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Random walks on complex networks under time-dependent stochastic resetting
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We study discrete-time random walks on networks subject to a time-dependent stochastic resetting, where
the walker either hops randomly between neighboring nodes with a probability 1 − φ(a) or is reset to a given
node with a complementary probability φ(a). The resetting probability φ(a) depends on the time a since the
last reset event (also called a, the age of the walker). Using the renewal approach and spectral decomposition
of the transition matrix, we formulate the stationary occupation probability of the walker at each node and the
mean first passage time between two arbitrary nodes. Concretely, we consider two different time-dependent
resetting protocols that are both exactly solvable. One is that φ(a) is a step-shaped function of a and the
other one is that φ(a) is a rational function of a. We demonstrate the theoretical results on several different
networks, also validated by numerical simulations, and find that the time-modulated resetting protocols can
be more advantageous than the constant-probability resetting in accelerating the completion of a target search
process.
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I. INTRODUCTION

Since the seminal work by Evans and Majumdar [1],
random walks subject to resetting processes have received
growing attention in the past decade (see [2] for a recent re-
view). The walker is stochastically interrupted and reset to the
initial position, and the random process is then restarted. Inter-
estingly, the occupation probability at stationarity is strongly
altered. The mean time to reach a given target for the first
time can become finite and be minimized with respect to the
resetting rate. Some extensions have been made in the field,
such as spatially [3] or temporally [4–8] dependent reset-
ting rate, higher dimensions [9], complex geometries [10–13],
noninstantaneous resetting [14–17], in the presence of exter-
nal potential [17–19], other types of Brownian motion such
as run-and-tumble particles [20–22], active particles [23,24],
constrained Brownian particle [25], and so on [26]. These
nontrivial findings have triggered enormous recent activity
in the field, including statistical physics [9,27–37], stochastic
thermodynamics [38–40], chemical and biological processes
[41–45], extremal statistics [46–48], optimal control theory
[49], and single-particle experiments [50,51].

However, the impact of resetting on random walks on net-
worked systems has received only a small amount of attention
[52–57]. Random walks on complex networks is a simple but
very important model [58–60]. It not only underlies many
important dynamical processes on networked systems, such
as epidemic spreading [61–63], population extinction [64,65],
neuronal firing [66], and consensus formation [67], but also
finds a broad range of applications, such as community de-
tection [68–70], human mobility [71–73], and ranking and
searching on the web [59,74–77]. Random walks on networks
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under resetting have many applications in computer science
and physics. For instance, label propagation in machine learn-
ing algorithms [78], or the famous PageRank [79], can be
interpreted as a random walker with uniform resetting prob-
ability to all the nodes of the network. Human and animal
mobility consists of a mixture of short-range moves with
intermittent long-range moves where an agent relocates to
a new place and then starts local moves [80–82]. Until re-
cently, Riascos et al. [83] established relationships between
the random walk dynamics with resetting to one node and the
spectral representation of the transition matrix in the absence
of resetting [84]. Furthermore, they discussed the condition
under which resetting becomes advantageous to reduce the
mean first passage time (MFPT) [85]. Subsequently, the result
was generalized to the case when multiple resetting nodes ex-
ist [86,87]. In a recent work, we have generalized the constant
resetting probability to the case when the resetting probability
is node dependent [88].

In this paper, we consider a different generalization of
the resetting random walks on networks: a time-dependent
resetting probability. This generalization is quite natural in
the context of target search. When searching for a target, it
is unlikely to restart at the beginning. But as time elapses
without success, it is more likely to return to the original
point and restart the search process. We should note that for
continuous-time random walks on one-dimensional space, a
similar problem has been considered in several recent works,
including nonexponential waiting times between successive
resets [4,6,7] and the time-dependent resetting rate [5]. The
case of a resetting rate that depends on the absolute time
elapsed from the beginning of the process was considered in
[8]. In the present work, we focus on discrete-time random
walks on arbitrary networks subject to a time-dependent re-
setting probability φ(a), where a refers to the time since the
last reset event (or, as we call it, the age of the walker), rather
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than the absolute time from the initial condition. This means
that when a reset happens, the walker no longer remembers
what happened before resetting and thus the process is still
Markovian. First of all, we formulate the occupation probabil-
ity distribution and the MFPT for a general choice of φ(a) by
the renewal approach combined with the spectrum properties
of the transition matrix. We then consider two exactly solvable
examples for the settings of φ(a). The first example is that
φ(a) is a step-shaped function where the resetting probability
switches from one value to another one at a = ac. The second
one is that φ(a) = a

a+ac
is a strictly increasing function from

zero as a increases. The theoretical and simulation results
show that such time-modulated resetting protocols are able to
expedite the completion of a target search compared with the
constant-probability resetting.

II. MODEL

Consider a walker that performs discrete-time random
walks on an undirected and unweighted network of size N
[58]. At each time step, the walker either hops between two
neighboring nodes with a probability 1 − φ(a) or is reset to a
given node with a complementary probability φ(a), where a
denotes the age of the walker determined by an internal clock
carried by the walker itself. For the former, the walker jumps
from the current node to one of its neighboring nodes with
equal probabilities, in the sense that the transition probability
from node i to node j can be written as Wi j = Ai j/ki, where Ai j

is the element of adjacency matrix of the underlying network,
and ki = ∑N

j=1 Ai j is the degree of node i. Meanwhile, the age
of the walker is increased by one: a → a + 1. For the latter,
the walker is reset to node r (called the resetting node) and its
age is simultaneously reinitialized to zero, a → 0.

III. OCCUPATION PROBABILITY

Let us denote by Pi j (t ) the probability to find the walker
at node j at time t providing it has started from node i. Pi j (t )
satisfies a first renewal equation [5,19,31,87],

Pi j (t ) = �(t )P0
i j (t ) +

t∑
t ′=0

�(t ′)Pr j (t − t ′), (1)

where

�(t ) =
t∏

a=1

[1 − φ(a)] (2)

is the probability of no reset taking place up to time t , and

�(t ) =
{
�(t − 1)φ(t ), t � 1
0, t = 0 (3)

is the probability of the first reset taking place at time t . P0
i j (t )

is the occupation probability of the walker in the absence of
resetting processes [59], given by (see Appendix A for details)

P0
i j (t ) =

N∑
�=1

λt
�〈i|φ�〉〈φ̄�| j〉, (4)

where λ� is the �th eigenvalue of the transition matrix W ,
and the corresponding left eigenvector and right eigenvector

are, respectively, 〈φ̄�| and |φ�〉, satisfying 〈φ̄�|φm〉 = δ�m and∑N
�=1 |φ�〉〈φ̄�| = I. |i〉 denotes the canonical base with all its

components equal to zero, except the ith one, which is equal
to 1. The first term on the right-hand side of Eq. (1) accounts
for the walker never reset up to time t , and the second term
accounts for the walker reset at time t ′ for the first time, after
which the process starts anew from the resetting node r for the
remaining time t − t ′.

Let κi j (t ) = �(t )P0
i j (t ), and take the discrete-time Laplace

transform for Eq. (1), f̃ (s) = ∑∞
t=0 e−st f (t ), which yields

P̃i j (s) = κ̃i j (s) + �̃(s)P̃r j (s), (5)

from which one readily obtains

P̃i j (s) = κ̃i j (s) + �̃(s)

1 − �̃(s)
κ̃r j (s). (6)

In the specific case where the resetting node is the same as
the original node, r = i, Eq. (6) simplifies to

P̃i j (s) = κ̃i j (s)

1 − �̃(s)
. (7)

By inverting Eq. (6), one obtains the occupation probability
Pi j (t ). However, in most instances, the inverse transform of
Eq. (6) is almost impossible to reach. Instead, one can take
the limit,

Pj (∞) = lim
s→0

(1 − e−s)P̃i j (s), (8)

to obtain the stationary occupation probability of the walker
at each node.

IV. SURVIVAL PROBABILITY

Let us suppose that there is a target located at node j.
Once it visits the target node, the walker will be absorbed
immediately and the process will be terminated. Let us denote
by Qi j (t ) the survival probability of the walker at time t , pro-
viding that the walker has started from node i. Qi j (t ) satisfies
a first renewal equation [5,19,31,87],

Qi j (t ) = �(t )Q0
i j (t ) + (1 − δ jr )

×
t∑

t ′=1

�(t ′)Q0
i j (t

′ − 1)Qr j (t − t ′), (9)

where Q0
i j (t ) denotes the survival probability in the absence

of resetting processes (see Appendix B for details). The first
term on the right-hand side of Eq. (9) corresponds to the case
where there is no resetting event at all up to time t , which
occurs with probability �(t ). The second term accounts for
the event where the first resetting takes place at time t ′, which
occurs with probability �(t ′). Before the first resetting, the
walker survives with the probability Q0

i j (t
′ − 1), after which

the walker survives with the probability Qr j (t − t ′). If the
resetting node is the same as the target node, r = j, the walker
is immediately absorbed as soon as it is reset. Therefore, the
prefactor 1 − δ jr ensures the second term on the right-hand
side of Eq. (9) vanishes when r = j.

Let χi j (t ) = �(t )Q0
i j (t ), ηi j (t ) = �(t )Q0

i j (t − 1) [noting
that �(0) = 0], and take the Laplace transform for Eq. (9),
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which yields,

Q̃i j (s) = χ̃i j (s) + (1 − δ jr )η̃i j (s)Q̃r j (s). (10)

From Eq. (10), one can explicitly obtain

Q̃i j (s) = χ̃i j (s) + (1 − δ jr )η̃i j (s)

1 − (1 − δ jr )η̃r j (s)
χ̃r j (s). (11)

For the special case when the resetting node coincides with
the original node, r = i, Eq. (11) simplifies to

Q̃i j (s) = χ̃i j (s)

1 − (1 − δi j )η̃i j (s)
. (12)

The MFPT from node i to node j is given by

〈Ti j〉 = Q̃i j (0)

= χ̃i j (0) + (1 − δ jr )η̃i j (0)

1 − (1 − δ jr )η̃r j (0)
χ̃r j (0). (13)

For the case when the resetting node is the same as the original
node, r = i, Eq. (13) reduces to

〈Ti j〉 = χ̃i j (0)

1 − (1 − δi j )η̃i j (0)
. (14)

V. CONSTANT-PROBABILITY RESETTING

For completeness, we first consider the case when the re-
setting probability at each time step is a constant, φ(a) = γ ,
which is independent of the age of the walker. In this case,
we have �(t ) = (1 − γ )t , �(t ) = (1 − γ )t−1γ for t � 1, and
�(0) = 0 for t = 0,

κi j (t ) = �(t )P0
i j (t ) =

N∑
�=1

λt
�(1 − γ )t 〈i|φ�〉〈φ̄�| j〉. (15)

Taking the Laplace transform for �(t ) and κi j (t ), we have

�̃(s) = γ e−s

1 − (1 − γ )e−s
(16)

and

κ̃i j (s) =
N∑

�=1

1

1 − λ�
(1 − γ )e−s

〈i|φ�〉〈φ̄�| j〉. (17)

Substituting Eqs. (16) and (17) into Eq. (6), we have

P̃i j (s) = 〈φ̄1| j〉
1 − e−s

+
N∑

�=2

1

1 − λ�(1 − γ )e−s
〈i|φ�〉〈φ̄�| j〉

+ γ e−s

1 − e−s

N∑
�=2

1

1 − λ�(1 − γ )e−s
〈r|φ�〉〈φ̄�| j〉.

(18)

Taking the inverse transform for Eq. (18), we have

Pi j (t ) = 〈φ̄1| j〉 +
N∑

�=2

λt
�(1 − γ )t 〈i|φ�〉〈φ̄�| j〉

+ γ

N∑
�=2

1 − λt
�(1 − γ )t

1 − λ�(1 − γ )
〈r|φ�〉〈φ̄�| j〉. (19)

In stationarity, t → ∞, λt
� → 0 for � = 2, . . . , N , we get

to the stationary occupation probability in the presence of
constant-probability resetting processes,

Pj (∞) = 〈φ̄1| j〉 + γ

N∑
�=2

〈r|φ�〉〈φ̄�| j〉
1 − λ�

(1 − γ )
. (20)

The first term on the right-hand side of Eq. (20) is the station-
ary occupation probability in the absence of resetting [59],
and the second term is a nonequilibrium contribution due to
the resetting processes.

In the following, we will derive the MFPT for the case of a
constant resetting probability. To that end, we take the Laplace
transform for χi j (t ) and ηi j (t ), which yields

χ̃i j (s) =
∞∑

t=0

e−st�(t )Q0
i j (t ) =

∞∑
t=0

e−s′t Q0
i j (t )

= Q̃0
i j (s

′) (21)

and

η̃i j (s) =
∞∑

t=1

e−st�(t )Q0
i j (t − 1) = γ e−s

∞∑
t=0

e−s′t Q0
i j (t )

= γ e−sQ̃0
i j (s

′), (22)

where s′ = s − ln(1 − γ ). Substituting Eqs. (21) and (22) into
Eq. (11), we have

Q̃i j (s) = Q̃0
i j (s

′) + (1 − δ jr )γ e−sQ̃0
i j (s

′)

1 − (1 − δ jr )γ e−sQ̃0
r j (s

′)
Q̃0

r j (s
′). (23)

The MFPT is given by Eq. (13) combined with Eq. (23),

〈Ti j〉 = Q̃0
i j[− ln (1 − γ )]

+ (1− δ jr )γ Q̃0
i j[− ln (1− γ )]

1− (1− δ jr )γ Q̃0
r j[ − ln (1 − γ )]

Q̃0
r j[ − ln (1 − γ )].

(24)

In Appendix B, we have derived the survival probability in
the Laplace domain for the standard random walks without
resetting [see Eq. (B5)], from which we obtain

Q̃0
i j[− ln (1 − γ )] =

N∑
�=2

〈 j|φ�〉〈φ̄�| j〉−〈i|φ�〉〈φ̄�| j〉
1−λ�(1−γ ) + δi j

〈φ̄1| j〉 + γ
N∑

�=2

〈 j|φ�〉〈φ̄�| j〉
1−λ�(1−γ )

. (25)

Substituting Eq. (25) into Eq. (24) and combining Eq. (20),
we have

〈Ti j〉 = 1

Pj (∞)

[
N∑

�=2

〈 j|φ�〉〈φ̄�| j〉 − 〈i|φ�〉〈φ̄�| j〉
1 − λ�(1 − γ )

+ δi j

]
.

(26)

Equations (20) and (26) have been derived in Ref. [83] using
a different method. These results were also generalized to
the case when multiple resetting nodes exist [86,87]. The
main contribution of the present work is the analysis of time-
dependent resetting probability, which will be presented in the
following.
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VI. TIME-DEPENDENT RESETTING

A. Step-shaped resetting probability

We consider the resetting probability as a step-shaped func-
tion of a,

φ(a) =
{
γ1, a � ac

γ2, a > ac,
(27)

where ac is a characteristic age that controls the time when
the value of the resetting probability is switched. According
to Eqs. (2) and (3), we have

�(t ) =
{

(1 − γ1)t , t � ac

(1 − γ1)ac (1 − γ2)t−ac , t > ac
(28)

and

�(t ) =
{

(1 − γ1)t−1γ1, t � ac

(1 − γ1)ac (1 − γ2)t−ac−1γ2, t > ac,
(29)

for t � 1, and �(0) = 0. Performing the Laplace transform
for �(t ) and κi j (t ) = �(t )P0

i j (t ), we have

�̃(s) = γ1e−s[1 − e−sac (1 − γ1)ac ]

1 − (1 − γ1)e−s

+ γ2e−s(ac+1)(1 − γ1)ac

1 − (1 − γ2)e−s
(30)

and

κ̃i j (s) =
N∑

�=1

[
1 − e−s(1+ac )λ

1+ac
�

(1 − γ1)1+ac

1 − λ�(1 − γ1)e−s

+e−s(1+ac )λ
1+ac
�

(1 − γ1)ac (1 − γ2)

1 − λ�(1 − γ2)e−s

]
〈i|φ�〉〈φ̄�| j〉.

(31)

Substituting Eqs. (30) and (31) into Eq. (8), we obtain the
stationary occupation probability,

Pj (∞) = 〈φ̄1| j〉 +
N∑

�=2

γ1γ2
[
1 − (1 − γ2)λ� + (1 − γ1)ac (γ1 − γ2)λac+1

�

]
[1 − (1 − γ1)λ�][1 − (1 − γ2)λ�][(1 − γ1)ac (γ1 − γ2) + γ2]

〈r|φ�〉〈φ̄�| j〉. (32)

If γ1 = γ2, Eq. (32) recovers to the result of Eq. (20) when the
resetting probability is a constant.

In order to obtain the MFPT by Eq. (13), we need to derive
the expression of χ̃i j (s) and η̃i j (s) at s = 0. In Appendix C, we
have derived the survival probability for the standard random
walks; see Eq. (C3). Substituting Eq. (C3) into the definitions
of χi j (t ) and ηi j (t ), and then taking the sum over t , we obtain

χ̃i j (0) =
N∑

�=1

[
1 − (1 − γ1)ac+1

[
ζ

( j)
�

]ac+1

1 − (1 − γ1)ζ ( j)
�

+ (1 − γ1)ac (1 − γ2)
[
ζ

( j)
�

]ac+1

1 − (1 − γ2)ζ ( j)
�

]〈
i
∣∣ψ ( j)

�

〉〈
ψ̄

( j)
�

∣∣1〉
(33)

and

η̃i j (0) =
N∑

�=1

[
γ1

[
1 − (1 − γ1)ac

[
ζ

( j)
�

]ac]
1 − (1 − γ1)ζ ( j)

�

+ (1 − γ1)acγ2
[
ζ

( j)
�

]ac

1 − (1 − γ2)ζ ( j)
�

]〈
i
∣∣ψ ( j)

�

〉〈
ψ̄

( j)
�

∣∣1〉
, (34)

for i �= j. Here, |1〉 = (1, . . . , 1)� is an N-dimensional right
vector with all components equal to one. ζ

( j)
� is the �th eigen-

value of the matrix W j , and the associated left and right
eigenvectors are, respectively, 〈ψ̄ ( j)

� | and |ψ ( j)
� 〉, satisfying

〈ψ̄ ( j)
� |ψ ( j)

m 〉 = δ�m and
∑N

�=1 |ψ ( j)
� 〉〈ψ̄ ( j)

� | = I. The matrix W j

is obtained by letting all the entries in the jth row and the jth
column of W equal zero (see Appendix C for details).

Considering the following special case: γ1 = 0, γ2 = γ .
Equation (32) is simplified to

Pj (∞) = 〈φ̄1| j〉 + γ

N∑
�=2

1 − λ� + γ λ�(1 − λ
ac
�

)

(1 + γ ac)(1 − λ�)[1 − (1 − γ )λ�]

× 〈r|φ�〉〈φ̄�| j〉. (35)

Again, the first term on the right-hand side of Eq. (35)
corresponds to the stationary occupation distribution of the
standard random walk, and the second term to a nonequilib-
rium contribution due to resetting. For ac → ∞, the second
term in Eq. (35) vanishes and thus recovers to the result when
the resetting is absent.

Equations (33) and (34) for γ1 = 0 and γ2 = γ can be
simplified to

χ̃i j (0) =
N∑

�=1

{
1 − [

ζ
( j)
�

]1+ac

1 − ζ
( j)
�

+ (1 − γ )
[
ζ

( j)
�

]1+ac

1 − (1 − γ )ζ ( j)
�

}

× 〈i|ψ ( j)
� 〉〈ψ̄ ( j)

� |1〉 (36)

and

η̃i j (0) = γ

N∑
�=1

[
ζ

( j)
�

]ac

1 − (1 − γ )ζ ( j)
�

〈
i
∣∣ψ ( j)

�

〉〈
ψ̄

( j)
�

∣∣1〉
. (37)

We should note that for ac = 0, the model recovers to the
case of the resetting with constant probability. For ac → ∞, it
corresponds to the standard random walks without resetting.

To demonstrate the theoretical results, we first consider a
ring network with the size N = 50 [see the inset of Fig. 1(a)].
In Fig. 1(a), we show the stationary occupation probability
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FIG. 1. Results for the step-shaped resetting [see Eq. (27) for γ1 = 0 and γ2 = γ ] on a ring network of N = 50 [see the inset of (a)]. The
resetting node is set to be the same as the starting node, r = i. (a) The stationary occupation probability Pj (∞) at node j as a function of
the distance dr j to the resetting node r for different γ . The characteristic age is fixed at ac = 10. (b) The MFPT as a function of the resetting
probability γ for different ac. Lines and symbols correspond to the theory and simulation results, respectively. Note that ac = 0 corresponds
to the case of the resetting with a constant probability γ , and ac → ∞ to the case without resetting. (c) The minimum Tmin of the MFPT and
the corresponding optimal resetting probability γopt as a function of ac. The distance between the starting node and the target node is di j = 5.

at each node as a function of the distance to the resetting
node for three different resetting probabilities γ , where the
characteristic age is fixed at ac = 10. To validate the theoret-
ical results, we also performed the Monte Carlo simulations
and found that there is a good agreement between theory and
simulation. In all simulations, we have used 107 time steps
to calculate the stationary occupation probability. The sta-
tionary occupation probability decreases monotonically with
increases to the distance to the resetting node. For a larger
resetting probability, the walker has a larger probability of
staying near the resetting position. In Fig. 1(b), we show the
MFPT as a function of γ for several different values of ac,
where the distance between the starting node and the target
node is fixed at di j = 5, and the resetting node is set to be the
same as the starting node. Lines and symbols correspond to
the theory and simulation results, respectively. In all simula-
tions, we have used 105 realizations to obtain the MFPT. We
can see that the MFPT under resetting shows a nonmonotonic
dependence on γ . There exists an optimal resetting proba-
bility γopt at which the MFPT attains a minimum Tmin. In
a wide range of γ , the MFPT is less than that for the case
without resetting (ac → ∞), implying that the completion of
the first passage process can be expedited by the resetting.
On the other hand, such a time-dependent resetting protocol
is more advantageous than the constant-probability resetting
(ac = 0). This is because that the minimum of MFPT is able to
become smaller than that for the constant-probability resetting
T consreset

min = 80.274, as shown in Fig. 1(c). The MFPT shows a
global minimum T ∗

min = 68.624 at ac = 22 and γopt = 0.346.
The decrease in MFPT due to the step-shaped resetting is
considerable.

As the second example, we consider a Cayley tree Cb,n,
where b is the coordination number except for the outer-
most nodes and n is the number of shells. The network is
generated as follows. Initially (n = 0), Cb,0 consists of only
a central node. To form Cb,1, b nodes are created and are
attached to the central node. For any n > 1, Cb,n is obtained
from Cb,n−1 by performing the following operation. For each
boundary node of Cb,n−1, b − 1 nodes are generated and at-

tached to the boundary node. The size of the Cayley tree is
N = 1 + b(2n − 1). The central node is set to be the starting
node and one of the outermost nodes is set to be the target
node. The resetting node is the same as the starting one. In
Fig. 2, we show the results on a Cayley tree C3,5, and they
are similar to those on a ring network in Fig. 1. As intuitively
expected, the resetting can significantly increase the chance of
the walker to visit those nodes close to the resetting node [see
Fig. 2(a)]. As shown in Fig. 2(b), the MFPT first decreases
and then increases with the resetting probability γ for small
values of ac, and a unique minimum MFPT, Tmin, occurs at
γ = γopt, while for relatively larger values of ac, the MFPT
decreases monotonically with γ . Interestingly, the MFPT
shows a global minimum T ∗

min = 528.94 at a two-dimensional
parameter space (ac, γ ) = (22, 0.344) [see Fig. 2(c)]. The
minimum in MFPT for the step-shaped resetting protocol is
obviously smaller than that in the case of constant-probability
resetting, T consreset

min = 596.45.
We should note that resetting can either accelerate or hin-

der the MFPT depending on the positions of the starting and
ending points of the walker or some parameter of the underly-
ing model. It has been realized that a so-called restart criterion
exists for the constant-probability (rate) resetting [27,28]. If
the relative standard deviation of first passage time without
resetting is larger than one, restart has the ability to expedite
the completion of the underlying stochastic process [28,36].
Recently, such a criterion was discussed on networked sys-
tems in [85]. For the case when the resetting probability is
time dependent, there is no general restart criterion at present.
However, one also expects that the restart can decrease the
MFPT when the variance of the first passage time without
resetting is large enough.

Furthermore, we apply the step-shaped resetting protocol
defined in Eq. (27) (γ1 = 0 and γ2 = γ ) to more complex
types of networks. First of all, we consider a Barbell network
[89] of size N = 53 consisting of two fully connected com-
munities (of 25 nodes each) connected by a chain of three
bridge nodes [see Fig. 3(a)]. In all results shown below, we
have assumed that the resetting node is the same as the starting
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FIG. 2. Results for the step-shaped resetting [see Eq. (27) for γ1 = 0 and γ2 = γ ] on a Cayley tree C3,5 [see the inset of (a)]. The central
node is set to be the resetting node. (a) The stationary occupation probability Pj (∞) at node j as a function of the distance dr j to the resetting
node r for different γ . The characteristic age is fixed at ac = 10. (b) The MFPT as a function of the resetting probability γ for different ac.
Lines and symbols correspond to the theory and simulation results, respectively. Note that ac = 0 corresponds to the case of the resetting with a
constant probability γ , and ac → ∞ to the case without resetting. (c) The minimum Tmin of the MFPT and the corresponding optimal resetting
probability γopt as a function of ac. The starting node is the same as the resetting node, and one of the outermost nodes is set to be the target
node.

node. We have computed the global mean first passage time
(GMFPT), defined as

〈T (i)〉 = 1

N − 1

N∑
j �=i

〈Ti j〉. (38)

In fact, the GMFPT of a given starting node is the average
MFPT over all possible target nodes except for the starting
node itself, which is used to quantify the efficiency to explore
the whole network. For the standard random walks, the walker

is prone to be trapped into either of the communities, and
thus makes the global search difficult. This difficulty may
be overcome by resetting the walker to one of the bridge
nodes. Indeed, the GMFPT can be reduced if the process
is stochastically reset to one of bridge nodes; otherwise, the
GMFPT always increases in the presence of resetting. These
results are similar to those for the case of constant-probability
resetting [83].

To show whether the time-dependent resetting is more
advantageous to constant-probability resetting, we plot the

FIG. 3. Results for the step-shaped resetting [see Eq. (27) for γ1 = 0 and γ2 = γ ] on a Barbell network of N = 53 (top panels) and on a
BA scale-free network of N = 100 (bottom panels). The two networks are drawn in (a) and (d), respectively. (b) and (e) show the GMFPT as
a function of γ for different ac. (c) and (f) show the minimal GMFPT, Tmin, and the optimal value of γ , γopt, as a function of ac. The resetting
node is the same as the starting node, which is indicated by triangles in (a) and (d). Lines and symbols in (b) and (e) correspond to the theory
and simulations, respectively.
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GMFPT of the midmost bridge node as a function of γ for
different ac, as shown in Fig. 3(b). It is obvious that
the GMFPT can be further reduced against the constant-
probability resetting (i.e., ac = 0). The minimal GMFPT, Tmin,
as a function of ac is plotted in Fig. 3(c). Correspondingly, we
show the optimal value of γ as well, γopt, at which the GMFPT
is minimum. Tmin attains its minimum on two-dimensional
parameter space at (ac, γ ) = (23, 1).

We now consider a Barabási-Albert (BA) scale-free net-
work [90] of size N = 100 with the average degree 〈k〉 = 2;
see Fig. 3(d). The GMFPT increases monotonically with γ

when the process is reset to one of the peripheral nodes [cir-
cular nodes in Fig. 3(d)], whereas a minimum Tmin may exist
for the central nodes [square or triangular nodes in Fig. 3(d)].
In Fig. 3(e), we show the GMFPT as a function of γ when
resetting to one of the central nodes [indicated by triangle in
Fig. 3(d)]. As the previous examples show, the time-dependent
resetting protocol is able to further reduce the GMFPT. In
Fig. 3(f), we show Tmin and γopt as a function of ac. Tmin

possesses its minimum at (ac, γ ) = (104, 1).
Meanwhile, we have checked some other types of net-

works, such as Erdös-Rényi random networks [91] and
Watts-Strogatz small-world networks [92], and found that
all the results on these networks are qualitatively the same
as those reported in the present work and support the main
conclusion, i.e., time-modulated resetting can be more ad-
vantageous than constant-probability resetting in reducing the
mean time of the random search.

B. Anti-aging resetting probability

We consider an anti-aging resetting protocol, where the
resetting probability is a strictly increasing function of the age
a of the walker. A particular choice is

φ(a) = a

a + ac
, (39)

where ac > 0 is a parameter that determines the growth rate of
the resetting probability with a. According to the definitions
in Eqs. (2) and (3), we get

�(t ) =
t∏

a=1

[
1 − a

a + ac

]
= at

c�(1 + ac)

�(1 + ac + t )
(40)

and

�(t ) = t

t + ac

t−1∏
a=1

[
1 − a

a + ac

]
= tat

c�(ac)

�(1 + ac + t )
, (41)

where �(x) = ∫ ∞
0 ux−1e−udu is the gamma function. Per-

forming Laplace transform for �(t ) and κi j (t ) = �(t )P0
i j (t ),

and combining Eq. (A3) in Appendix A given by the spectral
decomposition of the transition matrix W , we have

�̃(s) = e−s + (1 − e−s)(ace−s)−ac eace−s−s

× �̃(1 + ac, ace−s) (42)

and

κ̃i j (s) =
N∑

�=1

〈i|φ�〉〈φ̄�| j〉aceace−sλ�

× (ace−sλ�)−ac �̃(ac, ace−sλ�), (43)

where �̃(x, y) = ∫ y
0 ux−1e−udu is the lower incomplete

gamma function.
Substituting Eqs. (42) and (43) into Eq. (6), and then calcu-

lating the limit in Eq. (8), we obtain the stationary occupation
probability of the walker in each node,

Pj (∞) = 〈φ̄1| j〉 +
N∑

�=2

eac (λ�−1)λ
−ac
� �̃(ac, acλ�)

�̃(ac, ac)

× 〈r|φ�〉〈φ̄�| j〉. (44)

We emphasize again that the second term in Eq. (44) is caused
by the resetting.

To derive the MFPT for node i to node j, we compute
χ̃i j (0) = ∑∞

t=0 �(t )Q0
i j (t ) and η̃i j (0) = ∑∞

t=1 �(t )Q0
i j (t − 1)

in terms of Eq. (40), Eq. (41), and the survival probability
Q0

i j (t ) in the absence of resetting [see Eq. (C3) derived in
Appendix C],

χ̃i j (0) =
N∑

�=1

ac
(
acζ

( j)
�

)−ac
eacζ

( j)
� �̃

(
ac, acζ

( j)
�

)
× 〈

i
∣∣ψ ( j)

�

〉〈
ψ̄

( j)
�

∣∣1〉
(45)

and

η̃i j (0) =
N∑

�=1

[
1 + (

acζ
( j)
�

)−ac
eacζ

( j)
�

(
1 − 1/ζ

( j)
�

)
×�̃

(
1 + ac, acζ

( j)
�

)]〈
i
∣∣ψ ( j)

�

〉〈
ψ̄

( j)
�

∣∣1〉
. (46)

Inserting Eqs. (45) and (46) into Eq. (13), we obtain the MFPT
between two arbitrary nodes.

In Fig. 4, we compare the theory and simulation results
for the anti-aging resetting protocol in Eq. (39) on a ring
network of size N = 50 (top panels) and on a Cayley tree
C3,5 (bottom panels), where the resetting node is set to be
the same as the starting node. The theoretical results are in
excellent agreement with the simulation data. In Figs. 4(a)
and 4(c), the stationary occupation probability at each node
j is plotted as a function of the topological distance dr j to the
resetting node for different ac. As expected, the walker has a
larger probability to stay near the resetting node for a smaller
ac. In Figs. 4(b) and 4(d), we show the MFPT between two
nodes as a function of ac. For the ring network, we have set
the distance between the starting node and the target node to
di j = 5, and for the Cayley tree we have set the central node as
the starting node and one of the outermost nodes as the target
node. For both cases, the MFPT exhibits a nonmonotonic
dependence on ac. Coincidentally, the optimal ac both appear
at ac = 398, at which the MFPT admits a minimum Tmin =
73.167 and Tmin = 556.4 for the ring network and the Cayley
tree, respectively. The two minima of the MFPT are far less
than the MFPT without resetting 〈T noreset

i j 〉 = di j (N − di j ) =
225 [57] and 821, and even slightly less than the minimum
of the MFPT for the constant-probability resetting, that is,
T consreset

min = 80.274 and 596.45 for the ring network and the
Cayley tree, respectively.
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FIG. 4. Results for an anti-aging resetting [see Eq. (39)] on a ring network of N = 50 (top panels) and on a Cayley tree C3,5 (bottom
panels). (a) and (c) show the stationary occupation probability Pj (∞) at node j as a function of the distance dr j to the resetting node r for four
different values of ac. (b) and (d) give the MFPT as a function of ac. The resetting node is set to be the same as the starting node, r = i. For the
ring network, the distance between the starting node and the target node is di j = 5. For the Cayley tree, the central node is set as the starting
node, and one of the outermost nodes as the target node. Lines and symbols correspond to the theory and simulations, respectively. The dashed
horizontal line in (b) and (d) indicates the value of MFPT for the case without resetting, and the dotted horizontal line indicates the minimum
value of MFPT for the case of constant-probability resetting.

Finally, in Fig. 5, we present the GMFPT for the anti-aging
resetting protocol on a Barbell network and a BA scale-
free network, as done in the above section. For comparison,

we also show the minima of the GMFPT for the constant-
probability resetting, as indicated by horizontal lines in Fig. 5.
For the Barbell network, the GMFPT shows a nonmonotonic

FIG. 5. Results for an anti-aging resetting [see Eq. (39)] (a) on a Barbell network of N = 53 and (b) on a BA scale-free network of
N = 100. Lines and symbols correspond to the theory and simulations, respectively. The horizontal line in (a) and (b) indicates the minimal
values of GMFPT for the case of constant-probability resetting.
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dependence on ac when the walker is reset to any bridge node,
and a minimal GMFPT occurs at ac = 316 for the midmost
bridge node and at ac = 281 for the remaining bridge nodes.
We should note that the minimal GMFPTs in the anti-aging
resetting protocol are slightly less than the counterparts in
the constant-probability resetting protocol. When resetting to
any node in the subgraphs, the GMFPT decreases monoton-
ically with ac and approaches the value without resetting as
ac → ∞.

For the BA scale-free network, the GMFPT varies either
monotonically or nonmonotonically with ac, depending on
which node is chosen as the resetting node. We choose four
typical nodes and calculate, respectively, the GMFPT as a
function of ac, as shown in Fig. 5(b). For two interior nodes,
the GMFPT shows a minimum at an intermediate value of ac,
and such a minimum is less than the minimum of GMFPT in
the constant-probability resetting protocol, embodying the ad-
vantage of time-dependent resetting, while for the remaining
two nodes near the periphery, the GMFPT decreases mono-
tonically with ac and approaches the value without resetting
as ac → ∞. For the latter case, the resetting does not reduce
the average time of random search, whether the resetting
probability is time dependent or time independent.

VII. CONCLUSIONS

In conclusion, we have explored discrete-time random
walks on networks subject to a time-dependent resetting prob-
ability to a given node. Here the resetting probability φ(a) is
a function of the time a since the last reset event. We also
call a the age of the walker. The present work is an extension
of previous studies where the resetting probability is time
independent. Using the renewal approach, we have established
the formulations for the stationary occupation distribution and
the MFPT between two arbitrary nodes, which are expressed
in terms of the spectrum of the transition matrix and the
modified transition matrix, and some resetting parameters. In
particular, we consider two concrete time-dependent resetting
protocols. The first one is that φ(a) is a step-shaped function
of a, where the resetting probability switches from one value
to another one as a crosses a threshold value ac. The other
one is that φ(a) = a

a+ac
is a strictly increasing function of

a. Both cases are exactly solvable. Finally, we demonstrate
the theoretical results on four different networks for the two
resetting protocols. We find that the MFPT can be further
accelerated by the time-modulated resetting probability for a
wide range of ac, compared with the constant resetting proba-
bility. Therefore, time-modulated resetting protocols are more
efficient in expediting the completion of a random search
process than a simple constant-probability resetting proto-
col.

There are still some open questions concerning the reset-
ting paradigm. In the future, it is worth studying other types
of random walks under resetting, such as biased random walks
[60,93], maximum entropy random walks [94], and so on.
Moreover, it would also be interesting to consider the factor
of resetting costs on searching processes. In this context, how
to find an optimal trade-off between the searching time cost
and the resetting cost is a challenging issue [49].
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APPENDIX A: SPECTRAL DECOMPOSITION FOR
TRANSITION MATRIX WITHOUT RESETTING

For standard random walks, the transition matrix can be
written as W = D−1A, where D = diag{k1, . . . , kN } is a diag-
onal matrix and A is the adjacency matrix of the underlying
network. W can be rewritten as [58,59]

W = D−1/2ÃD1/2, (A1)

where Ã = D−1/2AD−1/2 is a real-valued symmetric matrix
for undirected networks (A = A�). Therefore, W is diago-
nalizable (i.e., spectral decomposition), and W and Ã share
the same set of eigenvalues λ� (� = 1, . . . , N) that are all
real. Employing Dirac’s notation, let us denote by |v�〉 the
right eigenvector corresponding to the �th eigenvalue λ� of Ã.
Let us denote by 〈φ̄�| and |φ�〉 the left eigenvector and right
eigenvector of W corresponding to λ�, respectively. It is not
hard to verify that |φ�〉 = D−1/2|v�〉 and 〈φ̄�| = 〈v�|D1/2.

The spectral decomposition for the transition matrix W is
given by

W =
N∑

�=1

λ�|φ�〉〈φ̄�|, (A2)

where λ� is the �th eigenvalue of W , and the corresponding
left eigenvector and right eigenvector are, respectively, 〈φ̄�|
and |φ�〉, satisfying 〈φ̄�|φm〉 = δ�m and

∑N
�=1 |φ�〉〈φ̄�| = I.

Since W is a stochastic matrix, its maximal eigenvalue is
equal to one. Without loss of generality, we let λ1 = 1 and the
values of other eigenvalues are less than one. Since the sum
of each row of W is equal to one, the right eigenvector corre-
sponding to λ1 = 1 is simply given by |φ1〉 = (1, 1, . . . , 1)�.
The occupation probability P0

i j (t ) without resetting is given by
[58,59]

P0
i j (t ) = 〈i|W t | j〉 =

N∑
�=1

λt
�〈i|φ�〉〈φ̄�| j〉, (A3)

where |i〉 denotes the canonical base with all its components
equal to zero except the ith one, which is equal to one. In the
limit of t → ∞, all the eigenmodes decay to zero, except to
the stationary eigenmode corresponding to λ1 = 1. Therefore,
we get to the occupation probability at the stationary eigen-
mode in the absence of resetting, P0

j (∞) = 〈φ̄1| j〉.

APPENDIX B: DERIVATION OF Q̃0
i j (s)

In the absence of resetting, the occupation probability and
first passage probability satisfy the following relation [58,59]:

P0
i j (t ) = δt0δi j +

t∑
t ′=0

F 0
i j (t

′)P0
j j (t − t ′), (B1)

where F 0
i j (t ) is the first passage probability at time t in the

absence of the resetting process. In the Laplace domain,

044139-9



HANSHUANG CHEN AND YANFEI YE PHYSICAL REVIEW E 106, 044139 (2022)

we have

F̃ 0
i j (s) = P̃0

i j (s) − δi j

P̃0
j j (s)

. (B2)

In terms of Eq. (A3), P̃0
i j (s) can be calculated as

P̃0
i j (s) =

∞∑
t=0

e−st P0
i j (t ) = 〈φ̄1| j〉

1 − e−s
+

N∑
�=2

〈i|φ�〉〈φ̄�| j〉
1 − λ�e−s

.

(B3)

Since F 0
i j (t ) = Q0

i j (t − 1) − Q0
i j (t ) for t � 1 and F 0

i j (0) =
1 − Q0

i j (0) for t = 0, we have F̃ 0
i j (s) = 1 + (e−s − 1)Q̃0

i j (s).
Therefore, we have

Q̃0
i j (s) = 1 − F̃ 0

i j (s)

1 − e−s
= P̃0

j j (s) − P̃0
i j (s) + δi j

(1 − e−s)P̃0
j j (s)

. (B4)

Substituting Eq. (B3) into Eq. (B4), we obtain

Q̃0
i j (s) =

N∑
�=2

〈 j|φ�〉〈φ̄�| j〉−〈i|φ�〉〈φ̄�| j〉
1−λ�e−s + δi j

〈φ̄1| j〉 + (1 − e−s)
N∑

�=2

〈 j|φ�〉〈φ̄�| j〉
1−λ�e−s

. (B5)

Letting s = 0 in Eq. (B5), we obtain the mean first passage
time in the absence of resetting,

〈T 0
i j 〉 = Q̃0

i j (0)

= 1

〈φ̄1| j〉

(
N∑

�=2

〈 j|φ�〉〈φ̄�| j〉 − 〈i|φ�〉〈φ̄�| j〉
1 − λ�

+ δi j

)
.

(B6)

APPENDIX C: DERIVATION OF Q0
i j (t )

We will derive the expression of the survival probability in
the absence of the resetting process. There is a trap located
at node j, and the walker starts from node i at t = 0. Let us
denote by Q0

i j (t ) the survival probability, which is the proba-
bility that the walker survives up to time t . We first consider
the case i �= j. Let W j be the matrix by letting all the entries
in the jth row and the jth column of transition matrix W equal

zero. Q0
i j (t ) can be expressed as

Q0
i j (t ) =

N∑
k=1

(
W t

j

)
ik
. (C1)

For the standard random walk, the matrix W j can be written
as W j = D−1Aj , where D = diag{k1, . . . , kN } is a diagonal
matrix as before, and Aj is obtained by letting all the entries
in the jth row and the jth column of the network adjacency
matrix A equal zero. It is not hard to prove that W j is diago-
nalizable as W j is conjugated to a real symmetric matrix Aj .
Letting ζ

( j)
� be the �th eigenvalue of Aj , and the associated

eigenvector be |u( j)
� 〉, the spectral decomposition for W j reads

W j =
N∑

�=1

ζ
( j)
�

∣∣ψ ( j)
�

〉〈
ψ̄

( j)
�

∣∣, (C2)

where 〈ψ̄ ( j)
� | = 〈u( j)

� |D1/2 and |ψ ( j)
� 〉 = D−1/2|u( j)

� 〉 are, re-
spectively, the left eigenvector and right eigenvector of W j

corresponding to the �th eigenvalue, satisfying 〈ψ̄ ( j)
� |ψ ( j)

m 〉 =
δ�m and

∑N
�=1 |ψ ( j)

� 〉〈ψ̄ ( j)
� | = I. Since the sum of each row of

W j is always less than or equal to one, the eigenvalues ζ
( j)
� are

strictly less than one.
According to Eq. (C2), the survival probability can be

computed by

Q0
i j (t ) =

N∑
k=1

N∑
�=1

(
ζ

( j)
�

)t 〈
i
∣∣ψ ( j)

�

〉〈
ψ̄

( j)
�

∣∣k〉
for i �= j. (C3)

If the target is located at the starting node, Q0
ii(t ) is the

probability that the walker does not return to the original node.
We define Q0

ii(t = 0) = 0 and, for t � 1,

Q0
ii(t ) =

N∑
j=1

N∑
k=1

Wi j
(
W t−1

i

)
jk
. (C4)

According to Eq. (C2), Q0
ii(t ) for t � 1 is written as

Q0
ii(t ) =

N∑
j=1

N∑
k=1

N∑
�=1

Wi j
(
ζ

(i)
�

)t−1〈
j
∣∣ψ (i)

�

〉〈
ψ̄

(i)
�

∣∣k〉
. (C5)
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