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Dynamical properties of neuromorphic Josephson junctions
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Neuromorphic computing exploits the dynamical analogy between many physical systems and neuron bio-
physics. Superconductor systems, in particular, are excellent candidates for neuromorphic devices due to their
capacity to operate at great speeds and with low energy dissipation compared to their silicon counterparts.
In this paper, we revisit a prior work on Josephson Junction-based neurons to identify the exact dynamical
mechanisms underlying the system’s neuronlike properties and reveal complex behaviors which are relevant for
neurocomputation and the design of superconducting neuromorphic devices. Our paper lies at the intersection
of superconducting physics and theoretical neuroscience, both viewed under a common framework—that of
nonlinear dynamics theory.
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I. INTRODUCTION

Neuromorphic computing is a rapidly advancing field that
uses neuroscience-inspired concepts to implement circuits of
physical neurons. The ultimate goal of neuromorphic comput-
ing is the development of powerful algorithms and high-speed,
energy-efficient hardware for information processing and the
potential acquirement of insight into cognition (for a recent
review, see Ref. [1] and references within). The motivation be-
hind the attempt to mimic the brain is its extremely impressive
capabilities and advantages as a computing device, in terms of
storage, processing speed, memory, and energy consumption.

The reason for its outstanding performance lies in the
brain’s complexity, specifically the fact that it is dynamic and
reconfigurable (due to plasticity)—it provides large intercon-
nectivity, it is stochastic, and exhibits interesting nonlinear
phenomena like synchronization and chaos, to mention only a
few of the brain’s characteristics [2,3]. The latter, in particular,
have inspired nonlinear dynamics based computing, which
utilizes the many different intrinsic behaviors of a nonlinear
dynamical system for performing different types of computa-
tion [4,5].

Neuromorphic computing exploits the dynamical and es-
pecially the nonlinear-dynamical analogy between many
physical systems and neuron biophysics. Various imple-
mentations of neuromorphic systems have been proposed,
namely, CMOS (complementary metal oxide semiconductor)
and memristor devices [6,7], photonic networks [8], spin-
tronic nanodevices [9], and superconductor systems. In light
of the recent advances in new materials and hardware, the
development of increasingly efficient neuromorphic devices is

*Corresponding author: hizanidis@physics.uoc.gr

challenging yet promising (for a detailed comparison between
the aforementioned different approaches, see Ref. [1]).

Superconductor-based neuromorphic systems are particu-
larly advantageous since they are very fast, with operation
speeds close to THz, and most importantly, present very
low or no power dissipation, even when cryogenic cool-
ing is taken into account. Over the last years, there
has been a significant increase in the number of imple-
mentations of neuromorphic devices using superconducting
elements such as superconducting quantum interference de-
vices (SQUIDs) [10], quantum-phase slip junctions [11],
superconducting nanowires [12,13], and Josephson junctions
(JJs) [14–18]. The latter produce the so-called single flux
quantum pulse [19], which is qualitatively very similar to
the action potential that is fired by real neurons when the
membrane potential exceeds its threshold.

Most works on JJ neuromorphic devices involve circuit
simulations and theoretical modeling (for a recent review,
see Ref. [20]). However, several experimental implementa-
tions demonstrate that such devices can indeed be fabricated
and easily engineered for neuromorphic applications. More
specifically, in Ref. [15] a circuit of two mutually coupled
excitatory neurons was studied both numerically and exper-
imentally. Each neuron was realized using JJs; a Josephson
transmission line acted as the axon and the synapse was mod-
eled by a SQUID similarly to prior works [10]. It was found
that the neurons are either desynchronized or synchronized in
an in-phase or antiphase state, and that the tuning of the delay
and strength of the SQUID synapses can switch the system
back and forth in a phase-flip bifurcation [16].

The building block of JJ neuromorphic circuits is the single
JJ neuron model, which was developed over a decade ago in
Ref. [14]. There it was shown that the JJ neuron is capable
of reproducing many characteristic behaviors of biological
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FIG. 1. (a) Circuit diagram for the Josephson Junction neuron.
(b) The voltage of the membrane is emulated by the quantity φp + φc.
Increasing the current from zero to iin = 0.22 at t = 50 forces the JJ
neuron to spike. System parameters: �p = 0.5, �s = 0.5, λ = 0.1,
� = 1.5, and ib = 1.909. Initial conditions: (0,0,0,0).

neurons such as action potentials, refractory periods, and fir-
ing thresholds. In the present work, we revisit Ref. [14] and
perform an extended study on the complex behavior of single
JJ neurons to shed light on new dynamics which can further
inform the design of devices, and discuss the associated neuro-
computational properties this system is capable of presenting.
Our work lies at the intersection of superconducting physics
and theoretical neuroscience, viewed under the framework of
nonlinear dynamics theory.

The paper is organized as follows: In Sec. II, we derive
the JJ neuron model and describe the mechanism for the
production of the action potential. In Sec. III, the system’s
complexity is explored through bifurcation analysis and focus
is given on its excitable behavior (Sec. III A) and the chaotic
and multistable dynamics it presents (Sec. III B). Finally, in
Sec. IV, we identify the neuronal properties emulated by the
model and stress their significance in terms of neural compu-
tation. We summarize our results in Sec. V.

II. JOSEPHSON JUNCTION NEURON MODEL

As implied by its name, the JJ neuron involves two Joseph-
son junctions, in a loop, as shown in the circuit depicted
in Fig. 1(a) (where JJs are marked with an X). A JJ is a
nonlinear superconducting element made by two supercon-
ductors connected through a weak link such as an insulator.
The fundamental properties of JJs have been established
long ago [21] and have been exploited in numerous ap-
plications in superconducting electronics, sensors, and high
frequency devices ever since. Each superconductor of the
JJ can be described by a single macroscopic wave func-
tion with a corresponding phase, and the difference between
these two phases is the so-called Josephson phase, denoted
by φ.

In an ideal JJ, the (super)current through the JJ and the volt-
age across the JJ are related through the celebrated Josephson
relations I = Icr sin(φ) and V = (h̄/2e)dφ/dτ , where Icr is a
critical current above which the voltage develops, τ denotes
the time, e is the electron charge, and h̄ is the Planck’s con-
stant. Within the framework of the resistively and capacitively
shunted junction model [19], the current flowing through the
junction is given by Kirchhoff’s law and contains contribu-
tions from a displacement current and an ordinary current,

represented by a capacitor C and a resistor R, respectively:

h̄C

2e

d2φ

dτ 2
+ h̄

2eR

dφ

dτ
+ Icr sin φ = I. (1)

The mechanical analog of the JJ is the damped pendulum
driven by a constant torque. Depending on the initial condi-
tions, the strength of the drive and the damping, the solution
of such a system may involve static tilting, whirling modes,
or a combination of the two [22]. In the JJ, the whirling of
the phase, when the applied current exceeds a critical value,
creates a magnetic flux pulse [19]. This single flux quantum
forms the basis for the pulse produced by the JJ neuron model,
which is qualitatively very similar to the action potential that
occurs in real neurons when the membrane potential exceeds
its threshold. A schematic plot of the JJ neuron is shown in the
circuit of Fig. 1(a). The two (identical) JJs connected in a su-
perconducting loop are called pulse and control junctions, and
are denoted by the subscripts p and c, respectively [14]. By
simplifying Eq. (1) using the following normalizations: t2 =
τ 2(2eIcr/h̄C), �2 = h̄/(2eIcrR2C), i = I/Icr, and by direct ap-
plication of Kirchhoffs laws, we obtain the dimensionless
equations for the phases of the JJ neuron circuit:

φ̈p + �φ̇p + sin φp = −λ(φp + φc) + �siin + (1 − �p)ib,
(2)

φ̈c + �φ̇c + sin φc = −λ(φp + φc) + �siin − �pib, (3)

where the dot notation refers to differentiation with respect
to t , �s, and �p are the inductances Lp and Ls, respectively,
scaled by their sum Ltot = Ls + Lp, the currents ib and iin are
scaled by the critical current Icr, and, finally, λ = h̄/(2eLtotIcr)
is the coupling parameter. The bias current ib provides nec-
essary amounts of energy to both junctions, while the current
iin emulates the incoming postsynaptic current received by the
neuron.

For appropriate parameter values, the magnetic flux in the
JJ neuron λ(φp + φc) emulates the voltage difference across
the neuronal membrane. In Fig. 1(b), we visualize φp + φc,
omitting λ because it is just a scaling factor, to demonstrate the
generation of the action potential in the JJ neuron. The stimu-
lus iin is sufficiently strong after t > 50, so it forces phase φp

to increase abruptly [orange (dashed) curve in Fig. 1(b)]. The
coupling between φp and φc, regulated by λ, causes the oppo-
site reaction for the phase φc [green (dotted-dashed) curve in
Fig. 1(b)). The combined effect of the two phases results in
the creation of a pulse [blue (solid) curve in Fig. 1(b)] which
is qualitatively very similar to the action potential of a real
neuron.

The analogy between the JJ neuron and the biological
one also extends to the voltage across the pulse and control
junctions: φ̇p and φ̇c correspond to the ionic currents flowing
in real neurons, Na+ and K+, respectively, which underlie
the generation of the action potential [23]. After the JJ neu-
ron fires, phase φp slowly starts to build up again, φc reacts
accordingly (as described previously), and this results in a
refractory periodlike behavior before the next spike occurs
(Fig. 1(b)). For further details on the creation of the JJ neuron
action potential, one may refer to Ref. [14].
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As far as design and fabrication is concerned, JJ neurons
are based on the widely studied rapid single flux quantum
(RFSQ) circuitry [15,24]. The latter provides us with phys-
ically meaningful parameter values which typically are the
following: For the critical current Icr ∈ [10 − 100 µA], for the
inductances Ls, Lp ∈ [1 − 100pH], the bias and input currents
ib and iin assume values close to Icr, and the junction size,
which determines its capacitance C and resistance R (and
therefore parameter �) is in the range of 0.7 − 5 µm. Based
on these values, we obtain the dimensionless parameters λ =
0.1 and �p = �s = 0.5, which are kept fixed as in previous
works [14–16]. Similarly, the bias current is kept constant at
a typically used value ib = 1.909. In the Appendix, we inves-
tigate the role of ib and explain why values close to but lower
than 2 should be used. In the following sections, we explore
the role of �, which remains unaltered after the fabrication of
the JJ, and that of iin, which in principle is tunable.

III. DYNAMICS OF THE JJ NEURON

The JJ neuron model described in the previous section re-
produces many characteristic properties of biological neurons
such as action potentials and firing thresholds [14]. In this
paper, we aim to study these properties in a more systematic
way, in terms of bifurcation analysis, and explore further the
complexity of the system’s dynamics and the corresponding
neuronal behaviors they relate to.

A. Excitability and bistability

One of the basic dynamical properties of a neuron which
is related to the transition between firing and resting states
is excitability, i.e., the ability of a neuron to realize a large
amplitude change in its membrane voltage, in response to
an external stimulus which is above a certain threshold.
Excitability is fundamental beyond neurons, in many phys-
ical systems, such as semiconductor structures [25,26] and
lasers [27]. There are typically two types of excitability, de-
pending on the relationship between the firing frequency and
the applied stimulus intensity [28]. The generated action po-
tential in type-I neurons increases with increasing the applied
stimulus, whereas type-II neurons exhibit a finite nonzero
frequency as periodic firing begins.

The JJ neuron is capable of demonstrating both types of
excitability depending on the system parameter values as re-
ported in Ref. [14]. However, a full bifurcation analysis of
the system’s excitability is missing. In the present paper, we
perform a bifurcation analysis and continuation in the relevant
parameter space to identify, in detail, the regions of spiking
and resting and the transitions between them.

The transition from resting to spiking occurs through the
collision of a stable with an unstable fixed point. Equa-
tions (A5)–(A6) of the Appendix provide the equilibria and
can be used to detect at which iin values they annihilate. The
corresponding bifurcation lines that separate the regions of
spiking and resting are depicted in Fig. 2 and are analysed
in the following.

For � > 1, the transition occurs through a saddle node
on an invariant circle (SNIC) bifurcation, marked by the ma-
genta (dotted-dashed) line in Fig. 2. At the bifurcation point

FIG. 2. Chaotic (C), periodic (LC), and resting (FP) dynam-
ics over the parameter plane (iin, �) according to the Lyapunov
spectrum. The following bifurcation lines are superimposed: period
doubling (PD), fold of cycles (FOLD), homoclinic (HOM), saddle
node of fixed points (SN), saddle node on invariant circle (SNIC),
and saddle-node loop (SNL). The square defined by the gray (light
solid) lines and the edges of the graph marks the parameter subspace
of Fig. 5 and the light gray (dashed-dotted) horizontal line marks
the parameter value range of Fig. 4. The starred area contains fixed
points as well as very small periodic and chaotic windows which
are not easily visible. Other parameter values: λ = 0.1, �p = �s =
0.5, ib = 1.909. Different initial conditions were considered, while,
in the case of coexistence, we choose to visualize the dynamics as
such: C over LC, and LC over FP.

iin,SNIC = 0.185, a stable limit cycle is born whose frequency
follows the scaling law: f ∼ O(

√
iin − iin,SNIC). The square

root law is verified by the 0.5 slope in the semilogarithmic
plot in the inset of Fig. 3(a), where the frequency of the limit
cycle is plotted as a function of the stimulus iin. Exactly at
the bifurcation point, the period of the limit cycle is infinite,
therefore this bifurcation is also known as saddle-node infinite
period bifurcation (SNIPER) and it characterizes neurons of
excitability type I [29].

On the other hand, for � < 1, the resting state disappears
at a stimulus value iin,SN = iin,SNIC through a saddle-node bi-
furcation (SN), in this case off-limit cycle, marked with a
green (light dotted) line in Fig. 2, forcing the trajectories to
follow an already existing limit cycle of nonzero frequency.
The aforementioned limit cycle is born through a homoclinic
(HOM) bifurcation [cyan (light solid) line in Fig. 2] at a
stimulus iin,HOM < iin,SN. The HOM bifurcation was detected
through its characteristic scaling law of the period of the
LC near the bifurcation point, which should follow: T ∼
O(ln [iin − iin,HOM]). Indeed, the inset of Fig. 3(b), where the
limit cycle frequency is plotted over iin, verifies the above
relation with an R-squared value of r2 = 0.997. For a fixed �

value, the JJ neuron is bistable for iin ∈ (iin,HOM, iin,SN), since
a limit cycle coexists with a stable equilibrium. This accounts
for class-II excitability.

As already mentioned, these bifurcations were detected
and identified through the F-I curves which are visualized
in Fig. 3. More specifically, we first fixed � and then used
the following protocol: For each value of the current, the
frequency was calculated and the last variable values of the
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FIG. 3. Frequency of the limit cycle over the stimulus iin: (a) For � = 1.5, spiking occurs through a SNIC bifurcation. (b) For � = 0.9, the
curve forms a hysteresis loop between iin,HOM and iin,SN where the neuron either spikes or rests depending on the initial conditions. The inset
graphs depict that sample points, near the HOM and SNIC bifurcations, obey the corresponding scaling laws THOM ∼ O(ln [iin − iin,HOM]) and
fSNIC ∼ O(

√
iin − iin,SNIC), respectively. Other parameters: �p = 0.5, �s = 0.5, λ = 0.1, and ib = 1.909.

trajectory were used as the initial conditions for the next
simulation. In this way, the trajectories start at the vicinity
of the attractor which was detected in the previous run. In
Fig. 3(b), we first increased the current from 0.14 to 0.19 and
then moved backward, investigating the current values near
the HOM bifurcation.

It can be easily shown that the system is unable to un-
dergo Hopf bifurcations, which are also known to be related
with class-II neural excitability. During a Hopf bifurcation,
the conjugate pair of two eigenvalues of a fixed point must
cross the imaginary axis [30], which is impossible in this
system. This stems from Eqs. (A9)–(A12) of the Appendix,
which reveal that when the system has complex eigenvalues,
their real part is Re(ei ) = −�/2, which is always a negative
quantity and never passes through zero.

At � = 1.0, the two bifurcation points iin,HOM and iin,SN

coincide. The process where a saddle-node and a HOM bi-
furcation coalesce, forming a SNIC bifurcation, is called a
saddle node separatrix loop (SNL) or saddle-node HOM orbit
bifurcation, marked by a full black dot in Fig. 2. The SNL
bifurcation is common to all class-I excitable neurons [31]
and has also been found in the single JJ model (see Ref. [32]
and references within). To summarize, around the SNL bi-
furcation, the line iin = 0.185 separates spiking from resting
behavior. In addition, next to the resting regime, there exists a
bistable portion of the parameter space which is bound from
above by the HOM bifurcation line. As we move toward lower
� values in the parameter space, we encounter additional
bifurcations, shown in Fig. 2, which lead to more complex
dynamics including multistability and chaotic spiking, as we
will see in the next section.

B. Chaotic dynamics and multistability

From a mathematical point of view, the JJ neuron is a
four-dimensional nonlinear dynamical system and, therefore,

is capable of presenting a plethora of complex phenomena.
In this section, we will focus on the chaotic and multistable
dynamics exhibited by the system. The chaotic regimes are
detected according to the Lyapunov spectrum, which was ex-
tracted using the Dynamical Systems JULIA package [33]. The
Lyapunov spectrum consists of four Lyapunov exponents Li,
sorted in descending order, with their sum following

∑4
i Li =

det J = −2� < 0, where J is the Jacobian provided in the
Appendix [Eq. (A7)].

Since L4 is always negative, the three largest Lyapunov
exponents are sufficient for characterizing the dynamics of
the JJ neuron. Figure 2 demonstrates the different dynamical
regimes according to the Lyapunov spectrum. More specifi-
cally, for (I) L1,2,3 < 0, the system’s solution is a fixed point
(FP, light gray), for (II) L1 = 0, L2,3 < 0, the system’s solu-
tion is a limit cycle (LC, pale green), while for (III) L1 > 0,
L2 = 0, L3 < 0, the system exhibits chaotic behavior (C, yel-
low). For the generation of Fig. 2, we considered different
initial conditions whereas, in the case of coexistence of two
or more attractors, we visualize the attractor according to the
following order: chaos over limit cycle and limit cycle over
equilibrium. In addition, two different types of bifurcation
lines are superimposed, namely, period doubling (PD) and
fold of cycles (FOLD), marked with blue (dark solid) and
red (dashed) colors, respectively. The bifurcation lines have
been obtained using a very powerful software tool that ex-
ecutes a root-finding algorithm for continuation of periodic
solutions [34].

The bifurcation structure of the system is very intricate:
The fold and PD bifurcation lines intersect the HOM and
saddle-node line discussed in Sec. III A, thus creating two
smaller areas, one triangular shape corresponding to bista-
bility and the starred area in Fig. 2, which mostly contains
a single fixed point and some very small windows where
the FP coexists with a limit cycle or chaos. Moving toward
smaller values of �, the system’s dynamics becomes much

044206-4



DYNAMICAL PROPERTIES OF NEUROMORPHIC … PHYSICAL REVIEW E 106, 044206 (2022)

FIG. 4. Route to chaos for � = 0.8: (a) Lyapunov spectrum, (b) orbit diagram of the Poincaré map whose surface of section is the plane
φ̇p + φ̇c = 0. Dashed lines depict the values of iin which were chosen for the visualization of the phase portraits. More specifically: (c) for
iin = 0.16, (d) for iin = 0.17, and (e) for iin = 0.20. Other parameter values: λ = 0.1, �p = �s = 0.5, ib = 1.909. Each time, the system is
initialized close to the attractor detected in the previous run, as in Fig. 3.

more complex and involves multiple periodic solutions which
are created and destroyed through fold bifurcations of cycles,
as well as oscillatory and chaotic states coexisting with the
stable equilibria. From Fig. 2, it is evident that the transition
from periodic to chaotic motion takes place through a PD
route to chaos [22]. This can be illustrated more clearly if we
focus on the cross section of the parameter space for � = 0.8,
iin ∈ [0.15, 0.27], marked by the light gray (dashed-dotted)
line in Fig. 2.

The blowup of this region is shown in Fig. 4, where the
Lyapunov spectrum as a function of iin is plotted. For 0.15 <

iin < 0.1632, it holds that L1 = 0, L2,3 < 0, and the dynamics
is, therefore, periodic. At iin = 0.1632, the two largest Lya-
punov exponents become zero L1 = L2 = 0 and the first PD
bifurcation occurs. This is followed by a cascade of PD bifur-
cations which lead to chaos, where L1 > 0, L2 = 0, L3 < 0.
Note that, for simplicity, in Fig. 2, we have only plotted the
outer PD line that includes the first PD bifurcation.

The route to chaos is also reflected in the corresponding
Poincaré map, shown in Fig. 4, where we store the value
φp,map + φc,map each time the trajectory crosses the plane φ̇p +
φ̇c = 0 and φ̈p + φ̈c < 0. This particular selection of the vari-
ables and plane of intersection is not arbitrary, as the stored
quantities are the local maxima of the JJ neuron response. The
first simulation of Fig. 4, that is, for iin = 0.15, was initialized
at (φp,0, ωp,0, φc,0, ωc,0) = (0, 20.0, 0, 0), same as in Fig. 2.
The following runs, on the other hand, were initialized with
the last variable values of the previous simulation. Thanks
to this protocol, we are able to follow the evolution of the
attractor which becomes chaotic without falling into the rest-
ing state or other LCs. Comparing the Lyapunov spectrum
of Fig. 4(a) with the Poincaré map of Fig. 4(b), it is clear
that when L1 = L2 = 0 the branches of the map split in two,
which is the signature of the PD bifurcation. This transition to

chaos is also visualized in Figs. 4(c) and 4(d), where the phase
portraits in the (φp + φc, φ̇p + φ̇c) plane are shown, for values
of the control parameter iin marked by the vertical dashed lines
in Figs. 4(a) and 4(b). At iin = 0.16, the system has a period-1
solution [Fig. 4(c)], which doubles its period after the first PD
bifurcation [Fig. 4(d)], and consequently undergoes a cascade
of PDs before entering chaos [Fig. 4(e)].

To have an overview of the menagerie of behaviors exhib-
ited by the JJ neuron, we have created a mapping of all the
different dynamical regimes analyzed above, shown in Fig. 5.

FIG. 5. Different dynamical regimes in the parameter space
(iin, �). The detected dynamics are fixed points (FP), limit cycles
(LC), chaos (C), and coexistence thereof, in various combinations.
The starred area corresponds to the same area in 2 and it mostly con-
tains exclusively a FP and some very small windows of coexistence
of a FP and a LC or C. System parameters: �p = 0.5, �s = 0.5,
λ = 0.1, and ib = 1.909.
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Previous works on JJ neurons focused on regimes where the
sole attractor is a periodic orbit [14]. However, the system is
capable of presenting a plethora of additional dynamics and
the knowledge of its full behavior is useful for the design
of experiments based on JJ neurons and particularly their
exploitation with relevance to neurocomputation. In principle,
different behavior is expected if one explores the parameter
space of λ, �s, and �p. Nonetheless, this would be beyond
the scope of the present paper since the focus here is the effect
of the biologically relevant parameter �, which determines
the excitability type of the neuron, and iin which models the
input currents arriving at the neuron and is easily tunable in
an experimental setup.

IV. NEUROCOMPUTATIONAL PROPERTIES
OF THE JJ NEURON

The dynamical behavior described in the previous sec-
tion determines the neurocomputational properties of a JJ
neuron. The JJ neuron is known to be capable of reproducing
many characteristic behaviors of biological neurons [14]. In
this section, we extend these findings by identifying additional
neuronal properties emulated by the JJ model and stressing
their significance in terms of neural computation.

In Sec. III A, we confirmed via bifurcation analysis that
the JJ neuron is capable of mimicking neurons of both classes
I and II of excitability. Both classes of excitability have been
observed in biological experiments, for instance, in pyramid
neurons in the hippocampus and interneurons in the neocorti-
cal region, respectively [35,36], among others. Differences in
excitability result in differences in spike initiation, which in
turn has implications for essential biological functions of the
brain such as information encoding and processing [29,37].
Moreover, different classes of neuronal excitability can affect
the collective behavior of the nervous system, particularly the
phenomenon of synchronization is shown to be achieved more
easily in a neuronal network with class-II neurons rather than
that with neurons of class I [38].

Regarding the JJ neuron, the key element in the dynamics
relating to both classes of excitability is the SNL codimension
2 bifurcation depicted in Fig. 2. This bifurcation is found
in other famous neuronal models such as the Morris-Lecar
and Wilson-Cowan models [39]. Moreover, it is linked to
other neurocomputational properties, namely, the existence
of a well-defined threshold, all-or-none behavior, and spike
latency [39]. The latter property is related to the bottleneck
created at the SNIC and SN bifurcations and refers to the
existence of significant delays, which can reach up to a second
in real neurons, in the production of the first spike when the
stimulus is barely greater than the threshold [40]. Another
interesting feature related to the SNL bifurcation is that it
governs the transition between the two classes of neuronal
excitability. Such transitions have been observed in biological
experiments [35] and recently it was reported that they may
be induced by autapses [41], i.e., synapses from a neuron onto
itself via closed loops.

The neurons we have encountered can be in a quiescent
state or they can fire, either regularly or chaotically. When
a neuron alternates between these two states, periodically it
is said to be bursting. In autonomous bursting, that is, for

FIG. 6. Different neurocomputational properties of a JJ neuron:
(a) Noise-induced bursting for � = 0.95 and stimulus iin = 0.182 +
0.04ξ (t ), where ξ (t ) is Gaussian white noise, (b) chaotic spiking for
� = 0.8 and iin = 0.2. Other parameter values: λ = 0.1, �p = �s =
0.5, ib = 1.909.

constant stimulus, there should generally be an additional
variable with a slower timescale than those participating in
the spiking, which is responsible for turning off and on the
generation of the action potentials [37]. For this reason, even
though four-dimensional systems such as the JJ neuron are, in
principle, capable of displaying bursting, we have not detected
this kind of behavior in our model. The existing model is
capable of emulating another type of bursting which is in-
duced by noise rather than some intrinsic mechanism [31]. We
should mention at this point that the latter has been achieved in
networks of globally coupled mixed populations of oscillatory
and excitable JJs [42,43]. Let us now assume a JJ neuron
which is in the bistable regime where resting and spiking
states coexist. To model the variation of the stimulus due to
extrinsic noise present in real neurons [44,45] we incorporate
an additive Gaussian white noise term ξ (t ) with amplitude
of 0.04. The stochastic differential equations were integrated
with Milstein’s method [46]. The addition of noise helps the
system alternate between spiking and quiescence, resulting in
a burstinglike behavior as shown in the time-series depicted
in Fig. 6(a). Both bistability and bursting behaviors have been
found in recordings of biological neurons [37], while the latter
is also considered to be linked to a distinct mode of neuronal
signaling [47].

In the same figure, we have also plotted the case of chaotic
dynamics as we analyzed in Sec. III B. Figure 6(b) displays a
typical example of chaotic firing of the JJ neuron for � = 0.8
and iin = 0.2. Chaotic behavior in neurons has been exten-
sively studied both in real recordings of neuronal activity [48]
and in mathematical models [49], and has been found to be
very crucial in terms of cognitive functions. In particular, due
to their information-carrying capacity, chaotic attractors may
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FIG. 7. Behaviors beyond biological relevance: (a) Periodic
behavior of equilibria with increasing iin for � = 1.5, (b) Non-spike-
like limit cycle depicted in gray (solid) for � = 0.7 and iin = 0.15
and a coexisting stable fixed point depicted in magenta (dashed line).
Other parameter values: λ = 0.1, �p = �s = 0.5, ib = 1.909.

serve as information processors and cognitive devices [2,50].
Moreover, chaos and bifurcations can be exploited for nonlin-
ear dynamics based computing [4,5].

Very recently, in Ref. [51], authors discovered that an
artificial network of metallic nanowires with synapselike
memristive junctions can be tuned to respond in a brain-
like way when electrically stimulated. More specifically, they
found that by keeping this network of nanowires in a brainlike
state at the edge of chaos, it performed tasks at an opti-
mal level. These results suggest that neuromorphic devices
can be tuned into regimes with different, brainlike collective
dynamics, which may be exploited to optimize information
processing.

Finally, we would like to address some behaviors beyond
biological relevance found in the JJ neuron which are partic-
ularly interesting. First, the equilibria appear and disappear
periodically with respect to the stimulus iin and independently
of �, as shown in the Fig. 8 of the Appendix. In this paper, we
have investigated a certain regime of the parameters, that is,
for ib = 1.909 and iin ∈ [0.0, 0.2], where increasing the stimu-
lus results in the disappearance of the stable equilibria. Larger
input values, however, such as the ones depicted in Fig. 7(a),
may force a spiking neuron to rest, which is not biologically
plausible according to our knowledge. Furthermore, Fig. 2
reveals that there are one or more periodic and even chaotic
attractors which coexist with the resting states, especially for
� < 1. In some cases, these attractors are created or destroyed
by means of fold bifurcation of limit cycles or PD bifurca-
tions. For example, Fig. 7(b) shows a periodic solution which
does not have the familiar spikelike form.

V. CONCLUSIONS

In summary, JJ neurons are excellent candidates for play-
ing an important part in neuromorphic computing due to

their capacity to operate in great speeds and with low-energy
dissipation compared to their silicon counterparts. For this
reason, their dynamical behavior must be fully understood and
compared with that of biological neurons.

In this paper, we confirmed the existence of a saddle node
loop separatrix (SNL) bifurcation which was detected in the
relevant parameter plane. The SNL bifurcation has been found
in mathematical models of neurons and is linked with many
neurocomputational properties such as excitability of class I
or II, existence of a well-defined threshold, all-or-none be-
havior spike latency, and bistability. All these properties have
been identified in biological experiments and are linked to
essential computational functions of the brain.

Apart from the SNL bifurcation, the model was also found
to exhibit chaotic and multistable dynamics. By means of
Lyapunov exponent calculations and bifurcation analysis, we
have identified that this is achieved through a PD route to
chaos mechanism. Chaotic behavior in real neurons has been
verified in the laboratory in numerous experiments. This type
of behavior is of particular importance, as the brain is thought
to operate best at the edge of chaos, i.e., at a critical transition
point, between randomness and order. The JJ neuron also
exhibits noise-induced bursting, while autonomous bursting
could possibly be achieved by coupling the bias current ib with
some other variable of the system, for example, the voltage of
the p junction, φ̇p. A complete mapping of all the possible
dynamics presented by the JJ neuron has been created and
can be used to inform the design of relevant experiments,
where coupling effects are anticipated to give rise to emergent
phenomena beyond the dynamics of the single system.

Finally, we also report on other properties of the JJ neuron
which are beyond biological relevance such as nonspikelike
periodic trajectories and a periodic dependence of the equi-
libria on the input stimulus. Further investigations of the JJ
neuron could involve the implementation of a synapse and
the study of the coupled system or, more interestingly, the
modeling of excitatory and inhibitory neural autapses.
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APPENDIX

In the following, we derive expressions for the fixed points
of the JJ neuron system and perform a linear stability analysis
to determine their stability. Defining φ̇p = ωp and φ̇c = ωc,
the original system of Eqs. (2) and (3) is transformed to

φ̇p = ωp, (A1)

ω̇p = −�ωp − sin φp − λ(φc + φp) + �siin + (1 − �p)ib,
(A2)

φ̇c = ωc, (A3)

ω̇c = −�ωc − sin φc − λ(φc + φp) + �siin − �pib. (A4)
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In this way, the evolution of the system can be visualized
as a trajectory in the phase plane (φp, ωp, φc, ωc). Then the
equilibria of the system are (φ	

p, 0, φ	
c , 0), where φ	

p, φ
	
c are

provided by solving the following equations:

sin φ	
p − sin

(
− sin φ	

p

λ
− φ	

p + �siin + (1 − �p)ib
λ

)
= ib,

(A5)

φ	
c = − sin φ	

p

λ
− φ	

p + �siin + (1 − �p)ib
λ

. (A6)

The next step is to calculate the stability of the equilibria.
Thus, the Jacobian was found as

J =

⎡
⎢⎣

0 1 0 0
− cos φp − λ −� −λ 0

0 0 0 1
−λ 0 − cos φc − λ −�

⎤
⎥⎦. (A7)

The characteristic equation is given by

e4 + 2e3� + e2[cos φp + cos φc + 2λ + �2] + e�[cos φp

+ cos φc + 2λ] + λ(cos φp + cos φc) + cos φp cos φc,

(A8)

while the roots of Eq. (A8) provide the eigenvalues:

e1 = 1
2 (−√−A + B − �), (A9)

e2 = 1
2 (

√−A + B − �), (A10)

e3 = 1
2 (−√

A + B − �), (A11)

e4 = 1
2 (

√
A + B − �), (A12)

where

A = 2
√

(cos φp − cos φc)2 + 4λ2 > 0, (A13)

B = −2(cos φp + cos φc + 2λ) + �2. (A14)

Notice that � does not affect the position of the fixed point
since it is not contained in Eqs. (A6) and (A5). Moreover,
using Eqs. (A9)–(A12), one can show that this is also the
case for the sign of the real part of the eigenvalues. Thus,
the stability of the equilibria is also independent of �. On the

FIG. 8. Number of stable fixed points provided by Eq. (A5) for
iin ∈ [−2, 2] and ib ∈ (−2, 2). White lines mark the saddle-node
bifurcation. Other parameter values: λ = 0.1, �p = �s = 0.5. Inde-
pendent of �. The cyan (dotted) line depicts ib = 1.909.

other hand, the value of � affects whether the fixed point is a
focus, i.e., contains complex eigenvalues, or a node.

Figure 8 shows the number of stable fixed points in the
(iin, ib) parameter plane, while the white lines mark the
saddle-node bifurcation lines through which they lose their
stability. We observe that the absolute value of ib affects the
number of fixed points more decisively than the stimulus iin.
When |ib| is small, there are many fixed points while when
|ib| > 2 there are no equilibria. A typical neuron is expected to
rest until the stimulus exceeds a certain threshold value where
firing starts. That is why ib = 1.909 was chosen, to ensure
spiking behavior. Note, finally, that the graph of Fig. 8 is pe-
riodic over the stimulus iin and the borders between different
colors mark the annihilation (generation) of fixed points.

Finally, notice that Eqs. (A9)–(A12) reveal the reason why
the system does not exhibit Hopf bifurcations. A fixed point
can have a pair of complex conjugate eigenvalues only when
the radicand is less than zero. During the Hopf bifurcation,
the real part of those eigenvalues must cross the real axis.
In this case, � must flip signs, which is impossible since it
corresponds to a positive damping coefficient.
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