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Depinning phase transition of antiferromagnetic skyrmions with quenched disorder
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Antiferromagnetic skyrmions are considered to be promising information carriers due to their attractive
properties. Therefore, the pinning phenomenon of antiferromagnetic skyrmions is of great significance. With
the Landau-Lifshitz-Gilbert equation, we simulate the nonstationary dynamic behaviors of skyrmions driven by
currents in a chiral antiferromagnetic thin film with quenched disorder. Based on the dynamic scaling forms,
the critical current and static and dynamic critical exponents of the depinning phase transition are accurately
determined. A theoretical analysis using Thiele’s approach is presented in comparison with the numerical
simulation. Unlike the ferromagnetic skyrmions, the critical current of the antiferromagnetic skyrmions is very
sensitive to a small nonadiabatic coefficient. This is important for manipulating antiferromagnetic skyrmions and
designing novel information processing devices.
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I. INTRODUCTION

Skyrmions are topologically protected objects in chiral
magnetic materials [1–4]. It is strongly believed that they
have potential applications for information storage and pro-
cessing because of their rich topological characteristics [5].
Skyrmions in ferromagnetic materials have been intensively
studied experimentally and theoretically in the past decade,
including studies on the current-driven dynamics, the ex-
tralow depinning current, and possible room-temperature
stability [6–8]. Nevertheless, the progress on antiferromag-
netic skyrmions is still limited. Antiferromagnetic materials
are outstanding candidates for the next generation of spin-
tronic applications for their superior properties, such as the
robustness against the perturbation from magnetic fields, the
absence of production of parasitic stray fields, and the ultrafast
dynamics in the terahertz range [9,10]. In spite of these advan-
tages, the absence of a net magnetic moment makes both the
detection and the manipulation of antiferromagnetic moments
intrinsically difficult in conventional manners. However, the
detection of the antiferromagnetic ordering was recently re-
alized based on the anisotropic magnetoresistance and spin
pumping effect [11–17]. The current-driven manipulation of
the Néel order was also predicted theoretically and confirmed
experimentally [18–21]. Following the development of these
experimental technologies, the research prospect of antiferro-
magnetic skyrmions has been greatly expanded.

Antiferromagnetic skyrmions are considered to be fu-
turistic ultrahigh-density information carriers [22]. The
Dzyaloshinskii-Moriya (DM) interaction is essential for the
formation and stability of skyrmions, especially for small size
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skyrmions [22]. It has been observed that the DM interaction
is more common in antiferromagnetic materials than in ferro-
magnetic ones [23]. The absence of the gyroscopic force and
the stray field make the antiferromagnetic skyrmions more
suitable information carriers [24]. With a driving current,
skyrmions in antiferromagnetic materials can move strictly
along the current direction without the Hall effect at a high
velocity of the order of kilometers per second [23]. The most
recent research shows that the antiferromagnetic skyrmions
can be experimentally realized [25], which represents an
important step towards the implementation of the antiferro-
magnetic skyrmions in spintronic devices.

The manipulation of the antiferromagnetic skyrmions is
one of the most important topics. Previous studies have mainly
focused on a small range of the skyrmion velocity and rarely
dealt with disorder [26–28]. The systematic study of the
current-driven dynamics of the antiferromagnetic skyrmions
with quenched disorder is significant both fundamentally
and practically. In particular, the pinning phenomenon is not
avoidable in the application of skyrmions as information car-
riers. In ferromagnetic spintronics, the pinning behavior of
an individual skyrmion was investigated [22,29,30], and the
collective motion of skyrmions in a disordered film was re-
cently explored [31–34]. However, a deep understanding of
the pinning phenomenon of skyrmions in antiferromagnetic
materials has still not yet been achieved.

Due to critical slowing down, the numerical simulation
of the stationary state around a continuous phase transition
is very difficult. The dynamic approach in the nonstationary
state was recently explored for the depinning phase tran-
sitions of the ferromagnetic domain walls and skyrmions
[35–39]. Because the measurements are carried out in the
short-time regime of the dynamic evolution without reach-
ing the stationary state, such methods are very efficient in
dealing with dynamic phase transitions. The simulation of the
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antiferromagnetic skyrmions is, however, more complicated
than the ferromagnetic ones, and one needs to consider the
sublattice structure and antiferromagnetic frustration [40,41].

In the present work, we study the current-driven motion of
the antiferromagnetic skyrmions with quenched disorder, and
a second-order depinning phase transition is detected. Based
on the Landau-Lifshitz-Gilbert (LLG) equation, we perform
the numerical simulations of an antiferromagnetic film for the
dynamic relaxation processes around the phase transition to
determine the critical current uc and the critical exponents. A
theoretical analysis of the Thiele equation is also presented
for comparison with the numerical results. The model and
the equation of motion are described in Sec. II, the scaling
analysis and a theoretical approach are presented in Sec. III,
and the numerical simulations are performed in Sec. IV. The
conclusion is given in Sec. V.

II. THE MODEL

We consider an antiferromagnetic film in the xy plane with
a perpendicular disorder. The Hamiltonian of the classical
Heisenberg model is given as

H = −J
∑
〈i, j〉

mi · m j +
∑
〈i, j〉

D · (mi × m j )

− K
∑
i∈�

(
mz

i

)2 −
∑

i

Bsg · mi, (1)

where mi represents the local magnetic moment normal-
ized as |mi| = 1 and 〈i, j〉 denotes the summation over the
nearest neighbors. The terms on the right-hand side are the
exchange interaction, the interfacial DM interaction, the uni-
axial anisotropic disorder, and the Zeeman-like staggered field
along the z axis. The staggered field is applied due to the
opposite magnetization on the two sublattices of the antifer-
romagnetic materials [42]. Generically, there are two possible
ways of inducing this staggered field in different materials
such as Cr2O3 [43,44] and CuMnAs [18]. Here J is the anti-
ferromagnetic exchange coupling. In this paper, J = −1 meV
is fixed, and |J| is used to be the unit of other parameters.
D is the DM interaction strength, and Bsg denotes the stag-
gered magnetic field along the z axis. In order to stabilize the
skyrmions, the DM interaction strength and the staggered field
are taken to be D/|J| = 0.4 and Bsg/|J| = 0.04, respectively.
K is the uniaxial anisotropy constant with the easy axis along
the z direction, and � is a set of random sites. The density of
the random sites and the strength of the disorder are taken to
be ρ = 0.1 and K/|J| = 1.

For comparison, we have additionally investigated the
random-field and random-bond disorders. In both cases, we
set the anisotropy constant K = 0. The random-field disorder
is introduced by adding a new term to the Hamiltonian in
Eq. (1),

Hdis,h = −
∑
i∈�′

hi · mi, (2)

where hi is the internal random field. The direction of the
random field hi is randomly set on the unit sphere, while
the amplitude |hi| of the random field is uniformly dis-
tributed within an interval [0,�], with � = 0.4. �′ is a set of

random sites, and the density of the random sites is 0.5. The
random-bond disorder is set by changing the first term of the
Hamiltonian in Eq. (1) to

Hdis, j = −
∑
〈i, j〉

Ji jmi · m j, (3)

where Ji j = J for 80% bonds and Ji j = 0.1J for 20% bonds.
The current-driven dynamical behavior of the magnetic

skyrmions is described by the LLG equation including the
spin-transfer torque (STT) interactions,

dm
dt

= −γ m × Heff + αm × dm
dt

− (u · ∇)m + bm × (u · ∇)m, (4)

where m just denotes mi in Eq. (1), γ is the gyromagnetic
ratio, and α is the Gilbert damping constant. The effective
magnetic field Heff acting on m is computed from

Heff = − 1

h̄γ

∂H
∂m

, (5)

which contains the contributions from the exchange interac-
tion, DM interaction, anisotropic disorder, and Zeeman-like
field. The last two terms in Eq. (4) describe the STT effect
from the coupling between the spin-polarized electric current
and the local magnetization. u is the current vector with
the amplitude u = pa3 j/2eM, where p is the spin polariza-
tion rate, a is the lattice constant, M is the magnitude of
the local magnetic moment, and j is the magnitude of the
spin-polarized electric current. The direction of the current
vector u is set along the x direction. b is the nonadiabatic
STT coefficient. As explained in the Supplemental Material
of Ref. [23], the STTs are applied to each sublattice indepen-
dently; that is, the gradients of m in Eq. (4) are taken only
within the same sublattice. The unit of length is the lattice
constant a = 1 nm. The time t and the current density j are in
units of h̄/J � 0.66 ps and 2e|m|J/Pa2 h̄ � 1.2 × 1012 Am−2,
respectively, with the spin polarization P = 0.4.

The LLG equation is numerically integrated using a fourth-
order Rung-Kutta scheme. Our simulations were mainly
performed on a magnetic square lattice at zero temperature
with lattice size L = 288. A simulation of a larger size, L =
432, was also performed to confirm that the finite-size effect is
negligibly small. In the nonstationary dynamic approach, the
measurements are carried out in the short-time regime of the
dynamic evolution when the spatial correlation length is still
small. Therefore, these lattice sizes are sufficiently large to
avoid the finite-size effect. The periodic boundary condition
is used in both the x and y directions. The initial state is
a perfect triangular antiferromagnetic skyrmion crystal with
256 skyrmions, which is prepared using a replica Monte Carlo
simulation [31,45,46]. Then the steady current is applied in
the x direction, and the relaxation dynamics is simulated
with the LLG equation. Due to the topological protection, a
skyrmion keeps the topological structure unless the driving
current or the disorder goes beyond a certain threshold. The
maximum time of the simulations is set to tmax = 20 000 to
observe the dynamic scaling behavior. The time step in the
simulations is �t = 0.1, and extra simulations with a smaller
time step �t = 0.05 were performed to confirm the accuracy
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of the results. The total number of samples for quenched
disorder is about 10 000 to ensure reasonably small statistical
errors.

III. THEORY

A. Scaling analysis

The topological charge of an antiferromagnetic skyrmion
is defined as

Q(k) = − 1

4π

∫
d2r(∂xm(k) × ∂ym(k) ) · m(k), k = 1, 2, (6)

where k labels the sublattices. The antiferromagnetic
skyrmion is composed of two topological objects with oppo-
site winding numbers, i.e., Q(k) = ±1. The strong coupling
between the sublattices leads to a perfect cancellation of
two opposite Hall forces; therefore, the antiferromagnetic
skyrmion does not present a transverse motion. Alternatively,
one can also directly define the topological charge Q of the
antiferromagnetic Néel order parameter l (r, t ) = m(1)(r, t ) −
m(2)(r, t ) by replacing m(k) with l (r, t ) in Eq. (6). In this
notation, the topological character of the antiferromagnetic
skyrmion is represented by the topological charge Q = 1.
If there are N antiferromagnetic skyrmions, the topological
charge Q is equal to N .

The velocity of the skyrmions can be measured through
the emergent electric field induced by the moving skyrmions
in ferromagnetic materials. It has been shown that the swirling
structure of a skyrmion induces a magnetic field Be, while a
skyrmion lattice drifting with a velocity vd induces an electric
field Ee = −vd × Be [8,47]. To evaluate the velocity of the
moving skyrmions, one may measure the emergent electric
field [31,47]

Ee
μ =

∫
d2r(∂μm × ∂t m) · m, μ = x, y. (7)

We introduce an analogy to evaluate the antiferromagnetic
skyrmion velocity by measuring the emergent electric field
induced by the Néel order parameter. The only nonzero com-
ponent of the electric field is along the y direction. In analogy
to Eq. (7), the magnitude of the electric field is expressed as

Ee =
∫

d2r(∂yl × ∂t l ) · l . (8)

The emergent magnetic field Be = (0, 0, Q) is along the
z direction in our simulation. The average velocity of the
skyrmions is thus

v = −〈Ee/Q〉, (9)

where the velocity v is along the x direction and 〈· · · 〉 repre-
sents the statistical average of all samples.

With quenched disorder, the collective motion of antifer-
romagnetic skyrmions driven by the electric current exhibits
a dynamic depinning phase transition. Assuming the phase
transition is second order, the dynamic evolution of the or-
der parameter v(t ) should obey the dynamic scaling theory
supported by the renormalization-group calculations [48–50].
For a simulation box with a size L, the critical dynamic scaling
form for the average velocity of skyrmions is described by

v(t, τ, L) = λ−β/νv(λ−zt, λ1/ντ, λ−1L), (10)

where λ is an arbitrary scale factor, uc is the critical current,
τ = (u − uc)/uc is the reduced current, β and ν are the static
exponents, and z is the dynamic exponent. Putting λ ∼ t1/z in
Eq. (10), we obtain

v(t, τ, L) = t−β/νzv(1, t1/νzτ, t−1/zL). (11)

In the macroscopic short-time regime far from the stationary
state, the spatial correlation length ξ (t ) ∼ t1/z � L, and the
finite-size effect is small and ignorable. This leads to

v(t, τ ) = t−β/νzG(t1/νzτ ), (12)

where G(t1/νzτ ) is the scaling function of the skyrmion veloc-
ity. In the limit of t → ∞, G(x) → xβ , and v(t, τ ) ∼ τβ . At
the depinning transition current, i.e., τ = 0, G(0) is indepen-
dent of the time t , and the scaling form reduces to a power-law
behavior,

v(t ) ∼ t−β/νz. (13)

The critical current uc can be determined by searching for the
best power-law behavior of v(t ). We can then measure the
exponent β/νz by a power-law fitting to Eq. (13). To calculate
1/νz, one simply derives from Eq. (12),

∂ ln v(t, τ )

∂τ
|τ=0 ∼ t1/νz. (14)

The Binder cumulant of the velocity is defined as

v(2)(t ) = 〈v2(t )〉 − 〈v(t )〉2

〈v(t )〉2
. (15)

Based on the finite-size scaling analysis at the critical current,
the Binder cumulant should scale as

v(2)(t ) ∼ [ξ (t )/L]d , (16)

where d = 2 is the spatial dimension of the antiferromagnetic
film. Thus, the spatial correlation length ξ (t ) can be computed
through v(2)(t ) up to a constant factor, and the dynamic ex-
ponent z can be independently determined. To estimate the
constant factor, one could calculate the correlation function of
the line electric field in the x direction in analogy to the height
correlation function [51]. The correlation function is defined
as

C(r, t ) = 〈[Ee(x + r, t ) − Ee(x, t )]〉, (17)

where Ee(x, t ) = ∫
dy[∂yl (x, y, t ) × ∂t l (x, y, t )] · l (x, y, t ) is

the emergent field in Eq. (8) integrating only along the y
direction at position x. At the critical current, C(r, t ) obeys
the scaling behavior [51,52],

C(r, t ) ∼ C̃[r/ξ (t )] ∼ {tanh[r/ξ (t )]}a. (18)

By fitting this scaling form, the correlation length ξ (t ) can
be calculated, and the resulting ξ (t ) is in good agreement
with the one obtained in Eq. (16). Thus, one estimates
that [v(2)(t )]1/d is proportional to ξ (t )/L with a factor of
about 1.5.

B. Theoretical solution

We investigate the theoretical solution of the critical cur-
rent uc through a particle-based model derived from the
Landau-Lifshitz-Gilbert equation. With Thiele’s approach, the
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collective motion of skyrmions is analyzed in the stationary
state. A generalized Thiele equation, in which the spin tex-
tures of skyrmions are assumed to be rigid, is adopted [53],

G × (u − vd ) + D(bu − αvd ) + Fpin = 0. (19)

Here vd is the drift velocity of skyrmions in the stationary
state, and only the x component of vd is nonzero because the
antiferromagnetic skyrmions move straight without the Hall
motion in the perpendicular direction of the driving current.
The first term describes the Magnus force, and G is the gyro-
magnetic coupling vector. An antiferromagnetic skyrmion can
be regarded as the nesting of two ferromagnetic skyrmions
in each sublattice with opposite topological charges. The op-
posite Magnus forces acting on each sublattice are perfectly
canceled because the two sublattices are strongly coupled
together by the exchange coupling J . Thus, there is no Hall
effect, and G equals zero. For antiferromagnetic skyrmions,
the nonadiabatic coefficient b affects only the motion along
the driving current direction because of the absence of the
transverse motion, while for the ferromagnetic skyrmions, b
does play an important role both along and perpendicular to
the current. The second term represents the dissipative force,
and the dissipative force tensor D is given by

Dμν =
∫∫

(∂μm · ∂νm)dxdy. (20)

Although the dissipation tensor is not perfectly diagonal when
skyrmions are distorted by disorder, the nondiagonal compo-
nents of the tensor are now neglected in order to simplify the
theoretical analysis [45,53]. In the stationary state, we assume
that the diagonal components D remain constant [31].

The pinning force is described by the last term in Eq. (19),
which usually takes the form [53]

Fpin ∼ −4πvpin f (vd/vpin )vd/|vd |. (21)

The strength of Fpin is parametrized by the “pinning velocity”
vpin. The function f (x), with f (x → 0) = 1 and f (x → ∞) =
xν , describes the nonlinear dependence of the pinning force
on the velocity. With the above conditions, Eq. (19) for the
antiferromagnetic skyrmions near the critical current can be
simplified to a scalar equation,

D(bu − αvd ) − F = 0, (22)

where F is a constant denoting the strength of Fpin when
vd/vpin → 0. Thus, the drift velocity is

vd = bu

α
− F

αD . (23)

Without disorder, vd = bu/α is just the same as that derived
from the antiferromagnetic analogs of the LLG equa-
tion [23,54]. With disorder, we obtain the critical current uc

by setting vd = 0,

uc = F

Db
, (24)

which is inversely proportional to the nonadiabatic coefficient
b but not affected by the damping constant α.

IV. SIMULATIONS

We first simulate the dynamic behavior of the antiferro-
magnetic skyrmions on a lattice of L = 288 without disorder,
i.e., with the zero density of the random sites, ρ = 0. The
simulations are performed with nonadiabatic coefficient b =
0.005, 0.05, and 0.2. As shown in Fig. 1(a), the antiferro-
magnetic skyrmion velocity vd is proportional to u in the
small u region, which is in agreement with the theoretical
result vd = bu/α, based on the Thiele equation [23,54]. With
a large driving current u, the skyrmions are contracted in the
x direction and stretched along the y direction and will be
gradually distorted to the stripes. The skyrmion velocity is
smaller than the theoretical one in this case. When u exceeds
a certain threshold, the topological structure of the skyrmions
will be thoroughly corrupted, and the dynamic system will ex-
perience a transition from the antiferromagnetic skyrmions to
the helical states. This phenomenon is illustrated in Fig. 1(b),
and the topological charge Q undergoes an abrupt change as u
increases. The threshold current for Q = 0 decreases with b.

Then we investigate how the threshold current of this
skyrmion-helical transition changes with the strength of the
disorder K . The nonadiabatic coefficient b = 0.05 and the
density of the random sites ρ = 0.1 are fixed. In the simu-
lations, it was confirmed that the finite-size effect for L = 288
is already small. In Fig. 1(c), the u-K diagram of the topolog-
ical charge Q is displayed. The threshold current for Q = 0
increases with K . Q experiences an abrupt change at the
critical point without disorder. For a smaller K , Q decreases
rapidly when u increases in the transition regime. For a larger
K , the decreasing of Q slows down. Disorder prevents the
transition from the skyrmion to the helical state by producing
an intermediate state between the skyrmion and helical states.
In fact, various physical behaviors in the structural transition
regime exist, particularly in the presence of disorder and in a
high-velocity regime. We will not go into detail in the present
work.

Next, we focus on the pinning-depinning phase transition
of the antiferromagnetic skyrmions with disorder. For a very
small b, the phase transition may not occur in the regime in
which skyrmions are not distorted by the driving current. With
the chosen parameters in this work, the critical current uc for
b = 0.005 will drop into the regime where skyrmions already
deform to the stripe states. Therefore, our simulations are
performed with nonadiabatic coefficients b = 0.05, 0.2, 0.5,
and 1. From Eq. (23), the antiferromagnetic skyrmions cannot
move without a nonadiabatic STT, i.e., the critical current
uc → +∞ for b = 0, and this is significantly different from
the ferromagnetic skyrmions. Simulations with and without
disorder for b = 0 were also performed to confirm it.

In Fig. 2, the initial state of a triangular antiferromagnetic
skyrmion crystal is plotted. The lattice size is L = 288, and
there are 256 skyrmions in total. The dynamic scaling form
in Eq. (12) also holds for other initial states, such as those
with randomly distributed skyrmions. Different initial states
affect only the microscopic behavior at the beginning stage of
the time evolution, and the time-dependent velocities tend to
exhibit the same universal dynamic behavior after a macro-
scopic short-time scale tmic. The initial state of the triangular
crystal is adopted because it is the ground state and has a
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(a) (b)

(c)

FIG. 1. (a) The velocity vd of the antiferromagnetic skyrmions versus the driving current u with different values of the nonadiabatic STT
coefficient b without disorder. (b) The topological charge Q of the Néel order versus the driving current u without disorder. (c) The u-K phase
diagram of the topological charge Q with the fixed disorder density ρ = 0.1 and nonadiabatic coefficient b = 0.05.

FIG. 2. The initial state with a perfect triangular antiferromagnetic skyrmion crystal and the time evolution of the spin configuration mz for
b = 0.05 and ρ = 0.1 at the critical current uc = 0.750. The color represents the value of mz. The inset in the t = 20 000 plot is a zoomed-in
portion to show the antiferromagnetic structure of m.
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(a) (b)

FIG. 3. (a) The antiferromagnetic skyrmion velocity v(t ) is displayed with b = 0.05 for different values of the driving current u on a
log-log scale. (b) The correlation length ξ (t ) is plotted. Dashed lines show the power-law fits.

smaller tmic. The time evolution of the skyrmion structure in
an antiferromagnetic thin film with quenched disorder is also
plotted at the critical current uc = 0.750 for b = 0.05. As time
evolves, skyrmions may be stretched along the moving direc-
tion, while the crystal structure of the skyrmions gradually
deforms to a glasslike state, which is similar to skyrmions in
ferromagnetic materials [31,55]. In this many-skyrmion sys-
tem, the skyrmion-skyrmion interaction provides a repulsive
force between skyrmions, and it leads to skyrmions stabler
than a single skyrmion. More importantly, the collective cor-
relation between skyrmions caused by the skyrmion-skyrmion
interaction ensures that the depinning phase transition is in the
thermodynamic sense. According to our simulation results of
a single skyrmion moving in the disordered environment, it
experiences a first-order-like transition, rather than a second-
order phase transition in the thermodynamic sense.

In Fig. 3(a), the skyrmion velocity v is displayed for dif-
ferent values of the driving current u. In the long-time regime,
the velocity will drop down for a small u, while it approaches
a constant for a larger u. Searching for the best power-law
behavior, one locates the critical current uc = 0.750(1). At
the critical current, the velocity evolves with time in a power
law, which indicates a divergent correlating time, and the
stationary state can never be reached in the infinite limit of
the lattice size L. u = 0.742 and u = 0.758 are close to the
critical current uc = 0.750(1). Below the critical current, the
skyrmion system at u = 0.742 will relax to the pinned phase
after a long time, and the velocity will finally go to zero.
Above the critical current, the skyrmion system at u = 0.758
will finally reach the depinning state with a nonzero velocity.
From the slope of the critical curve u = 0.750, one measures
the critical exponent β/νz = 0.332(5) according to Eq. (13).
The errors include both the statistical ones and the fluctuations
along the time direction. In Fig. 3(b), the correlation length
ξ (t ) exhibits a power-law behavior at uc. One obtains the
critical exponent 1/z = 0.38(1) from the slope of the curve
on a log-log scale. The correlation length ξ (t ) increases from
0 to about 70 at t = 20 000. ξ (t ) is much smaller than the
lattice size of L = 288 and about seven times the average

skyrmion diameter. Therefore, the short-time dynamic scaling
form holds, and the finite-size effect is negligibly small.

To calculate the logarithmic derivative ∂τ ln v(t, τ ), we
quadratically interpolate v(t, τ ) between u = 0.742 and u =
0.758 with the data in Fig. 3(a). A power-law behavior is
observed at uc in Fig. 4(a), and the slope of the curve yields
the critical exponent 1/νz = 0.44(2). In Fig. 4(b), the critical
current uc measured from the LLG simulation is plotted versus
the nonadiabatic coefficient b, compared with the theoretical
solution in Eq. (24). To fit the curve, the constant F/D in
Eq. (24) is estimated from the simulation result of the critical
current uc at b = 0.05. The numerical and theoretical results
agree very well with each other. The critical current uc of
the skyrmions in ferromagnetic materials has been reported
to be insensitive to the nonadiabatic coefficient b in the small
b region [31,45], while uc for the antiferromagnetic skyrmions
is just the opposite, very sensitive to a small b. This is in
agreement with the theoretical expressions of critical current
uc in ferromagnetic and antiferromagnetic materials. From
the theoretical solution of uc for the ferromagnetic skyrmions
[31], uc =

√
A2/(D2b2 + G2), the extra term G2 makes uc less

sensitive to b, compared with the antiferromagnetic case in
Eq. (24). The sensitivity of uc to a small b in antiferromagnetic
materials is apparently associated with the intrinsic pinning
of the antiferromagnetic skyrmions at b = 0. The intrinsic
pinning means that the antiferromagnetic skyrmions cannot be
driven without the nonadiabatic STT, whether disorder exists
or not. This implies that the critical current uc → ∞ with
b = 0. Hence, there is a rapid change in uc when b → 0.
The intrinsic pinning could be understood from the Thiele
equation. For antiferromagnetic materials without disorder,
the first and third terms in Eq. (19) are canceled; thus, vd

goes to zero at b = 0. The sensitivity of the critical current of
the antiferromagnetic skyrmions to a small nonadiabatic co-
efficient b provides extra flexibility in potential applications.
For a very large nonadiabatic coefficient, we have simulated
the case of b = 10, and the critical current uc is about 0.0037.
The adiabatic term in Eq. (4) is very small around such a small
critical current uc. The simulation result shows that the phase
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(a) (b)

FIG. 4. (a) The logarithmic derivative ∂τ ln v(t, τ ) versus time t at the critical current uc = 0.750. The dashed line shows the power-law
fit. (b) The critical current uc from the numerical simulation and theoretical analysis.

transition remains second order, and the relation of the critical
current in Eq. (24) holds in the small adiabatic STT regime.

Based on the dynamic scaling form far from equilibrium,
all the critical exponents for the depinning phase transition
of the antiferromagnetic skyrmions are accurately measured
for different values of the nonadiabatic coefficient b and
are summarized In Table I. Although the critical current
varies significantly, the critical exponents β, ν, and z re-
main basically unchanged within error, at least for b > 0.05.
For the ferromagnetic skyrmions, the critical exponents are
anisotropic in two directions due to the Hall effect, and in
particular, there is a crossover from the universality class of
the adiabatic STT to that of the nonadiabatic STT in the
direction parallel to the driving current, with β changing from
2 to 1 [31]. However, β is not equal to 1 with any nonadiabatic
coefficient b for the antiferromagnetic skyrmions, which indi-
cates a nonlinear relation between the velocity and the driving
current near the depinning transition. The antiferromagnetic
skyrmions exhibit a depinning phase transition only in the
parallel direction, with a strong universality class for a nona-
diabatic coefficient b > 0.05. Similar to the antiferromagnetic
skyrmions, vortices are another type of topological texture
without the Magnus force. The static critical exponents for
the elastic and plastic depinning transitions of vortices are, re-
spectively, β = 0.29(3) and β = 1.3(1) [31,56,57], which are
also very different from β = 0.83(5) for the antiferromagnetic
skyrmions.

TABLE I. The critical current and critical exponents for the de-
pinning phase transition of skyrmions in an antiferromagnetic thin
film with different values of the nonadiabatic coefficient b.

b uc β ν z

0.05 0.750(1) 0.75(3) 0.86(4) 2.63(3)
0.2 0.1929(2) 0.83(5) 0.88(6) 2.31(5)
0.5 0.0774(3) 0.83(5) 0.88(5) 2.35(6)
1 0.0385(1) 0.84(4) 0.87(5) 2.33(8)

The critical behavior may be changed by the pinning force.
According to the stationary state analysis in Eq. (24), the
pinning force strength F is proportional to uc. In Table II, the
critical exponents at b = 0.5 for different disorder strengths
and densities are summarized in order of the critical current
uc. We choose the same b so that uc may depict the pin-
ning force strength. The critical exponents slightly vary for
weaker pinning forces and are stabilized for strong pinning
forces with uc � 0.0774. This is qualitatively in agreement
with the critical behavior of ferromagnetic skyrmions [31].
For comparison, we have also investigated the random-bond
and random-field disorders, which are described in Eqs. (2)
and (3).

In Table III, the critical exponents at b = 0.5 for different
disorder types are summarized. The critical exponents of the
random-field disorder are almost the same as those of the
anisotropy disorder, except that the dynamic exponent z is
slightly bigger. These two cases likely belong to the same
universality class. For the random-bond disorder, even with
the disorder strength at its largest limit such that the skyrmions
would not be destroyed, the pinning force is still very weak.
The static exponent ν is close to that of the strong anisotropy
disorder, while the static exponent β and the dynamic ex-
ponent z of the random-bond disorder are very different,

TABLE II. The critical current and critical exponents for the
depinning phase transition of skyrmions in an antiferromagnetic thin
film for different disorder strengths K and disorder densities ρ at a
nonadiabatic coefficient b = 0.5. The rows are sorted by the critical
current uc.

K ρ uc β ν z

1.0 0.05 0.0444(1) 0.89(4) 0.82(4) 2.43(2)
0.75 0.1 0.0471(2) 0.90(2) 0.84(3) 2.34(6)
1.0 0.1 0.0774(3) 0.83(5) 0.88(5) 2.35(6)
1.0 0.15 0.110(1) 0.82(3) 0.98(3) 2.43(4)
1.25 0.1 0.117(1) 0.84(4) 0.98(5) 2.44(7)
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TABLE III. The critical current and critical exponents for the
depinning phase transition of skyrmions in an antiferromagnetic thin
film for different types of disorder with a nonadiabatic coefficient
b = 0.5. The random-field and random-bond disorders are described
in Eqs. (2) and (3). The rows are sorted by the critical current uc.

Disorder uc β ν z

Random bond 0.01105(2) 1.41(4) 1.00(3) 1.67(5)
Random field 0.0475(2) 0.88(4) 0.87(4) 2.50(4)
Anisotropy 0.0774(3) 0.83(5) 0.88(5) 2.35(6)

obviously belonging to another universality class. In previous
studies for both the elastic model and the Ising model, the
random-bond and random-field depinning universality classes
merge into the same one [58–60]. The critical exponents may
vary in the weak disorder region, whereas they usually tend to
be stable when the disorder is strong [60,61]. In our simulation
of the Heisenberg model, the random-bond disorder is already
in the strong region, and an even larger disorder will destroy
the structure of the skyrmion.

A different universality class for the random-bond disorder
in the Heisenberg model may arise from two possible origins.
First, the LLG simulation involves more detailed microscopic
structures and interactions, such as magnetic moment preces-
sion. The Hamiltonian is not introduced directly in the LLG
equation, but the corresponding effective field is included.
The random-bond disorder acts on the system as a correction
to the Laplacian of the local m, which is distinct from the
Ising model. On the other hand, the random field and random
anisotropy are similar to those in the Ising model. Second
and more importantly, the previous simulation results for the
depinning phase transition in magnetic systems are mainly
for ferromagnetic materials. However, the critical behavior of
ferromagnets and antiferromagnets can be quite different. For
instance, the critical exponents and the universality classes
are different in order-disorder transitions because of the dif-
ferent exchange interactions [62,63]. In antiferromagnetic

materials, the sublattices are coupled together through the
exchange interaction. Therefore, the random-bond disorder
significantly affects the antiferromagnetism of the material,
whereas the random field and random anisotropy do not. Thus,
the random-bond disorder induces a different universality
class for the depinning phase transition of skyrmions.

V. CONCLUSION

In summary, we have investigated the dynamical behav-
iors of antiferromagnetic skyrmions with the LLG equation.
A structural transition from antiferromagnetic skyrmions to
helical states is observed. The threshold current for Q = 0
decreases with the nonadiabatic coefficient b. We then focused
on the numerical simulations of the nonstationary dynamic
behavior of skyrmions driven by currents in a chiral antifer-
romagnetic thin film with quenched disorder. A depinning
phase transition is detected, which is second disorder. Based
on the dynamic scaling forms, the critical current and static
and dynamic critical exponents were precisely measured. The
depinning phase transition of the antiferromagnetic skyrmions
belongs to a new universality class. Our nonstationary dy-
namic approach is efficient because it does not suffer from
critical slowing down. The theoretical solution of the critical
current uc based on the Thiele equation was also presented
and agrees well with the numerical simulation. According
to our simulation and theoretical results, the critical current
uc of the antiferromagnetic skyrmions is very sensitive to
a small nonadiabatic coefficient b, which is different from
the ferromagnetic case, and this is important in manipulating
antiferromagnetic skyrmions.
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