φ), as shown in the
Appendix. In the opposite regime of uniform qi, there is no β

dependence of Hi+1 and thus no randomness in the distribution
of h. Thus, the assumption of well-behaved randomness of
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h is confirmed for the highest as well as the lowest initial
entropy Hi.

C. Parallels

As noted above, the stochastic synchronization treated here
is likely an implicit feature of many previously studied cases.
A close parallel appears in the simple paradigm case of noise-
induced synchronization studied by Pikovsky [3]. Using a
pair of identical one-dimensional iterative maps perturbed by
stochastic offsets, he demonstrates a steady-state, stochastic
regime in which the differences in the two coordinates show
a steady-state power law distribution that becomes sharper as
a Lyapunov exponent decreases toward zero. Many variants
of this behavior in chaotic dynamical systems have been ob-
served [22]. The present work extends the findings of Ref. [3]
by offering an inclusive way to account for this stochastic
regime via the entropy measure.

Systems near this threshold often show a dynamical behav-
ior called on-off intermittency [23–25]. This behavior was first
studied in systems of weakly coupled oscillators. It is char-
acterized by long “epochs” of smooth evolution interrupted
stochastically by bursts of fast evolution. These intermittent
bursts occur on both sides of the synchronization threshold.
Quantitative understanding of several of these time-dependent
features has been gained [26]. On-off intermittent behavior
has been studied using information-theoretic constructs re-
lated to entropy [27]. Some parallels to this bursting behavior
is shared by simple uncoupled oscillators like ours [3]. Quali-
tatively, it is understood in terms of the merger or “reinjection”
of two different φ values into a single ψ value [3,15]. For
example, Fig. 1(b) shows the termination of a “burst” between
iterations 202 and 203. Though our system shows occasional
events reminiscent of bursts, our analysis does not charac-
terize this stochastic regime by analyzing bursts. Instead, it
follows the stochastic motion of the entropy.

Most of the systems cited above concern synchronization
of chaotic motions of two dynamical systems, e.g., Ref. [28].
In the present work, the systems being synchronized are sim-
pler. Their unperturbed state is a periodic limit cycle. We
perturb these systems away from the limit cycle, producing
nonperiodic transient response. However, our perturbations
remain well within the domain of attraction of the initial peri-
odic behavior. The stochastic synchronization we study is thus
unrelated to any chaotic regimes that our system might have.
It depends only on the phase map characterizing nonchaotic
perturbations of the original limit cycle [5,7].

Stochastic states analogous to ours are well known in disor-
dered wave systems. There, as in our system, configurational
variables analogous to φ have ill-defined probability distribu-
tions. One case of similar behavior is the transmission of a
wave such as light through a stack of n different transmitting
layers such as sheets of glass of different thicknesses [29,30].
If the sheets are all much thicker than a wavelength, then the
complex reflection and transmission amplitudes vary widely
from sheet to sheet. As a result, the overall transmission
varies erratically with frequency, with no single characteristic
distribution. Thus, the distribution of transmission coefficients
is ill-conditioned and only the logarithm of the transmission
coefficient has well-conditioned statistics. In our system the

probability distribution q(φ) is ill-conditioned and the entropy
does not reach a definite value for large systems. Instead the
entropy converges to a steady-state distribution with a well-
determined average.

D. Limitations

In investigating this class of stochastic dynamics we en-
countered limitations in exploring the asymptotic regime of
strong but incomplete ordering. Numerically, we were unable
to reliably explore maps with positive Lyapunov exponents
� much smaller than 0.14 and corresponding 〈H〉 � −5. The
difficulty is already apparent in Figs. 2(a) and 2(b). There, as
noted in Sec. III B one sees several trajectories that descend to
the bottom of the figure and remain there. These trajectories
have φα values separated by less than the machine precision
of the calculations. Such pairs of φ’s cannot give valid con-
tributions to Eq. (4). These trajectories necessarily increase
in number as the iterations proceed, eventually compromising
the measurement of entropy. Thus, the number of iterations at-
tainable in practice is limited. This in turn limits the � values
that can be explored, since small � entails slow relaxation to
the steady state. These numerical limitations can be mitigated
by increasing the numerical precision of the simulation. In this
way one could improve our crude validation of the mechanism
described in Sec. IV. This improvement would be very desir-
able.

Similar limitations would be expected in experiments like
the soft-matter experiments treated in Ref. [15]. First, the final
state of any dynamical oscillator is subject to random noise
as well as to the imposed random-time phase maps. This
noise requires the forcing to be sufficiently strong to induce
rapid synchronization. Any synchronization is thus limited
by the random noise [7]. A second limitation comes from
the inevitable variability of colloids or other oscillators in
the ensemble. This variability means each element α of the
ensemble has a distinct phase map ψα (φ).

Such limitations mean that clear-cut experimental at-
tainment of the asymptotic predictions above is unlikely.
Nevertheless, this limit could be useful for devising well-
behaved statistics to describe the stochastic synchronization
regime, as was the case with disordered quantum wires in
Ref. [29].

E. Extensions

The stochastic dynamics treated here was chosen for its
simplicity. It treats only a very restricted type of disruption
of the limit cycle. Still, the anomalous ordering behavior
demonstrated here should occur for more general noise envi-
ronments. Many of the known noise-induced synchronization
phenomena [5,7,9,31,32] have been demonstrated for broad
classes of noise, including continuous random driving. These
phenomena are regulated by an average Lyapunov exponent
� analogous to ours, which must be negative to achieve syn-
chronization. We anticipate that these systems will will have
low-entropy regimes for weakly positive � like our simple
example.

For some incremental extensions of our simple forcing,
stochastic synchronization like that shown here appears likely.
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For example, if the impulsive forces are not restricted to be
identical, but instead vary in strength, then the ordering should
persist. Such variable forcing would lead to a range of phase
maps ψi(φ) for different iterations i. Still, if these maps all had
� values bounded above by a small, positive number, then one
would expect bounds on the entropy similar to those shown
here. Likewise, we restricted the impulses to be widely sepa-
rated in time so that the oscillators all relax to their periodic
cycles before the next impulse. This requirement simplifies
our analysis but does not appear essential to the phenomenon
of stochastic ordering [9].

One general virtue of noise-induced synchronization is that
one may use it to induce synchronization without specific
knowledge about the limit cycle being synchronized, such as
the phase map function or the cycle time. We note that this
virtue is preserved for the impulsive noise of the current study.

VI. CONCLUSION

As noted in the Introduction, synchronization of a re-
mote oscillator enables transmission of information. Now, our
demonstration of low-entropy oscillator states is far from a
demonstration of effective information transmission. Yet this
stochastic counterpart of synchronization shows potential as a
generalized means of transmission, potentially usable by tech-
nology or living systems. Further, this model of intermittency
may offer a tool to address open questions in wave localization
and strong turbulence.
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APPENDIX: LIMITS ON THE RANGE OF Hi+1 VALUES

Here we address the claim made in Sec. V B that the change
in entropy under a single iteration of our random-time phase
mapping varies within a limited range. We consider the regime
where the initial distribution qi(φ) is narrowly defined, as is
typical when the initial entropy Hi is small. In general, the
new probability distribution qi+1(φ̂) can be expressed [15] as

qi+1(φ̂) =
∫

dφ qi(φ) δ[φ̂ − ψ (φ + βi )]. (A1)

Then Hi+1 is obtained from qi+1(φ̂) by applying Eq. (2). We
note that when ψ (φ) is nonmonotonic, several values of φ

may contribute to a given φ̂.

As announced in the main text, we first consider the range
of Hi+1 values when qi is confined to an arbitrarily small
support. For such “well-ordered” qi(φ) there is generally only
one φ contributing to each φ̂ in Eq. (A1). Then Eq. (A1)
becomes

qi+1(φ̂) = qi(φ)

{∫
dφ δ[φ̂ − ψ (φ + βi )]

}

= qi(φ) |ψ ′(φ + βi )|−1. (A2)

For such qi+1, Hi+1(βi ) becomes a convolution of λ(φ +
β ) with qi(φ). To show this [15], we use the definition from
Eq. (2) with Eq. (A2) and the fact that dφ̂ qi+1(φ̂) = dφ qi(φ)
to write Hi+1 as

Hi+1(βi ) = −
∫

dφ qi(φ) log[|ψ ′(φ + βi )|−1 qi(φ)]. (A3)

After decomposing the log and noting that log[|ψ ′(φ +
βi )|] ≡ λ(φ + βi ), this gives

Hi+1(βi ) =
∫

dφ qi(φ) λ(φ + βi ) −
∫

dφ qi(φ) log qi(φ).

(A4)
Here the second term (simply Hi) is independent of βi while
the first term is the convolution claimed.

We now argue that the range of Hi+1(βi ) values is strongly
limited. This range is greatest when qi(φ) is simply a delta
function. Then, ignoring the constant second term in Eq. (A4),
the distribution of Hi+1 values is simply the distribution of
λ values. This distribution may be readily evaluated for any
given phase map ψ (φ). For a smooth map function like those
encountered in Ref. [15] and those considered here, there
is a maximum λ at the point of maximum absolute slope.
There is no minimum value since there are extrema where
φ has arbitrarily small |ψ ′|. We consider generic ψ (φ) with
no points where ψ ′ and ψ ′′ simultaneously vanish, so that
all extrema of ψ (φ) are quadratic. Near any extremum φ∗,
|ψ ′| ∼ |φ − φ∗|, so that λ(φ) ∼ log |φ − φ∗|. Then the p(λ)
falls off exponentially for large negative λ. Thus, for well-
ordered qi(φ) the range of Hi+1 is well-confined, the central
limit theorem [21] applies, our diffusion hypothesis of Sec. IV
is well justified and a well-defined P(H ) is reached.

The range of Hi+1(βi ) is also narrow in the opposite limit
of uniform qi(φ). Here the shift βi has no effect on qi(φ)
and thus Hi+1(βi ) is independent of βi; the spread of Hi+1

values for a given Hi goes to zero. While these arguments
cover only the limiting cases and fall short of a proof, they
lend plausibility to our numerical finding that the distribution
of entropy increments hi is statistically well-behaved.
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