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Shapiro steps and chaos in the Frenkel-Kontorova model with substrate lateral vibration
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Numerical simulations are used to examine the dynamics of the dc-driven Frenkel-Kontorova model with an
oscillation substrate subjected to lateral periodic excitations in overdamped and underdamped cases, respectively.
The results reveal that the system exhibits frequency locking and chaotic behaviors due to the fact that the lateral
vibration of the substrate potential introduces an additional frequency and degree of freedom into the system.
In the overdamped case, we show that the appearance of subharmonic Shapiro steps can be attributed to the
deformation of the substrate potential or inertia. The characteristics of the steps are significantly affected by the
amplitude and frequency of the lateral vibration. When the vibration frequency is relatively high, the change
of the width of the first harmonic Shapiro step with increasing amplitude exhibits a Bessel-type oscillation, but
the oscillation deviates from the Bessel curve at lower frequencies. In the amplitude dependence, although the
oscillatory behavior of the critical depinning force at the high frequency is anomalous, local maxima (minima)
of the first step width correspond to local minima (maxima) of the critical depinning force, and the largest
Lyapunov exponent obtained in the pinned state represents a mirror relationship of the critical depinning force.
In contrast to the overdamped system, the underdamped one exhibits both subharmonic Shapiro steps and
chaotic behaviors. We show the increased inertia of the latter system plays an important role in suppressing
the emergence of subharmonic steps, which is opposite to the result of the former. When the dc force changes,
chaos appears not only between adjacent subharmonic Shapiro steps but also on some specific steps where
chaos should be avoided. The variation regularity of the first step width and the critical depinning force is
thus annihilated in vibration amplitude and frequency dependence. However, superlubricity can be achieved by
careful adjustment of vibration amplitude and frequency. The findings can serve as a theoretical guideline for
technological applications such as device building and voltage standards.
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I. INTRODUCTION

Frequency-locking phenomena are the important char-
acteristics of nonlinear dynamical systems with competing
timescales, and one particular phenomenon among them is
the occurrence of Shapiro steps [1]. Since the first discovery
of Shapiro steps in Josephson junctions, the dynamical mode-
locking phenomena have been extensively explored in various
systems of coupled oscillators, such as charge-density wave
and spin-density wave systems [2,3], irradiated Josephson
junctions [4], vortex matter [5], superconducting nanowires
[6], skyrmion dynamics [7], and driven colloids [8]. Among
these many-body systems, the Frenkel-Kontorova (FK) model
[9] is one of the simplest models that can capture the essence
of frequency locking well. Despite its simplicity, the FK
model exhibits rich and complex dynamic behaviors [10–12]
and has been widely used to describe the dynamics of various
nonlinear systems [4,9,13–15].

The standard FK model depicts a discrete chain of atoms
that are harmonically coupled with their nearest neighbors and
subjected to an external sinusoidal substrate potential. Due
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to the competition between the equilibrium distance related
to the interparticle interaction and the period of substrate
potential, the model features both commensurate and incom-
mensurate structures, which display rich dynamical behaviors
when they are driven by external forces [16]. When the FK
model is driven only by a dc force, there exists a critical
depinning force Fc, also known as the static friction force
[17,18], which separates the pinned and the sliding regions
of the system. When the FK model is driven by both dc and
ac forces, Floría and Falo [13,19,20] investigated it in detail
using molecular-dynamics simulations. They found that in
commensurate structures, Shapiro steps appear in the curve of
the response functions, with the average velocity as a function
of the average external driving force [16]. The occurrence of
the steps is due to the dynamical mode locking of the inter-
nal frequency of the motion of particles over the sinusoidal
substrate potential with the frequency of the external periodic
force.

The FK model reveals some interesting results regarding
the harmonic and subharmonic Shapiro steps. For the standard
dissipative FK model with commensurate structures driven by
external periodic forces, as the ac force amplitude increases,
the first harmonic step width and the critical depinning force
show Bessel-type oscillatory behaviors at high frequencies,
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and local maxima (minima) of the former correspond to local
minima (maxima) of the latter [21,22]. However, the model
with integer values of winding number cannot be used to
research phenomena associated with subharmonic steps since
they do not exist in this case [23,24], and the steps size is
too small for reasonable noninteger values to analyze their
existence and properties [13,19]. Further investigation demon-
strates that the largest Lyapunov exponent (LLE) [25] is a
very sensitive method for detecting any harmonic and subhar-
monic steps. Additionally, it can detect the presence of chaos.
When the Shapiro steps are present, the LLE of the system
is negative, whereas a positive LLE is always indicative of
chaos [13,19]. More interestingly, the amplitude dependence
of the LLE in the pinned state where the dc force Fdc = 0
shows a mirror image of the critical depinning force amplitude
dependence, and this feature persists when the interparticle
potential is exponential [22,26], which points out an advan-
tage of the LLE computation. Different from the standard
dc- and ac-driven FK model, when the substrate potential
has deformation, a series of large subharmonic steps appear
in the system with any commensurate structure, and their
appearance obeys the Farey sequence [27]. With the change of
deformation parameters, anomalies occur in the amplitude de-
pendence of the Shapiro steps width and the critical depinning
force, which deviate from the well-known Bessel-type behav-
ior [27–30]. The anomalies also appear in incommensurate
structures due to the broken symmetry of particle motion [31].
All of these studies demonstrate that neither commensurate
nor incommensurate structures of the dissipative FK model
with convex interparticle potentials or deformable substrate
potentials exhibit chaos [26,27], which can be attributed to
the Middleton’s no passing rule [32,33]. When the FK model
includes an inertial term, unlike in the overdamped case, the
most striking inertial effect is the appearance of chaotic be-
haviors, and with the change of mass, the subharmonic steps
are separated by chaotic windows, while the whole structure
retains the scale similarity of the original staircase [34,35].

In the dc- and ac-driven FK model, most of the studies fo-
cus on harmonic or deformable substrate potentials, while the
substrate potential with vibration has seldom been examined.
When the system is affected by internal and external factors,
vibration often occurs, which is widely studied in many fields.
For instance, energy can be harvested from vibrations in en-
ergy harvesting systems, and vibrational energy harvesters
usually feature low damping ratios to maximize the harvested
power at resonance [36]. The study of dissipative dynamics
of a particle subjected to a lateral vibrational periodic poten-
tial demonstrates that chaos can be induced by the potential
[37]. In a Bose-Einstein condensate [38], Azizi and Valizadeh
considered using a laterally vibrating shallow optical lattice
to explore the dynamics of a bright soliton. They showed that
the phase space of the equation of motion for the center of
mass of the soliton exhibits multistability or chaos depending
on the parameters, amplitude, and frequency of the vibration
of the lattice. In the model of an atomic force microscopy
tip interacting with a substrate that oscillates in the lateral
direction, the surface diffusivity and mobility of the systems
are significantly increased [39–42]. Therefore, it is possible to
reduce the friction of the system by adjusting the amplitude
and frequency of the vibration. According to the previous

studies [39–41], the substrate vibration can be transformed
into ac forces, leading two competing frequencies to exist in
the FK model driven by the dc force, which may result in
the appearance of Shapiro steps. Additionally, the vibration
has a positive effect on the nanofriction phenomenon, which
is associated with the critical depinning force of the system.
Therefore, it is important to investigate the effect of the sub-
strate vibration on the dynamic behaviors of the dc-driven FK
model.

In general, the existence and robustness (structural stabil-
ity) of Shapiro steps with the change of system parameters has
attracted much interest in the research of the dc- and ac-driven
systems. The purpose of this work is to explore the influence
of the amplitude and frequency of the substrate vibration
on the Shapiro steps and the critical depinning force of the
dc-driven FK model. We will use the response functions, the
LLE, and the bifurcation diagram of the Poincaré section to
study the phenomena of harmonic steps, subharmonic steps,
and chaos in the dc-driven FK model with lateral excitations
of the substrate potential. The rest of the paper is organized
as follows. A brief description of the FK model with substrate
lateral vibration is introduced in Sec. II. The dependence of
Shapiro steps, critical depinning force, and chaos on the sub-
strate vibration in the FK model under both overdamped and
underdamped cases are examined with numerical simulations
in Sec. III. Section IV concludes the paper.

II. FK MODEL WITH SUBSTRATE LATERAL VIBRATION

The total potential energy of the standard FK model is [13]

H =
∑

j

[V (u j ) + W (u j+1 − u j )], j = 1, 2, . . . , N, (1)

where N is the number of particles. The substrate potential
V (u j ) is defined as

V (u j ) = K

(2π )2 [1 − cos (2πu j )], (2)

where K is the pinning strength, and W (u j+1 − u j ) is a func-
tion of the distance between adjacent particles, in which the
harmonic interparticle potential is considered with the follow-
ing form:

W (u j+1 − u j ) = 1
2 (u j+1 − u j )

2. (3)

We take account into the effect of the vibration on the
dynamic behaviors of the FK model by applying a lateral peri-
odic excitation f (t ) = A cos(2πυ0t ) to the substrate potential,
which is similar to that in Ref. [37]. That is, the substrate
potential of the system can be written as

V (u j, t ) = K

(2π )2 (1 − cos {2π [u j − f (t )]})

(4)

= K

(2π )2 (1 − cos {2π [u j − A cos (2πυ0t )]}),

where A and υ0 are the amplitude and frequency of the
vibration, respectively.
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The FK model with substrate lateral vibration is driven by
the dc external force Fdc, and the equation of motion is

ü j = − K

2π
sin {2π [u j − A cos (2πυ0t )]}

+ u j+1 + u j−1 − 2u j − γ u̇ j + Fdc, (5)

where j = 1, 2, . . . , N , uj is the position of jth particle, and
γ is the damping coefficient. For some constant force Fdc,
the system is overdamped when (see the specific derivation
in Ref. [34])

γ >
√

4(2 + K ). (6)

Use variable substitutions

w j = u j − A cos (2πυ0t ), (7)

then Eq. (5) is equivalent to

ẅ j = − K

2π
sin(2πw j ) + w j+1 + w j−1 − 2w j − γ ẇ j

+ A(2πυ0)2 cos (2πυ0t ) + 2πυ0γ A sin (2πυ0t ) + Fdc,

(8)

which can be rewritten as

ẅ j = − K

2π
sin(2πw j ) + w j+1 + w j−1 − 2w j

− γ ẇ j + Fac cos (2πυ0t − ϕ) + Fdc, (9)

where Fac = 2πυ0A
√

(2πυ0)2 + γ 2, ϕ = arctan( γ

2πυ0
).

In Eq. (9) the model is driven by dc and ac forces, resulting
in two frequency scales: one is the frequency of the particle
motion associated with sinusoidal substrate potential and the
other is the frequency of the ac force υ0. Due to the com-
petition of these two different frequency scales, the Shapiro
steps may appear in the system. When the locking appears
at integer multiples of frequency, the steps are harmonic,
whereas at rational noninteger multiples of frequency, they are
subharmonic. These steps correspond to resonant solutions of
Eq. (5). If {u j (t )} is a steady-state solution of Eq. (5), then

σl,m,s{u j (t )} =
[
u j+l

(
t − s

υ0

)
+ m

]
= {u′

j (t )}, (10)

is another steady-state solution of the equation, where l, m,
and s are arbitrary integers.

Since

sin{2π [u′
j (t ) − A cos(2πυ0t )]} = sin

{
2π

[
u j+l

(
t − s

υ0

)

− A cos (2πυ0t )

]}
, (11)

the effectiveness of the transformation (10) can be verified.
If the solution is invariant under the symmetry operation

(10), it is called resonant. The corresponding time average
velocity [13] satisfies

v̄ =
〈

1

N

N∑
j=1

u̇ j

〉
t

= lω + m

s
υ0, (12)

where 〈〉t means averaging over time,ω = 〈(u j+1 − u j )〉 is the
average distance between particles, i.e., the winding number.
The system has commensurate structures when ω is rational,
while it has incommensurate structures when ω is irrational. s
represents the period of the solution. When s = 1, the resonant
solutions or Shapiro steps are called harmonic steps, while the
steps are called subharmonic steps when s > 1.

In the commensurate structures, the resonant velocity (12)
can be simplified into the form

v̄ = l

s
ωυ0, (13)

where l
s = 1

1 , 2
1 , 3

1 , . . . marks the first, second, and third
harmonic steps, and l

s = 1
2 , 3

2 , 5
2 , . . . , 1

3 , 2
3 , 4

3 , . . . , 1
4 ,

3
4 , 5

4 , . . ., marks the subharmonic steps.
In the FK model driven by dc and ac forces, the appearance

of Shapiro steps always follows a specific order, and all the
observed subharmonic steps belong to the Farey sequences
without exceptions [27]. To analyze the observed harmonic
and subharmonic steps, an algorithm proposed in Ref. [43] is
used in this study. With this method, the Shapiro steps of the
staircase structure can be described by a continued fraction
formula [30,44,45], and the average velocity is

v̄ =
⎛
⎝i ± 1

m ± 1
n± 1

p±···

⎞
⎠ωυ0, (14)

where i, m, n, p are positive integers. The first-level terms
relate to i describe the harmonic steps, while the other terms
represent the subharmonic steps.

In this work, we study only the dynamics of the system
with the commensurate structure, where the average distance
between particles is ω = 1/2. The fourth-order Runge-Kutta
method is implemented to obtain the response functions of
Eq. (5) with the periodic boundary conditions. In simulations,
the time step is �t = 0.01τ ,where τ = 1/υ0, and for each
value of Fdc, Eq. (5) is integrated for a time of T0 = 400τ to
reach a steady state. Although the winding number ω is not ex-
plicitly included in Eq. (5), it is important. When the external
dc force is zero, the system is initialized with all particles at
rest and the spacing of two adjacent particles is ω. The initial
condition is uj = −N−1

2 ω + jω, where j = 1, 2, . . . , N , and
N = 8. The periodic boundary conditions are u0 = uN−Nω

and uN+1 = u1 + Nω. The dc force is varied adiabatically
from zero in steps ranging from �Fdc = 10−4 to 10−5. In
addition to the response functions, the LLE λ is calculated
according to the Wolf algorithm [46].

III. RESULTS

In this section we shall concentrate on dynamic behaviors
of the dc-driven FK model with substrate subjected to a lateral
periodic vibration for the overdamped and underdamped cases
by using the response functions, the LLE, and the bifurcation
diagram of the Poincaré section, respectively.

A. Dynamic behaviors of overdamped system

First, we investigate the dynamics of the overdamped
case where the damping coefficient can be chosen as γ = 5
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FIG. 1. Average velocity v̄ as a function of the dc force Fdc

for ω = 1/2, K = 4, γ = 5, in different vibration amplitude and
frequency regions: (a) υ0 = 0.20 and A = 0, 0.1, 0.2, 1.0, 10, and
(b) A = 0.2 and υ0 = 0, 0.02, 0.10, 0.20, 5.00.

according to Eq. (6). Here we analyze the characteristics of the
response functions, the first harmonic step width, the critical
depinning force, and the LLE in the pinned state where the dc
force Fdc = 0 with the change of the vibration amplitude and
frequency.

The response functions v̄(Fdc) of Eq. (5) are presented in
Fig. 1. In Fig. 1(a) we investigate the effects of substrate
lateral vibration amplitude A on response functions when the
vibration frequency is fixed as υ0 = 0.20. If the amplitude of
the vibration A = 0, Eq. (5) is a standard overdamped FK
model driven only by the dc force, so there are no compet-
ing timescales, thus not permitting Shapiro steps to appear
in the response function. For the dc-driven FK model, the
critical depinning force Fc is also called the dynamical dc
threshold Fc0, which is determined by commensurability of
the system and properties of the substrate potential [14], and
in this case the threshold value is Fc0 = 0.2545. When the
amplitude increases to A = 0.1, the response function starts
to deviate from the case where A = 0, and the harmonic steps
and the half-integer step 1/2 appear in the curve of the re-
sponse function. At the same time, the critical depinning force
becomes smaller, indicating a reduction in friction. When the
deformation of the substrate increases, i.e., the amplitude of
the vibration increases to A = 0.2, another half-integer step
3/2 appears in the system and the size of the harmonic steps
increases. Meanwhile, the critical depinning force is greatly
reduced. With the further increase of amplitude, the subhar-
monic steps almost disappear for A = 1.0 in the response
function, and the critical depinning force of the system is
nearly zero. In the case of A = 10, the Shapiro steps and
the critical depinning force completely vanish. Figure 1(a)
clearly shows that the Shapiro steps can only exist in a specific
vibration amplitude region. When A → 0, the system behaves
as a dc-driven overdamped system, and when amplitude A
becomes much larger, it behaves like a frictionless system
composed of free particles where the Shapiro steps are absent
and the critical depinning force tends to zero. For the latter
case, we can observe that the size of subharmonic steps be-
comes very small, even negligible.

In Eq. (9) the amplitude of the ac force Fac is not only
related to the amplitude of the vibration A but also to the
frequency υ0. Figure 1(b) depicts the influence of vibra-
tion frequency υ0 on response functions for the vibration

amplitude A = 0.2. In Fig. 1(b) we observe that when the
vibration frequency υ0 = 0, i.e., no ac forces in the system, the
response function is the same as that of the amplitude A = 0 in
Fig. 1(a). When the frequency is very low, υ0 = 0.02, a series
of harmonic steps appear at integer multiples of ωυ0, and the
width of harmonic steps is limited in a small interval and the
critical depinning force is relatively large. When the frequency
increases to υ0 = 0.10, the width of harmonic steps becomes
larger and the critical depinning force becomes smaller. As
the frequency further increases to υ0 = 0.20, we observe that
besides harmonic steps, half-integer steps 1/2 and 3/2 appear
in the response function. In particular, the width of the first
harmonic step shrinks instead while the critical depinning
force changes to be larger. If the frequency is very high,
such as υ0 = 5.00, the system has no Shapiro steps and the
response function is similar to that of the dc-driven model, this
may be because the particles cannot follow the vibration of the
substrate and become insensitive to it. From Fig. 1(b) we can
see that the Shapiro steps can only exist in a specific vibration
frequency region. With a lower frequency, steps appear only
at the lower values of the dc force. If the frequency becomes
much larger, the system behaves like a dc-driven system while
its average velocity v̄ is larger than that of the dc-driven
system.

Figure 1 indicates that in the FK model with substrate lat-
eral vibration dynamical mode locking can occur even in the
absence of an explicit, external ac force or radiation, which is
the key factor for frequency locking. Namely, lateral vibration
of the substrate potential introduces additional frequency and
an additional degree of freedom into the system, which can re-
sult in frequency locking. Meanwhile, the appearance and size
of the steps, as well as the value of the critical depinning force,
are affected by the amplitude and frequency of vibration.

1. Subharmonic steps in overdamped system

Figure 1 shows that the appearance of subharmonic steps
in the system may be attributed to the deformation of the sub-
strate, while the origin of subharmonic steps is still a matter
of debate in the frequency-locking systems [16]. Therefore,
it is essential to explore the origin of subharmonic steps in
the overdamped FK model with substrate lateral vibration.
We use the method of LLE because it can sensitively detect
the presence of any harmonic or subharmonic steps as well as
providing a quantitative measure of the existence of chaos.

Usually the amplitude of the lateral periodic excitations of
the substrate may be small enough, so the average velocity of
the system and the corresponding LLE as functions of the dc
force for A = 0.05 are illustrated in Fig. 2. We can see that
the onstep LLE is negative on the harmonic steps 1 and 2,
meaning that particles move periodically with time evolution.
When the system stays outside the steps, the LLE is nearly
zero, indicating that the trajectories of particles are periodic
or quasiperiodic [19,25]. That is, no chaotic phenomenon
appears in this case. Furthermore, the zoomed segment of
Fig. 2(a) depicted in Fig. 2(b) shows that the LLE sensitively
detects the half-integer step 1/2 and the subharmonic step 1/3
that are difficult to observe with the method of the response
function. More importantly, the absence of subharmonic steps
between the harmonic steps 1 and 2 at this resolution is
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FIG. 2. (a) Average velocity v̄ and the corresponding LLE λ as
functions of the dc force Fdc for A = 0.05. (b) Zoomed segment of
(a). The other parameters are the same as in Fig. 1(a). The dotted line
represents the curve with LLE λ = 0.

confirmed by magnifying the region between the two steps
with the method of the LLE. When the amplitude increases to
A = 0.2, in Fig. 3 we show there is no chaos in the system.
In Fig. 3(b) we can also observe that the subharmonic steps
3/2, 4/3, 5/3 appear between the harmonic Shapiro steps
1 and 2. Comparing Fig. 2 with Fig. 3, we can conclude
that the larger deformation of the substrate contributes to the
appearance of new subharmonic steps 3/2, 4/3, 5/3, which
is similar to the results in Ref. [28]. On the other hand, if
the damping in Fig. 3(b) increases to γ = 7 while the other
parameters remain unchanged, we can obtain that there is only
the subharmonic step 3/2 between the harmonic Shapiro steps
1 and 2, and the higher order subharmonic steps 4/3, 5/3
disappear. Since the decrease of damping corresponds to an
increase of inertia in the system, the increased inertia plays
an important role in inducing the emergence of subharmonic
steps in the overdamped system. Therefore, the appearance of
subharmonic steps can be attributed to deformation or inertia
in the overdamped FK system with substrate lateral vibration.
And the system does not exhibit a chaotic behavior as the
motion of the system follows the Middleton no-passing rule.
According to this rule, the order between the particles must be
preserved, i.e., at any point in time, a larger solution cannot be
crossed by a smaller one [16].

2. Influence of vibration amplitude

Figures 1–3 indicate the lateral vibration strongly influ-
ences the Shapiro steps and the critical depinning force. To

FIG. 3. (a) Average velocity v̄ and the corresponding LLE λ as
functions of the dc force Fdc for A = 0.2. (b) Zoomed segment of (a).
The other parameters are the same as in Fig. 1(a). The dotted line
represents the curve with LLE λ = 0.

FIG. 4. The width of the first harmonic step �F , the critical
depinning force Fc, and the LLE λ in the pinned state (Fdc = 0)
as functions of the vibration amplitude A for different values of
frequency: (a) υ0 = 0.02, (b) υ0 = 0.10, (c) υ0 = 0.20. The dotted
line represents the curve with LLE λ = 0.

provide more insight into the effect of vibration amplitude,
the width �F of the first harmonic step v̄ = ωυ0 and the
critical depinning force Fc as functions of the amplitude for
three different values of vibration frequency are presented in
Fig. 4. As we can see in Fig. 4, �F and Fc exhibit distinct
oscillatory behaviors for different values of frequency with
increasing amplitude. In Fig. 4(a) at a relatively low frequency
υ0 = 0.02, the maximum step width (the first maximum of
the curve �F ) [21] of value �F ≈ 0.1106 is very low and
the difference between the first maximum and the other local
maxima is not so pronounced. With the increase of frequency
to υ0 = 0.10, the maximum step width �F ≈ 0.2524 in-
creases significantly, shown in Fig. 4(b). It is the highest one
compared to the cases in Figs. 4(a) and 4(c). Particularly,
as the amplitude increases, the oscillation of the step width
exhibits a Bessel-type form as the previous study [21] and
the peak values of oscillation decrease. At a high frequency
υ0 = 0.20 in Fig. 4(c), the maximum step width of value
�F ≈ 0.2228 is slightly reduced compared with the case of
υ0 = 0.10, while the oscillation with the increase of amplitude
has a similar Bessel-type form as in Fig. 4(b).

When the amplitude of the vibration A = 0, the critical
depinning force reaches the dynamical dc threshold value
Fc0 = 0.2545, while as A increases, the critical depinning
force exhibits distinct oscillation behaviors in the three fre-
quency regimes. At the low frequency υ0 = 0.02 in Fig. 4(a),
the critical vibration amplitude A ≈ 0.52, which corresponds
to the first minimum of Fc, is the maximal one in the three
cases. With the increase of amplitude A, there is no signif-
icant difference between the other local maximal values of
Fc except for the first maximum of Fc. When the frequency
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increases to υ0 = 0.10 in Fig. 4(b), the critical amplitude
A ≈ 0.26 corresponding to the first minimum of Fc turns to
be much smaller. As the amplitude of the vibration increases,
the critical depinning force Fc exhibits a Bessel-type oscilla-
tory behavior and the local maximal values of Fc are getting
smaller. With the further increase of frequency to υ0 = 0.20,
in Fig. 4(c) the amplitude corresponding to the first minimum
of Fc increases to A ≈ 0.28 instead, a little larger than the case
of υ0 = 0.10. Particularly, Fig. 4(c) reveals the anomalous
oscillation behavior of the critical depinning force, in which
the odd lobes are larger than the even lobes. This phenomenon
also appears in the standard FK model with incommensurate
structure [31] and in the FK model with deformable substrate
potential [28]. However, they may have different origins. In
this work, it may be due to the fact that in the even lobes,
the lateral vibration can reduce the bindings of the substrate
potential to particles, making it more easily for the particles
to move out of the confinement of the potential. In all three
cases, we can observe that local maxima (minima) of the first
step width �F correspond to local minima (maxima) of the
critical depinning force Fc.

At the same time, we plot the LLE in Fig. 4 as a function of
the amplitude for Fdc = 0, i.e., we consider dynamic conver-
gence and divergence of the FK model with a lateral vibration,
but without the application of external dc forces to particles,
in order to investigate whether the mirror relationship between
the amplitude dependence of LLE in the pinned state (Fdc =
0) and the dependence of the critical depinning force on the
amplitude still exists. As we can see from Fig. 4, the vibration
amplitude dependence of the LLE in the pinned state still
presents a mirror image of that of the critical depinning force
even if the latter has an anomalous oscillation form at the
high frequency. The results further verify that the LLE is
a convenient tool to study the dynamics of the driven FK
model, since we can obtain the properties of Shapiro steps and
critical depinning force without actually driving the system,
which saves extensive computational effort [22]. In addition,
we observe that the LLE in the pinned state is smaller when
the amplitude A of the lateral periodic excitation is very small,
indicating that in the absence of an external dc force the
smaller the amplitude is, the stabler the system would be.

The oscillation of the step width is determined by the
external periodic ac force [21,31]. How does the ac force
affect the system? When the velocity of the system reaches
the resonant values, the ac force will induce an additional
polarization energy which is less than zero into the system,
and the average pinning force begins to change from zero. At
the resonant values, because the average pinning energy of the
system in the locked state (on the step) is lower than that in the
unlocked state, the system will be locked. With the increase of
the dc force, the system will remain locked until the pinning
force can offset the changes of the dc force. Hu and Tekić [21]
pointed out that, in the standard FK model, the reason why the
first harmonic step width exhibits Bessel-type form oscillatory
behaviors with the increase of ac amplitude is that the ac
force induces the back and forward displacement of particles.
The amplitude of the ac force determines how much this
motion is retarded, that is, how many sites the particles will
jump backward [16,47,48]. In this study, the lateral vibration
of the substrate potential introduces an additional degree of

freedom into the system according to Eqs. (5) and (9), where
the lateral vibration can be converted to an ac force similar
to that in Ref. [21]. It should be noted, however, the corre-
sponding amplitude Fac = 2πυ0A

√
(2πυ0)2 + γ 2 in Eq. (9)

is affected not only by the vibration amplitude A, but also by
the vibration frequency υ0. Once υ0 is fixed, the amplitude
Fac is proportional to A, which clarifies the reason why the
step width oscillates with A in a way similar to the case of
ac-driven FK model. With the vibration amplitude A increases
from zero, corresponding to the values of the first lobe of the
step width oscillation, particles oscillate around the bottom of
the potential well symmetrically in one motion cycle and then
hop to the next site. When A reaches the value corresponding
to the first maximum of the oscillation, particles are pinned
most of the time before hopping to the next well. When A
increases to the value corresponding to the first minimum of
the oscillation, the motion of particles changes to back and
forward jumps in one cycle. For the value corresponding to
the second maximum, particles will jump back one site and
forward two sites. As the vibration amplitude A increases, par-
ticles hop between the wells far and far away and stay for less
and less time pinned, so the step width will decrease gradually
in an oscillating manner. The results in Fig. 4 show that the
oscillating manner exhibits a Bessel-type curve at relatively
high frequencies where the period of the ac force is small.
When the vibration frequency increases from υ0 = 0.10 in
Fig. 4(b) to υ0 = 0.20 in Fig. 4(c), the corresponding local
maxima of the first step width decrease, which is different
from the result of the dc- and ac-driven standard FK model.
This may be due to a competition of two effects. The first
effect is that the increase of vibration frequency shortens
the period of the ac force, causing particles to have insuffi-
cient time to move between further wells, hence the width of
the steps will increase. The second is that in light of Eq. (9),
the increase of vibration frequency is equivalent to the in-
crease of amplitude of ac force in Ref. [21], so that particles
move between more distant sites, resulting in a decrease in the
width of the step. As a result of competition, the simultaneous
influence of the two effects eventually leads to a decrease of
the step width with increasing frequency.

3. Influence of vibration frequency

We examine the influence of vibration frequency on the
first harmonic step width and on the critical depinning force
for three different values of amplitude, shown in Fig. 5.
When the amplitude of vibration A = 0.1 in Fig. 5(a), the
step width first gradually increases with the increase of
frequency, and after reaching its maximum �F ≈ 0.1784,
slowly decreases towards zero with the further increase of
frequency. As the vibration amplitude increases to A = 0.2 in
Fig. 5(b), the step width curve follows a nonmonotonic prop-
erty similar to the case of A = 0.1, while its initial increase
becomes faster, and its maximum �F ≈ 0.2531 is the largest
one in the three amplitude regions. When the large amplitude
A = 1.0 in Fig. 5(c), a richer dynamical behavior emerges:
the step width oscillates at low frequencies; as the frequency
increases, it first increases to its maximum �F ≈ 0.0971,
then decreases sharply to a minimum value; with the further
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FIG. 5. The width of the first harmonic step �F and the critical
depinning force Fc as functions of the vibration frequency υ0 for
different values of amplitude: (a) A = 0.1, (b) A = 0.2, (c) A = 1.0.
The dotted curve represents dynamical dc threshold: Fc0 = 0.2545.
The other parameters are the same as in Fig. 1.

increase of frequency, it increases to a local maximum, and
finally decreases to zero.

In Fig. 5 the critical depinning force also exhibits different
changing behaviors with the increase of vibration frequency
for three amplitude regions. In Fig. 5(a) the critical de-
pinning force Fc first decreases to its minimum with the
increase of frequency, then increases slowly and finally tends
to Fc ≈ 0.2170, which is a little smaller than Fc0 = 0.2545.
In Fig. 5(b) the critical depinning force preserves the pre-
viously described behavior in Fig. 5(a), while the speed of
decreasing to a smaller minimum becomes higher and Fc

finally tends to Fc ≈ 0.1260, smaller than Fc0 = 0.2545, with
the further increase of frequency. In Fig. 5(c) Fc exhibits a
reverse oscillatory behavior similar to that of the step width
at low frequencies. With the increase of frequency, Fc first
decreases to a local minimum value, then increases to a local
maximum; with the further increase of frequency, it gradually
decreases to zero, then slowly increases, and finally tends to
Fc ≈ 0.0150, far smaller than Fc0 = 0.2545. In addition, all
of the critical depinning forces in Fig. 5 are smaller than
the dynamical dc threshold Fc0 = 0.2545 once the vibration
frequency is larger than zero.

In Fig. 5 we can observe that local maxima (minima) of the
step width and local minima (maxima) of the critical depin-
ning force still correspond to each other with the increase of
vibration frequency, which is consistent with the conclusion in
Fig. 4 and in the standard FK model [21]. We show different
changing behaviors although the system considered exhibits

FIG. 6. Average velocity v̄ as a function of the dc force Fdc

for ω = 1/2, K = 4, γ = 1, in different vibration amplitude and
frequency regions: (a) υ0 = 0.20 and A = 0, 0.1, 0.2, 1.0, 10 and
(b) A = 0.2 and υ0 = 0, 0.02, 0.10, 0.20, 5.00.

analogous dynamics to the dc- and ac-driven standard FK
model. In the latter model, the maximum step width obtained
with the change of the ac frequency is the highest one when
the ac amplitude is largest, and the oscillatory behaviors of
the step width appear only when the amplitude of the ac
force is larger than the dynamical dc threshold value Fc0.
Unlike the latter model, the maximum step width in the system
considered is the highest one when the vibration amplitude is
neither too small nor too big, and the oscillatory behaviors of
the step width appear when Fac > Fc0, where Fac in Eq. (9)
is influenced by both the amplitude A and the frequency υ0.
Furthermore, in the latter model, the critical depinning forces
increase and tend to the saturating value Fc0 as the ac fre-
quency increases. However, in the FK model with substrate
lateral vibration, the critical depinning forces eventually tend
to distinct values, which are smaller than Fc0, for different
values of amplitude.

B. Dynamic behaviors of underdamped system

In the study above, we observe that frequency locking ap-
pears in the overdamped system due to the effect of the lateral
vibration, and the amplitude and frequency of the vibration
have an impact on the Shapiro steps and the critical depinning
force. At the same time, there is no chaos in the overdamped
system, while the FK model is often accompanied by a chaotic
behavior due to its discontinuous and nonintegrable charac-
teristics [14]. Particularly, the previous research on the dc-
and ac-driven standard underdamped FK model shows that
chaotic behaviors occur due to the effect of inertia. Therefore,
it is necessary to extend our examination of frequency locking
and chaos to the underdamped FK model with substrate lateral
vibration.

We take into account the underdamped system with damp-
ing coefficient γ = 1. Figure 6 presents the response functions
v̄(Fdc) of Eq. (5) in the underdamped case. In Fig. 6(a) we
focus on the influence of vibration amplitude on response
functions when the vibration frequency is fixed as υ0 = 0.20.
When the vibration amplitude A = 0, i.e., the underdamped
FK model is driven only by the dc force, there are no dy-
namical mode locking, and the critical depinning force is
the same as the dynamical dc threshold Fc0 = 0.2545. When
A = 0.1, we observe harmonic Shapiro steps appear, even

044204-7



YONGFENG WEI AND YOUMING LEI PHYSICAL REVIEW E 106, 044204 (2022)

if there is no external ac force or radiation, which is the
key factor for dynamical frequency locking. Meanwhile, the
critical depinning force is greatly reduced. When A = 0.2,
more harmonic steps and even subharmonic steps start to
appear in the system. In addition, the first step size increases
significantly while the critical depinning force almost drops
to zero. When A = 1.0, there are more and more steps, har-
monic and subharmonic, and the width of the first harmonic
step decreases while the critical depinning force increases.
Nevertheless, when the amplitude exceeds a certain range, for
example A = 10, Shapiro steps disappear and the response
function approaches to a linear function of the dc force. As
can be seen in Fig. 6(a), as the vibration amplitude A varies,
the system exhibits different dynamical behaviors, harmonic
and subharmonic steps. However, when A is close to zero
or extremely big, frequency-locking phenomena disappear in
the system. The effect of vibration frequency on response
functions for the vibration amplitude A = 0.2 is shown in
Fig. 6(b). Similar to the overdamped case, when the vibration
frequency υ0 = 0, the system behaves identically to that when
A = 0 in Fig. 6(a). If the frequency increases to υ0 = 0.02, the
response function curve is similar to the one of υ0 = 0, while
the critical depinning force becomes smaller. With the further
increase of frequency, a series of harmonic steps appear in the
case of υ0 = 0.10. At the same time, the critical depinning
force is further decreased. When the frequency increases to
υ0 = 0.20, more harmonic steps and even subharmonic steps
appear in the system, and the depinning force is nearly zero.
If the frequency is high, υ0 = 5.00, the response function is
similar to that of the dc-driven model, and the depinning force
turns to be larger, but smaller than Fc0. In Fig. 6(b) we can see
that the appearance of Shapiro steps depends on the vibration
frequency, and if the frequency is very low or very high, there
is no dynamical mode locking in the system.

1. Subharmonic steps and chaos in underdamped system

As depicted in Fig. 6, lateral deformation on substrate
potential, that is, change of the amplitude and frequency of
the vibration, affects not only the appearance of harmonic
and subharmonic steps, but also their widths and the critical
depinning force in the underdamped FK model. In addition
to the steps, the average velocity exhibits irregular, chaotic
behaviors.

In order to further explore the effect of chaotic behaviors
on the harmonic and subharmonic Shapiro steps, we plot the
average velocity v̄ as a function of the dc force and cor-
responding Lyapunov exponents λi for vibration amplitude
A = 0.2 and A = 1.0 illustrated in Figs. 7 and 8, respectively.
In Fig. 7(a) harmonic and subharmonic Shapiro steps, and
chaos appear as the dc force increases due to the vibration
introducing a new degree of freedom into the system. To
verify whether the system exhibits additional subharmonic
steps and hyperchaos, in Fig. 7(b) we amplify the parts that
Fdc ∈ [0, 0.40] and calculate the first three largest Lyapunov
exponents λi, i = 1, 2, 3. We observe that between the steps
1 and 2, there are no subharmonic steps that are destroyed by
chaos since the corresponding LLE is almost positive. And
the first three largest Lyapunov exponents λi, i = 1, 2, 3 are

FIG. 7. (a) Average velocity v̄ as a function of the dc force Fdc for
A = 0.2, υ0 = 0.20. (b) Average velocity v̄(Fdc) of the selected areas
of (a) and Lyapunov exponents λi as functions of the dc force. The
red, blue, and magenta lines represent the first three largest Lyapunov
exponents λ1, λ2, λ3, respectively. The dotted line represents the
curve with LLE λ = 0. Numbers mark Shapiro steps. The other
parameters are the same as in Fig. 6.

positive for some small dc forces, indicating the occurrence of
hyperchaos in the underdamped system.

When the lateral deformation is large, i.e., the vibration
amplitude increases to A = 1.0, in Fig. 8(a), as the dc force
increases, subharmonic steps and chaotic behaviors appear
alternately between the harmonic steps. To further examine
this interesting structure, we calculate Lyapunov exponents
λi and focus on the region between the harmonic steps 1
and 2, which is shown in Fig. 8(b). In the response func-
tion of Fig. 8(b), a series of subharmonic steps appear, and
they follow the continued fraction formula of Eq. (14). Ac-
cording to the Farey rule [27], the subharmonic steps are
3/2, 5/3, 7/4, 9/5, 11/6, . . ., respectively. From Figs. 7(b)
and 8(b) we can conclude that the substrate potential deforma-
tion can induce the appearance of harmonic and subharmonic
Shapiro steps because the latter figure with a larger amplitude
of lateral vibration exhibits more steps. On the other hand,
if the damping in Fig. 8(b) decreases to γ = 0.7 while the
other parameters remain unchanged, we can obtain that there
is only the subharmonic step 3/2 between the harmonic steps
1 and 2. The decrease of damping corresponds to an increase
of inertia of the system. So we can conclude that the increased
inertia of the underdamped system plays an important role

FIG. 8. (a) Average velocity v̄ as a function of the dc force Fdc

for A = 1.0, υ0 = 0.20. (b) Average velocity v̄(Fdc) of the selected
areas in (a) and Lyapunov exponents λi as functions of the dc force.
The dotted line represents the curve with LLE λ = 0. Numbers mark
Shapiro steps. The other parameters are the same as in Fig. 6.
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FIG. 9. (a) LLE λ and average velocity v̄ as functions of the dc
force Fdc between the subharmonic step 3/2 and the harmonic step 2.
The dotted line represents the curve with LLE λ = 0. (b) Bifurcation
diagram (BD) of the Poincaré section corresponding to the structure
in (a). The other parameters are the same as in Fig. 8.

in suppressing the emergence of subharmonic steps, which is
opposite to the result of the overdamped system. Therefore,
both deformation and inertia can contribute to the appearance
of subharmonic steps in the underdamped FK model with
substrate lateral vibration.

In Fig. 8(b) the Shapiro steps in the response function
usually correspond to the regular behaviors of the system,
that is, the onstep LLE is less than or equal to zero; while
in between the steps, the LLE is positive, indicating that the
system exhibits a chaotic behavior. However, we also ob-
serve that chaos appears on the subharmonic step 3/2 and
its appearance may have an impact on the stability of the
step. Further, we will study this interesting phenomenon in
the high resolution with a force step �F = 10−5. Since the
Poincaré section of the system can provide an efficient method
for studying the subharmonic steps and chaotic dynamics, the
high resolution plot of the LLE and the bifurcation diagram of
the Poincaré section as functions of the dc force in the region
between the subharmonic step 3/2 and the harmonic step 2 in
Fig. 8(b) are presented in Figs. 9(a) and 9(b), respectively. The
bifurcation diagram is obtained by plotting the instantaneous
average velocity of particles and using the stroboscopic sam-
pling method. For each dc force, 100 instantaneous average
velocity points are plotted. In Fig. 9(a) on the subharmonic
step 3/2, when the dc force is within a certain range, the
LLE of the system is positive, meaning chaos appears in the
system. At the same time, we can see that the chaos erodes
the subharmonic step 3/2. With the increase of the dc force,
the LLE becomes less than or equal to zero, which shows
that the system exhibits a regular motion. Meanwhile the step
returns to be stable, and it is still on the subharmonic step 3/2.
The similar phenomenon also exists on other subharmonic
steps, such as the subharmonic step 5/3. Looking closely at
Fig. 9(b), we see that a number of bifurcation diagram curves
in the regular regions are consistent with the denominator
of subharmonic steps in the response function. On the sub-
harmonic step 3/2, a series of period-doubling bifurcations
occur with the increase of the dc force. Within a certain range
of the dc force, these bifurcations do not alter the value of
the time average mean velocity v̄ on the step, but when the
bifurcation causes chaos to appear in the system, the time
average mean velocity behaves erratically. As the dc force
further increases, inverse period-doubling bifurcations appear

FIG. 10. The width of the first harmonic step �F , the critical
depinning force Fc and the LLE λ in the pinned state (Fdc = 0)
as functions of the vibration amplitude A for different values of
frequency: (a) υ0 = 0.02, (b) υ0 = 0.10, (c) υ0 = 0.20. The dotted
curve represents the curve with LLE λ = 0. The other parameters
are the same as in Fig. 6.

and the step becomes stable again. The results indicate that the
onstep chaos can affect the stability of the subharmonic steps,
which should be avoided in practical applications.

2. Influence of vibration amplitude

In Figs. 6–9 we can observe that large subharmonic
Shapiro steps and chaos appear in the underdamped system
due to the lateral vibration. To further explore the influence
of vibration on the system, changes of the first step width
and the critical depinning force with increasing the amplitude
are presented in Fig. 10 for three frequencies. Fig. 10 depicts
that the influence of vibration amplitude on the first harmonic
step width and the critical depinning force in the underdamped
system is completely different from the one of the overdamped
system in Fig. 4. At the low frequency υ0 = 0.02 in Fig. 10(a),
the first step width is nearly zero in the range of 0 � A � 1.5,
indicating that there is no first harmonic Shapiro step. When
the frequency υ0 = 0.10 in Fig. 10(b), the step width abruptly
increases from zero when A ≈ 0.13, and its values alternate
between zero and nonzero as the amplitude increases. At
the high frequency υ0 = 0.20 in Fig. 10(c), the step width
behaves similar to the case of υ0 = 0.10 at the beginning of
increasing amplitude, but after A > 0.81, the step width will
always be larger than zero. From Fig. 10 we can conclude
that the underdamped system will not show the first Shapiro
step if both of amplitude and frequency are small because of
zero step width, which is consistent with the result in Fig. 6.
In particular, the underdamped system makes it possible for
chaos to emerge, which destroys the Shapiro steps and makes
the first harmonic step width no longer exhibit Bessel-type
form oscillatory behaviors.
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As we can see from Fig. 10, as the vibration amplitude
increases, the critical depinning force Fc has different oscilla-
tion forms for three different frequency values. In Fig. 10(a),
at the low frequency υ0 = 0.02, Fc decreases monotonically
with the increase of amplitude. When the frequency increases
to υ0 = 0.10 in Fig. 10(b), Fc first decreases monotonically
to zero in the range of 0 < A < 0.35. Then as the amplitude
increases, all even maxima are almost zero such as the sec-
ond lobe (0.35 < A < 0.45) and the fourth lobe (0.69 < A <

0.80), i.e., the maximum static friction force vanishes in the
even lobe. That is to say, the system is in a superlubricity state,
and the particles will move freely even if a very small force is
applied. In Fig. 10(c) for υ0 = 0.20, the initial decrease of
the critical depinning force becomes faster, and only a few
values of Fc are zero with the increase of amplitude. Com-
paring with the latter two subfigures, the case of υ0 = 0.20 is
more suitable for a smaller vibration to induce superlubricity
while the case of υ0 = 0.10 allows for more possibilities
of its occurrence. We observe the underdamped commensu-
rate FK model with substrate lateral vibration exhibits the
phenomenon of superlubricity that appears in the FK model
with an incommensurate structure or in a two-dimensional FK
model [10,49]. This is due to the effect of vibration, which
causes the particles in the substrate potential to disentangle
the bindings of the substrate potential and to move out of the
confinement of the potential more easily. In addition, local
maxima (minima) of the first step width no longer corre-
spond to local minima (maxima) of the critical depinning
force, and the mirror relationship obtained in the overdamped
system between the critical depinning force and the LLE
in the pinned state is completely destroyed in the under-
damped case.

When Fdc = 0, Fig. 10(a) depicts the LLE is always neg-
ative, indicating that there is no chaos; in Fig. 10(b) chaos
arises when A ≈ 0.37; in Fig. 10(c) the chaos threshold is
A ≈ 0.20. Thus, in the absence of the dc force, for the three
frequencies considered, there is no chaotic behavior in the
system if A is small. In further, we consider changing the
amplitude of the lateral periodic excitations to seek a lower
chaos threshold of the amplitude by setting the dc force as
Fdc = 0.30. Figure 11 depicts the LLE of the system as a
function of the amplitude of the lateral periodic excitation A.
Similar to Fig. 10, we can observe that when the frequency
υ0 = 0.02 is very low, in Fig. 11(a) the system is periodic in
time in the range of the amplitudes we consider; in Fig. 11(b),
when υ0 = 0.10, chaos can appear if the amplitude is larger
than the threshold of A ≈ 0.32; as the frequency increases
to υ0 = 0.20 in Fig. 11(c), the chaos threshold is A ≈ 0.06,
which is a small value. Comparing Figs. 11(a) and 11(b) with
11(c), we can observe that the chaos threshold of the lateral vi-
bration amplitude becomes lower as the frequency increases.
This is due to the fact that the amplitude of the ac force in
Eq. (9) is not only related to the amplitude of the vibration but
also to the frequency. An increase in the vibration frequency
is equivalent to an increase in the amplitude of the ac force
so that the chaos amplitude threshold reduces. This enlightens
us that chaos in the FK model with substrate lateral vibration
may be suppressed by reducing the vibration frequency to
raise the chaos threshold even if the vibration is small and
unavoidable.

FIG. 11. LLE λ of the system as a function of the vibration
amplitude A for different values of frequency: (a) υ0 = 0.02, (b)
υ0 = 0.10, (c) υ0 = 0.20. The dotted line represents the curve with
LLE λ = 0. The other parameters are the same as in Fig. 6.

3. Influence of vibration frequency

In Figs. 6, 10, and 11 we can see that the frequency of the
vibration has a great impact on the dynamics of the system, so
we explore the frequency dependence of the first step width
and the critical depinning force in Fig. 12. When the vibration
amplitude A = 0.1 in Fig. 12(a), the first step width �F is
nearly zero in the region of 0 < υ0 < 0.22, then the oscillation
behavior of the step width gradually appears with the increase
of frequency. When the frequency increases to υ0 ≈ 0.64,
the first harmonic step vanishes. For A = 0.2 in Fig. 12(b),
the step width first stays nearly zero and then changes to
be greater than zero at υ0 ≈ 0.03. As the frequency further
increases, the oscillation phenomenon is similar to that in the
case of A = 0.1, and the step disappears when the frequency
υ0 ≈ 0.65. In the large amplitude region A = 1 in Fig. 12(c),
the step width is almost zero in the range of 0.05 < υ0 < 0.13,
while with the increase of frequency, the values change from
zero and are greater than zero even at high frequencies, which
is different from the two previous cases, and the oscillation
similar to that in Figs. 12(a) and 12(b) cannot be observed.
As can be seen from Fig. 12 that in small amplitude regions,
there is no first Shapiro step within the considered dc force
range when the frequency is high. In Fig. 12 the critical de-
pinning force Fc performs different behaviors with increasing
frequency. In Fig. 12(a), with the increase of frequency, Fc first
decreases monotonically to its minimum value, then increases
to a local maximum value Fc ≈ 0.2336, and finally decrease
slowly, but never vanishes. In Fig. 12(b) the critical depinning
force decreases monotonically to zero, and remains at zero
in the interval υ0 ∈ [0.21, 0.26], meaning that the maximum
static friction vanishes in this region. Then it changes with the
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FIG. 12. The width of the first harmonic step �F and the crit-
ical depinning force Fc as functions of the vibration frequency υ0

for different values of the amplitude: (a) A = 0.1, (b) A = 0.2, (c)
A = 1.0. The dotted curve represents the dynamical dc threshold:
Fc0 = 0.2545. The other parameters are the same as in Fig. 6.

increase of frequency and finally decreases gradually. When
A = 1.0, the speed of Fc decreasing to zero becomes faster,
and its values are zero in the frequency range of 0.12 < υ0 <

0.15. As the frequency increases, its value eventually tends
to Fc ≈ 0.0169. In Fig. 12 we can see that the phenomenon
of superlubricity also occurs in the system as the vibration
frequency increases.

In the underdamped system, due to the presence of chaos
and larger subharmonic steps, oscillations of the first step
width and the critical depinning force do not follow the
Bessel-type curve, and local maxima (minima) of the former
no longer correspond to local minima (maxima) of the latter
as depicted in Figs. 10 and 12. Meanwhile, the existence and
stability of the steps are destroyed, which is related to the
chaotic phenomenon in the system. Therefore, chaos must be
avoided in this sense. However, the critical depinning force
is nearly zero in some vibration amplitude and frequency
regions, indicating that the system is likely to exhibit the
phenomenon of superlubricity due to the lateral vibration.
Thus, it may be possible to generate the widest Shapiro steps
or the smallest static friction force by choosing an appropriate
vibration amplitude and frequency in practical applications.

IV. CONCLUSIONS AND DISCUSSION

Using response functions, the LLE, and the bifurcation
diagram of the Poincaré section, we investigate Shapiro steps
and chaotic behaviors of the dc-driven FK model with sub-
strate lateral vibration under overdamped and underdamped
situations, respectively. In the overdamped situation, we show
that the Shapiro steps can be generated by lateral vibration of

the substrate potential without applying an external periodic
force to each particle, as the lateral vibration introduces an
additional frequency and degree of freedom into the system.
We can see that subharmonic Shapiro steps also appear in
the model, due to the effect of inertia or deformation of the
substrate potential. We show the vibration has an important
effect on both the first step width and the critical depinning
force. The curves of the first harmonic step width and the
critical depinning force exhibit oscillatory behaviors with the
increase of vibration amplitude, and local maxima of one
curve correspond to local minima of the other. In particular,
the step width oscillates in a Bessel-type pattern at a high
frequency, while the oscillation of the critical depinning force
is abnormal due to the influence of the substrate vibration.
Furthermore, we observe that the dependence of the LLE on
vibration amplitude in the pinned state still gives a reverse
image of the amplitude dependence of the critical depinning
force, further demonstrating the LLE is a very convenient
tool for studying the properties of the Shapiro steps. In the
frequency dependence, when the vibration amplitude is large,
the step width and the critical depinning force oscillate at
low frequencies, while the oscillatory behaviors vanish as the
frequency increases. In contrast to the overdamped system, the
underdamped one exhibits large subharmonic Shapiro steps
and chaotic behaviors. We show the increased inertia of the
latter system plays an important role in suppressing the emer-
gence of subharmonic steps, which is opposite to the result
of the former. In a relatively large amplitude value, large
subharmonic steps and chaotic behaviors appear alternately
between the harmonic steps, and the appearance of the sub-
harmonic steps follows the Farey rule. By using the LLE and
the bifurcation diagram of the Poincaré section, we see that
the onstep chaos can destroy the stability of the steps. Due
to the appearance of large subharmonic steps and chaos, the
amplitude and frequency dependence of the first step width
and the critical depinning force in the underdamped system,
do not follow the same laws as the overdamped one, exhibiting
more complicated behaviors. We show the step width is nearly
zero in some vibration amplitude and frequency regions, and
the critical depinning force almost vanishes, which gives rise
to superlubricity. We also observe that the reverse image be-
tween the amplitude dependence of the depinning force and
LLE in the pinned state vanishes, and the chaos threshold of
the vibration amplitude becomes lower when the frequency
increases.

The findings may have important implications for nonlin-
ear physical systems which have competing frequencies, such
as charge- or spin-density wave systems, Josephson junction
systems, and vortex lattices. Although these systems may have
physical, chemical, and biological origins, their dynamics
are commonly characterized by equations similar to those
used in this study. The dependence of the first harmonic step
width and the critical depinning force on the amplitude and
frequency of the substrate vibration allows us to select the
appropriate amplitude and frequency to obtain the maximum
step width to take better advantage of the synchronization
phenomenon or realize a voltage standard in different devices
[50], and to obtain the minimum critical depinning force to
reduce nanofriction and avoid wear of mechanical equipment.
Moreover, the mirror relationship between the LLE in the
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pinned state and the critical depinning force is highly useful to
both theoretical and experimental studies, particularly in sys-
tems where only averaged or integrated quantities like current
and voltage can be measured [22]. When the system changes
from the overdamped case to the underdamped one, large
subharmonic steps and chaos occur. In recent years, research
in Josephson junctions has paid particular attention to the
existence of structural chaos [44,51], and we observe a similar
phenomenon in this work. However, the onstep chaos leads to
the destruction of the stability of the subharmonic steps, which
may affect the accuracy of Majorana fermions detection, since
the signature of the Majorana states can be represented by a
specific sequence of subharmonic steps [52]. Also, in voltage
standards or other applications, the optimum operating region

is actually close to the onset of chaos, indicating that the
chaotic behaviors must be avoided [53]. Therefore, the reason
for the emergence of chaos in the system and how to control
it deserves further study in future research.
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