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In the present work, we focus on two dynamical timescales in the Arnold Hamiltonian model: the Lyapunov
time and the diffusion time when the system is confined to the stochastic layer of its dominant resonance
(guiding resonance). Following Chirikov’s formulation, the model is revisited, and a discussion about the
main assumptions behind the analytical estimates for the diffusion rate is given. On the other hand, and in
line with Chirikov’s ideas, theoretical estimations of the Lyapunov time are derived. Later on, three series of
numerical experiments are presented for various sets of values of the model parameters, where both timescales
are computed. Comparisons between the analytical estimates and the numerical determinations are provided
whenever the parameters are not too large, and those cases are in fact in agreement. In particular, the case
in which both parameters are equal is numerically investigated. Relationships between the diffusion time and
the Lyapunov time are established, like an exponential law or a power law in the case of large values of the
parameters.
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I. INTRODUCTION

The diffusion time, TD, usually defined heuristically in
chaotic dynamics as the timescale for significant variations
of the integrals of motion, plays a crucial role in dynamical
systems, in particular in Hamiltonian ones. In a broad sense, it
determines how long a system could last in its present config-
uration. On the other hand, the Lyapunov time, TL, defined as
the inverse of the maximum Lyapunov exponent, determines
a timescale for the system’s chaotic behavior to manifest.

Consider a near-integrable Hamiltonian, H = H0 + εV ,
where H0 is the integrable part and εV is the perturbation.

Analytical estimates of TD(ε) can be obtained under se-
vere restrictions, in general when ε → 0, and thus their
applications are rather limited. On the other hand, numerical
estimates can be obtained in at least two different ways:

(i) A nearly normal diffusion process can be assumed so
that the diffusion coefficient, D, can be derived by a linear
fit on the evolution of the variance of the unperturbed actions
over large motion times being TD ∼ D−1. This procedure to
determine D is largely used to investigate the global diffusion
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process in many different dynamical systems, as, for instance,
in Refs. [1–9].

(ii) Alternatively, TD can be estimated from direct numer-
ical simulations as the required motion time for a prescribed
(not small) variation of the actions, as was done, for instance,
in Refs. [10–13].

Theoretical estimates of TL are possible in relatively simple
and low-dimensional systems, where the maximum Lyapunov
exponent can be derived under certain plausible assumptions.
Therefore, in general TL should be obtained by numerical
means.

A relevant question is whether any relation between the
considered timescales can be established. For example, for
the standard map, if the stochasticity parameter K � 1, then
the diffusion rate D ∼ K2 and the Lyapunov exponent σ ∼
ln(K/2) [14], resulting then in the parametric TD − TL rela-
tion,

TD ∼ exp(−2/TL).

Alternatively, if K is fixed, then in the recurrence statistics
the generic quadratic relationship is observed, as is shown in
Fig. 4.5 of Ref. [15].

In [16] the parametric relation TD − TL is numerically in-
vestigated in a biparametric four-dimensional (4D) symplectic
map, and the latter depends strongly on the parameters of the
model, i.e., if the diffusion is restricted to the stochastic layers
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of the resonance web or if it spreads all over the phase space
of the system due to a large overlap of resonances.

In this work, we focus on both timescales—the diffusion
time and the Lyapunov time—in a relatively simple system of
2.5 degrees of freedom (dof) (or 3 dof in the extended phase
space), i.e., the classical Arnold Hamiltonian [17], which is
the paradigmatic model to describe the so-called Arnold dif-
fusion. Arnold introduced this Hamiltonian in order to state
a mechanism that could drive the diffusion, the so-called
Arnold mechanism. The Arnold model was largely investi-
gated, among others, by Chirikov [14] in a more physical than
mathematical way, where theoretical estimates of the diffusion
rate are given for a very restricted domain of parameter space.
As far as we know, numerical studies concerning the diffusion
in this model are, at most, scanty. Moreover, estimates of TL

are still lacking.
Therefore, in this effort we investigate numerically both

timescales when considering initial conditions such that the
system is trapped in a resonance, particularly to the chaotic
layer of a main resonance. We will focus on different sets
of values of the involved parameters. In one case, the pa-
rameters lie in the range where Chirikov’s diffusion estimates
could apply. Therefore, we discuss the applicability of these
estimates and how they should be modified in such a way
that, in order of magnitude, they would agree with the nu-
merical results. We also provide, following Chirikov’s style,
theoretical approximations of TL and compare them with those
obtained numerically. Finally, we investigate whether a para-
metric TD − TL relationship would take place in this specific
system considering a wide range of values of the parameters.

In Sec. II the Arnold model is revisited as well as
Chirikov’s main derivations for the diffusion coefficient [14]
and the assumptions behind them. Later on, we discuss the
range of applicability of the analytical estimates. In Sec. III
the diffusion and Lyapunov timescales are considered, in par-
ticular the way in which TD is numerically computed, and
a theoretical estimate of TL is provided. Comparisons with
numerical simulations are included. In Sec. IV numerical ex-
periments are presented for various ranges of the parameter
values, in particular when they are comparatively large such
that no analytical estimates are available.

II. THE ARNOLD MODEL

Let us consider the Arnold Hamiltonian [14,17], intro-
duced ad hoc to describe the so-called Arnold diffusion.
Herein we partially follow the presentation and discussions
given in [18].

A. The Hamiltonian and resonance structure

The full Hamiltonian takes the form

H (I1, I2, ϑ1, ϑ2, t ; ε, μ)

= 1
2

(
I2
1 + I2

2

) + ε(cos ϑ1 − 1)[1 + μB(ϑ2, t )],

B(ϑ2, t ) = sin ϑ2 + cos t, I1, I2 ∈ R,

ϑ1, ϑ2, t ∈ S1; εμ � ε � 1. (1)

For ε �= 0, μ = 0, the Hamiltonian (1) becomes

H0(I1, I2, ϑ1; ε) = H1(I1, ϑ1; ε) + H2(I2)

= 1
2 I2

1 + ε(cos ϑ1 − 1) + 1
2 I2

2 , (2)

so the system has two global integrals,

H1(I1, ϑ1; ε) = 1
2 I2

1 + ε(cos ϑ1 − 1), H2(I2), (3)

which determine the invariant tori where the motion proceeds.
Here, H1 is a pendulum model for the resonance ω1 = 0

with small oscillation frequency ω2
0 = ε. We will refer to this

resonance as the guiding resonance.
The minimum and maximum of the pendulum potential

are −2ε and 0, respectively. From relation (3) the energy
level H1 ≡ h1 = −2ε corresponds to the exact resonance or
stable equilibrium point at (I1, ϑ1) = (0, π ), while h1 = 0
leads to the unstable equilibrium point at (I1, ϑ1) = (0, 0) ≡
(0, 2π ), and clearly the same energy level corresponds to the
separatrix.

The associated frequencies in each degree of freedom are

ω1 = ωp(h1, ε), ω2 = I2,

where ωp(h1, ε) is the pendulum frequency,

ωp(h1, ε) = πω0(ε)

2K
(
kh1

) , −2ε � h1 < 0,

ωp(h1, ε) = πωr (h1, ε)

2K
(
k−1

h1

) , h1 > 0; (4)

where K (κ ) is the complete elliptical integral of the first kind,
and

k2
h1

= h1 + 2ε

2ε
, ωr (h1, ε) = ω0(ε)kh1 ,

ωr being the half-cycle rotation frequency.
In the oscillation regime it is ωp(h1, ε) � ω0(ε). Close to

the separatrix for both oscillations and rotations, the frequency
ωp(|h1| � 1, ε) ≡ ωsx(h1, ε) takes the asymptotic form

ωsx(h1, ε) = πω0(ε)

ln
(

32ε
|h1|

) , ωsx(h1, ε) → 0 as |h1| → 0.

(5)
In the rotation regime and for h1 large enough, it is
2ωp(h1, ε) ≈ √

2h1 ≈ I1.
The guiding resonance ω1 = 0, whose amplitude is ε, has

a half-width (�I1)r = 2
√

ε in action space, so the variation
of I1 is bounded by |�I1| � 2

√
ε while I2 remains constant.

Therefore, in (I1, I2) space, ω1 → ωsx(h1, ε) → 0 when I1 →
2
√

ε, i.e., at the separatrix.
For ε �= 0, μ �= 0, the original system (1) can be rewritten

as

H (I1, I2, ϑ1, ϑ2, t ; ε, μ) = H0(I1, I2, ϑ1; ε)+μV (ϑ1, ϑ2, t ; ε),

μV = εμ(sin ϑ2 + cos t )(cos ϑ1 − 1),
(6)

where H0 is given by (2) and ϑ2(t ) = ω2t + ϑ0
2 , i.e., the un-

perturbed solution for ϑ2. Therefore, the full Hamiltonian is
a pendulum model for the guiding resonance ω1 = 0 and a
free rotator coupled by the perturbation μV (ϑ1, ϑ2, t ; ε) that
introduces further resonances.
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Since V depends on ϑ1, ϑ2, and t , it affects the phase
oscillations within the guiding resonance, with resonant phase
ϑ1, and its main effect is to produce the stochastic layer around
the separatrix of the resonance of width ws � 1.

Moreover, due to the dependence of V on ϑ2, the pertur-
bation changes not only I1 but I2 as well, and then motion
along the stochastic layer would proceed. Due to the chaotic
character of the motion inside the layer, the variation of I2

should also be chaotic, giving rise to a diffusion in I2. As
a consequence, I2 might change unboundedly, and a gross
instability might result for large enough motion times. This
is the way in which Arnold diffusion is described in an
heuristic way by Chirikov [14]. However, in this model, since
the perturbation V vanishes at (I1, ϑ1) = (0, 0), it is possible
to build up a transition chain such that if ω2 is irrational
and μ is exponentially small with respect to ε, then all tori
defined by I1 = 0, I2 = ω2 > 0 are transition tori (see, for
instance, Ref. [19]). Roughly speaking, a transition torus is
a whiskered torus such that its arriving whisker M− (or stable
manifold) intersects any manifold that is transverse to its
departing whisker M+ (or unstable manifold). Therefore a
transition chain is a set of s transition tori such that M+

l of the
l-transition torus intersects transversally M−

l+1 of the (l + 1)-
transition torus with l = 1, . . . , s. Then for large enough t ,
a neighborhood 	 of ζ = (I1, I2, ϑ1, ϑ2) = (0, ω2, 0, ϑ2) on
M+

0 is mapped by the Hamiltonian flow to a neighborhood
U ⊂ 	 of η = (0, ω′

2, 0, ϑ ′
2) on M−

s .
In other words, a “large variation” of I2 could take place

along the resonance whenever the initial conditions are con-
fined to the chaotic layer. Let us state that by “large variation”
we mean that I2 could vary over a finite domain, which does
not imply that it can be analytically proved that I2 changes
without any bound.

In the full Hamiltonian (6), however, ω1 = 0 is just one of
the six first-order resonances. Indeed, using simple trigono-
metric relations, μV could be written as

μV = εμ

2
[sin(ϑ1 + ϑ2) + sin(ϑ1 − ϑ2) + cos(ϑ1 − t )

− cos(ϑ1 + t ) − sin ϑ2 − cos t], (7)

and thus, averaging out the term cos t , the set of primary
resonances at order ε and εμ are

O(ε) : {ω1 = 0},
O(με) : {ω2 = 0, ω1 ± ω2 = 0 ω1 ± 1 = 0}. (8)

Note that all the resonances involved in μV have the same
half-width, (�I )r = √

2με � 2
√

ε, which is much smaller
than the half-width of the guiding resonance whenever μ � ε.

In (8) but in action or energy space, we should use the
approximation ω1 ≈ I1 in case I1 � 2

√
ε, ω1 = 2ωp(h1, ε) in

case I1 < 2
√

ε (h1 < 0), as given in (4) or ω1 = 2ωp(h1, ε) in
case I1 � 2

√
ε (h1 > 0).

The resonance lines in frequency space intersect at seven
fixed points, namely (ω1, ω2) = (0, 0), (0,±1), (±1,±1),
and hence the diffusion would spread all over this resonance
set.

Note that in action space, for I1 � 2
√

ε, since ω1 =
ωp(h1, ε) the resonances should not intersect in the same set of
points. For instance, the resonances ω1 = ω2, ω1 = ±1 lead

FIG. 1. The Arnold web given by (10) with ε = 0.25 and just
for |m1| + |m2| + |m3| < 6, where ω1 = ωp for |I1| � 2

√
ε (h1 < 0)

while ω1 = 2ωp for |I1| > 2
√

ε (h1 > 0).

to curves in the (I1, I2) plane that change with ε. Indeed, we
can take the approximation ω1 ≈ ωsx(h1, ε) for the half-cycle
rotation frequency given by (5) since the system lies outside
the pendulum oscillation regime, and the resonance condition
ω1(hr

1, ε) = 1 implies 2ωsx(hr
1, ε) ≈ 1, leading to

2
π

√
ε

ln 32ε
|hr

1|
≈ 1 → hr

1(ε) ≈ 32εe−2π
√

ε.

Setting ϑ1 = π in the expression of H1 in (3), such that I1 is
taken at the center of the resonance, it follows

Ir
1 (ε) ≈ √

2hr
1(ε) + 4ε. (9)

On the other hand, for I1 � 2
√

ε both action and frequency
spaces are similar.

Considering the perturbed motion, besides the ones given
in (8), at first order in ε, the full set of resonances is a linear
combination of the form

m1ω1 + m2ω2 + m3 = 0, ∀m1, m2, m3 ∈ Z \ {0}, (10)

where again, ω1 ≈ I1 or ωp(h1, ε) for oscillations and
2ωp(h1, ε) for rotations, depending on whether I1/(2

√
ε) is

large or not, respectively.
Figure 1 displays the resonances (10) in action space for

ε = 0.25 and |m1| + |m2| + |m3| < 6 after setting ϑ1 = π so
that (9) holds. In the figure, the curves represent the relation

I2 = −m1

m2
ω1(I1) − m3

m2
, m2 �= 0,

where I2 = ω2, while the vertical lines are given by the
approximation ω1 = 2ωsx for h1 > 0. Therefore, all vertical
lines correspond to resonances with m2 = 0, the horizontal
lines correspond to m1 = 0, and an infinite but countable set
of curves for m1, m2 �= 0 accumulate toward the separatrix at
Is
1 = 2

√
ε, which for the considered value of ε is Is

1 = 1.

B. Diffusion estimates

Chirikov [14] provides estimates of the diffusion rate,
D(I2, ε, μ), for the variation of I2 along the guiding reso-
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nance that are only valid whenever both parameters are quite
small, i.e., as is customary to say, when the system is in
the Nekhoroshev regime (see [20]); when unstable, chaotic
motion is only confined to the rather thin stochastic layers
of the resonances. On the other hand, in the literature it is
common to find the opposite scenario, named the Chirikov
regime, when the perturbation parameters are large and then
an overlap of resonances takes place. Along these lines, we
refer to [2] in order to verify that Chirikov, in his well-known
review [14] (particularly in its Sec. 7), was mostly interested
in the regime of quite confined chaotic motion.

In such a case of restricted chaos (με � ε � 1), taking
I2 = ω2 irrational, Chirikov’s derivations rest on the following
computations and assumptions (see [14]):

(i) The variations of H and H2 are given by

Ḣ = μ
∂V

∂t
, Ḣ2 = I2 İ2 = −μω2

∂V

∂ϑ2
,

where μV is given in (7).
Setting ϑ2(t ) ≈ ω2(t − t0) + ϑ0

2 , with ϑ0
2 the value of ϑ2

when t = t0 and ϑ1(t ) ≈ ϑ sx
1 (t ) = 4 arctan(exp (

√
ε(t − t0))),

i.e., the motion on the separatrix of the guiding resonance is
defined in such a way that ϑ sx

1 = π for t = t0 and ϑ sx
1 (t ) →

0 (mod 2π ) when t → ±∞. The latter is related to the usual
definition of the separatrix equation, ψ sx(t ), such that at t = t0
it is ψ sx = 0, through ϑ sx

1 = ψ sx + π .
Thus, neglecting free oscillatory terms in (7), sin t and

cos ϑ2 (see, however, Sec. IV), the changes in H and H2 over
a half-period of oscillation of ϑ1, T (|h1| � 1) = π/ωsx given
in (5), are

�H =
√

εμ

2
A2

(
1√
ε

)
sin t0,

�H2 =
√

εμω2

2
A2

(
ω2√

ε

)
cos ϑ0

2 , (11)

where t0 is the value of the time [mod (2π )] or phase t when
the motion in H1 crosses the surface ϑ1 = π , ϑ0

2 = ϑ2(t0), and

A2(λ) = 4πλ
exp(πλ/2)

sinh(πλ)
(12)

is the Melnikov-Arnold integral (MAI) of index 2.
In (11) for the changes �H,�H2, the contributions

of the MAI of negative arguments were neglected, since
it was assumed that ε � 1 (λ � 1) and so A2(−λ) =
A2(λ) exp(−πλ) � A2(λ); otherwise, the sum A2(λ) +
A2(−λ) should be considered (see below). Indeed, the per-
turbation (7) is symmetric in (ϑ1 ± ϑ2), (ϑ1 ± t ) and thus, for
instance when moving on the upper branch of the separatrix,
(ϑ1 − ϑ2) leads to A2(λ) while (ϑ1 + ϑ2) leads to A2(−λ).
The opposite occurs when moving on the lower branch of the
separatrix.

Notice that �H = �H0 as follows from �H1 =
−μI1∂V/∂ϑ1, taking I1 = Isx

1 = 2
√

ε sin(ϑ sx
1 /2), and using

that ϑ sx
1 = ψ sx + π , it is straightforward but tedious to show

that �H1 = �H − �H2 using the recurrence relationship
A3(λ) + A1(λ) = λA2(λ); see [14] for details.

(ii) Any significant variation in H is only possible due to
large changes in H2, since H1 is bounded to the finite width
of the chaotic layer and no significant overlap of the guid-

ing resonance with ω1 = ±1 and other high-order resonances
may take place at quite small values of the parameters. Thus
defining diffusion coefficients DH = 〈[H (t ) − H (0)]2〉/t and
D2 = 〈[H2(t ) − H2(0)]2〉/t , where 〈·〉 denotes space average,
for times large enough, it is expected that DH = D2 and there-
fore

〈sin2 t0〉 = v2〈 cos2 ϑ0
2

〉
,

where

v =
ω2A2

(
ω2√

ε

)
A2

(
1√
ε

) = ω2
2

sinh(π/
√

ε)

sinh(ω2π/
√

ε)
e

(ω2−1)π
2
√

ε

≈ ω2
2 e

(1−ω2 )π
2
√

ε , ε � 1, (13)

and in the last approximation the asymptotic value sinh x ≈
exp(x)/2 is used.

It is evident that v � 1 whenever ω2 > 1 provided that
ε is small enough, but, as discussed in [21], the above ap-
proximation for ω2 < 1 is valid in a narrow interval around
ω2 ≈ 4

√
ε/π where v � 1. Indeed, the maximum of v is

attained at ω0
2 = 4

√
ε/π , and approximating v by a Gaussian

around ω0
2, the corresponding standard deviation is ω0

2/
√

2,
so v � 1 whenever |ω2 − ω0

2| � ω0
2/

√
2. Clearly v → 0 in

both limits, ω2 → 0,∞, and its maximum value at ω0
2 is

16π−2e−2ε exp (π/(2
√

ε)).
Therefore, it is clear that for 0 < |ω2| �= 1, both phases t0

and ϑ0
2 could not be simultaneously random, in the sense that

〈sin2 t0〉, 〈cos2 ϑ0
2 〉 ∼ 1/2.

(iii) The finite variation of the energy in H1 over a half-
period of oscillation (or a rotation period) near the separatrix
of the resonance ω1 = 0 is given by the difference �H1 =
�H − �H2, so from (11) it follows that

�H1 ≡ H ′
1 − H1 =

√
εμ

2
A2

(
1√
ε

)(
sin t0 − v cos ϑ0

2

)

= Ŵ
(

sin t0 − v cos ϑ0
2

)
.

Introducing the relative energy of H1, w = H1/ε, defining

W = Ŵ

ε
= μ

2
√

ε
A2

(
1√
ε

)
= 2πμ exp(π/2

√
ε)

ε sinh(π/
√

ε)
, (14)

with �t0 ≡ t ′
0 − t0 = Tsx and if I2 ≈ ω2 is nearly constant,

then �ϑ0
2 = ω2Tsx.

Denoting with τ = t0 and ϑ2 = ϑ0
2 , the following map

arises:

w′ = w + W [sin τ − v cos ϑ2], τ ′ = τ − 1√
ε

ln |w′| + η,

ϑ ′
2 = ϑ2 − ω2√

ε
ln |w′| + ω2η, (15)

where η = (ln 32)/
√

ε.
Chirikov [14] proposed this map not only to describe the

chaotic layer around the guiding resonance but also the diffu-
sion along the latter. Indeed, for ω2 > 1 (0 < ω2 ∼ 4

√
ε/π )

since v � 1 (v � 1), on the right-hand side of the equa-
tion for w in (15), a dominant term is present. At this order,
the map reduces to a whisker mapping, being the largest term
(layer resonance in Chirikov’s terminology) responsible for
the properties of the chaotic layer, such as its width, mean
period of motion, and resonances’ structure.
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For instance, if v � 1, the width of the layer is given
by W/

√
ε, while if v � 1 it is W vω2/

√
ε, the period of

motion being T (w) ≈ ε−1/2 ln(32ε/|w|) for τ while T (w) ≈
ω2ε

−1/2 ln(32ε/|w|) for ϑ2.
Thus for large times, it is expected that the successive

values of the phase involved in such a dominant term would be
correlated (τ for ω2 � 1 and ϑ2 for ω2 ∼ 4

√
ε/π ), since the

map describes the stochastic layer of the guiding resonance
whose width is finite.

On the other hand, the successive values of the phase
appearing in the smaller term can be assumed to be nearly
random, and this perturbing term (the driving resonance
according to Chirikov) is responsible for a nearly normal
diffusion process along the guiding resonance. In other words,
for 0 < ω2 ∼ 4

√
ε/π < 1 it is expected that 〈sin2 τ 〉 ≈ R/2,

〈cos2 θ2〉 � 1 while for ω2 > 1, 〈cos2 θ2〉 ≈ R/2, 〈sin2 τ 〉 �
1, where R is the so-called reduction factor (see [14]) that
takes into account correlations due to resonances in the
stochastic layer that would reduce the diffusion rate. In [14]
it is estimated as the relative area of the central part of the
layer where the motion is nearly ergodic, i.e., R ≈ 1/4.

From the above derivations, Chirikov provides an estimate
of the timescale for the diffusion along the layer of the guiding
resonance. Using the asymptotic expressions for the hyper-
bolic functions, it reads (see also a discussion given in [18]
and references therein)

D(ω2, ε, μ) ∼
⎧⎨
⎩

8πω4
2μ

2R
Ta(ω2 ) exp

(−π |ω2|√
ε

)
, |ω2| > 1,

8πμ2R
Ta(ω2 ) exp

(−π√
ε

)
, 0 < |ω2| < 1.

(16)

Here Ta is the mean period of motion within the chaotic layer
of the resonance ω1 = 0, defined as follows. If s = w/ws,
where ws � |w| is the width of the stochastic layer, then

Ta =
∫ 1

0
T (s)ds ≈ λ

∫ 1

0
ln

(
32

sws

)
ds,

where λ denotes the frequency ratio, i.e., either 1/
√

ε or
ω2/

√
ε (see the discussion below). It is straightforward to

show that

Ta = λ ln

(
32e

λW̃

)
, (17)

with e = exp(1) and λW̃ = ws; the latter depends on the
value of v, λ = 1/

√
ε, W̃ ≈ W for |ω2| > 1 and thus ws =

W/
√

ε ≡ w0, while λ = ω2/
√

ε, W̃ ≈ W v for 0 < |ω2| < 1,
so ws = vw0ω2.

In terms of the perturbation parameters and ω2, using the
asymptotic values of the hyperbolic functions in W and v,
valid for small ε, the mean period given in (17) reads

Ta(ω2, ε, μ) ≈
⎧⎨
⎩

π
2ε

+ 1√
ε

ln
(

8eε3/2

πμ

)
, |ω2| > 1,

πω2
2ε

+ 1√
ε

ln
(

8eε3/2

πμω3
2

)
, 0 < |ω2| < 1.

(18)

A rough estimation of Ta could be derived using the fact
that μ appears in the argument of the logarithmic function in
both expressions; so, if ε � 1, the dominant terms are Ta ∼
π/(2ε) if |ω2| > 1, and Ta ∼ πω2/(2ε) if 0 < |ω2| < 1. Thus,

for |ω2| > 1, the perturbing phase is τ , while if 0 < |ω2| < 1,
it is ϑ2 with frequencies 1 and ω2, respectively. Therefore,
from (16) and (18), regarding the diffusion coefficient as a
function of μ, it should be D ∼ μp, p ≈ 2.

C. Range of validity of the analytical estimates

Chirikov’s estimations [14] are valid whenever μ � 1 such
that the changes in I2 are small and thus I2 ≈ ω2 is a plausible
approximation in the derivation of �H2 in (11). On the other
hand, ε � 1 so that v � 1 or v � 1 and thus only one term
is relevant in the first equation of (15).

To get an order of magnitude of the μ values for which
Chirikov’s derivations could be applied, we use approxi-
mation (9) to determine a theoretical critical value μcT (ε)
such that an overlap of the main resonances ω1(I1) = 0 and
ω1(I1) = ±1 takes place on the section ϑ1 = π .

This condition reads [see Figs. 2 (right) and 4 (right)]

2
√

ε +
√

2εμcT ≈ Ir
1 (ε),

leading to

μcT (ε) ≈ 2

(
1 − Ir

1

2
√

ε

)2

. (19)

Figure 2 (left) shows the value of μcT versus ε given
by (19), for the overlap of the resonances ω1(I1) = 0
and ω1(I1) = ±1. Thus the above analytical approximations
should be true whenever μ � μcT .

Regarding the range in ε, it could be required that for the
maximum value of v in (13), 16π−2e−2ε exp (π/(2

√
ε)) � 1,

so ε should not be larger than ∼0.10, at most.
Certainly, an overlap, or strictly speaking resonance cross-

ings between ω1(I1) = 0, ω2(I2) = 0, and ω1(I1) = ±ω2(I2),
always exist at any value of ε and μ �= 0. If μ � 1, it is ex-
pected that these crossings do not seriously affect the diffusion
along the guiding resonance (see, however, Sec. IV).

Note that from this estimation, when ε ≈ 0.25 we get
μcT ≈ 0.17. However, as the MEGNO1 contour plot shows
for ϑ1 = π, ϑ2 = 0, −2 � I1, I2 � 2 in Fig. 2 (right), the
overlap occurs at μ � 0.10, so actually μc(ε) < μcT , as ex-
pected. Indeed, if we compare this figure with Fig. 1, several
similarities arise. The guiding resonance and its stochastic
layer are clearly observed at I1 = ±1 as well as the resonances
ω1 = ±1 at both sides of the latter, and ω2 = 0 with their ac-
tual half-widths,

√
2εμ ≈ 0.22, for the adopted values of the

parameters are clearly seen. On the other hand, Fig. 1 shows
many high-order resonances appearing close to the stochastic
layer of the guiding resonance, while in Fig. 2 (right) all of
them are destroyed by overlap [see also Fig. 4 (right)]. In other
words, the overlap of high-order resonances leads to a smaller
value of μc than the theoretical one obtained from the overlap
criterion (19) for the first-order resonances.

This figure also reveals that, for the given values of the
parameters, an initial ensemble located on the separatrix of the
guiding resonance will evolve not only along the chaotic layer
of this resonance but on the resonances ω1 = ±1 as well, and

1See below for a brief description of this fast dynamical indicator.
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FIG. 2. Left: Critical value of μ (in logarithmic scale) against ε according to (19) for the overlap of the first-order resonances ω1(I1) = 0
and ω1(I1) = ±1. Right: MEGNO contour plot for ε = 0.25, μ = 0.10 showing that for these values of the parameters, the overlap occurs. In
the MEGNO contour plot, black indicates 〈Y 〉 > 65, gray denotes 2.1 < 〈Y 〉 < 65, while white means 〈Y 〉 < 2.1. The blue dot indicates the
location of a given initial ensemble.

therefore the analytical estimates no longer apply. In this sce-
nario, diffusion in both actions would be expected, since the
system is not restricted to the stochastic layer of the guiding
resonance. Moreover, around |ω2| = 1, the overlap includes
three main resonances: ω1 = 0, ω1 = ±1, ω2 = ±ω1.

Therefore, two alternative scenarios must be considered:
0 < |ω2| < 1 and |ω2| > 1. In fact, for |ω2| ≈ 1 the normal
form or the pendulum model for the guiding resonance does
not work any longer, while for μ small enough at least a dou-
ble resonance normal form should be considered. A similar
situation would occur if |ω2| ≈ 0, as discussed below.

III. DIFFUSION AND LYAPUNOV TIMESCALES

Herein we discuss two relevant timescales that are always
present when the dynamics is chaotic.

A. The diffusion time

A diffusion time can be introduced as the reciprocal of
the diffusion rate, TD ∼ D−1. However, as was discussed in
[18,22], the derivation of TD from a numerical estimation
of D assuming a normal diffusion process does not provide
successful results, at least for motion times ∼5 × 106.

Alternatively, TD can be defined as the required motion
time for a given trajectory starting at a given value of
I2 in the chaotic layer of the guiding resonance: I1(0) ≈
2
√

ε, I2(0) = ω2 arrives at I1(t ) ≈ I1(0), I2(t ) = I2(0) ± δ,
where δ ∼ O(1). To visualize the instability or diffusion along
the stochastic layer of the guiding resonance, Fig. 3 shows
for ε = 0.25, μ = 0.025 the evolution of a small random
ensemble of size ξ = 10−7 and np = 100 initial condi-
tions centered at ϑ1(0) = π, ϑ2(0) = 0, I1(0) = 2

√
ε, I2(0) =

ω2 = 0.01
√

3 for a motion time 4 × 106 on the 3D sec-
tion Sϑ2=0 = {(I1, ϑ1, I2) : |ϑ2| < 2 × 10−4}.

For these values of the parameters and motion time, the
variation of I2 is large but bounded: |I2(t ) − I2(0)| � 2. If
instead we take με � ε � 1, the diffusion would be quite
restricted over any similar time-span; only in this scenario is

Chirikov’s approximation valid (see the discussion given in
Sec. IV). Also if |ω2| is large, the diffusion is rather confined.

B. The Lyapunov time

The Lyapunov time, TL, is defined as the reciprocal of the
maximum Lyapunov exponent (mLE) of a given trajectory;
thus if σ denotes the mLE of an orbit, then TL = σ−1. As far
as we know, no analytical estimates of σ for this particular
system have been reported, not even for small values of the
parameters.

Therefore, herein an estimate of the mLE will be provided
following the approach given in [15], where it is shown that
for a resonance multiplet in a 1.5 dof system, i.e., a pendulum
plus a periodic symmetric time-dependent perturbation of fre-

 0  1  2  3  4  5  6

-2
-1

 0
 1

 2

-1

 0

 1

�1
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�

FIG. 3. Observed diffusion during a time interval 4 × 106 for
ε = 0.25, μ = 0.025 of a small ensemble (depicted in blue) of np =
100 initial conditions in the stochastic layer of the guiding reso-
nance where ϑ1(0) = π, ϑ2(0) = 0, I1(0) = 2

√
ε, I2(0) = 0.01

√
3.

The plot is a projection of the full motion on the 3D section Sϑ2=0 =
{(I1, ϑ1, I2) : |ϑ2| < 2 × 10−4}.
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quency 	, the Lyapunov time is given by

TL ≈ 1

	

Ta(λ,W̃ )

σsx
, (20)

where σsx is the mLE of the motion in the stochastic layer of
the pendulum system, Ta is the mean period of motion in the
layer, and, if the frequency ratio λ � 1, λW̃ = ws is its width.

Thus, in this particular case, we take σsx as the mLE of the
chaotic layer of the guiding resonance, Ta as the mean period
of motion in the layer, given in (17), and 	 as the frequency
of the perturbation of the motion in (I1, ϑ1). Moreover, λ =
	/ω0, where ω0 = √

ε is the small oscillation frequency of
the pendulum, and 	 is the frequency of the perturbation, 1 or
ω2, depending on the value of ω2 (or v).

In [14,15,23], σsx is shown to be nearly constant when
λ � 1, σsx ≈ Ch ≈ 0.80, called afterwards Chirikov’s con-
stant, while in [25] a dependence of σsx on λ is provided,
σsx ≈ 2λCh/(1 + 2λ), that approaches Ch for large λ. Thus
(20) reduces to

TL ≈ 1 + 2λ

2	λCh
Ta(λ,W̃ ), (21)

where, in order to admit not only large values of λ, A2(λ)
and A2(−λ) should be considered in both �H , �H2 given
by (11) and thus in the relative amplitude v, so W given
in (14), that defines W̃ ≈ W or W̃ ≈ W v if 0 < ω2 < 1 or
ω2 > 1, respectively, should be modified including the con-
tribution of the MAI of negative argument (see [24]). Along
these lines, recalling the expressions of A2(λ) and A2(−λ),
Ã2(λ) ≡ A2(λ) + A2(−λ) = 4πλ/[sinh(πλ/2)], W reads

W ≈ μ

2
√

ε
Ã2(1/

√
ε) = 2πμ

ε sinh (π/(2
√

ε))
.

The perturbation of H1(I1, ϑ1) comes from two different
terms, one involving cos(ϑ1 ± t ) and another one of the form
sin(ϑ1 ± ϑ2), both with the same amplitude εμ/2 but different
frequency.

Assume that ω2 < 1 but not too small, so v � 1 and thus
the map (15) reduces to

w′ ≈ w − W v cos ϑ2, ϑ ′
2 = ϑ2 − ω2√

ε
ln |w′| + ω2η.

Therefore, just a single term is involved in the perturba-
tion to the separatrix of the pendulum, and it follows that
	 = ω2, λ = ω2/

√
ε, Ta = λ ln (32e/(λW̃ )) with

W̃ ≈ W v = μω2

2
√

ε
Ã2

(
ω2√

ε

)
= 2πμω2

2

ε sinh (πω2/(2
√

ε))
,

λW̃ ≈ 2πμω3
2

ε3/2 sinh (πω2/(2
√

ε))
,

and thus (21) reduces to

TL ≈ 1 + 2ω2/
√

ε

2ω2Ch
ln

(
32e

λW̃

)
. (22)

If ω2 � 1, as is the case for Fig. 3, where ω2 = 0.01
√

3 <

4
√

ε/π , as well as if ω2 > 1, the amplitude v is small, and the
map (15) becomes

w′ ≈ w + W sin τ, τ ′ = τ − 1√
ε

ln |w′| + η,

and thus W̃ ≈ W,	 = 1, λ = 1/
√

ε. Therefore, in this sce-
nario, TL given by (21) reads

TL ≈ 1 + 2/
√

ε

2Ch
ln

(
32e

λW̃

)
,

λW̃ ≈ μ

2ε
Ã2(1/

√
ε) = 2πμ

ε3/2 sinh (π/(2
√

ε))
. (23)

As a function of μ, TL in both cases takes a very simple
form, TL ≈ −B(ε) ln (β(ε)μ).

These estimations of TL will be compared with the ones
obtained by numerical means. Along these lines, to compute
numerically TL, we take advantage of a fast dynamical indica-
tor, the so-called mean exponential growth factor of nearby
orbits (MEGNO) (see [26–28]). The MEGNO, denoted as
〈Y 〉, requires the solution of the variational equations and the
usual renormalization of the tangent vector, and it provides
an accurate estimate of the mLE of a given trajectory, since
〈Y 〉(t ) → σ t/2, t � 1 whenever σ > 0 while 〈Y 〉(t ) → 2 for
quasiperiodic motion. Values of 〈Y 〉 < 2 correspond to reso-
nant or stable periodic motion. Therefore, after a certain large
enough time-span t , the numerical mLE σnum(t ) = 2〈Y 〉(t )/t
converges to the expected value of the mLE σ .

To be confident of the results, σnum are also derived fol-
lowing Ref. [29], i.e., computing the sum of the renormalized
norms of the tangent vector (after a certain number of iter-
ates) and later on dividing it by the total motion time. No
relevant differences were observed in all the experiments, but
the MEGNO turns out to be much more efficient to perform
chaotic contour plots, as we shall see.

We focus then on both timescales Tinst and TL and on any
eventual relation between them when this system starts the
motion in the stochastic layer of the guiding resonance. Since
we are interested in a wide range of values of the parameters, it
is expected that the analytical approximations would not work
over the full range of ε and μ and thus definitively numerical
experiments are required. Certainly, in some ranges of param-
eter space the theoretical estimates would apply, and we will
discuss whether the numerical ones would be represented by
the analytical estimates.

Let us mention that the relevant parameter in the Arnold
model is μ since the product με controls the strength of
the coupling between the different degrees of freedom. If
μ = 0, as we have already discussed, the system is inte-
grable, and, in this case, the Hamiltonian (3) could be rescaled
and shifted so that, after the canonical transformation t ′ =√

εt, I ′
1 = I1/

√
ε, H ′

1 = H1/ε + 1, ϑ ′
1 = ϑ1, the transformed

Hamiltonian reads

H ′
1(I ′

1, ϑ
′
1) = I ′2

1

2
+ cos ϑ ′

1,

independent of ε (see [30]). Therefore, we will focus on the
dependence of both timescales, TD, TL on μ for particular
values of ε.

In all numerical experiments, the integrations were car-
ried out with a Runge-Kutta 7/8th-order integrator, the
so-called DOPRI8 routine ([31,32]), with the local tolerance
set to 10−13.
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FIG. 4. Left: Recurrence time, Tr , over the section Sϑ2=0
ϑ1=π as a function of μ just for ε = 0.25, 0.01 � μ � 0.25. Right: An initial ensemble

(indicated as a blue circle) is followed onto the MEGNO contour plot for ε = 0.25, μ = 0.025; white and light gray denote stable motion,
while black indicates strongly chaotic dynamics. The concomitant trajectories for the initial ensemble that intersect the 2D section Sϑ2=0

ϑ1=π are
depicted in red.

IV. NUMERICAL RESULTS

As in the experiment presented in Fig. 3, we take a small
ensemble of np = 50 random initial conditions of size ξ =
10−7 on the actions for given values of ε and μ with ini-
tial conditions ϑ1(0) = π, ϑ2(0) = 0, I1(0) = 2

√
ε, I2(0) =

ω0
2 = 0.01

√
3, and the MEGNO is obtained for each one

of the np initial conditions after t = 105. Then the average
MEGNO over the ensemble, 〈Y 〉e, is computed and the nu-
merical mLE for the ensemble is obtained as σnum = 2〈Y 〉e/t
and thus TL = 1/σnum. Let us recall that the use of ensembles
reduces the stickiness effects always present in almost all
near-integrable Hamiltonian systems when dealing with finite
motion times (see the discussion below in Sec. IV B).

On the other hand, for the same set of initial conditions but
np = 100, the diffusion time, TD, is computed on the 2D sec-
tion Sϑ2=0

ϑ1=π = {(I1, I2) : |ϑ1 − π | + |ϑ2| < 0.01}. It is defined
as the average time over the np trajectories to move along the
stochastic layer of the guiding resonance in such a way that on
Sϑ2=0

ϑ1=π , |I2(TD) − I2(0)| = δ ∼ O(1). Let us mention that the

dynamics on Sϑ2=0
ϑ1=π is sensitive to the integration time-step.

Indeed, from one side, it is necessary that the recurrence time
on the section, Tr, be much smaller than TD and, on the other
side, that the number of intersections of the trajectory with the
section be large in order to get smooth average times.

A. Settings and further estimates

Let us start with an illustrative experiment for which we
kept the values of np, ξ and motion time used to perform
Fig. 3, i.e., np = 100, ξ = 10−7, t = 4 × 106, and the average
recurrence time over the section is much less than 105.

Figure 4 (left) shows the recurrence time as a function of
μ just for ε = 0.25 within a wide range, 0.001 < μ < 0.25,
Tr < 4 × 104, and for the larger values of μ it is less than
2 × 104. The average number of intersections of the trajectory
with Sϑ2=0

ϑ1=π is about 1500.
Figure 4 (right) illustrates the diffusion for ε = 0.25 and

μ = 0.025 (the same values of the parameters as in Fig. 3)

where the wandering of the actions for the initial ensem-
ble (depicted in blue) is pursued and superimposed on the
MEGNO contour plot (for |I1| � 1.5, |I2| � 2); the red dots
correspond to the 100 trajectories that intersect the sec-
tion Sϑ2=0

ϑ1=π . White and light gray colors in the MEGNO
contour plot denote stable motion, quite small σnum, while
black indicates highly chaotic dynamics, large σnum. As ex-
pected, for these values of the parameters, no overlap between
the resonances ω1 = 0 and ω1 = ±1 is present, and the varia-
tion of I2 is large.

According to the results provided in Fig. 4, for the de-
termination of TD in the dynamics on the section Sϑ2=0

ϑ1=π , we
adopt δ = 0.5 and focus our studies on the dynamics when-
ever |ω2| < 1. Indeed, we adopt δ < 1 in order to avoid the
effects of crossings between the guiding resonance and the
resonances ω2 = ±ω1, where the diffusion may spread over
both resonances [see Fig. 4 (right)]. However, additional nu-
merical experiments were carried out with δ = 0.3 and 0.7,
which showed that the computed TD barely changes; just a
small shift upwards or downwards with respect to the results
for δ = 0.5 is observed.

According to Chirikov [14], when 0 < |ω2| < 1 (v � 1)
the resonances ω1 = ±ω2 should be mainly responsible
for the appearance of the stochastic layer around the separatrix
of the guiding resonance as well as for all its properties, while
the resonances ω1 = ±1 drive the diffusion along the layer,
but if |ω2| > 1 (v � 1) these resonances exchange their roles
(see, however, the next section).

As mentioned above, for the adopted value of ω2 in Figs. 3
and 4, ω2 = 0.01

√
3 < 1, so v � 1 and thus we should take

as the layer resonance ω1 = ±1. Let us discuss this issue in
more detail.

For ε = 0.25, μ = 0.025, it follows that ω2 = 0.01
√

3 <√
2εμ ≈ 0.11 and thus the initial ensemble lies on the inter-

section between the stochastic layer of the guiding resonance
and the weaker one, ω2 = 0. It follows then that the term
sin ϑ2 in μV [see (7)] is slow, and thus at first glance it could
not be averaged out. So the approximation ϑ2 ≈ ω2t + ϑ0

2 in
the computations of �H2 given by (11) is not valid, at least
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3. Right: Numerical deter-
mination of TD on Sϑ2=0

ϑ1=π and its corresponding theoretical value as d2D−1 with d2 ≈ 0.49, the mean-square distance associated with the
wandering of I2 (see the text for details).

when the motion is confined to the resonance ω2 = 0, while
this fact is irrelevant in the computation of �H .

Notice that only when the change in I2 is small is it possible
to approximate I2 ≈ ω2 as it was done in the computation of
�H2, so the term sin ϑ2 would always be resonant. From the
experiments presented in Figs. 3 and 4 (left), after a certain
motion time, the system leaves the resonance ω2 = 0, and
ϑ2 will indeed rotate. But this situation is not considered
in Chirikov’s estimates since the approximation I2 ≈ ω2 as
unperturbed motion is used, but here I2 exhibits large varia-
tions, so the latter approximation does not apply. Actually, as
should be expected (and shown in [18]), for the same values
of the parameters but taking the initial ensemble in different
locations in the stochastic layer, |ω2| < 1, |ω2| > 1, and also
|ω2| � 1, the diffusion spreads over a quite similar domain
regardless of whether ϑ2 is resonant or not.

Figure 5 (left) shows the evolution of sin ϑ2 for the same
values of the parameters and initial conditions as in Fig. 4
(left), where it is clearly observed that for motion times less
than 2 × 104 this term is resonant.

In conclusion, while the expression for �H is correct be-
cause it does not depend on (I2, ϑ2), that for �H2 is no longer
applicable. Therefore, Chirikov’s estimates that involve ω2

should be revised. Along these lines, notice that if we assume
that the driving resonance is ω1 = ±ω2, then the diffusion
coefficient given in (16) is such that D → 0 while ω2 → 0
as ω4

2 and then D−1 ≈ TD would be extremely large for the
considered value of ω2. Moreover, from the above numerical
experiments, it turns out that it has no sense to distinguish
between |ω2| < 1 and |ω2| > 1 since I2 raises up to |I2| ≈ 2
when starting at I2 = ω2 < 1.

Thus a new experiment is carried out where TD is computed
for ε = 0.25 and 0.005 � μ � 0.06 in the way described
above, and also D−1, but instead of using the first line in
(16), the latter is modified in order to take into account both
contributions of the MAI and the exact expressions of the
hyperbolic functions; we obtain

D(ω2, ε, μ) ≈ 2π2μ2ω4
2

Ta(ws) sinh2 (πω2/(2
√

ε))
,

where Ta is given by (17) with ws = λW̃ as in (23). Here we
adopt ω2 ≈ 0.5, the value of I2 when the motion reaches the
boundary, R = 1/4; and the results are presented in Fig. 5
(right), where the values of D−1, multiplied by a mean-square
distance d2 associated with the wandering of I2, should give
the diffusion time. The distance d , though it should be ∼0.5,
is left as a free parameter in order to get the best fit of the
numerical values of TD. Setting d = 0.7, fully consistent with
the natural value, the analytical estimate d2D−1 provides the
actual order of TD.

The use of a modified expression for the first line in (16)
could be objected if we set ω2 ≈ 0.5 since in such a case the
second formula for D applies, for ω2 < 1 but not too small.
Along these lines, if instead the second line in (16) is adopted
but also modified in the same direction as above,

D(ω2, ε, μ) ≈ 2π2μ2

Ta(ws) sinh2 (π/(2
√

ε))
,

with ws = λW̃ as given in (22), ω2 ≈ 0.5, and d = 0.7, the
result for the diffusion time is quite similar.

Therefore, if from the numerical computations it follows
that TD ∼ μ−α, α ≈ 2, and TL ∼ − ln μ, then we may assume
that the analytical estimates yield the right dependence of both
timescales on μ.

With μ the relevant parameter, we proceed with numerical
experiments for different sets of parameter values, consisting
of a few values of ε and varying μ in a short-step way within
a given interval. Along these lines, three series of experiments
are performed.

(I) First, we take ε ∈ E1 = {0.10, 0.15, 0.20, 0.25, 0.30},
μ ∈ M1 = {0.001 � μ < μ0} with δμ = 0.0006, where
μ0 = min{0.1, 0.5μcT (ε)}. Thus, the simulations will end
at different values of μ if μ0 < 0.1, for instance if
ε = 0.30, μ0 ≈ 0.051. The integration parameters are t =
105, δt = 1 for the determination of TL while t = 4 ×
106, δt = 0.05 in the case of TD.

The choice of the parameters is such that in the domain
|I2(t ) − I2(0)| < 1 no significant overlap nor crossing of res-
onances occurs, and thus it is reasonable to expect that the
analytical estimates would roughly apply, i.e., TD ∼ 1/μp
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FIG. 6. MEGNO contour plot for ε = μ = 0.12, where black in-
dicates 〈Y 〉 > 35, gray indicates 2.1 < 〈Y 〉 < 35, and white indicates
〈Y 〉 < 2.1. The evolution of the initial ensemble is depicted in red
only for |I2 − I2(0)| � 0.5.

with p ≈ 2 and TL ∼ − ln μ should be expected. While only
for ε � 0.10 is it v � 1 as discussed above, we expect that up
to ε ≈ 0.25 the theoretical formulation would apply.

(II) Second, we set μ = ε for ε ∈ E2 = {0.001 � ε < ε0 <

εcT } with δε = 0.001. Here εcT is the theoretical critical value
of ε for the existence of an overlap of the guiding resonance
with resonances ω1 = ±1. The latter, proceeding in a similar
fashion as we have already done for μcT in (19), should satisfy
the equation

η2 + 2
√

2η = 32 exp(−2πη), η = √
εc,

whose numerical solution is εcT ≈ 0.23, so we adopt ε0 �
0.18 in order to avoid any significant overlap. The integration
parameters are similar to those of (I) but t = 5 × 106 for the
determination of TD.

According to [33], when both parameters are not indepen-
dent of each other, the estimates of the splitting of separatrices
(about 2W̃ in this formulation) given by the direct application
of the MAI no longer apply, and in that work the case of μ =
ε is largely investigated by a rigorous analytical approach.
Along these lines, numerical estimations of the splitting are
given for the perturbation parameter η2 ≡ ε = μ, ranging
from η = 0.02 up to 0.44, similar to ε ∈ E2. Unfortunately, no
analytical estimates for the diffusion coefficient arise in this
scenario.

Figure 6 shows the structure of action space on Sϑ2=0
ϑ1=π

for ε = μ = 0.12 as well as the intersections of np = 100
trajectories with this section whenever |I2(t ) − I2(0)| � 0.5.
Although the guiding resonance and resonances ω1 = ±1 are
not in overlap, there is a path from the stochastic layer of
ω1 = 0 to the domain of resonance ω1 = ±1 through the
layers of the resonances ω1 = ±ω2 and ω2 = 0; therefore, the
diffusion is comparable in both actions.

(III) Third, let ε ∈ E3 = {0.25, 0.30, 0.35, 0.40, 0.45,

0.50}, μ ∈ M2 = {0.1 � μ < 0.25} with δμ = 0.001. The
integration parameters are taken similar to those of (I). This
choice of the parameters is such that an overlap of resonances
ω1 = 0 and ω1 = ±1 takes place and thus the scenario is
quite far from that given by Chirikov’s assumptions.

B. Results

In this section, the main results of the series of experiments
are presented and discussed.

1. Experiment I

Figure 7 (left) presents the computed TD versus μ, 0.001 �
μ � 0.1 whenever μ0 � 0.1 for the five values of ε con-
sidered. For the smaller values of both parameters, the
trajectories do not cross the boundary |I2 − I2(0)| = 0.5 as
the plateau at TD = 4 × 106 reveals. Note that for the two
largest values of ε, μc < 0.1 for instance, at ε = 0.30 one has
μc ≈ 0.11, so results for μ < 0.055 are presented.

The diffusion time presents a mild dependence with ε; the
latter parameter seems to play the role of a scale factor. A
least-squares fit (LSF) of the power law

10−4TD(ε, μ) = A1(ε)

μα1(ε)
, (24)

where, according to Chirikov’s estimate, one may expect α1 ∼
2, leads to the values of A1 and α1 given in Table I. The
corresponding fit for ε = 0.15 is drawn in Fig. 7 (left) as a
solid black curve.

Notice that in any case TD ≈ A1(ε)μ−1.6, where A1 de-
creases with ε, consistent with the analytical approach. The
values of the coefficients in Table I depend on the considered
range in μ for the LSF, in particular the initial one. For
instance, for ε = 0.10 the fit starts at μ = 0.024 since for
smaller values of μ, TD is almost constant.

Figure 7 (right) displays the corresponding results for TL

versus μ, 0.001 � μ � 0.1 using the same color pattern for
the different ε values as in the figure at the left. For small
ε and μ a nearly constant value of TL is observed, however
large fluctuations are present up to μ � 0.05. This is a curious
behavior similar to that reported in [16] when dealing with
the TD − TL relationship in a 4D symplectic map derived on
a section similar to Sϑ2=0

ϑ1=π for small values of the perturbation
parameters.

Along these lines, new experiments are carried out for
ε = 0.10, 0.15, and 0.001 � μ � 0.05, where the Lyapunov
time is computed for time intervals up to 106 for the same
ensemble of np = 50 nearby initial conditions. The results,
shown in Fig. 8 (left), do not present significant differences
with respect to those displayed in Fig. 7 (right). In fact for
ε = 0.10 and t = 106, TL takes larger values than when it is
computed at t = 105 in the full range of μ, while the opposite
occurs for ε = 0.15 up to μ ≈ 0.03. For larger values of μ the
results are quite similar.

On the other hand, it could be argued that the use of an
ensemble would lead to this particular behavior of TL, since
maybe several trajectories in the ensemble could suffer stick-
iness producing then an artificial enlargement of the values
of the average Lyapunov time. Thus TL is computed now for
np = 1 and just for ε = 0.10, also over a time-span of 106, and
the results are presented in Fig. 8 (center), where it is clearly
observed that the fluctuations in TL are quite large, precisely
due to stickiness. Indeed, for ε = 0.10, 0.001 � μ � 0.05
with �μ = 0.0006 and t = 106, the distribution of TL for
the np = 50 initial conditions in the ensemble for each μ is
presented in Fig. 8 (right), where the nearly 4100 values of the
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FIG. 7. TD computed on Sϑ2=0
ϑ1=π and TL vs μ; different colors indicate the values of ε. The black full lines in the plots correspond to particular

numerical fits (see the text for details).

Lyapunov time are binned in 150 intervals. If some trajectory
behaves as regular, it should lead, for the computed motion
time, to TL ∼ 106, while the largest one, just one value, is
about 103, so all trajectories are chaotic and those with large
TL are subject to stickiness that influences the average TL over
the ensemble.

Just for comparison, in Fig. 8 (center), the theoretical Lya-
punov time is included, actually 1.45TL with TL given by (23).
If instead (22) is adopted for TL, with ω2 ≈ 0.5, no significant
differences are observed.

Figure 9 shows the evolution of the initial ensemble of
np = 50 initial conditions up to the motion time 106 for
ε = 0.10, μ = 0.015 on Sϑ2=0

ϑ1=π where a contour plot of the
MEGNO is included for these values of the parameters. It
becomes clear that the trajectories spend most of the time
on the stochastic layer close to |I2| � 0.2; also some iterates
appear in the connection between the guiding resonance with
resonances ω1 = ±ω2 where the diffusion is much slower.
This fact could explain the comparatively large value of the
average TL computed at t = 106. However, this particular be-
havior of the Lyapunov time for μ � 0.03 and small ε requires
further theoretical studies.

According to (23), a logarithmic relationship between TL

and μ is proposed,

TL(ε, μ) = −B1(ε) ln (β1(ε)μ), (25)

where the values of B1, β1 are given in Table I; the fit for ε =
0.20 is depicted in Fig. 7 (right) as a black curve. For this
value of ε, TL given by (23) leads to TL ≈ −3.42 ln(0.048μ),
which provides a similar order than that obtained by fitting

the data. However, as expected, the errors in the parameters
are somewhat larger, in particular in β1.

From (24) and (25) it follows that

10−4TD ≈ C1(ε) exp(γ1εTL), (26)

with γ1ε ≈ α1/B1, where the expected values of this factor are
given in Table I.

Within the irregularities of TL, the fit (25), as well as (23),
seem to be acceptable. Both provide the order of TL. Notice
that for ε = 0.30 no values of the parameters are given, since
TL is almost constant at 0.01 � μ � 0.05. Using again (23),
the corresponding values should be B1 ≈ 2.91, β1 ≈ 0.05.

Considering TD against TL, the latter restricted to 22 <

TL < 40 in order to somewhat reduce its irregular behavior, a
LSF for ε = 0.15 leads to γ1 ≈ 0.17 while for ε = 0.20, 0.25
we get γ1 ≈ 0.19. Clearly for ε = 0.10, 0.30 it has no sense
to perform this numerical fit. Though the numerical values of
γ1 are somewhat smaller than α1/B1, they agree in the order.
Figure 10 shows a LSF for all the values (ε =
0.15, 0.20, 0.25). The fit is drawn by the solid green line,
taking γ1 ≈ 0.177 ± 0.015 and C1 ≈ 0.112 ± 0.061, and for
the best fit we adopt C1 ≈ 0.06 due to the uncertainty in the
estimation of this parameter.

The results obtained in this series of experiments, where no
significant overlap of first-order resonances is expected, are
consistent with the analytical estimates for both TD and TL.

2. Experiment II

Here, as mentioned, ε = μ is considered, thus a single
result for TD and TL against μ is shown. Recall that the range

TABLE I. Values of the parameters A, α, B, and β obtained by a LSF of 10−4TD.

ε A1 α1 B1 β1 α1/B1

0.10 0.170 ± 0.018 1.54 ± 0.03 6.435 ± 0.29 0.0277 ± 0.008 0.239 ± 0.015
0.15 0.133 ± 0.008 1.53 ± 0.02 5.779 ± 0.30 0.0714 ± 0.022 0.265 ± 0.017
0.20 0.043 ± 0.006 1.73 ± 0.03 5.138 ± 0.22 0.0853 ± 0.021 0.337 ± 0.007
0.25 0.038 ± 0.005 1.66 ± 0.03 3.431 ± 0.19 0.0090 ± 0.004 0.483 ± 0.036
0.30 0.019 ± 0.004 1.78 ± 0.04
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FIG. 8. Left: TL for ε = 0.10, 0.15 computed up to t = 106 for np = 50, ξ = 10−7 and the same initial conditions as in Fig. 7 (right). TL

up to t = 105 for the same values of ε are also included for comparison. Center: similar to the figure at the left but just for ε = 0.10 and taking
np = 1 instead of np = 50. Also TL for np = 50 and t = 105–106 are included. The theoretical expected value given in (23) multiplied by 1.45
is depicted in black. Right: Distribution of TL (in logarithmic scale) at ε = 0.10 and 0.001 � μ � 0.05 for the np = 50 initial conditions in the
ensemble for each value of μ.

of μ is such that no significant overlap of resonances occurs.
The results are shown in Fig. 11 (left and center), where TD

decreases with μ in a nearly exponential way. Notice that
TD, for μ < 0.07, is close to the integration time as the cusp
reveals; these values should be ignored since the diffusion
time should increase as μ → 0. On the other hand, except
in a very narrow interval of small values of μ, TL decreases
monotonically with the perturbation parameter as a power law.
Note that in this case, if we approximate TL with (23), μ = ε

should be considered and the dependence of the Lyapunov
time on the perturbation parameter is no longer logarithmic.

Then a LSF for both timescales of the form

10−4TD = A2 exp

(
1

μα2

)
, TL = B2

μβ2
(27)

leads to A2 ≈ 2.24 ± 1.55, α2 ≈ 2.5 ± 0.155; B2 ≈
3 ± 0.29, β2 ≈ 1.084 ± 0.023. Both fits are drawn with a
solid green curve in Fig. 11 (left and center), where also (23)
for the theoretical estimation of TL with μ = ε multiplied by
1.25 is plotted in black. Notice that again, in this particular
case, the estimation of TL provides the right order of the
numerical-experimental values, while the laws given in (27)

FIG. 9. MEGNO contour plot in (I1, I2) space for ε = 0.10, μ =
0.015 and the evolution of an ensemble of np = 50 initial conditions
at the separatrix of the guiding resonance and ω2 = 0.01

√
3 on

Sϑ2=0
ϑ1=π . Black and gray denote strong and mild chaos, respectively,

while white indicates stable motion.

are in good agreement with the computed values of TD

and TL.
From (27) it follows that a relationship between TD and TL

should be of the form

10−4TD = C2 exp

(
TL

T0

)γ2

, (28)

where γ2 ≈ α2/β2 ≈ 2.30 ± 0.19 and T0 ≈ Bγ2 ≈ 30, within
the errors. Along these lines, a LSF by (28) for 20 � TL �
60, i.e., the values of TD, TL for μ > 0.06, provides C2 ≈
1.55 ± 0.159, γ2 ≈ 2.26 ± 0.04, very close to the expected
ones. This is shown in Fig. 11 (right), where the law (28) is
depicted in green, revealing a good accordance between the
computed values with the expected relationship between both
timescales.

Equation (28) may look similar to the parametric TD − TL

relation for the standard map discussed in the Introduction, but
there are important differences. This underlines the fact that
the parametric relationships TD − TL, contrary to the generic
ones, may have rather varied analytical forms.

 10

 100

 22  24  26  28  30  32  34  36  38  40

10
-4

T
D

TL

FIG. 10. 10−4TD (in logarithmic scale) vs TL for
ε = 0.15, 0.20, 0.25 and 22 < TL < 40. The green line corresponds
to the fit (26) for all the data with γ1 ≈ 0.18 and C1 taken as the
half-value obtained by LSF since its uncertainty is large, C1 ≈ 0.06.
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FIG. 11. TD (in units of 104) and TL as a function of μ = ε and TD against TL. The green curve in the three plots represents a LSF of the
data, while the black one in the central panel corresponds to the theoretical estimation of TL by means of (23) (see the text for details).

3. Experiment III

Here we deal with the scenario in which μ > μc(ε) so
no analytical estimate applies. The following values of the
parameters are considered: ε = 0.25, 0.30, 0.35, 0.40, 0.45,
0.1 � μ � 0.25, and, according to Fig. 2 (left), when ε =
0.25, μc ≈ 0.1.

Similar experiments to those discussed before are carried
out for both timescales. The results for TD and TL are given in
Fig. 12.

Notice that while TD seems to be nearly independent of ε,
TL reveals that this parameter plays the role of a scale factor. In
both cases, only a power law for the timescale with μ works;
any attempt to fit TL with a logarithmic dependence on μ (as in
Experiment I) fails. Thus the following power laws are fitted:

10−4TD = A3(ε)

μα3(ε)
, TL = B3(ε)

μβ3 (ε)
, 10−4TD = C3(ε)T γ3ε

L .

(29)
The values of all the parameters are provided in Table II,
where the ratio α3/β3 ≈ γ3ε is included. It is interesting that
all the parameters involved in the above fits vary in narrow
intervals; in particular, α3/β3 is close to 1. In both panels,
the fit corresponding to ε = 0.35 is included as a black solid
curve.

Figure 13 (left) presents the relation TD − TL for this range
of parameters, where it becomes evident that a correlation

exists between the timescales. The LSF of 10−4TD =
C3(ε)T γ3ε

L , after removing the large fluctuations observed
at ε = 0.25, leads to the values of C3, γ3 given in Ta-
ble II. Recall that in any case, γ3 is very close to that of
α3/β3. Taking the relation TD − TL for all ε to fit by a
single power law, it follows that C3 = 0.867 ± 0.076, γ3 =
0.46 ± 0.032 as Fig. 13 (right) shows, and this power-law
fit is included in blue. However, the values of TD still
present fluctuations that introduce noise to the actual cor-
relation parameters, so we include a second fit with C3 ≈
0.346, γ3 ≈ 0.824, i.e., the values corresponding to ε =
0.40, and the fit is drawn in the figure in black. This sec-
ond fit also represents well the correlation between both
timescales.

This set of experiments, for large values of the parameters,
reveals that both timescales obey a power law with μ, where
the exponent is in the range 0.3–0.5, and at all ε the exponents
are quite similar. These results do not yet allow any analytical
derivation.

V. FINAL REMARKS

In this work, it is shown that in the Arnold model, when
the perturbation parameters are relatively small, the numerical
results concerning TD and TL are consistent with the analytical
estimates given by [14,15] for the diffusion time and the Lya-
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FIG. 12. Left: TD (in units of 104) and TL as a function of μ, where different colors indicate the corresponding ε values. The black curves
represent a LSF of the data for particular values of ε (see the text for details).
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TABLE II. Values of the parameters A3, α3, B3, β3,C3, γ3 obtained by a LSF of 10−4TD for all values of μ, except for ε = 0.25, where
μ > 0.14 and TL, also for all values of μ.

ε A3 α3 B3 β3 α3/β3 C3 γ3

0.25 1.447 ± 0.294 0.482 ± 0.123 7.983 ± 0.116 0.459 ± 0.008 1.050 ± 0.286 0.149 ± 0.115 1.083 ± 0.274
0.30 1.400 ± 0.098 0.416 ± 0.038 6.710 ± 0.083 0.508 ± 0.007 0.818 ± 0.086 0.320 ± 0.068 0.790 ± 0.075
0.35 1.574 ± 0.091 0.358 ± 0.031 6.360 ± 0.074 0.477 ± 0.006 0.750 ± 0.074 0.425 ± 0.076 0.721 ± 0.066
0.40 1.586 ± 0.095 0.357 ± 0.032 6.426 ± 0.063 0.424 ± 0.005 0.842 ± 0.085 0.346 ± 0.069 0.824 ± 0.076
0.50 1.597 ± 0.089 0.338 ± 0.030 6.387 ± 0.069 0.369 ± 0.006 0.916 ± 0.096 0.335 ± 0.068 0.861 ± 0.080

punov time, respectively. The estimations of TL, according to
[15] and following Chirikov’s idea of the existence of a layer
resonance, are in agreement with the numerical determina-
tions whenever no significant overlap of first-order resonances
occurs.

When ε, μ are both not too small, the estimate for TD is
not clear, since the determination of �H2 does not hold, and
therefore it seems irrelevant to distinguish between |ω2| < 1
or |ω2| > 1. In any case, we succeed in getting the right order
of TD after adopting for ω2 the corresponding value at the
boundary of the motion.

The numerical outcomes show that, indeed, TD ∼ μ−α

with α ∼ −2 while TL ∼ ln μ as predicted by the theoretical
estimates. Thus an exponential relationship between the com-
puted values TD and TL arises, as TD ∼ exp(TL).

In the particular case of μ = ε (ε < εcT ), the theoretical
estimate of TL agrees with the numerical one, but this is
not true for TD. While this aspect is not completely clear,
it seems that it could be related to the fact that, as dis-
cussed in [33], a direct application of the MAI to measure
the splitting of separatrices does not apply any longer, and
thus the estimations of �H,�H1,�H2, where the MAI are
straightforwardly calculated for the first-order resonances, are
no longer valid. In [33], a detailed discussion about the use of
an averaging technique before applying the Melnikov method
is given, and it is shown that this is the right procedure. Along
these lines, the full splitting is looked for when different

(high-order) harmonics in the perturbation play a relevant
role.

In this specific numerical experiment (with μ = ε), we
found that TD follows an exponential relationship with μ

as ∼ exp(1/μ2.5) while TL behaves as ∼μ−1 and there-
fore a TD − TL relationship like TD ∼ exp(T γ

L ) applies, with
γ ∼ 0.3.

When both parameters are large, such that no analytical
estimates apply, it is found that both timescales follow a
similar power law with μ as ∼μ−0.4 and therefore also a
power law applies for the relation TD − TL; TD ∼ T γ

L , with
γ ∼ 1.

These results show that even in this particular model where
a continuous family of hyperbolic tori along the guiding res-
onance exists, the functional relationship TD − TL depends
on the strength of the perturbation, i.e., on the global dy-
namics of the system for the given values of ε and μ.
Along these lines, it is not expected that the obtained re-
sults between both timescales would apply in a more general
case.

Regarding Chirikov’s approach to the diffusion rate, the es-
timate provides the right order whenever (i) μ is small enough
such that the change in I2 is quite small, i.e., the diffusion is
slow; and (ii) the relative amplitude v is small or quite large.
The latter condition restricts the values of ε � 0.10 whenever
ω2 ∼ 1.27

√
ε � 1, while if ω2 is large, v is always small even

for ε � 0.25 or larger.
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FIG. 13. Left: TD (in units of 104) vs TL; different colors indicate the corresponding ε values. The black curve in the figure on the left is
the fit for ε = 0.35, and that on the right encompasses the whole data. The two numerical fits are included, one with C3 ≈ 0.874, γ3 ≈ 0.46 in
blue, while the black one is for C3 ≈ 0.346, γ3 ≈ 0.824 (see the text for details).
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