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Subdiffusion equation with Caputo fractional derivative with respect to another function
in modeling diffusion in a complex system consisting of a matrix and channels
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Sławomir Wąsik §
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Anomalous diffusion of an antibiotic (colistin) in a system consisting of packed gel (alginate) beads im-
mersed in water is studied experimentally and theoretically. The experimental studies are performed using the
interferometric method of measuring concentration profiles of a diffusing substance. We use the g-subdiffusion
equation with the fractional Caputo time derivative with respect to another function g to describe the process.
The function g and relevant parameters define anomalous diffusion. We show that experimentally measured
time evolution of the amount of antibiotic released from the system determines the function g. The process
can be interpreted as subdiffusion in which the subdiffusion parameter (exponent) α decreases over time. The
g-subdiffusion equation, which is more general than the “ordinary” fractional subdiffusion equation, can be
widely used in various fields of science to model diffusion in a system in which parameters, and even a type of
diffusion, evolve over time. We postulate that diffusion in a system composed of channels and a matrix can be
described by the g-subdiffusion equation, just like diffusion in a system of packed gel beads placed in water.
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I. INTRODUCTION

Subdiffusion is a process in which the movement of
molecules is very hindered by a complex internal structure of
the medium [1–8]. This process was observed, among others,
in the diffusion of sugars in agarose gel [9] and in antibiotics
diffusion in a bacterial biofilm [10,11]; the reference list can
be extended significantly. A distinctive feature of “ordinary”
subdiffusion is the relation σ 2(t ) ∼ tα , where σ 2 is the mean
square displacement of a diffusing particle and α ∈ (0, 1). In
general, subdiffusion occurs when the time of a molecule to
jump is anomalously long. Within the continuous time random
walk model, for ordinary subdiffusion the distribution of a
waiting time for a molecule to jump ψ has a heavy tail, ψ (t ) ∼
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1/tα+1, and the average value of this time is infinite. Ordinary
subdiffusion can be described by a differential equation with a
time derivative of fractional order controlled by the parameter
α [1–8,12].

The situation is more complicated when molecules diffuse
in a system consisting of a matrix and channels. The chan-
nels are defined here as “free spaces” in the matrix which
usually have a complicated geometric structure. The channels
can be free spaces in a porous medium, tubules, or spaces
between packed beads. Diffusion occurs mainly in channels,
but molecules can diffuse into and out of the matrix. The
diffusion of various substances in a system consisting of chan-
nels and a matrix has been considered in medicine, biology,
engineering, geology, agriculture, and other fields of science.
Examples include the diffusive release of vitamin from colla-
gen [13], nutrients from a fertilizer to water and sand [14],
fertilizers from beads [15,16], diffusion of oxygen in soils
[17], the process of active ingredients release which can be
used in the reduction of groundwater pesticide pollution [18],
insulin release from chitosan beads [19], and drug release
from alginate beads [20,21] and from coating beads [22]. Such
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studies are needed to establish the conditions under which
the optimal dose of the drug is released [23,24]. Theoretical
models of the processes mentioned above have been based
on diffusion-reaction equations [17,24–30], the ordinary sub-
diffusion equation with Caputo derivative in which a source
term is involved [31], the ordinary subdiffusion-reaction equa-
tion [32], and on the scaling approach [33]. Subdiffusion
parameters depend on the disorder of packing beads [34,35]
and on the structure of beads [36].

We assume that the process could be described by the
ordinary subdiffusion equation with a fixed parameter α at
some initial time interval. The normal diffusion equation may
be treated as a special case of the ordinary subdiffusion equa-
tion for α = 1, and thus we do not exclude normal diffusion
from further considerations. However, getting the molecules
into the beads and back again can slow down the subdiffu-
sion. Similar processes in which the diffusion of molecules
is interrupted by their trapping in an immobile zone have
been considered in [33,37–39]. Traps can be small caves with
narrow passages. Such traps change the timescale of the pro-
cess [40,41]. To describe the process, we use a subdiffusion
equation with the fractional Caputo derivative with respect
to another function g [42–44] which controls the slowness of
the process. We call this equation the g-subdiffusion equation.
The key is to determine the g function experimentally. For
this purpose, it is convenient to define a function describing
the diffusion process and controlled by the function g that is
relatively easy to measurable experimentally.

In the following, we experimentally study the diffusion of
an antibiotic (colistin) in a system in which gel (alginate)
beads soaked with the antibiotic are placed in water. We use
the g-subdiffusion equation to describe the process and show
that the time evolution of the amount of the antibiotic released
from the system allows the determination of the function g.

II. EXPERIMENT

The system used for the experimental study consists of two
regions A (x < 0) and B (x > 0) separated by a thin mem-
brane located at x = 0; see Fig. 1. We assume that the system
is homogeneous in the plane perpendicular to the x axis, so it
is effectively one dimensional. The membrane, which is very
permeable to diffusing particles, keeps the beads in region
A. At the initial moment, all of the antibiotic is in beads; it
is distributed uniformly in each bead. The antibiotic concen-
tration is measured by means of the interferometric method.
Since the region containing the beads is not transparent to
the laser beam, measurements of the antibiotic concentration
can only be made in region B. We focus our attention on a
time evolution of the amount of the antibiotic, N (t ), that has
diffused from region A to B.

The scheme of the system is shown in Fig. 1. The sys-
tem consists of two vessels separated by a thin membrane.
The vessel sizes are as follows: the cross-sectional area is
S = 7 × 10−5 m2, the length of the vessel A (measured along
the x axis) is LA = 10−2 m, and the length of the vessel B
is LB = 5 × 10−2 m. Antibiotic soaked alginate beads were
made as follows. 1 mg of colistin in the form of methanesul-
fonate sodium (Fluka) was dissolved in 1 ml of 1.5% alginate
solution. Using an automatic pipette, the alginate solution

A B

C0

C(x,t)

laser beam

x0

FIG. 1. Top panel: Scheme of the system used in the experiment;
region (vessel) A contains alginate beads impregnated with colistin
placed in water and region B contains water at the initial moment.
As the beads are nontransparent to the laser beam, interferometric
measurement of the concentration is only possible in region B. Lower
panel: C denotes the concentration of the antibiotic; C0 is the initial
concentration in region A.

with an antibiotic was added dropwise to a calcium chloride
solution of 0.15 mol/m3 concentration. As a hydrogel carrier,
the sodium alginate (SAFC) was used. Due to the biocompat-
ibility, as a crosslinking agent, calcium cations were applied,
the source of which was calcium chloride (POCH S.A.). A
single bead has a volume of 15 μl. 27 beads were in vessel A,
and the ratio of the total volume of all beads to the volume of
vessel A was equal to 0.58. Within the homogeneous medium
approximation, the initial colistin concentration in vessel A
was calculated using the formula C0 = N0/VA, where N0 is
the total amount of colistin in all beads at the initial moment.
We obtained C0 = 0.50 mol/m3. The linear initial concentra-
tion used in the theoretical model C0 = SC0 was C0 = 3.5 ×
10−5 mol/m. Concentration profiles of the antibiotic were
determined in region B for different times t ∈ [120 s, 2400 s].

For the experimental study, we used colistin in the form of
methanesulfonate sodium (Fluka). Antibiotic solutions were
prepared in double deionized water. The hydrogel carrier was
sodium alginate (SAFC), and calcium cations were selected
as the cross-linking agent due to their biocompatibility. The
source of calcium cations was calcium chloride (POCH S.A.).
In order to prepare alginate beads with colistin, 1 mg of
colistin was dissolved in 1 ml of a 1.5% alginate solution
and mixed thoroughly. Then, using an automatic pipette, the
alginate-antibiotic solution was dripped into the 0.15 mol/m3

calcium chloride solution also containing the antibiotic. As a
result of gelation, beads having a volume of approximately
15 μl were obtained.

The colistin concentration has been measured by means
of the laser interferometric method [9,10,45,46]. Figure 2
presents the sketch of the measuring apparatus. The main
element of the apparatus is the double-beam Mach-Zehnder
interferometer with a laser illumination system and a comput-
erized system for the recording and processing of interference
images. The laser beam produced by a 15 mW He–Ne laser is
spatially filtered and, using the beam expander, is then trans-
formed into a parallel beam of width of 80 mm and later split
into two beams. One of them passes through both cuvettes
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FIG. 2. Experimental setup. Detailed description is in the text.

parallel to the membrane surface, while the other, being a
reference beam, goes directly through the compensation plate
to the light detecting system where it superimposes with the
laser beam which passes through the diffusion cell. The result
is the formation of interference fringes; see Fig. 3.

The course of the interference fringes is determined by the
refractive index of the solution, which in turn depends on its
concentration. Interference fringes are straight when the so-
lute is homogeneous and bend when a concentration gradient
is nonzero. The magnitude of the deviation of the interference
fringe at a given point with respect to an undisturbed fringe
d (x, t ) (see Fig. 4) reflects the changes in the refractive index
between these points and thus provides information about
changes in the concentration of the substance between the
points.

The relation between the change of the substance con-
centration, �C(x, t ), and the change of the refractive index,
�n(x, t ), is linear [47–50],

�C(x, t ) = a�n(x, t ), (1)

FIG. 3. Interferogram obtained after 20 min.

FIG. 4. Schematic drawing of the interference fringes.

where �C(x, t ) = CI − C(x, t ), CI is the initial concentration,

�n(x, t ) = λd (x, t )

h f
, (2)

where λ denotes a wavelength of the laser light (632.8 nm),
h is the distance between the interferometric fringes in the
area where they are parallel, and f denotes the thickness of
the solution layer along the course of the laser beam. The
coefficient a was determined in a separate experiment using
the interference refractometer (Zeiss). In the range of tested
concentration, the dependence of the refractive index on the
concentration of the colistin solution is linear and the value of
the parameter a is 2.92 × 103 mol/m3. The sign of the devia-
tion of the interference fringe d depends on the measurement
setup settings. In the experiment, d (x, t ) < 0 means that in the
observed region, the interference fringe deviates to the right
and the substance flows in from other regions, which means
that the concentration in this region is increasing relative to
the initial concentration. When d (x, t ) > 0, the interference
fringe deviates to the left and the substance flows away to the
other regions, which means the concentration in this region is
decreasing relative to the initial concentration.

The diffusion cell consists of two vessels made of glass
with a very high optical homogeneity separated by a hor-
izontally located thin membrane (see Fig. 2). Initially, the
alginate beads with colistin of concentration 1 mg/ml were
placed close together, completely filling the volume of the
lower cuvette, while the upper cuvette was filled with pure
water, and thus CI = 0. Then, an antibiotic diffuses to the
upper cuvette. The duration of the experiment was 40 min
and interferograms were recorded with time interval equal
to 2 min. The measurements was conducted under isothermal
conditions at a temperature of T = 295 ± 0.3 K.

III. THEORY

We use the g-subdiffusion equation to model antibiotic
diffusion in a system consisting of antibiotic soaked alginate
beads densely packed in water. Normal diffusion or subdiffu-
sion may occur in the spaces between the beads. As we have
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mentioned, the motivation behind the use of the g-subdiffusion
equation is that the release of the antibiotic from the gel
beads, as well as the possibility of the antibiotic particles
repenetrating the beads, can slow down antibiotic diffusion
in the system.

Diffusion in region A is a combination of two processes:
subdiffusion of the antibiotic molecules inside the bead to
their exit outside and their further diffusion mainly in a “free
space” between the beads. The border between a bead and
the free space is not an obstacle for the particles exiting the
bead. However, it is an obstacle for the particles trying to
reenter the bead because then the particle must hit a pore on
the bead surface. We suppose that the return of the antibiotic
molecule to a bead is possible when the molecule moves in
region A and has frequent contact with the bead surfaces.
When a molecule diffuses in region B near the border with
region A, the molecule contact with the beads is much less
frequent and the molecule is unlikely to return to region A. We
assume that the boundary between the regions can be regarded
as an absorbing wall for molecules located in region A. The
most often used boundary condition at the absorbing wall is
zero concentration of the diffusing substance at the wall. The
amount of antibiotic that is in region B is equal to the amount
of the antibiotic that left region A at the same time. Therefore,
in the following, we consider diffusion of the antibiotic in re-
gion A. We use the approximation of a homogeneous medium
for region A and assume that the medium structure does not
change in time. Then, the medium consisting of beads and free
spaces between beads has assigned subdiffusion parameters
such as for a homogeneous medium; a similar approximation
has been used in the modeling of diffusion in a disordered sys-
tem of spheres [34,35]. We also assume that the parameters are
independent of time and a spatial variable and the antibiotic
is distributed homogeneously in region A at the initial mo-
ment. The parameters presented later in this paper and Eq. (8)
show that σ ≈ 0.036 cm for t = 2400 s, whereas the length
of vessel A is 1.0 cm. Thus, we suppose that the influence
of the outer wall of vessel A on molecules diffusing from A
to B is negligibly small; at the outer wall, the concentration
is still C0. To simplify the calculations, we assume that the
wall is located at −∞. The diffusion of antibiotic molecules
in vessel A is described by the g-subdiffusion equation (6), the
initial condition is C(x, 0) = C0, and the boundary conditions
are C(−∞, t ) = C0 and C(0−, t ) = 0.

Subdiffusion is often described by the subdiffusion equa-
tion with the Riemann-Liouville fractional time derivative
[1–4,12], which may be converted to the following form:

C∂αC̃(x, t )

∂tα
= D

∂2C̃(x, t )

∂x2
, (3)

with the “ordinary” Caputo derivative of the order α ∈ (0, 1)
defined as

C∂α f (t )

∂tα
= 1

�(1 − α)

∫ t

0
(t − u)−α f ′(u)du. (4)

D is a subdiffusion coefficient given in the units of m2/sα . We
call Eq. (3) the “ordinary” subdiffusion equation and its solu-
tion is denoted here as C̃. Recently, differential equations with
a fractional Caputo derivative with respect to another function
g (the g-Caputo fractional derivative) have been considered

[51–54]. For α ∈ (0, 1), this derivative is defined as

Cdα
g f (t )

dtα
= 1

�(1 − α)

∫ t

0
[g(t ) − g(t ′)]−α f ′(t ′)dt ′, (5)

and the function g, which is given in a time unit, fulfills
the conditions g(0) = 0, g(∞) = ∞, and g′(t ) > 0 for t > 0.
Involving this derivative in the diffusion equation, we get the
g-subdiffusion equation,

C∂α
g C(x, t )

∂tα
= D

∂2C(x, t )

∂x2
. (6)

When g(t ) ≡ t , we have the ordinary subdiffusion equation.
Solutions C̃ of the ordinary subdiffusion equation and C of
the g-subdiffusion equation are related to each other as follows
[42,43]:

C(x, t ) = C̃(x, g(t )), (7)

if the boundary conditions, the initial condition, and the pa-
rameters α and D are the same for both equations. Thus,
the g-subdiffusion equation describes the subdiffusion pro-
cess with changed time variable. If diffusion is described
by Eq. (6), then the random walk of a single molecule is
characterized by the relation [42]

σ 2(t ) = 2Dgα (t )

�(1 + α)
. (8)

Choosing the function g appropriately, we can obtain different
functions σ 2 that have been derived from other models, e.g.,
g ∼ lnα t for ultraslow diffusion and g ∼ t2/dw for diffusion on
a fractal, where dw is the fractal dimension of a medium; an
overview of σ 2 derived from different models is presented in
[8,55].

The key is to find the g function on the basis of experi-
mental results. A function providing the function g is a time
evolution of the total amount of the substance that has diffused
from region A to B,

N (t ) =
∫ 0

−∞
[C0 − C(x, t )]dx; (9)

see Fig. 1.
Solutions to the g-subdiffusion equation can be obtained by

means of the g-Laplace transform method. This transform is
defined as

Lg[ f (t )](s) =
∫ ∞

0
e−sg(t ) f (t )g′(t )dt . (10)

It has the following property [51,53]:

Lg

[Cdα
g f (t )

dtα

]
(s) = sαLg[ f (t )](s) − sα−1 f (0), (11)

which makes the procedure for solving Eq. (6) similar
to the procedure for solving ordinary subdiffusion equa-
tion (3) using the ordinary Laplace transform L[ f (t )](s) =∫ ∞

0 exp(−st ) f (t )dt [42]. In terms of the g-Laplace transform,
the g-subdiffusion equation is

sαLg[C(x, t )](s) − sα−1C0 = D
∂2Lg[C(x, t )](s)

∂x2
. (12)
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The solution to this equation for the boundary conditions
Lg[C(−∞, t )](s) = C0/s, Lg[C(0−, t )](s) = 0, and the initial
condition C(x, 0) = C0 is

Lg[C(x, t )](s) = C0

s
(1 − e

√
sα/Dx ). (13)

The Lg transform is related to the ordinary Laplace transform
by the formula

Lg[ f (t )](s) = L[ f (g−1(t ))](s). (14)

This formula is helpful in calculating the inverse g-
Laplace transforms [51,53]. From the relation Lg[1](s) =
1/s, the g-Laplace transform of Eq. (9), and Eq. (13),
we obtain Lg[N (t )](s) = C0

√
D/s1+α/2. Using the formula

L−1
g [1/s1+β](t ) = gβ (t )/�(1 + β ), β, s > 0, we get

N (t ) = κgα/2(t ), (15)

where

κ = C0

√
D

�(1 + α/2)
. (16)

For ordinary subdiffusion, we have

N (t ) = κtα/2. (17)

The function for normal diffusion is obtained from the above
equations putting α = 1,

N (t ) = 2C0

√
D√

π

√
t . (18)

IV. DETERMINATION OF THE FUNCTION g AND THE
PARAMETERS α AND D

We assume that properties of the medium do not change
rapidly, and thus the function N is smooth, i.e., its derivative is
continuous. Since N (t ) ∼ σ (t ), we use N to identify the type
of diffusion. When N is a power function with an exponent
less than 1/2, the process can be treated as subdiffusion.
The empirical results and the power functions N given by
Eq. (17) with α = 0.5 (solid line) and Eq. (18) for normal
diffusion (dashed line) are presented in the logarithmic scale
in Fig. 5. The slope of the lines representing N depends on the
parameter α only.

From Fig. 5, we conclude that (1) the process under study
is not normal diffusion, (2) the process is not ordinary subdif-
fusion with constant parameter α over the entire time domain,
(3) the process can be treated as ordinary subdiffusion only in
some initial time interval (we estimate it as t � 480 s, which
corresponds to four initial points in the plot), and (4) for
longer times, the process is slower than the ordinary subdif-
fusion mentioned in point (3).

Based on the above conclusions, we assume that (i) for t ∈
[0, 480 s], the process is ordinary subdiffusion with parame-
ters α and D, (ii) for later times, the process is g subdiffusion
with function g, which generates the relation

N (t ) = κt α̃(t )/2, (19)

where α̃(t ) fulfills the conditions 0 < α̃(t ) � 1 and α̃(0) = α.
Equations (15) and (19) provide g(t ) = t α̃(t )/α . Parameters α

and D in the g-subdiffusion equation (6) are the same as

100 1000

5x10-9

6x10-9

7x10-9

8x10-9

9x10-9

1x10-8

N
 [m

ol
]

t [s]

FIG. 5. Plots of the power functions N (t ) = 1.57 × 10−9t0.25 for
ordinary subdiffusion (solid line) and N (t ) = 0.55 × 10−9

√
t for

normal diffusion (dashed line) in the log-log scale; the empirical
results are denoted by symbols. The function for normal diffusion
is an example; it does not represent any process considered in this
paper.

for the initial ordinary subdiffusion process. Equation (19)
is a generalization of Eq. (17) for the case of a time-varying
subdiffusion parameter (exponent).

In further considerations, we assume

α̃(t ) = α

1 + βt
, (20)

where β is a parameter measured in the unit of 1/s. Compar-
ing Eqs. (15) and (19), the latter with the exponent given by
Eq. (20), we obtain

g(t ) = κ2/αt1/(1+βt ). (21)

Figure 5 shows that for t ∈ [120 s, 480 s], the data are de-
scribed well by the function N given by Eq. (17) with α = 0.5
and κ = 1.57 × 10−9 mol/s0.25. From the last equation, the
value of initial concentration C0, and Eq. (16), we get D =
0.58 × 10−9 m2/s0.5. Knowing κ and α, we fit the function N
given by Eq. (19) with the exponent given by Eq. (20) to the
empirical data in the whole time domain; the fit parameter is
β only. As shown in Fig. 6, for β = 4.3 × 10−5 1/s, the fit is
good.

V. FINAL REMARKS

We postulate the following: Diffusion in a system com-
posed of channels and a matrix can be described by the
g-subdiffusion equation (6), just like diffusion in a system
of packed gel beads placed in water. The solution to the
g-subdiffusion equation provides the time evolution of the
amount of colistin released from region A, which is consistent
with the empirical results. We mention that different models
of normal and anomalous diffusion, describing the release
of substances from the (sub)diffusive medium, give power
functions N (t ) ∼ tβ (when ordinary subdiffusion occurs in
A) or exponential functions of the form N (t ) ∼ 1 − ae−btβ

in the long-time limit [13,28–30,50,56,57]. In our study, the
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FIG. 6. Plot of the function N given by Eq. (19) with α̃(t ) given
by Eq. (20) (solid line) for κ = 1.57 × 10−9 mol/s0.25, α = 0.5, and
β = 4.3 × 10−5 1/s; the empirical results are denoted by symbols.

g-subdiffusion equation provides N as a power function with
exponent evolving over time. Based on Fig. 5, we conclude
that it is not possible to model the diffusion process in region
A over the entire time domain using the ordinary subdiffusion
equation with a fixed parameter α.

We interpret the fact that the experimentally obtained
function N is well approximated by a power function with
decreasing subdiffusion parameter α̃(t ) as follows. Colistin
(polymyxin E) is a cationic antimicrobial peptide. Due to
the presence of five positively charged L-diaminobutyric acid
(L-Dab) amino groups in the colistin structure, it is possible
that this molecule interacts with calcium alginate. Two mech-
anisms of polycations binding to alginate have been proposed:
an electrostatic interaction and the formation of a calcium
alginate gel by displacement of calcium ions in the presence
of polycations [58]. Taking into account the interaction of
colistin with alginate and the complex geometric structure

of the channels in the alginate gel, subdiffusion of colistin
in alginate beads is expected. The first stage of the process
is the subdiffusive release of molecules located in the beads
close to their surfaces to the space between the beads. This
process is ruled by distribution of the waiting time to take the
particle next step with a heavy tail controlled by the parameter
α, as for ordinary subdiffusion. Initially, releasing antibiotic
molecules from region A to B is subdiffusion of the molecules
from the beads located at the border between the regions.
Later, the process may change its nature when molecules
located in A in the layers more distant from the border diffuse
into region B. These molecules have a more complicated path
from the inside of vessel A to vessel B.

The g-subdiffusion equation offers greater possibilities for
modeling subdiffusion processes compared to the ordinary
subdiffusion equation. Recently, anomalous diffusion equa-
tions with various fractional derivatives have been considered;
see the references cited in Ref. [42]. Unfortunately, such
equations often do not have a stochastic interpretation. The
interpretation of Eq. (6) is based on Eq. (7). We mention
that the derivation of Eq. (6) can be based on the ordinary
continuous time random walk model [1,2], in which, as in
Eq. (7), the time variable in the distribution of waiting time
for a molecule to jump is changed, ψ (t ) → ψ (g(t )) [43].

The model of diffusion in a matrix with channels system
can be used, among others, in the mathematical characteristic
of a drug delivery system for wound healing [59], the extra-
cellular matrix mimetic to deliver and retain therapeutic cells
at the site of administration for tissue engineering and regen-
erative medicine [60,61], or “smart” hydrogels as thermo- or
pH-responsive [62]. Alginate and the other polysaccharides
are the most commonly used materials for polymyxin delivery
systems as they provide suitable drug loading efficiency and
controlled drug release. So, it seems to be important to char-
acterize these effects on a theoretical level for proper design
of the chemical structure of gels as a controlled matrix for
drug release. It is crucial for effective bacteria eradication by a
lethal concentration of antibiotics obtain in the wound healing
environment or stimuli for tissue regeneration [63].
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