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Recent studies have explored finite-time dissipation-minimizing protocols for stochastic thermodynamic
systems driven arbitrarily far from equilibrium, when granted full external control to drive the system. However,
in both simulation and experimental contexts, systems often may only be controlled with a limited set of
degrees of freedom. Here, going beyond slow- and fast-driving approximations employed in previous studies,
we obtain exact finite-time optimal protocols for this limited-control setting. By working with deterministic
Fokker-Planck probability density time evolution, we can frame the work-minimizing protocol problem in the
standard form of an optimal control theory problem. We demonstrate that finding the exact optimal protocol
is equivalent to solving a system of Hamiltonian partial differential equations, which in many cases admit
efficiently calculable numerical solutions. Within this framework, we reproduce analytical results for the optimal
control of harmonic potentials and numerically devise optimal protocols for two anharmonic examples: varying
the stiffness of a quartic potential and linearly biasing a double-well potential. We confirm that these optimal
protocols outperform other protocols produced through previous methods, in some cases by a substantial amount.
We find that for the linearly biased double-well problem, the mean position under the optimal protocol travels at
a near-constant velocity. Surprisingly, for a certain timescale and barrier height regime, the optimal protocol is

also nonmonotonic in time.
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I. INTRODUCTION

There has been much recent progress in the study of
nonequilibrium stochastic thermodynamics [1-3]. In partic-
ular, optimal finite-time protocols have been derived for
a variety of systems, with applications to finite-time free-
energy difference estimation [4-6] engineering optimal bit
erasure [7,8], and the design of optimal nanoscale heat en-
gines [9-11].

For finite-time dissipation-minimizing protocols, there are
two related optimization problems that are typically stud-
ied: designing protocols that transition between two specified
distributions within finite time that minimize entropy pro-
duction [12-15], and designing protocols that minimize the
amount work needed to shift between two different potential
energy landscapes within finite time [4,16]. For the first prob-
lem, methods have been devised to fully control probability
density evolution arbitrarily far from equilibrium [17-19],
establishing deep ties with optimal transport theory [12,13,20]
and culminating in the derivation of an absolute geometric
lower bound for finite-time entropy production in terms of the
L*-Wasserstein distance [13-15,21]. Crucially, however, full
control over the potential energy is needed to satisfy arbitrar-
ily specified initial and terminal conditions for this problem.

Here, we consider the second problem for the case in
which there is only limited, finite-dimensional control of the
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potential. Only for the simplest case of a Brownian particle
in a harmonic potential has the fully nonequilibrium optimal
protocol been analytically solved and studied [4,12,22,23].
For arbitrary potentials, limited control optimal protocol ap-
proximations for the slow near-equilibrium #; > 1 [16,24—
29] and the fast 1 < 1 [30] regimes have been derived, but
these approximations generally are optimal only within the
specified limits. Very recently, gradient methods have been
devised to calculate fully nonequilibrium optimal protocols
through sampling many stochastic trajectories [31-33].

In this work, we show that optimal control theory is
a principled and powerful framework to derive exact op-
timal protocols for limited-control potentials arbitrarily far
from equilibrium. Optimal control theory (OCT), having
roots in Lagrange’s calculus of variations, is a well-studied
field of applied mathematics that deals with finding controls
of a dynamical system that optimize a specified objective
function, with numerous applications to science and engineer-
ing [34,35], including experimental physics [36]. By working
directly with the probability density undergoing deterministic
Fokker-Planck dynamics (as opposed to individual stochastic
trajectories) and rewriting the objective function using the first
law of thermodynamics, we show that the problem of finding
optimal protocols can be recast in the standard OCT problem
form. We may then apply Pontryagin’s maximum principle,
one of OCT’s foundational theorems, to yield Hamiltonian
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partial differential equations whose solutions directly give
optimal protocols. We note that the optimal control of fields
and stochastic systems has been previously studied within
the applied mathematics and engineering literature [37—46],
but here we use it to derive exact optimal work-minimizing
protocols in stochastic thermodynamics.

An outline of this paper is as follows. First, we use OCT
to derive Hamiltonian partial differential equations whose so-
lutions give optimal protocols for the cases of Markov jump
processes over discrete states and Langevin dynamics over
continuous configuration space. We then solve these equa-
tions analytically for harmonic potential control to reproduce
known optimal protocols. Finally, we describe and use a
computationally efficient algorithm to numerically calculate
optimal protocols for two anharmonic examples: controlling
the stiffness of a quartic trap and linearly biasing a quar-
tic double-well potential. We demonstrate the superiority in
performance of these optimal protocols compared to the pro-
tocols derived through approximation methods. We discover
that for the linearly biased double-well problem, the mean
position travels with near-constant velocity under the optimal
protocol, and that certain optimal protocols have a remarkably
counterintuitive property—the control parameter is nonmono-
tonic in time within a certain time and barrier height parameter
regime. Finally, we discuss our findings and the implications
of our work for the study of nonequilibrium stochastic ther-
modynamics.

II. DISCRETE STATE DERIVATION

We start by considering a continuous-time Markov jump
process with d discrete states. The experimenter has con-
trol over the protocol parameter A(z) that determines the
potential energies of the states, encoded by the vector U, =
[Ui(A), Uy(A), ..., Us(M)]T. Here, A is single parameter, but
in general it can be multidimensional. Although an individ-
ual jump process trajectory is stochastic, the time-varying
probability distribution over states, represented by the vector
pt) = (p', p?, ..., p)T with Y, p' = 1, has deterministic
dynamics governed by a master equation,

p=L;p, (D

where £, is a transition rate matrix for which we impose the
following form (similar to [47]):

ci;ePUiI=U /2,

U;(M)—Ur(r))/2
— Yy CyeP UL,

i 7]

(L] = i—

2)

Here, B = 1/kgT is the inverse temperature, kg is the Boltz-
mann constant, and ¢;; = cj; is the symmetric non-negative
connectivity strength between distinct states i # j. Transi-
tion rate matrices have the property >, [£;]’ j = 0, ensuring
conservation of total probability. In particular, this ma-
trix £, satisfies the detailed-balance condition [£; ]’ j,oéq! , =
(£} iply, foralliand j, where pf, , oc e P is the unique
Boltzmann equilibrium distribution for U,

For time-varying A(¢) and p(¢), the ensemble-averaged en-
ergy is E(t) = U] p and has time derivative

. .Tdu;7"
E=A[ d;] p+UTp. 3)
As is customary in stochastic thermodynamics, the first term
in the sum is interpreted as the rate of work applied to the
system W, and the second term is the rate of heat flowing in
from the heat bath Q [48].

We would like to solve the following optimization prob-
lem: if at7 = 0 we start at the equilibrium distribution p. ; for
potential energy U,,, what is the optimal finite-time protocol
A(¢) that terminates at A, at final time ¢ = ¢, and minimizes
the work

U v rdu, "
W[A(t)]_fo A<ﬁ>dt—/0 A[W} pdt? (4

We emphasize that this time integral includes any discontin-
uous jumps of A that may occur at the beginning and end of
the protocol, which has been shown to be a common feature
for finite-time optimal protocols [4,5,49]. Note that, in gen-
eral, p(tf) # peq s the equilibrium distribution corresponding
to Ag.

Tfhe first law of thermodynamics, AE[A(t)] = W[A(#)] +
Q[A(t)], allows us to write

ty
WA = [Ufp(p) — U] p(0)] — / U; pd
0

i
— Wy —UD pug + / U —U Lipdr. (5)
0

Here, U; =U;, and Uy =U;,. In the second line, we use

ptr) = p(0) + fotf pdt and invoke (1). The first term in the
sum is protocol independent, so minimizing W[A(¢)] is akin
to minimizing the second term,

Iy
JIM0)] = / Uy —U,) Lypd, (6)
0

which is now in the form of the fixed-time, free-endpoint
Lagrange problem in optimal control theory [34]. Compared
to a typical Euler-Lagrange calculus of variations problem in
classical physics [50,51], here both the initial state p(t = 0) =
Peq,i and the time interval [0, /] are specified, but, notably, the
final state p(# = ty) is unconstrained.

The standard OCT solution derivation begins by expand-
ing the integrand of (6) with Lagrange multipliers m(¢) =
(1, 702, oy )T

L=U;-U)"Lip+a"(p—Lip), (7)

so that the desired dynamics (1) are ensured. A solution
[p*(), T*(t), A*(¢)] that minimizes f(;f L dt gives the optimal
protocol A*(¢) that minimizes J[A(¢)].

A Legendre transform H = n” p — L produces the control-
theoretic Hamiltonian

Hp,n, M) = +U; —Up) L;p, ®)

where & may now be interpreted as the conjugate momentum
to p. Pontryagin’s maximum principle gives a set of neces-
sary conditions for an optimal solution [p* (), T*(¢), A*(¢)]:
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it must satisfy the canonical equations p' = dH/dm; and
;= —E)H/api for i=1,2,...,d, and constraint equa-
tion dH/dr =0, with 32H/9r*> <0 along the optimal
protocol. Because Eq. (8) has no explicit time dependence,
it remains constant throughout an optimal protocol. Although
this is, in a sense, analogous to the conserved total energy in
a classical system, it does not apparently represent a physical
energy of the system [34].

From Pontryagin’s maximum principle, the canonical
equations for the Hamiltonian in Eq. (8) are

p = Ekp, (9)

w=—L](m+U, —Uy), (10)

while the constraint equation coupling the two canonical
equations is

T
() o mrv—vrlo=o an
Because p(fy) is unconstrained, the transversality condition
fixes the terminal conjugate momentum m(t7) = 0 [34,52].

We have arrived at our first major contribution in this
manuscript. For a discrete-state Markov jump process satisfy-
ing detailed balance, Pontryagin’s maximum principle allows
us to find the work-minimizing optimal protocol A*(¢) by
solving the canonical differential Egs. (9) and (10) coupled
by Eq. (11), with the mixed boundary conditions p(0) = p;,
7(ty) = 0. Notably, no approximations have been used here
and thus the optimal protocols produced within this frame-
work are exact for any timescale. As will be shown below,
efficient algorithms may be written to numerically solve these
ordinary differential equations. This will be useful for nu-
merically obtaining optimal protocols of a continuous-state
stochastic system, as continuous-state Fokker-Planck dynam-
ics may be approximated by a discrete-state Markov process
with the appropriate master equation [53,54]. All that remains
in our derivation is to take the continuum limit for the corre-
sponding result for a continuous stochastic system undergoing
Langevin dynamics.

III. CONTINUOUS SPACE DERIVATION

For a continuous-state overdamped system in one dimen-
sion, individual trajectories undergo dynamics given by the
Langevin equation

. U
X =—BD— 4+ n(t). (12)
0x
Here, D is the diffusion coefficient, U (x, 1) is the A-controlled
potential, and n(z) is Gaussian white noise with statistics
(@) = 2Ds(t —t").
While each individual trajectory is stochastic, the time

evolution of the probability density p(x,t) of the ensemble
is deterministic, given by a Fokker-Planck equation,

ap 3%p ad aU A

— =D|—+B8—|p— || =:Lsp.

o1 [axZ Fox\Pox P
Here, LA)\ denotes the Fokker-Plgnck operator, which has a
corresponding adjoint operator L‘:{, also known as the back-

13)

ward Kolmogorov operator [54,55], which acts on a function

Y(x,t)as

2
Cly D[M— %B—U} (14)

Again, we want to find a protocol A(z) that minimizes the

expected work,
v loU
WIr@®)] =/ A<—>dt,
0 or

beginning at A(0) = A; and p(x, 0) ox e PV*4) and ending at
A(ty) = Ay with p(x, t;) unconstrained.

To take the continuum limit of the discrete case, we treat
the d states as one-dimensional lattice sites with spacing
Ax and reflecting boundaries at x, = +(d — 1)Ax/2, and set
the connectivity coefficients of Eq. (2) to ¢;; = D(Ax)~? for
all pairs of neighboring sites {i, j}, such that |i — j| =1,
and ¢;; = 0 for all else. We define p(x, 1) = (Ax)~'[p(t)]'™,
w(x,t) =[]y, and U(x, A) = [U;]i), where [(x) =
lx/Ax +d/2], and take the continuum limit |x,| — oo and
Ax — 0. Our control-theoretic Hamiltonian then becomes

15)

[o¢]
H:/ (7w +U — Up) L, pdx, (16)
with Uy = U(x, Af), while the canonical Eqgs. (9) and (10)
become

dp="Lip and dm=-Li(x+U-Up. (A7)

Finally, under the continuum limit, the constraint Eq. (11)
becomes

®rau A 0 0
L [a—x}(ﬁ*’”%[%(”“f‘”fﬂ)‘“zo’
(18)

which may be interpreted as an orthogonality constraint be-
tween 0U/0A, and a Fokker-Planck operator with modified
potential energy 7 + 2U — Uy acting on p.

We have now derived an expression that allows us to find
the work-minimizing optimal protocol for a continuous-state
stochastic system undergoing Langevin dynamics. Just as
for the discrete case, solving Eqs. (17) and (18) with initial
and terminal conditions, p(x, 0) = peq,i(x) and 7 (x,27) =0,
gives us a principled way to find the optimal protocol A*(¢)
that minimizes the work (15). Importantly, these differen-
tial equations are much more tractable than the generalized
integro-differential equation proposed in [4] for finding the
optimal protocol. In particular, these equations are solvable
analytically for the control of harmonic potentials, and may
be efficiently solved numerically for the control of general
anharmonic potentials.

For the rest of the paper, we will consider affine-control
potentials of the form

Ux, 1) = Up(x) + 2 Ui (x) + Uc (1), 19)

where A linearly modulates the strength of an auxiliary
potential U; (x) added to the base potential Uy(x), modulo a A-
dependent constant offset U,.. This form is applicable to a wide
class of experimental stochastic thermodynamics problems,
including molecular pulling experiments [3,18,24,56,57]
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which can be modeled with potential U (x, ) = Ugys(x) +
Uext(x, ) where the external potential of constant stiffness
k is Uge(x, A) = k(x — 1)?>/2. We see that by expanding
the square, this potential is in the form (19) with Uy(x) =
Usys(x) + kx?/2, Uy (x) = —kx, and U.(A) = kA?/2.

By plugging (19) into (18), we see that for this class of
affine-control potentials, the constraint equation is invertible,
giving

J2 402U — BOUD[3:(r 4+ Up)l} pdx
2 (% (0U)? pdx '

Ag

Ap, ] = > T

(20
Plugging Egs. (19) and (20) into (16) yields 3>H /91> =
=2 f (3:U1)?p dx < 0, which demonstrates that the optimal
protocol is a minimizing extremum for the work (6). A
proof for the existence of optimal protocol solutions for
Fokker-Planck optimal control is given in [38] under loose
assumptions. While we currently cannot prove the uniqueness
of a solution of Egs. (17) and (20) with our mixed boundary
conditions, every solution we have found always outperforms
all other protocols that we have considered.
We will now illustrate how Egs. (17) and (20) can be used
to produce optimal protocols, through particular analytical
and numerical examples.

IV. ANALYTIC EXAMPLE

For the rest of the paper, we set D = 8 = 1 for notational
simplicity. We start by considering a harmonic potential with
X controlling the stiffness of the potential U (x, 1) = Ax?/2,
where we identify U; = x?/2 and Uy = U, = 0. It has been
shown [4,12] that when the probability distribution p starts as
a Gaussian centered at zero, it remains a Gaussian centered
at 0, with the dynamics of the inverse of the variance s(t) =
(x?)~! given by

§s=2s(A —9), 21

which can be obtained by plugging a zero-mean Gaussian p
into Eq. (17).

By plugging a truncated polynomial ansatz for the conju-
gate momentum, m(x,t) = ZZ:O pk(t)x" /k! for a finite n,
into Eq. (17) and taking into account our terminal condition
7 (x,tr) = 0, we see that the only surviving terms are the con-
stant and quadratic terms 7 (x, t) = po(t) + p2(t)x*/2, where
the coefficients follow the dynamics given by

po=—(p2+A—Ap), (22)

P2 =2M(p2+ A1 —Ap). (23)
From our constraint given by Eq. (20), we have
As [ = pax*) pdx _Apts—m
2 2[Zx2pdx 2
With this, we eliminate A(s, p2) from Egs. (21) and (23), and

define ¢ = (s + pr — Ay)/2 to get ¢ = —¢? and § = —2¢s.
These equations are readily integrable from ¢ = 0 to get

bi
1+ ¢t

A=

(24)

o) = and s(t) = 25)

(1+¢it)*

where we use s(0) = A; and define the constant of integration
¢i = ¢(0) yet to be determined. Equating ¢(t) = [s(tf) +
pa(tr) — Ar]/2 allows us to solve

—(1+ Aptp) + \/1 + 2ty + Aidgt?

= 26
¢ th + )\.fl]% ( )
Finally, noting that A = s — ¢, we obtain
Ai — @i 1 il
A@l) = M (27)
(1 + ¢it)?

We readily identify Egs. (26) and (27) as Egs. (18) and (19)
of [4]. Thus, starting from Pontryagin’s Principle, Eqgs. (17)
and (18), we have analytically reproduced the optimal finite-
time work-minimizing trajectory for a harmonic trap with
variable stiffness. [In SM.I of the Supplemental Material [58],
we provide an analytic derivation of the optimal protocol for
the variable trap center case U (x, 1) = (x — 2)%/2.]

V. NUMERICAL EXAMPLES

The harmonic potential problem is exceptional in that we
can solve for its optimal protocol analytically. For the vast
majority of time-varying potentials, the differential Egs. (17)
with constraint (20) do not admit analytic solutions, but
can be solved numerically. In this section, we briefly sketch
our numerical scheme to solve Eqgs. (17) and (18), and we
demonstrate our approach for two classes of quartic potential
problems that do not admit analytic solutions: changing the
stiffness of a quartic trap and applying a linear bias to a
double-well potential.

We compare the form and performance of these optimal
protocols to three other protocols: naive, fast, and slow. The
naive protocol interpolates the starting and ending parameters
linearly in time, A(t) = A; + (¢/t)(A s — A;), and generally is
not optimal in any regime. The fast protocol, also known as
the short-time efficient protocol (STEP) as developed in [30],
is optimal for small-¢; limit, and involves a step to an in-
termediate value ASTE® for the duration of the protocol. The
slow protocol first derived in [16], also known as the near-
equilibrium protocol, is optimal for large ¢; and is obtained
by considering the thermodynamic geometry of protocol pa-
rameter space induced by the friction tensor £(A), from the
linear response of excess work from changes in A(). With
this induced thermodynamic geometry, the slow protocol is
a geodesic of & given by A(r) oc £(A(1))™V/2, with A(0) = A,
and A(tf) = Ay. (We provide a more detailed review of the
slow and fast protocols, as well as how we produce them
for our numerical study in SM.ILLA.3 and SM.II.A.4 of the
Supplemental Material [58].)

Here we briefly describe our discretization and integra-
tion scheme. Our lattice-discretization of space and time and
approximated Fokker-Planck dynamics largely follow [53].
Just as taking the continuous limit from a discrete-state mas-
ter equation yields Fokker-Planck dynamics, by discretizing
our configuration space onto a lattice, Fokker-Planck dynam-
ics can be approximated by a master equation over lattice
states [54]. Here, we approximate the configuration space by
a grid of d points with spacing Ax and reflecting bound-
aries at x, = £(d — 1)Ax/2, akin to the time-dependent
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Fokker-Planck discretization described in [53]. Our optimal
control equations, Eqgs. (17) and (18) become the ordinary
differential Eqgs. (9) and (10), coupled by (11). Time is dis-
cretized to N time steps, with either constant or variable time
steps.

Because the transition rate matrix £, has nonpositive
eigenvalues [55,59], it is numerically unstable to integrate
m forward in time, as any amount of numerical noise
becomes exponentially amplified. Rather, we adopt the
Forward-Backward Sweep Method [35,60], where approxi-
mate solutions for p®(¢) and X (¢) are updated iteratively
through first obtaining p**1 by solving (9) and (11) forwards
in time starting with p(0) = p; o4, keeping m(r) = ()
fixed; and then obtaining #**1 by solving (10) and (11)
backwards in time starting with m(z;) = 0, keeping p(¢) =
p*+D(¢) fixed. These forward and backward sweeps are iter-
ated until numerical convergence of p*(¢), &*(¢), which then
is passed to (11) to obtain the optimal protocol A*(¢). (See
SMLII of the Supplemental Material [58] for exact details on
our numerical scheme.)

To measure the performance of each protocol A(z),
we consider the excess work Wi [A()] = W[A(t)] — AF,
where AF =In(Zy) —In(Z;) is the free-energy difference
between the initial and final equilibrium states, with Z, =
f dx exp[—U, (x)] being the partition function. By the second
law of thermodynamics, Wex > 0 and approaches O in the
quasistatic t; — oo limit. (We describe how we numerically
compute W for a given protocol in SM.IL.B of the Supple-
mental Material [58].)

Now we present our results for the variable-stiffness quar-
tic trap and linearly biased double-well examples.

A. Quartic trap with variable stiffness

First, we consider the quartic analog of the variable-
stiffness harmonic oscillator, with the potential given as

4

U,(x)=x 1
Figures 1(a) and 1(b) illustrate the numerically obtained op-
timal protocols for variable values of protocol time #f, for
Ai=1,Ar=2and A; =1, Ay =5, respectively. We see that
the optimal protocols for the variable-stiffness quartic trap
problem are qualitatively similar to the optimal protocols for
the variable-stiffness harmonic trap in Sec. IV (derived and
illustrated in [4]). For both problems, optimal protocols are
continuous and monotonic with positive curvature for times
t € (0,1r), and have discontinuous jumps atf = 0 and ¢t = ¢.
Also plotted are the fast [30] and slow [16] protocols, which
have been derived to be optimal for the small- and large-5
limits, respectively. We see that the numerically solved opti-
mal protocol asymptotes to these protocols in the respective #¢
limits.

Figures 1(c) and 1(d) illustrate the excess work W of
various protocols across different timescales 7;. We see that
the optimal protocol outperforms all three of the naive, fast,
and slow protocols. The performance of the fast protocol
converges to the optimal protocol performance for short
timescales, ¢ty < 1. Likewise, the performance of the slow
protocol converges to the optimal protocol performance for

(28)

long timescales, ¢y >> 1. This is expected and is consistent
with how the optimal protocol asymptotes to the fast and slow
protocols in the respective timescales.

B. Linearly biased double well

Here we consider the double-well potential with wells at
x = =£1 with an external linear bias,

(x* — 1)
4

Here, Ey sets the energy scale of the ground and external
potentials, with a barrier height of E(/4 between the two wells
at A = 0. This potential is commonly used in the study of bit
erasure [7,8], but here we allow only limited control in the
form of a linear bias. We note that this problem is qualitatively
similar to the [24], where a harmonic pulling potential with
variable center is applied to a potential with two local minima
separated by a barrier. We consider A; = —1 and Ay =1,
while varying Eq and f;. Setting the parameter value A = —1
biases the potential to the left well, which sufficiently raises
the right well above the barrier height and shifts the left well
minimum from xye; = —1 to —1.32472. Setting A = 1 gives
a symmetric bias to the right well.

Figures 2(a) and 2(b) illustrate optimal protocols for Ey =
4 and Ejy = 16, which correspond to interwell barrier heights
of 1 kgT and 4 kT, respectively. Just as before, the optimal
protocol asymptotes to the fast and slow protocols in the
small- and large-t; limits. We note here that the optimal pro-
tocols obtained for various values of Eq and 77 have intriguing
properties. First of all, both the fast and slow protocols are
symmetric under inversion [A(¢), t] — [—A(t), t; — t], which
arises from the symmetry U, (x) = U_,(—x) with 1y = —2,,
and the construction of these protocols. We see though that the
optimal protocol obtained by solving (17) and (18) does not
follow this symmetry for intermediate values of timescale ?.
This discovery of barrier crossing optimal protocols breaking
symmetry was first made in [31]. At first, this symmetry
breaking may seem counterintuitive, but this can be under-
stood by noting that A; and A play completely different roles
in our optimal control problem: A; specifies the initial condi-
tion p(x, 0), while A s specifies Uy (x) in the cost function.

Furthermore, not only do we find nonsymmetric protocols,
we discover that for Ey = 16, the optimal protocol A(t) is
nonmonotonic at certain intermediate timescales, ¢y ~ 0.2.
This result is surprising, given that the underlying stochastic
system (12) is overdamped—it has no momentum degrees
of freedom that could incentivize overshoots. To our knowl-
edge, no optimal or approximately optimal protocols for a
single parameter A have been reported to exhibit this sort of
nonmonotonic behavior. In this regime, the optimal protocol
cannot be interpreted as a geodesic for an underlying ther-
modynamic metric, as the latter can only produce monotonic
protocols.

To explain this overshoot, we consider the mean position
of the probability density under the optimal protocol (x) =
f p(x,t)xdx as a function time ¢. This is shown in Figs. 3(a)
and 3(b), where we see (x) increases at a nearly constant
rate under the optimal protocol. This may be interpreted as
the limited-control optimal protocol allowing barrier crossing

U (x) = Ey — AEyx. 29)
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FIG. 1. Form and performance of numerically produced optimal protocols for quartic trap with variable stiffness U, (x) = A x*/4 with
Ai =1, Ay = 2 on the left column, and A; = 1, Ay = 5. on the right column. (a),(b) The optimal protocols for the trap stiffness, across various
finite protocol duration values 7;. We see that for short times 7, < 1, the optimal protocol asymptotes to the fast protocol as given in [30],
whereas for long times ¢, >> 1, the optimal protocol asymptotes to the slow protocol as given in [16]. We observe discontinuous jumps at
t = 0andt = t; in our numerically calculated optimal protocols, which is often the case for optimal protocols [4,5,49]. (c),(d) Comparison of
the protocol performance W, among the numerically calculated optimal protocol, the fast protocol, the slow protocol, and the naive protocol.
We see that the optimal protocol outperforms all other protocols, with the fast and slow protocols asymptoting in performance to the optimal
protocol in their respective small- and large-#; limits. The form and performance of these optimal protocols are qualitatively similar to those
for the harmonic oscillator control case [4] (illustrated in Fig. SML.I of the Supplemental Material [58]).

to occur at an approximately constant velocity. On the other
hand, when full control over the potential is allowed, the
distribution mean (x) always maintains a constant speed under
the full-control optimal protocol (see SM.III of the Supple-
mental Material [58] for a derivation drawn from optimal
transport theory). This suggests that insofar as a limited-
control optimal protocol should approximate the full-control
optimal protocol, it drives the mean of the probability distri-
bution to travel with near-constant velocity, even if requiring
an overshoot as is the case for the Eg ~ 16, t; ~ 0.2 regime.
Figures 2(c) and 2(d) illustrate the performance of these
protocols. Just as we found for the harmonic potential, the
OCT protocol outperforms all three other considered proto-
cols, with performance of fast and slow protocols approaching
the optimal protocol performance in their respective ¢, limits.
We see that for barrier height Ey = 16, the optimal proto-
col vastly outperforms all other protocols at intermediate 77

values. For instance, at ¢ty = 2, the optimal protocol gives
Wex = 10.61, which is significantly smaller than the naive
protocol Wex = 16.12 and slow protocol W = 26.77 val-
ues. This shows the existence of truly far-from-equilibrium
regimes, for which protocols derived assuming either fast or
near-equilibrium approximations deviate significantly from
the true, fully nonequilibrium optimal protocol, in both form
and performance.

VI. DISCUSSION

It is typically the case in experimental and engineering
contexts that only a finite set of degrees of freedom of a system
is controllable. We have shown that the problem of finding
work-minimizing optimal protocols is naturally framable as
an optimal control theory (OCT) problem. Using tools and
techniques from OCT, we have devised a method to derive
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FIG. 2. Numerically solved optimal protocols for the linearly biased double-well potential U, (x) = Eo[(x*> — 1)*/4 — Ax], A; = —1, and
Ay = 1; with Ey = 4 in the left column, E; = 16 in the right. (a),(b) The optimal protocols for the linear bias value, across various finite protocol
duration values #;. As with the quartic case in Fig. 1, here for short times ¢, < 1 and long times 7, >> 1, the optimal protocol asymptotes to the
fast and slow protocols, respectively. Unlike the slow and fast protocols, for intermediate values of 7, the optimal protocols are not symmetric
in (t,1) — (—t, —A). For Ey = 16, we observe surprising nonmonotonic protocols for ¢, ~ 0.2. (c),(d) The protocol performance W, between
the numerically calculated optimal protocol and other protocols. Like in the quartic case, we see that the optimal protocol outperforms all other
protocols, with the fast and slow protocols asymptoting in performance to the optimal protocol in their respective small- and large-f; limits.
For E, = 16, the optimal protocol vastly outperforms the other protocols for ¢, ~ 2.

optimal protocols in the case where there is only limited
control of the form of the system’s potential. Our framework
allows us to reproduce known analytic results for the control
of a harmonic oscillator, as well as to efficiently calculate op-
timal protocols numerically for a large class of limited-control
potentials.

Previous work on dissipation-minimizing optimal
protocols revealed thermodynamic geometry on protocol
parameter space through the friction tensor [16,59], and
on probability density space through the L?-Wasserstein
metric [13-15,61]. We have found that the protocol
optimization problem has a deep Hamiltonian structure,
typical of OCT problems [34]. It is interesting to ponder what
insights may be gleaned from the study of optimal protocols
for nonequilibrium processes when both Riemmanian and
symplectic structures are considered together.

It is straightforward to generalize our results to configura-
tion and parameter spaces that are multidimensional, which

suggests a number of natural extensions. First, by allowing
time-varying control of temperature 8~' = kgT and asserting
time periodicity for the protocol, we can construct optimal
finite-time heat engines arbitrarily far from equilibrium,
building off of [10,61,62]. Cyclical protocols may also be
considered for when the state space and/or configuration
space are non-Euclidean manifolds [17], e.g., for the external
control of rotary motor proteins such as F,F; [27]. Recent sur-
prising results demonstrate that if detailed-balance breaking
transition rates were allowed in the control of Markov jump
processes, finite-time transitions between different probability
distributions may be conducted with arbitrarily small entropy
production [63-66]. Our framework is easily adaptable to
these kinds of systems through the replacement of every
instance of potential energy difference with a forcing matrix
that need not be symmetric, i.e., [U;(A) — U;(X1)] — F;;j(A) in
Eq. (2), and it would be interesting to observe whether
calculated work-minimizing protocols would contain
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FIG. 3. The evolution of the mean position (x)(¢) for the linearly biased double-well problem Uj (x) = Ey[(x*> — 1)?/4 — Ax], across various
protocol duration values ¢;. Here, A; = —1 and Ay = 1, with (a) Ey = 4, and (b) Ey, = 16. The first row depicts the optimal protocol, the second
the naive protocol, the third the fast protocol, and the fourth the slow protocol. For the optimal protocol, (x)(¢) increases monotonically with
near-constant velocity, which we argue is a generic property of limited-control optimal controls. In comparison, the naive, fast, and slow
protocols evolve the mean (x)(¢) with much more variable velocity. The deviation from constant velocity roughly corresponds to larger We,

values, as depicted in Figs. 2(c) and 2(d).

similar features. Finally, it would be intriguing to extend
our framework to the study of underdamped systems where
both position and velocity degrees of freedom (x, v) make
up the configuration space [6,67]; because the kinetic term of
the underlying Klein-Kramers equation cannot be controlled,
control is intrinsically limited to just the spatial degrees of
freedom.

When the configuration space has many degrees of free-
dom, the curse of dimensionality kicks in, where the memory
required to store the probability distribution is exponential in
the number of dimensions of the configuration space [68]. In

this case, it may be more computationally tractable to sample
individual stochastic trajectories to compute the friction
tensor [16,26] or gradients of the protocol [31] in order to
calculate optimal protocols. It will be of interest to study the
effectiveness of configuration space dimensionality reduction
techniques (e.g., density functional theory [69] and Zwanzig-
Mori projection operators [54]) to make the calculation of
optimal protocols through our framework computationally
tractable for high-dimensional configuration spaces.

We have shown that optimal control theory is a natu-
ral and powerful framework for the design and study of
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thermodynamically optimal protocols. In the spirit of [70],
it is our hope that through considering the optimal control
of nonequilibrium probability densities considered here and
elsewhere [37,38,40], we may better understand how it is
that biological systems, which operate far from equilibrium,
function efficiently across vastly different length scales and
timescales.
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