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Directed walk in probability space that locates mean field solutions to spin models
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Despite their formal simplicity, most lattice spin models cannot be easily solved, even under the simplifying
assumptions of mean field theory. In this paper, we present a method for generating mean field solutions to
classical continuous spins. We focus our attention on systems with nonlocal interactions and nonperiodic bound-
aries, which require careful handling with existing approaches, such as Monte Carlo sampling. Our approach
utilizes functional optimization to derive a closed-form optimality condition and arrive at self-consistent mean
field equations. We show that this approach significantly outperforms conventional Monte Carlo sampling in
convergence speed and accuracy. To convey the general concept behind the approach, we first demonstrate its
application to a simple system: a finite one-dimensional dipolar chain in an external electric field. We then
describe how the approach naturally extends to more complicated spin systems and to continuum field theories.
Furthermore, we numerically illustrate the efficacy of our approach by highlighting its utility on nonperiodic
spin models of various dimensionality.
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I. INTRODUCTION

Classical spin models constitute a ubiquitous tool in phys-
ical sciences due to their abilities to describe the features
and phase behaviors of a wide variety of different physical
systems. Many properties of these systems can be efficiently
understood by applying the mean field (MF) approximation,
where each spin is assumed to interact with a static environ-
ment determined self-consistently to represent the average.
In isotropic systems, such as the periodically replicated Ising
model, all spins are statistically identical. The mean field so-
lution can therefore be captured within a single self-consistent
equation. By contrast, anisotropic systems, such as those
containing an interface, give rise to a more complicated mul-
tidimensional array of equations. When formal solutions to
these equations are inaccessible, for example, by their tran-
scendental nature, they can be evaluated algorithmically with
adaptive sampling schemes. Even in the mean field case, how-
ever, typical sampling schemes involve a stochastic walk of
some sort in the system configuration space, which becomes
prone to frustration as the system size and heterogeneity in-
creases.

In this paper, we eliminate such frustration by establishing,
instead, a deterministic walk in the space of configurational
probabilities. As we demonstrate, this approach converges
rapidly and can be designed to target the correct mean field
solution. Our approach utilizes the joint framework of direc-
tional statistics and variational optimization. The underlying
information-theoretic perspective paves a contextualized and
accelerated way to study the properties of a wider class of
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spin models encountered in statistical mechanics, theoretical
neurobiology, and artificial intelligence.

Spin systems are capable of modeling specific functionali-
ties and revealing fundamental insights for diverse phenomena
that occur in condensed phase systems [1–4]. For instance, a
monolayer rotor model provides a mechanistic explanation of
magnetization reversal observed in magnetic materials [5,6],
while water diffusion and proton conduction in nanopores
can be described by a discrete charge model on a segmented
lattice [7–9]. In practice, it is nearly impossible to solve a
designated spin model exactly, except in a handful of peda-
gogical cases [10,11] where the system equilibrium weight
can be decomposed into computable subsystem weights ac-
cording to a simple spin connection topology. When such a
decomposition is unavailable, an approximate decomposition
can be accomplished via mean field theory, which serves as a
zeroth-order approximation to the exact theory.

Notably, the complexity of a given spin model is set by the
length scale of spin-spin interactions. When the interactions
remain highly local, as in the standard nearest-neighbor Ising
model, the majority of spins in the system can be treated as
statistically independent. The resulting anisotropic mean field
equations are hence weakly coupled. For long-range interac-
tions, such as those occurring between the charged species, the
growing cross-dependence of these coupled equations poses a
challenge for obtaining exact solutions, even with statistical
correlations removed by the mean field assumptions. Figure 1
highlights this additional complexity from anisotropy and
long-range interactions: the former gives rise to a unique mean
field equation for each lattice site, and the latter makes the spin
topology computationally irreducible. In principle, one may
overcome the associated challenge by employing stochastic
sampling methods that bias towards the thermodynamically
relevant system configurations. Unfortunately, such methods
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FIG. 1. A schematic contrast of mean field theory applied to
homogeneous and heterogeneous systems. Each panel contains a
one-dimensional array of dipoles subject to a uniform field biasing
the spins to the right, where the top section (black arrows) and bottom
section (colored arrows) depict a typical equilibrium configuration
and the mean field solution, respectively. Panel (a) shows a spatially
heterogeneous system with open boundary conditions, and panel
(b) shows a spatially homogeneous system with periodic boundary
conditions (PBCs). Spatial heterogeneity leads to larger dipolar re-
sponse at the system boundaries, an illustration of dipolar screening.

can fail to converge, especially in cases where the number of
metastable basins in the energy landscape proliferates [12,13].

In this paper we focus our attention on the mean field
analysis of finite heterogeneous spin systems. In particu-
lar, we utilize the well-known Gibbs-Bogoliubov-Feynman
variational inequality [10,14,15] and reframe the mean field
approximation as a constrained optimization on the free en-
ergy functional of configurational probabilities. We reexpress
the infinite-dimensional optimization as an equivalent finite-
dimensional optimization over a compact set in the Euclidean
space that contains the mean spin characters. The latter prob-
lem can be easily solved recursively. We show that this
procedure leads to a class of self-consistent mean field equa-
tions that are otherwise difficult to derive analytically, and we
prove that the iterative procedure is guaranteed to converge.

Our approach invokes the concept of Markov random
fields, also known as factor graphs [16]. This generalized vari-
ant of lattice model prescribes adjacency relations between a
cloud of random variables, as edges between nodes of a graph,
based on their conditional dependence. Modeling physical
spin systems using graphical networks is practically advanta-
geous due to the factorizability native to the accessible system
degrees of freedom. That is, the joint distribution of a cluster
of variables (e.g., spin configurations) can be factorized as a
product over elemental weighting functions (e.g., potential en-
ergy surface), each of which involves relatively few variables.
Recent progress has been made on the theoretical and practical
aspects of Ising model as factor graph through the varia-
tional perspectives [17–19]. Here we demonstrate the ubiquity
of fast convergence associated with the mean field iterative
approach. For illustrative purposes, we examine a trivial rep-
resentative model composed of a finite chain of freely rotating
dipoles. Even this simple model yields a multimodal energy
landscape that can frustrate standard methodologies. Despite
the simplicity of this illustrative model, we note that the same
analysis can be applied to a wider range of more complex spin
models, as we discuss later in our paper.

The paper is organized as follows. In Sec. II we intro-
duce the one-dimensional dipolar lattice as a minimal model
with a smooth and continuous multimodal energy landscape.

Section III briefly reviews the mean field formalism in the
information-theoretic context. In Sec. IV we simply state,
without proofs, the form and applicability of our mean field
iterator. Section V B entails a derivation of the iterator for
solving the dipolar model and presents approximation theo-
rems for which relevant model parameters control the iteration
convergence. We then address spin models with more gen-
eral state spaces and interactions in Sec. VI, and expand the
analogies to include continuum field theories. In Sec. VII
we numerically justify the efficiency and stability of the
method outlined in Secs. V B and VI by examining the
mean field convergence for various systems, ranging from
the one-dimensional dipolar chain to the three-dimensional
Heisenberg slab.

II. MODEL DESCRIPTION

A. Restriction on model space

We first point out that the concept presented within the
work is not model specific, i.e., we will be able to systemat-
ically generate directed walks in the space of configurational
probabilities for general classical spin models, provided that
there is a symmetry associated with each spin degree of free-
dom. In some cases, we may exploit this symmetry even when
the model Hamiltonian contains an external field contribution
that enthalpically breaks the symmetry.

For concreteness, we first discuss how the approach applies
to a simple finite dipolar chain.

B. Illustrative model: Finite dipolar chain

Let us consider a reference system of interacting dipoles on
a finite one-dimensional regular lattice, �, which we assume
to extend in the x-Cartesian direction. Each dipole has a fixed
magnitude, di, and can rotate freely within a two-dimensional
plane as sketched in Fig. 1. Under the point-dipole approxi-
mation, the interaction between dipoles i and j is

Vi j = did j[μ̂�
i μ̂ j − 3(μ̂�

i x̂)(μ̂�
j x̂)]

r3
i j

, (1)

where μ̂i = (cos ϑi, sin ϑi ) denotes the orientation of dipole
i, x̂ indicates the unit vector separating dipoles i and j, and
ri j is the separation distance. The indices 1 � i � n specify
position along the lattice so that ri j = a|i − j| for lattice con-
stant of a. Let d� = (d1, . . . , dn) denote the vector of dipole
magnitudes. The system Hamiltonian is

H (ϑ |d�) = 1

2

n∑
i �= j

Vi j −
n∑

i=1

diμ̂
�
i Eext

i , (2)

where ϑ = (ϑ1, . . . , ϑn) specifies the angular configuration of
dipoles and the second term describes the influence of external
electric field, Eext

i .
With fixed temperature, lattice size, and number of dipoles,

the canonical partition function is given by

Z =
∫ n∏

i=1

dϑi exp [−βH (ϑ |d�)] ≡ exp [−βF ], (3)
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where the integral spans all possible dipole configurations
and 1/β = kBT is the Boltzmann constant times temper-
ature. This relationship defines a free energy F , yet the
equilibrium measure ρeq(ϑ ) = exp[−βH (ϑ )]/Z is compu-
tationally intractable for all but the smallest system sizes due
to the high-dimensional integral Z . Such intractability can be
typically circumvented by either biased subsampling or the
application of mean field theory (MFT).

Biased subsampling takes advantage of the fact that in
many cases Z is dominated by a small subset of low energy
configurations. Sampling these configurations, e.g., via Monte
Carlo algorithms, typically enables asymptotic convergence
of equilibrium properties, despite that these techniques are
prone to frustration in systems with nonconvex free energy
landscape. Application of MFT, on the other hand, reduces
computation by creating a model system with dramatically
simplified configuration probabilities and a corresponding
free energy that can be variationally related to that of the
target system, FMF � F . A major advantage of MFT is that
the model system is often solvable through numerical or ana-
lytical methods.

III. MEAN FIELD FORMALISM

In MFT, the fluctuating environment is modeled by a static
mean field. Because the neglected fluctuations are entropically
favorable, the free energy of the mean field system represents
a loose upper bound on that of the interacting system. The
trade-off in accuracy is that MFT significantly reduces the
complexity and system size scaling associated with the com-
putation of system properties.

For the lattice dipole system, the mean field free energy can
be expressed parametrically as

FMF(θ, r) = HMF(θ, r) − T SMF(θ, r), (4)

where the vectors θ and r contain the mean orientations, θi =
〈ϑi〉, and polarizations, ri = di

√
〈cos ϑi〉2 + 〈sin ϑi〉2 � di. In

Eq. (4) the enthalpic term, HMF = H (θ |r), is simply the
average system energy. The entropic term, SMF, is a sum of
single dipole entropies (reflecting the lack of dipole correla-
tions),

SMF =
n∑

i=1

Sν�
i
= −kB

n∑
i=1

∫
dϑν�

i (ϑ ) ln ν�
i (ϑ ), (5)

where Sνi labels the entropy of dipole i dictated by an angular
distribution νi. The distribution ν�

i in Eq. (5) denotes the
unique maximum entropy distribution commensurate with the
mean (θi, ri ), derived as the extremal of the action,

Ai[ν; θ, r] = −T Sνi + λ+

[
1 −

∫
dϑνi(ϑ )

]

+ λ−

[
ri exp (iθi ) − di

∫
dϑνi(ϑ ) exp (iϑ )

]
,

(6)

where the Lagrange multipliers λ± enforce the normalization
and the first moment constraint. Specifically, the maximizing

FIG. 2. Behavior of the function q and the entropy Sν�
i

as a
function of the nondimensional average field β
i on tagged spin i.
Observe that q(t ) is bounded between 0 and 1, where its derivatives
further imply that q(t ) is monotonically increasing and concave.
Consequently [combining Eqs. (5) and (7)], the MF entropy mono-
tonically decreases as the averaged field increases. Dashed line marks
the asymptotic behavior q → 1.

ν�
i , also known as a von Mises distribution, takes the form

ν�
i (ϑ ) = exp [β
i cos (ϑ − θi )]

2π I0(β
i )
, (7)

where θi gives the angular mean as expected for consistency,

i = diE i sets the angular fluctuation under an averaged field
Ei ∝ q−1(ri/di ) for which q(t ) is a differentiable function sat-
isfying the Riccati equation ∇t q = 1 − q/t − q2 with initial
condition q(0) = 0, and I0 in the normalizing constant denotes
the zeroth-order modified Bessel function of the first kind. The
behavior of the function q(t ) is shown in Fig. 2.

IV. MAIN RESULT AND APPLICABILITY

In essence, the mean field approximation limits the space
of possible angular distributions to those satisfying Eq. (7)
(discussed further in Appendix A). This limitation signifi-
cantly reduces the search space for the optimization of FMF in
Eq. (4). However, even in this reduced search space, FMF may
exhibit metastable minima that prevent typical optimization
routines, such as gradient updates, from reaching the global
minimum. Our goal here is to outline a robust procedure
that, when properly initialized, will reliably converge to the
optimum under the mean field approximation. We formulate
the procedure in terms of a mean field iterator, GMF, which
generates directed walks in the MF state space,

GMF[(θ, r)τ ] = (θ, r)τ+1, (8)

where the index τ labels the iteration step. In our case, we
consider Eext

i = Eix̂ such that Ei � 0 on all lattice sites, such
as would result from a voltage drop across the lattice driven
by a pair of electrochemical reservoirs. This assumption will
be kept implicit throughout the remaining sections.

Here we provide a summary of our approach. Relevant
key ideas are presented by order in the next sections, while
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technical details are described in their entirety in the Ap-
pendix. Under our assumptions, the explicit form of the
iterator, GMF, in Eq. (8) is given by⎡

⎣GMF,1
...

GMF,n

⎤
⎦ =

⎡
⎣d1q(βd1EMF,1)

...

dnq(βdnEMF,n)

⎤
⎦, (9)

which guides directed walks in MF state space. For the dipolar
model, q is the function appearing within Eq. (7) and illus-
trated in Fig. 2, whereas

EMF,i(θ, r) = Ei + 2
∑
j �=i

r j cos θ j

r3
i j

(10)

represents the strength of molecular mean field experienced
by dipole i. We will show that the mean fields all point in the
x̂ direction and depend only on the x components of the dipole
averages. The iterator follows from minimization of the free
energy FMF and is constructed step by step in Secs. V A and
V B, while its convergence is established in Sec. V C.

The results for dipolar chain extend to other classes of spin
models for which spin-spin interaction orients favorably along
direction of the imposed external field (ferromagnetic models
with consistent external field are thus canonical examples),
as is elaborated in Sec. VI A. Our lattice description then
motivates a discussion on the continuum fields in Sec. VI B.

V. ITERATOR AND ITS CONVERGENCE

A. Global optimizer

Certain symmetries that are inherent to dipolar (spin-spin)
interactions result in a significant reduction of the search
space in the optimization of FMF. Our construction of the MF
iterator, GMF, exploits these symmetries, which are formalized
as the lemma below.

Lemma 1.1. A global maximizer (θ∗, r∗) of

MF(θ, r) = −βFMF(θ, r) (11)

satisfies 0 � r∗
i cos θ∗

i � di for all 1 � i � n.
Sketch of proof. Here we convey the central idea of the

proof. An elaborated proof can be found in Appendix B.
We first recognize the invariance of the entropies Sν�

i
under

the partial reflections,

(cos θi, sin θi ) 
→
{

(− cos θi, sin θi ) if cos θi � 0
(cos θi, sin θi ) otherwise , (12)

which can be realized through circular shift of the angular
distributions and diagrammatically understood in Fig. 3(a).
For a mean configuration θ , we consider such reflections on
all sites and denote the partially reflected mean configuration
by θ+.

The operation θ 
→ θ+ leads to an energy reduction since it
induces favorable dipolar couplings Vi j and encourages dipole
alignment with the external field Eext

i as depicted in Fig. 3(b).
In Fig. 4 we show the Vi j reduction by plotting the full range of
coupling values for two dipoles [Fig. 4(a)] and the change in
coupling from single dipole reflection [Fig. 4(b)]. Therefore,
FMF(θ+, r) � FMF(θ, r) and 0 � r∗

i cos θ∗
i � di.

In fact, the global maximum is attained only when the
mean dipoles align with the external field.

FIG. 3. Elementary state space operations that relax the mean
field free energy of finite dipolar chains. (a) Schematic illustrations
of ŷ reflection and x̂ rotation acting on the mean states (θi, θ j ) of a
pair of tagged dipoles i and j. (b) Energy diagrams for the two-body
dipolar contribution and one-body external field contribution upon
the elementary operations.

FIG. 4. Symmetry of the dipolar interaction. (a) Bare potential
V12(θ1, θ2) plotted over the orientations (θ1, θ2) of two mean dipoles
separated by a unit distance. (b) Potential reduction V12(θ1, θ

+
2 ) −

V12(θ1, θ2) upon reflecting one dipole orientation θ2 
→ θ+
2 while

fixing the other dipole orientation −π/2 � θ1 � π/2.
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Corollary 1.2. θ∗
i = 0 for all 1 � i � n.

Sketch of proof. A mean configuration in full alignment
results from rotations onto the vector x̂,

(cos θi, sin θi ) 
→ (1, 0), (13)

denoted as θ 
→ Rx̂θ on the lattice. Invariance of entropies
and reduction of energetics follow from these rotations, with
a diagrammatic view presented in Figs. 3 and 4.

B. Mean field iterator

The MF iterator GMF is a state-space operator that generates
discrete flow towards the optima of MF. We use results in the
previous section to derive its form. Although the parametrized
distributions ν�

i and free energy function FMF are most natu-
rally expressed in the polar coordinate, it is advantageous to
consider a Cartesian frame where one of the axes points in the
external field direction x̂. With this coordinate change,

(Xi,Yi ) = ri(cos θi, sin θi ), (14)

the projections Xi can be isolated and treated separately. Now
taking ∇MF = 0 for the MF optimization in Eq. (4), we
arrive at an array of self-consistent equations that manifest the
first-order condition β∇HMF = βT ∇SMF,

β

n∑
j=1

T i, j

[
Xj

Yj

]
=

[
βEi + ∇Xi Si

∇Yi Si

]
, (15)

where the 2 × 2 matrix T i, j encodes the dipolar coupling,

T i, j = lim
ε→0+

1 − δi j

ε + r3
i j

[−2 0
0 1

]
, (16)

with δi j denoting the Kronecker delta, Ei accounts for the local
external fields, and Si = Sν�

i
gives the single dipole entropies,

Si = −Kiq
−1(Ki ) + ln

I0[q−1(Ki )]

2π
, (17)

with nondimensional polarity Ki =
√

X 2
i + Y 2

i /di characteriz-
ing the angular dispersion. Let � = (X1,Y1, . . . , Xn,Yn) be the
paired coordinates in shorthand, so Eq. (15) can be arranged
as a matrix equation,

βT̃ · � = βẼ + C̃(�), (18)

where the 2n × 2n matrix T̃ composed of 2 × 2 blocks,

T̃ =

⎡
⎢⎢⎢⎢⎣

0 T 1,2 · · · T 1,n

T 2,1 0
...

...
. . . T n−1,n

T n,1 · · · T n,n−1 0

⎤
⎥⎥⎥⎥⎦, (19)

accommodates the collective anisotropic interaction in the
dipolar chain, Ẽ = (E1, 0, . . . , En, 0) contains the augmented
external fields, and

C̃ = (∇X1 S1,∇Y1 S1, . . . ,∇Xn Sn,∇Yn Sn), (20)

designates the entropic forces.
Equation (18) defines the state-space property of the MF

solution, �∗, and can be utilized to ensure that �∗ is a fixed

point of GMF. Ideally, one would convert Eq. (18) into the form
� = GMF(�) and analyze the associated fixed-point iteration.
However, due to the noninvertibility of the partitioned matrix
T̃ and entropy gradient C̃, instead, we refer to Corollary 1.2 in
Sec.V A and consider the dimensionally reduced GMF through
a projection of Eq. (15) onto the “important” subspace Yi ≡ 0,

βEMF,i(X ) = βEi + 2β
∑
j �=i

Xj

r3
i j

= q−1(Xi/di )

di
, (21)

where the molecular field EMF,i acting on dipole i can be
explicitly defined through Eq. (21) after we project out half
of the equations satisfied vacuously, i.e., β

∑
j �=i Yj/r3

i j = 0.
Hence we obtain our expression of the MF iterator,

GMF,i = diq(βdiEMF,i ), (22)

where GMF,i � di since q � 1. We then define GMF(X ) =
(GMF,1(X ), . . . ,GMF,n(X )) in a component-wise manner.
Clearly the properties of GMF depend on the dipolar model
parameters (β, E , d�, a), and again we assume Ei � 0
throughout the rest of the work. For practicality, we proceed
to establish theoretical bounds on the convergence of GMF by
resorting to the approximation theorems below.

C. Convergence theorems

Our first theorem states that the iteration generated by GMF

converges uniformly under strong external field, regardless of
the initial condition.

Theorem 2.1. There is an external field E∗ = (E∗
1 , . . . , E∗

n )
such that if E � E∗ entrywise, the MF iterator,

X τ+1 = GMF(X τ ), (23)

with any initial estimate X 0 will converge linearly to the MF
solution X ∗ = GMF(X ∗) as the unique fixed point. That is,

‖G (τ )
MF (X 0) − X ∗‖p � Bτ‖GMF(X 0) − X 0‖p, (24)

where

X p =
[

n∑
i=1

|Xi|p

]1/p

, (25)

gives the vector �p-norm for integer 1 � p � ∞, G (τ )
MF denotes

the τ th repeated application of GMF, and Bτ is a τ -dependent
bound controlling how rapidly Eq. (23) converges towards the
MF solution, up to a constant set by the initial condition X 0 as
written on the r.h.s. of Eq. (24). Bτ decreases with τ , reaching
zero as τ → ∞, and is sensitive to dipolar model parameters.
When B = 2n maxi di/E∗

i < 1 and a = 1, a possible choice
is Bτ = Bτ /(1 − B).

Sketch of proof. When Eext
i is sufficiently large, we expect

F ≈ FMF due to dielectric saturation. We prove the theorem
by showing that GMF is contractive, namely any pair of states
gets mapped closer to each other under GMF so eventually
X τ → X ∗ = GMF(X ∗) as illustrated in Fig. 5. The update
X 0 
→ X 1 
→ · · · 
→ X τ 
→ · · · in this regime is monotonic as
X τ improves after each additional iteration (see Appendix B).

Now we examine the convergence when the external field
is weak and does not exhibit any scaling with the system size.
In particular, we follow Koehler’s approach [19] by exploiting
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FIG. 5. Illustrating Theorem 2.1 with a representative directed
walk (X τ )τ via the MF iterator. Updated state marked in black ap-
proaches the equilibrium state X ∗ marked in blue under the iterations.
Contractivity of GMF is illustrated in the lower inset, where the �2

distance to X ∗ is marked with line segments. From left to right,
segment color varies from purple (longer distance) to red (shorter
distance).

curvature of the MF free energy surface and deliberately pick-
ing out a subdomain of initial estimates. The following lemma
counts the number of fixed points in the MF state space, which
helps eliminate ambiguity when we specify suitable initial
estimates in our next theorem.

Lemma 2.2. GMF(X ) yields either zero or one fixed point in
the interior of its domain.

Sketch of proof. Suppose that we find two fixed points, X c
and X ′

c. We then take an interpolating path χ
0�λ�1

= λX c +
(1 − λ)X ′

c for which we assume (X ′
c)i < (X c)i for some site i

and may suitably extend the function,

I (λ) = GMF,i(χλ
) − (χ

λ
)i, (26)

outside [0,1]. We may locate a λ0 ∈ (0, 1) so that ∇λI (λ0) = 0
by the mean value theorem. However, we also show concavity
of I along the path χ

λ
, implying a new constraint ∇λI (0) < 0

contradicting the internal constraint ∇λI (λ0) = 0.
Given Ei > 0, the lemma immediately implies the exis-

tence and uniqueness of an interior critical point, and we will
make reference to this point X ∗ for the prescription of suitable
initial estimates in the next theorem.

Theorem 2.3. There exists a region �D that is stable under
application of the MF iterator,

X τ+1 = GMF(X τ ), (27)

so a suitable initial estimate X 0 in �D converges to the MF
solution X ∗ = GMF(X ∗) on the level of free energy. That is,
X 0 ∈ �D implies GMF(X τ ) ∈ �D for τ � 0 and

|�MF[G (τ )
MF (X 0)] − �MF(X ∗)| � B̃

τ
, (28)

where B̃ is a τ -independent bound that controls how rapidly
the free energy along the discrete state space flow from
Eq. (27) converges to the true MF free energy. When a = 1, a
possible choice is B̃ = nβζ (3) maxi d2

i where

ζ (s) =
∞∑

k=1

1

ks
(29)

denotes the Riemann zeta function.
Sketch of proof. In the absence of strong external fields,

the MF update is not necessarily monotonic. This motivates
the preference for a convex subdomain �D = {X : X � X ∗}
where monotonicity is preserved (“ �′′ understood entry-
wise). The stability of �D follows from the fact ∇t q(t ) > 0
for t � 0, as a majorizing relation of the mean field strengths,

X τ � X ∗ ⇒ EMF(X τ ) � EMF(X ∗), (30)

induces that of the site responses, GMF(X τ ) = X τ+1 � X ∗ =
GMF(X ∗), shown in Fig. 6. The remaining of the proof follows
from the concavity of MF free energy surface over the region
�D , which allows the safe marching of our suitably initialized
flow X τ towards the optimal X ∗ (see Appendix B).

VI. BEYOND DIPOLAR CHAINS

A. Generalized lattice models

An immediate attempt to extend validity of the conver-
gence criteria is to address models with higher dimensional
spins. In particular, we take a positive integer p, especially
p � 3, and consider the corresponding angular degrees of
freedom ω on (p − 1)-sphere under the Hamiltonian,

H (ω) =
∑

(i, j)∈E

did jμ̂
�
i Ti jμ̂ j −

∑
i∈V

diμ̂
�
i Eext

i , (31)

where μ̂i(ωi ) represents a p-dimensional unit vector on the
(p − 1)-sphere oriented at (hyper)spherical angles ωi, and
� = (V ,E ) is some undirected graph with vertices V and
edges E . Here we make an additional assumption that Ti j ∈
Rp×p discloses some orientational preference of the spin-spin
interaction along the bond direction �ri j . This includes the class
of common vector models, e.g., the Z2-Ising/XY/Heisenberg
model (p = 1, 2, 3 respectively) with a choice of Ti j ≡ −Ji j ·
Ip×p for identity matrix Ip×p and scalar Ji j � 0. Following
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FIG. 6. Illustrating Theorem 2.3 with a representative directed
walk (X τ )τ via the MF iterator. Updated state marked in black di-
agonally approaches the state X ∗ marked in blue. The stable region
�D is shaded in pale green and its stability is illustrated in the lower
inset, where the �2 distance to X ∗ is marked with line segments for
segment color varying from purple (longer distance) to red (shorter
distance). The subregion of initial estimates is shaded in bright green.

notational conventions in Sec.V B, we find that the iterator
GMF derived from ensuring optimality of the free energy func-
tion assumes an identical form,

GMF,i(X ) = diQp(βdiEMF,i ), (32)

where X is the projected coordinate determined by the mean
(hyper)spherical angles (φi|1, . . . ,φi|p−2, θi ) and magnitude
ri,

Xi = ri cos θi

p−2∏
I=1

sin φi|I , (33)

EMF,i(X ) denotes the effective local field, and

Qp(t ) = Ip/2(t )

Ip/2−1(t )
(34)

is the activation function that renormalizes the mean local re-
sponse with Ip denoting the modified Bessel function of order
p. These nonlinear functions Qp share the key properties that
(1) 0 � Qp(t ) � 1, (2) ∇tQp(t ) > 0, and (3) ∇t∇tQp(t ) < 0
for t > 0. In the cases p � 3, we retrieve familiar functions,

Qp(t ) =
⎧⎨
⎩

B1/2(t ) ≡ tanh t ; p = 1
q(t ); p = 2
B∞(t ) ≡ L(t ); p = 3

, (35)

where B1/2(t ) denotes the Brillouin function of order 1/2
and L(t ) = coth t − 1/t denotes the Langevin function. We
note that an iterator of the form of Eq. (32) also handles
the class of discrete models for which the single spin space
is a finite subset of the (p − 1)-sphere. This includes the
N-state Potts model (p = 2), with ϑi ∈ 2πZN/N , and its
higher dimensional analogs. In a discrete case, the corre-
sponding MF activation function Qp̂(t ) satisfies properties
(1)–(3) certainly when discretization on the sphere is spatially
symmetric, e.g.,

Q2̂ (t ) =
∑

ϑ∈2πZN /N cos ϑ exp [t cos ϑ]∑
ϑ∈2πZN /N exp [t cos ϑ]

, (36)

where Qp(t ) � Qp̂(t ) � tanh(t ).
Of course, it is worth checking whether the convergence

results established in the previous sections generalize to more
abstract and complicated phase spaces, which we denote
by X . Suppose that X = Vk (Rp) = {W ∈ Rp×k : W �W =
Ik×k} is a Stiefel manifold, i.e., the set of orthonormal k-frames
in Rp that reduces to a sphere when k = 1. Spins valued
on special Stiefel manifolds constitute a basic ingredient of
the minimal models describing frustrated systems, where the
ground state exhibits order in a nonplanar way [20,21]. For
example, consider the Hamiltonian,

H (W ) = −
∑

(i, j)∈E

did j tr
(
W �

i W j
) −

∑
i∈V

ditr
(
E�

i Wi
)
, (37)

where Wi ∈ V3(R3) represents the local frame of a tetrahedron
spin of chirality det(Wi ) on site i, Ei ∈ R3×3 is a matrix giving
the axial-specific external field. In MFT, the derived one-body
distribution takes the parametrized form [22],

ν�
i (Wi ) = exp

[
βtr

(
��

i Wi
)]

0F1
(
3/2; β2��

i �i/4
) , (38)

where 0F1 is the hypergeometric function of matrix argument
and the matrix parameter �i ∈ R3×3 can be completely ex-
pressed in terms of the mean spin orientation Wi = 〈Wi〉ν�

i
.

Assuming isotropy of the external field such that Ei 
→ EiI3×3,
a global maximizer W ∗ of the MF free energy function can be
shown positive semidefinite and in fact strictly diagonal with
descending entries on the main diagonal (see Appendix D).
After introducing the projected MF coordinates,

X = (Xi )i∈V = (d1(W1)11, d1(W1)22, d1(W1)33, · · · ,

dn(Wn)11, dn(Wn)22, dn(Wn)33), (39)

we arrive at a vectorial MF iterator GMF,i = diQ(βdiEMF,i ) for
which

EMF,i(X ) = EiI3×3 +
∑

j:(i, j)∈E

⎡
⎣(Xj )1 0 0

0 (Xj )2 0
0 0 (Xj )3

⎤
⎦, (40)

and for a 3 × 3 diagonal matrix W ,

Q(W ) = [−∇κSi]
−1(W11,W22,W33), (41)
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where the one-body entropy Si depends on p singular values
κ = (κ1, . . . , κp) of the mean orientation (here p = 3). Each
singular value controls the width of the distribution along a
principal direction, with a larger value indicating higher con-
centration in the responsible direction. Notice that GMF adopts
the previous form of Eq. (32) for tetrahedron spins with frozen
chirality, i.e., Wi ∈ V2(R3) ∼= SO(3) for the special orthogonal
group SO(3) (discussed in Appendix D). On the other hand,
both Theorem 2.1 and Theorem 2.3 hold if we replace the
spin pace SO(3) with the special unitary group SU (2) and
the matrix transpose with hermitian conjugate, since the dif-
feomorphism of SU (2) to the 3-sphere brings us back to the
spherical scenario of Eq. (32).

We have thus highlighted the compatibility of the iterative
mean field approach with a wider class of spin models in sta-
tistical mechanics and solid state physics. Ideally we may ask
the same question about other spin spaces. However, without
the assured existence of a canonically invariant measure, e.g.,
a Lebesgue measure on Rp, the validity of our approach is not
guaranteed. As a consequence, we need stronger arguments to
establish the invariance of the MF entropic term when spins
are valued on a general compact Riemannian manifold.

B. From lattice models to continuum fields

The lattice description above admits a natural field theory
extension. For simplicity, we consider a scalar Euclidean field
f valued in the space of tempered distributions on Rd . Recall
that a tempered distribution f has a canonical pairing with a
Schwartz function O through

f [O] =
∫
Rd

dξ f (ξ )O (ξ ). (42)

In the familiar context of liquid state theory, f can be thought
of as the density profile of some electrolyte solution and O as
the potential conjugate to the microscopic density. Clearly the
partition function Z can be written exactly as Eq. (3) in terms
of a functional integral,

Z [O] =
∫

D[ f ] exp (−βH [ f ; O]) = exp (−βF ). (43)

Here we assume a bosonic scalar field restricted to a bilinear
Hamiltonian,

H [ f ; O] = 1
2

∫
R2d

dξ dξ ′ f (ξ )V (ξ, ξ ′) f (ξ ′)

−
∫
Rd

dξ f (ξ )O (ξ ), (44)

for some symmetric operator V . For example, we can choose
V = −� + m2 where � = ∇ · ∇ denotes the Laplacian op-
erator on Rd . Again taking the instance of f describing the
fluid density, −� then defines a kinetic term that captures
the osmotic pressure while |m| defines a mass term that con-
fines the fluid particles harmonically. Thus invoking the MF
approximation on the space of product measures, we have

βFMF = βF + inf
ν

∫
D[ f ]ν( f ) ln

[
ν( f )

ρeq( f )

]
, (45)

with ρeq( f ) ∝ exp (−βH [ f ]). Now we want to point out that
there are two complementary ways to define product measures
ν here. Of course one way is to look at the measures such that
for any integer k � 1,∫

D[ f ]ν( f )
∏

1�i�k

δ[ f (ξi ) − fi]

=
∏

1�i�k

∫
D[ f ]ν( f )δ[ f (ξi) − fi], (46)

where ξi ∈ Rd picks out the observation points and δ denotes
the Dirac delta. In this case, we parametrize the free energy
functional over the space of field averages, f = 〈 f 〉ν , and de-
viations, σ 2 = 〈 f 2〉ν − 〈 f 〉2

ν . Let us take a trivial example of V
having a Green’s function, V −1(ξ, ξ ′) = cδ(ξ − ξ ′) for some
c > 0. We know that the exact theory is a MFT, so we expect
to retrieve the Gaussian measure ρeq as a result of optimizing
over all possible f and σ . Adopting our previous notations,
the MF solution can be derived by functional differentiations,

δFMF[ f , σ ]

δ f (ξ )
= δFMF[ f , σ ]

δσ (ξ )
= 0, (47)

where FMF = HMF − T SMF is an infinite-dimensional gen-
eralization of the MF free energy function. Clearly the
optimality condition above recovers Gaussian statistics where
〈 f (ξ )〉νMF = O (ξ ) and 〈 f (ξ ) f (ξ ′)〉νMF = ckBT δ(ξ − ξ ′). Al-
though f and σ appear independently in Eq. (47), it is
possible, as for the dipolar chain, that σ = σ ( f ) if we con-
sider fields subject to extra constraints. Then we get the MF
equation,

δFMF[ f ;V,O]

δ f (ξ )
= 0

⇒ ĜMF[ f ](ξ ) = Q[βÊMF[ f ](ξ )], (48)

where the operator ÊMF gives the effective MF local potential,

ÊMF[ f ](ξ ) = −
∫
Rd

dξ ′V (ξ, ξ ′) f (ξ ′) + O (ξ ), (49)

and Q is the activation function whose precise form is deter-
mined by the maximum entropy function associated with the
random variable f (0d ) centered at f (0d ). Note that Eq. (48)
can be recognized as the stationary limit of the Wilson-Cowan
equation [23]. To avoid singularities, a cutoff of order a in the
configuration space or 2π/a in the reciprocal space is always
implied in the integrals over Rd , where we recall that a sets the
nearest neighbor distance on a lattice. The same prescription
applies when we deal with fields supported on a compact
subset to address finite system volume. This should not be too
surprising since a functional integral is typically evaluated by
a discretization of the field domain with a differential volume
ad . However, we see that sufficiently strong regularity of V is
required to make sense of Eq. (49), e.g., V in the uncorrelated
Gaussian model causes a somehow problematic interpretation.

We may turn to a different characterization of the product
measures. In particular, we allow correlated fluctuations to
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FIG. 7. Numerical closure of MCMC and GMF iterations for spin systems of increasing dimensionality. (a) Lattice geometry of dipolar
chain, XY plaquette, and Heisenberg slab from left to right, respectively. The boundary spins are distinguished from those in the interior by
their shading. Error of convergence ε(τ ) is plotted against the number of run steps τ for (b) dipolar chain, (c) XY plaquette, and (d) Heisenberg
slab. Results from MC and GMF iterations are shown in purple and green, respectively, where the asymptotic behaviors are displayed inset.

occur over the configuration space, and instead look at in-
duced measures from some unitary field transformation U
for which the bilinear term in H has a trivial kernel. In the
example of V −1(ξ, ξ ′) = cδ(ξ − ξ ′) above, U is a Fourier
transform, f (ξ ) 
→ f̃ (ξ ), where the integrals with respect to
the Fourier representation f̃ behave regularly at small wave
numbers after a unitary rotation. The transformed fields f̃ =
Re f̃ + iIm f̃ are complex so the Hamiltonian becomes

H = 1

c

∫
Hd

dξ [Re f̃ (ξ )2 + Im f̃ (ξ )2]

−
∫
Rd

dξ [Re f̃ (ξ ) − iIm f̃ (ξ )]Õ (ξ ), (50)

with an effective kernel Ṽ (ξ, ξ ′) = c−1δ(ξ − ξ ′). Let
us assume O (ξ ) ≡ 0 to avoid further technicality. The
equilibrium measure D[Re f̃ ]D[Im f̃ ] exp (−βH [Re f̃ , Im f̃ ])
in this case may be regarded as a Gaussian measure
on two real-valued fields defined over the upper half
space Hd ⊂ Rd . With respect to the induced MF
measure ν̃MF on the Fourier fields, we recover Gaussian
statistics from the U -transformed MF optimization, where
〈Re f̃ 〉ν̃MF = 〈Im f̃ 〉ν̃MF = 0 and 2〈Re f̃ (ξ )Re f̃ (ξ ′)〉ν̃MF =
2〈Im f̃ (ξ )Im f̃ (ξ ′)〉ν̃MF = ckBT δ(ξ − ξ ′). Note that it is easy to
identify the equivalence of νMF and ν̃MF from the unitarity of
Fourier transform. For general coupling V and transformation
U , a transformed MF equation of the same form as Eq. (48)
can be derived with proper analytic continuation.

We are interested in Gaussian measures because they sat-
isfy the so-called reflection positivity condition [24]. This
special condition endows the algebra of classical fields a

Hilbert space structure with well-defined vacuum state and
field operators. It is hence hopeful to derive relevant results
in quantum field theory with existing tools, although this
is beyond the scope of the current work. To end the sec-
tion, we want to comment that there is no straightforward
extension of the convergence criteria for anisotropic models
when the lattice � belongs to an arbitrary crystal family in
higher dimensions. In fact, a dipolar model in the absence
of external field does not enthalpically favor a uniformly
polarized configurations on a d-dimensional cubic lattice
when d � 2.

VII. COMPUTATIONAL COST AND STABILITY

We now present numerical data that demonstrate the utility
of the iterative mapping GMF. In our demonstration, we exam-
ine how the iterator performs across lattice systems of various
dimensions, graphically represented in Fig. 7(a). For com-
parison, we benchmark our results against those generated
from empirical sampling using self-consistent Markov chain
Monte Carlo (MCMC) [25,26]. The MCMC scheme relies on
progressive updates that modify the static spin environments
until we approximately converge to the MF solution.

A. 1D dipolar chain

We first revisit our minimal example of dipolar chain under
free boundary conditions. We choose a uniform external field
Ei ≡ Eext and polarity variation only across the lattice bound-
ary ∂� = {1, n} by setting di∈∂� ≡ d1 and di/∈∂� ≡ dbulk �= d1.
We then analyze convergence of the MCMC and GMF schemes
for system composed of n = 100 dipoles. Specifically, the
schemes are implemented by
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Algorithm 1: Empirical MCMC routine

Data spin variables ϑ ∈ [−π, π )n

1 initialization of system replicas within a range of
interpolated temperatures;

2 sampling a starting mean configuration (θ0, r0 ) at
desired temperature through replica exchange;

3 τ = 0;
4 while ε(τ ) > εtol do
5 ϑτ , d� ← θτ , rτ ;
6 for i ← 1 to n do
7 (θi,τ , ri,τ ) ← 〈diμ̂i〉 via Metropolis updates with

(ϑ j,τ , dj ) = (θ j,τ , r j,τ ) fixed for j �= i;
8 end
9 θτ+1, rτ+1 ← θτ , rτ

10 τ ← τ + 1
11 end

and

Algorithm 2: GMF routine

Data: projected MF coordinates X ∈ �D

1 initialization of MF coordinates X 0;
2 τ = 0;
3 while ε(τ ) > εtol do
4 X τ+1 ← GMF(X τ );
5 τ ← τ + 1;
6 end

where we define the single run step to be an MCMC sweep or
a GMF recursion in the two schemes respectively. To quantify
update progress, we define the error ε over successive steps,

ε2(τ ) =
n∑

i=1

d2
i [(Xi,τ − Xi,τ−1)2 + (Yi,τ − Yi,τ−1)2], (51)

where we set Yi,τ = Yi,τ−1 ≡ 0 in the GMF scheme by de-
fault. Figure 7(b) shows the performance of the two schemes
presented above. We notice a rapid asymptotic decay of the
convergence error in the algebraic scheme. Within each run
step, the parallelizability of the vectorized GMF operations can
significantly save the actual runtime, although the computa-
tional complexity also depends on the system size n for which
both schemes share the same O(n2) scaling per step.

Figure 8 displays the mean polarization profile across the
dipolar chain up to a total of 500 run steps, where listed model
parameters are nondimensionalized by molecular units. The
MCMC sampling is noisy due to constant trapping of the sys-
tem near energy local minima. Although alternative MCMC
strategies, such as cluster-based methods [27], are well suited
for overcoming the sampling issue, they require additional
computational resource to resolve systems that have extensive
couplings Vi j and break the lattice translational invariance. On
the other hand, the x component of MF polarization profile ex-
tracted from the GMF iterator precisely matches that recovered
from prototypical message-passing inferences [28,29] on the
full mean polarization (discussed in Appendix C). Overall, we

FIG. 8. Components of the MF polarization calculated
from MCMC and GMF iterations with the model parameters
(β, Eext, d1, dbulk, a) = (1, 0.2, 2, 1, 1). MF polarization profile is
plotted along the 1D chain. Components extracted from MC and
GMF are marked with solid and dashed lines, respectively.

see that when applicable, GMF efficiently solves the MF model
at a given accuracy.

From converged X τ under the GMF iterations, we recover
the distributions ν�

i through Eq. (7) . The corresponding
single-dipole MF statistics can be visualized in Fig. 9. We
observe a nonmonotonic change in the thermodynamic force
that drives the polarization response as we approach the lattice
core from the boundary. Such persistent nonmonotonicity can
be tuned as we alter characteristics of the polarity profile d�.
For example, if we modify the associated length scale in the
polarity variation i 
→ di while fixing d1 and dbulk at i = 1
and i = n/2 respectively, we effectively shift the population
of dipoles that behave (statistically) like the “core” relative to
those that behave like the “boundary.”

FIG. 9. Potential of mean force (PMF), −kBT ln ν�
i , are plotted

for dipoles occupying different positions on the 1D chain. Marker
color varies from light blue (i = 1 at the boundary of �) to purple
(i = 50 at the center of �).
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B. 2D disordered interface

To illustrate the application of the MF iterative approach
to a different problem of physical relevance, we next consider
a finite XY model (see Sec. VI A) with distinct boundaries.
We assume a square lattice � = {(i1, i2) : 1 � ik � nk} which
extends in two directions, a transverse direction describing
the transition from an interface to the system interior as well
as a lateral direction adopting additional spin heterogeneity.
Instead of pushing the system with an external field, here
we impose static lateral heterogeneity at one boundary layer,
i1 = 1, and maintain an open boundary condition at the other,
i1 = n1. Such heterogeneity could be realized, for example, if
we randomize but freeze the orientation of the boundary spins,
mimicking the quenched microscopic disorder at an interface.

For subsequent illustration, we first implement the MCMC
and GMF schemes in the absence of any disorder, ϑi ≡ 0 at
the boundary layer i1 = 1, and we exhibit the resulting rapid
GMF convergence for a system of size n = 200 in Fig. 7(c).
To explore the role of disorder, we randomly load static spins
for which −π/4 � ϑi � π/4 at the boundary layer i1 = 1.
In this case, the MF solution cannot be blindly reached via
a GMF iteration, as our symmetry argument for θ∗

i = 0 no
longer holds due to the presence of static disorder (we lose
our resolution over the θ coordinate). However, up to a self-
evident correction of the effective field which accounts for the
orientational dependence on θ , the convergence properties of
GMF are well preserved. That is, we retain a rapid access to
the constrained free energetic optimum under fixed θ . To this
regard, we are able to port our iterator over, now as a free
energy evaluation subroutine, to suitable global optimization
routine, e.g., stimulated annealing and its variants [30–32], for
resolving θ∗ and thus the MF solution with high accuracy.

The influence of disorder may persistently extend from the
quenched boundary into the system interior. The transverse
spin response in Fig. 10 to disorders at the interface is resolved
using the hybrid method above (discussed in Appendix E). We
notice that a change in the disorder at one boundary layer has a
nontrivial impact on fluctuations of MF response at the other,
where these calculations can benefit from the algorithmic
acceleration from the GMF iteration.

C. 3D Heisenberg slab

Finally, we evaluate the performance of the MF iterator on
a Heisenberg spin system of comparable size. Specifically,
we arrange the spins on a finite slab � = {(i1, i2, i3) : 1 �
ik � nk} under uniform external field and consider, for sim-
plicity, spin polarity variation only across the pair of parallel
boundary surfaces ∂� = {(i1, i2, i3) : i1 = 1 or i1 = n1}. The
convergence results are displayed in Fig. 7(d), where the
GMF iterator gives a rapid decay of error similar to those
in Figs. 7(b)–7(c). Its efficiency is further demonstrated in
Fig. 11 marking the per-step runtime for increasingly large
systems. The observed speedup of orders of magnitude sug-
gests that the GMF scheme is capable of handling sizable
heterogeneous systems.

We close by remarking that the iterator GMF also enables
fast computation of the equilibrium MF critical point, such
as the critical temperature Tc, of heterogeneous systems. In
particular, the critical temperature of a spin model can be

FIG. 10. Disorder-induced spin responses for 2D XY model
with long-range interaction Vi j ∝ 1/ri j and model parameters
(β, Eext, a, di ) = (1, 0, 1, 1). At each transverse lattice position, spin
response is measured as the variance of the MF distribution ν�

i av-
eraged over lateral direction. For a given disorder, response at the
boundary layer i1 = n1 = 20 is reported in a histogram over a total
of 500 random realizations. The response is normalized by that at the
interfacial layer i1 = 2 and takes a value greater than 1. The plot color
distinguishes two different disorders (uniform and Gaussian), whose
angular distributions are also shown inset. The cyan line marks the
trivial case ϑi ≡ 0.

extrapolated from, for example, calculations of the Binder
cumulants on systems of different sizes [33]. Consequently,
one gains access to various MF static critical exponents from
standard finite-size scaling analysis. On the other hand, the
MF dynamical exponent, at least in the equilibrium sense, is
beneficially reduced by our MF iterator. Although the notion
of dynamical exponent is intimately tied to the slow sampling

FIG. 11. System size scaling of MCMC and GMF iterations for
3D Heisenberg model with long-range interaction Vi j ∝ 1/ri j . Both
schemes are run with the same set of parameters as from Fig. 8.
Average single-core CPU time per run step is recorded for a series
of system sizes n. The O(n2) scaling with respect to the system size
is shown via solid curves (purple for MCMC and green for GMF).
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FIG. 12. Numerical closure of GMF iterations for 2D nearest-
neighbor XY model of increasing sizes. Normalized error of
convergence ε(τ )/

√
n is plotted against the number of run steps τ

with the model parameters (β, Eext, d1, dbulk, a) = (0.48, 0, 1, 1, 1),
whereas the MF theory predicts an inverse transition temperature of
βc = 0.5.

of uncorrelated fluctuations of microscopic configurations, we
may regard such notion more broadly as a metric evaluating
how effective a given method generates solution near a phase
transition. The convergence of our method appears relatively
insensitive to the growth of system size, as is illustrated
within Fig. 12 for a simple nearest-neighbor XY model near
criticality.

VIII. DISCUSSION AND CONCLUSION

In this paper, we use a model of dipolar chain to motivate
the mean field analysis of continuous spin models. In the
infinite volume limit, the mean field approximation reduces
to solving a single self-consistent equation that characterizes
the bulk properties. When the system has finite volume and
free boundaries, we use functional optimization to derive a
condition that manifests the self-consistency of the resulting
mean field equations, starting from a rudimentary thermody-
namic variational principle. With consistent external fields,
the mean field distribution and free energy profile can be
rapidly constructed through a fixed-point iteration. Such mean
field picture sheds light onto how individual spins orient
under the average influence of each other, which minimally
accounts for distinct bulk and interfacial solvent behaviors
in the context of heterogeneous dipolar model, providing a
statistical basis for studying interfacial dielectric response in
driven electrochemical systems.

Our main results from Secs. V B and VI highlight the com-
patibility of the symmetry-based iterative approach, where the
properties of a general class of mean field models can be re-
trieved from an optimization over the space of configurational
probabilities. We restate the above infinite-dimensional non-
convex optimization problem as a finite-dimensional min-max
problem that is locally convex. As a consequence, we are able
to arrive at familiar mean field equations [34,35] available in
the thermodynamic limit, with trivial modifications account-

ing for site heterogeneity. At the same time, we build up
understanding about classical spin systems subject to external
field. In fact, we have proven in Sec. VI that spherical spin
chains with ferromagneticity and consistent external fields are
all isomorphic, up to a renormalization of control parameters
including the temperature, lattice spacing, and strength of
external field. Section VII demonstrates practicality of the
iterative approach as guaranteed by the convergence theorems.

Despite its simplicity and efficiency, the approach outlined
in our manuscript has certain limitations. For example, the
evolution generated by the MF iterator is artificial and thus
cannot be applied to study physical system dynamics. There-
fore, properties such as spin-spin correlation times or the
associated dynamical critical exponents, cannot be quantified
with this approach. On the other hand, this approach helps
mitigate the sampling challenges associated with the critical
slowing down. We note, however, that active efforts have
been devoted to improving the Monte Carlo sampling [36,37].
These Monte Carlo schemes include, for example, modified
fluctuation relations to avoid the slow sampling problems near
critical point.

Clearly, the optimization idea can be formalized beyond
the mean field approximation, where the probability distri-
butions of interest contain other structural or hierarchical
features that allow a dimensional reduction of the search
space. For example, we may follow equivalent arguments to
realize the Bethe approximation [19,38], which becomes exact
in the limit of strongly localized spin interactions. On the other
hand, if we seek a tight estimate of the actual equilibrium
measure, ρeq, we can feed measures parametrized under these
simplifying approximations as input to the machinery of nor-
malizing flows [39,40], developed in the field of generative
deep learning and statistical inference, to target the true free
energy minimum.

The convergence data in Sec. VII that support the findings
of this work are available from the authors upon reasonable
request.
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APPENDIX A: VARIATIONAL OPTIMIZATION

1. Graphical model representation

Consider the system of interacting dipoles in the context
of structured probabilistic models by formally associating a
collection of n point dipoles with an undirected graph, � =
(V ,E ), whose vertex set V and edge set E encode the system
interaction topology. Due to the nonlocal nature of electrostat-
ics, we focus on graphs that are fully connected, (i, j) ∈ E for
all i �= j. Our model also assumes that the graph possesses a
1D lattice structure for which x̂ : i 
→ i + 1 acts as a primitive
translation, inducing a distance ri j = a|i − j| on the edge set
for lattice spacing a.

We denote the dipolar orientation by a vector ϑ ∈
[−π, π )n that specifies the angle each dipole makes with some
reference direction, e.g., x̂ = (1, 0). The energetic cost of a re-
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orientation ϑ 
→ ϑ + �ϑ is determined by the Hamiltonian,

H (ϑ |d�) =
∑

(i, j)∈E

Vi j (ϑi, ϑ j ) +
∑
i∈V

hi(ϑi ), (A1)

where the two-body potential Vi j accounts for the pairwise
interactions and the one-body potential hi accounts for the
external electric field. For simplicity, we look at planar an-
gular fluctuations sufficient for our analysis of dielectric
response.

2. Free energy optimization

The free energy of the system is

F = min
ρ∈P(ϑ )

F [ρ] = min
ρ∈P(ϑ )

[〈H 〉ρ − T Sρ], (A2)

where P (ϑ ) denotes the space of probability measures
over configurations [−π, π )n. Equation (A2) recapitulates the
result from classical thermodynamics that the Boltzmann dis-
tribution optimally regulates energy fluctuations of canonical
ensemble by achieving the global minimum of the convex
functional F .

In general, the solution to MFT can be formulated as a
constrained optimization problem,

βFMF = βF + min
ν∈M (ϑ )

DKL(ν||ρeq ) � βF, (A3)

where FMF and F designate the free energies of the mean field
and full systems respectively, and M (ϑ ) denotes the search
space of fully factorizable measures ν(ϑ ) = ∏n

i=1 νi(ϑi ) over
the many-body configuration space. The entropic penalty as-
sociated with the mean field construction is captured by the
Kullback-Leibler (KL) divergence,

DKL(ν||ρeq ) =
∫

dϑν(ϑ ) ln

[
ν(ϑ )

ρeq(ϑ )

]
, (A4)

=
∫

dϑν(ϑ )βH (ϑ ) − k−1
B

n∑
i=1

Sνi + const,

(A5)

where Sνi denotes the entropy that encodes one-body fluctu-
ations in the marginal distribution νi. With FMF defined in
the main text, the optimization problem posed from Eq. (A3)
can be simply reexpressed as an equivalent problem over a
compact set �0 (which is the product of closed disks of radius
ri),

FMF = min
ν∈M (ϑ )

F [ν], (A6)

≡ min
{�ui}n

i=1∈�0

inf
ν∈M (ϑ ):〈μ̂i〉ν=�ui

F [ν], (A7)

= min
{�ui}n

i=1∈�0

FMF(θ, r|d�), (A8)

so the minimizer νMF attaining F [νMF] = FMF corresponds to
an interior critical point (�u∗

1, . . . , �u∗
n ) of the MF free energy

function, ∇�uiFMF(θ∗, r∗) = 0 (otherwise (�u∗
1, . . . , �u∗

n ) ∈ ∂�0

implies r∗
i = di and thus SνMF,i = −∞ for some i).

APPENDIX B: PROOFS OF LEMMAS AND THEOREMS

Let �+ = [−π/2, π/2] denote the half angular window
and D = [0, d1) × · · · × [0, dn) the space of mean polariza-
tions.

Proof of Lemma 1.1. For any V ′ ⊂ V , let RV ′ :
[−π, π )n → [−π, π )n be the partial reflection,

[RV ′ (θ )]i =
{

[[π − θi]] if i ∈ V ′,
θi otherwise, (B1)

where the double bracket formally keeps [[s]] ∈ [−π, π )
upon shift of 2πZ. The isometry above trivially induces
an entropy-preserving map ν�(ϑ |θ, r) 
→ ν�(ϑ |RV ′ (θ ), r), as
entropy is invariant under an orthogonal coordinate transfor-
mation. Now let V ′ = {i ∈ V : θi ∈ �+} ⊂ V and consider
the partially reflected coordinates (θ+, r) = (RV −V ′ (θ ), r).

If V ′ is empty, Vi j (θ+
i , θ+

j ) = Vi j (θi, θ j ) for all pairs
(i, j) ∈ E by symmetry of the dipolar interaction and
hi(θ+

i ) � hi(θi ) for i ∈ V . Otherwise, Vi j (θ+
i , θ+

j ) =
Vi j (θi, θ

+
j ) � Vi j (θi, θ j ) for pairs (i, j) ∈ (V ′,V − V ′)

and hi(θ+
i ) � hi(θi ) for i ∈ V − V ′. In either case, we see

HMF(θ+, r) � HMF(θ, r) and thus (θ+, r) beats (θ, r) as the
maximizing candidate. By continuity of FMF, the existence
of a global maximizer (θ∗, r∗) is ensured since �+ × D is
compact.

Proof of Theorem 2.1. We show that our statement follows
from Banach-Caccioppoli contraction mapping theorem [41],
arguably the most elementary yet versatile principle in fixed-
point theory, by establishing a uniform upper bound B∇ on
the derivatives ∇ jGMF,i. For X ∈ D and i ∈ V , let V i+(X ) ⊂
V − {i} denote the index set for which the mean polarity is
positive and Ri ∈ Rn with (Ri ) j = −T i j

11
absorb the distance

dependence of dipolar coupling for dipole i.
For convenience, we define X i+, Ri+

i ∈ R|V i+(X )| to drop
out “boring” entries that involve no mean polarizations and
therefore contribute vanishing mean fields. We will set the
convention X i+ ≡ 0n−1 if |V i+(X )| = 0 and use the Kan-
torovich inequality to bound the inner product R�

i X ,

βdiEMF,i(X ; Eext
i ) � βdi

[
Ei + B‖Ri+

i ‖2‖X i+‖2

]
, (B2)

= Bi(X ; Ei ), (B3)

where B(X ; i) = limε→0+ 2
√

b1b0/(b1 + b0 + ε) is coordi-
nate dependent with b1(X ; i) = min j∈V X i+

j /n3 and b0(X ) =
X ∞. Since the monotonicity of ∇t q(t ) implies

∇ jGMF,i(X ) � βd2
i (Ri ) j∇t q(Bi ), (B4)

= βd2
i (Ri ) j

[
1 − q(Bi )

Bi
− q(Bi )

2

]
, (B5)

it suffices to bound the expression from the second equality
more precisely in order to extract a uniform gradient bound
B∇ . Here we use the fact [42],

q(t ) = I1(t )

I0(t )
� t

1 + √
1 + t2

⇒ 1 − q(t )

t
− q(t )2 � 1

1 + √
1 + t2

, (B6)
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where I1(t ) = ∇t I0(t ) gives the first-order modified Bessel
function. This allows the inequality,

sup
X∈D

sup
(i, j)∈E

|∇ jGMF,i(X )|

� max
i∈V

2βd2
i

1 +
√

1 + (βdiEi )2
= B∇, (B7)

which certainly implies B∇ < 1/n given that Ei � E∗
i �

2n‖d�‖∞, ∀i ∈ V . For E � E∗, iterator GMF gives a contrac-
tion since ∀X ′, X ′′ ∈ D ,

‖GMF(X ′) − GMF(X ′′)‖p � sup
λ∈[0,1]

‖dGMF|χ
λ
‖p‖X ′ − X ′′‖p,

(B8)

where the multivariate mean value inequality with respect to
the � p-norm for 1 � p � ∞ derives from application of the
fundamental theorem of calculus along an interpolating path
χ

λ
= λX ′ + (1 − λ)X ′′ with λ ∈ [0, 1],

GMF(X ′) − GMF(X ′′) =
∫

[0,1]
dλdGMF|χ

λ
· ∇λχλ

, (B9)

and the operator norm dGMF p � dGMF
1/p
1 dGMF

1−1/p
∞ �

nB∇ � B is bounded below unity according to the
Riesz-Thorin theorem [43]. So by the continuity of norm
as well as triangle inequality, we indeed observe a linear
� p-convergence towards the fixed point X ∗,

∥∥G (τ )
MF (X 0) − X ∗∥∥ � lim

s→∞

τ+s∑
k=τ

∥∥G (k)
MF(X 0) − G (k+1)

MF (X 0)
∥∥,

(B10)

�
∞∑

k=τ

Bk
∥∥GMF(X 0) − X 0

∥∥, (B11)

where the last inequality yields a convergence factor Bτ as
a geometric series. Here we will omit the proof of existence
and uniqueness of X ∗, which directly follows from the con-
tractive property of the iterator. We want to make a quick
remark that Eq. (B3), although not explicit in the gradient
bound for the case a = 1, is sharp in the sense that it leads to
alternative forms of convergence factor when we vary specific
model parameters and restrict the domain of convergence,
e.g., 2n maxi di/E∗

i � 1 while di � 1 and a � 1.
Proof of Lemma 2.2. Suppose that two fixed points, X c and

X ′
c, of GMF exist. By convexity of the hypercube ×i∈V [0, di],

an interpolating path of the form

χ
λ

= λX c + (1 − λ)X ′
c; λ ∈ [0, 1], (B12)

remains inside the hypercube. Moreover, the interpolation ex-
tends to boundary of the half-open rectangle [0,∞)n on some
[λ−, λ+] ⊃ [0, 1]. Let us assume without loss of generality
that (X ′

c)i < (X c)i for some i ∈ V and define

I (λ, i) = GMF,i(χλ
) − (χ

λ
)
i
, (B13)

where I (0, i) ≡ I (1, i) = 0 from our construction. The func-
tion I (λ, i) analytically continues onto the half-open rectangle
so we have (χ

λ−
)i = 0 and I (λ−, i) > 0 (otherwise consider

the vertex with the earliest hitting time arg min j∈V (χ
λ−

) j).
From the mean value theorem, we can find λ0 ∈ (0, 1) and

λ< ∈ (λ−, 0) such that ∇λI (λ0, i) = 0 and ∇λI (λ<, i) < 0.
However, note that

∇λI (λ, i) = [∇GMF,i(χλ
)
]�

δX c − (δX c)i, (B14)

∇λ∇λI (λ, i) = δX �
c ∇∇GMF,i(χλ

)δX c, (B15)

for which δX c = X c − X ′
c and ∇∇GMF,i(X ) ∈ Rn×n with

entries ∇ j∇kGMF,i = β2d3
i ∇t (Ri ) j (Ri )k∇t q(βdiEMF,i ) is neg-

ative semidefinite since ∇t∇t q(t ) < 0 for t > 0. This leads
to a contradiction since Eq. (B15) implies ∇λI (0, i) �
∇λI (λ0, i) = 0 while ∇λI (0, i) � ∇λI (λ<, i) < 0.

Proof of Theorem 2.3. Let �D = {X : X � X ∗} with “ �′′
defined entrywise. Stability of �D follows from the simple
observation ∇t q(t ) > 0 for t � 0, since

X τ � X ∗ ⇒ EMF,i(X τ ) � EMF,i(X
∗), (B16)

implies (X τ+1)i = diq(βdiEMF,i ) = GMF,i(X τ ) � GMF,i(X ∗)
= X ∗

i for i ∈ V .
Next we show that free energy Hessian ∇X ∇X MF(X , 0n)

with entries ∇ j∇kMF = β2〈δEtot, jδEtot,k〉X stays negative
semidefinite over the convex region �D . Here 〈 · 〉X denotes
the expectation under a fixed collective mean polarization X ,
and δEtot = Etot − 〈Etot〉X denotes fluctuations of the effective
net field on individual dipoles. Note that ∀X ∈ �D ,

∇X ∇X MF(X ) − ∇X ∇X MF(X ∗)

= Diag
i∈V

{
1

d2
i ∇t q

[
q−1

(X ∗
i

di

)] − 1

d2
i ∇t q

[
q−1

(Xi
di

)]
}

, (B17)

where the r.h.s. is negative semidefinite because its diago-
nals are nonpositive [recall ∇t q−1(t ) > 0 and ∇t∇t q(t ) < 0
for 0 < t � 1]. By Eq. (B17), ∇X ∇X MF|�D is negative
semidefinite when X ∗ ∈ D − ∂D , and it suffices to examine
the statement when X ∗ ∈ ∂D . We argue heuristically that the
regime X ∗

i = 0 for any site i ∈ V is physically irrelevant
because the spin-spin couplings and external field tend to
align the individual dipoles along some direction at finite
temperatures. Otherwise, a direct computation shows X ∗ ∈
D − ∂D ⇒ X ∗ = 0n only in the limit E → 0n.

Using the curvature condition above, we have

MF(X ∗) − MF[G (τ )
MF (X 0)] = −

∫
[0,1]

dλ∇λMF(χ∗
λ
),

(B18)

� ∇X MF(X τ )�δX τ

∫
[0,1]

dλλ, (B19)

if we consider an interpolating path χ∗
λ

= λX τ + (1 − λ)X ∗
and apply the fundamental theorem of calculus to arrive at the
integral in the second equality above. Here δX τ = −∇λχ

∗
λ

=
X ∗ − X τ and Eq. (B19) follows, for λ2 � λ1, from

∇λMF(χ∗
λ1

) � ∇λMF(χ∗
λ2

) � ∇λMF(χ∗
0
),

∇λ∇λMF(χ∗
λ1

) � ∇λ∇λMF(χ∗
λ2

) � 0, (B20)

due to local concavity of the free energy surface (X ,MF(X )).
Notice that the vector δX τ contains exclusively nonpositive
entries all bounded above in magnitude by d�∞. For X 0 ∈
�D,0 = {X ∈ ×i∈V (0, di] : X � GMF(X )} ∩ �D , the free en-
ergy gradient also reserves nonpositive entries when evaluated
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at X τ ,

∇X MF(X τ )1 = −
∑
i∈V

∇iMF(X τ ), (B21)

= −
∑
i∈V

βEMF,i(X τ ) − d−iq
−1[d−i(X τ )i], (B22)

= β
∑
i∈V

EMF,i(X τ−1) − EMF,i(X τ ), (B23)

= β
∑
i∈V

�E (τ )
MF,i, (B24)

where Eq. (B21) reflects the simple observation X 0 � X 1 ⇒
X τ � X τ+1 ⇐⇒ ∇iMF(X τ ) � 0 for i ∈ V . The subregion
�D,0 is nonempty since the iterator has strictly bounded
components, i.e., di > diq[βdzEMF,i(d�)] � GMF,i, and the
cascade of inequalities X τ � X τ+1 due to such a choice of
region of initial estimates further implies

MF(X τ+1) � MF(X τ ), (B25)

if we consider interpolations λX τ + (1 − λ)X τ+1 and apply
the fundamental theorem of calculus to the line integral,

MF(X τ ) − MF(X τ+1)

=
∫

[0,1]
dλ∇λMF(λ) � ∇λMF(0), (B26)

where the r.h.s is nothing but ∇MF(X τ+1)�[X τ − X τ+1] �
0. Combining Eqs. (B19), (B24), and (B25), we can bound
the iterator error in terms of a telescoping series,

|MF
[
G (τ )

MF (X 0)
] − MF(X ∗)|

� 1

τ

τ∑
m=1

MF(X ∗) − MF(X m), (B27)

� βd�∞
2τ

τ∑
m=1

∑
i∈V

�E (m)
MF,i, (B28)

= βd�∞
2τ

n∑
i=1

EMF,i(X 0) − EMF,i(X τ ), (B29)

� βd�∞
τ

[n/2]∑
k=1

nk−3d�∞, (B30)

where [ · ] : R → Z from the upper limit of the last summa-
tion denotes the ceiling function.

APPENDIX C: MFT FROM MESSAGE PASSING

The iterator GMF : �0 → �0 only retrieves the x̂-projected
component X of mean spin polarization profile, whereas the
Y -component vanishes identically by the dimension reduction
lemma. As a proof of principle to confirm validity of Lemma
1.1, we implement a standard message-passing algorithm [38]
from variational inference to alternatively recover the optimal
MF probability measure without a priori deriving the form of
the maximum entropy measure ν� in Eq. (7).

Let us revisit the dipolar system as a graphical model. The
basic idea behind the MF message-passing algorithm is also
to optimize the free energy functional F [ν] over the space of
measures ν = ∏n

i=1 νi factorizable as product of the singleton
functions νi(ϑ ). However, the optimization here is subject to
the hard-coded constraints that νi on each node i ∈ V satisfies
all the defining properties of a marginal probability measure,
which leads to the update rule in the infinite-dimensional
space M (ϑ ),

[νi]τ+1(ϑ )

∝ ψi(ϑ )
∏
j∈Ni

exp

[
−β

∫
dϑ ′Vi j (ϑ, ϑ ′)[ν j]τ (ϑ ′)

]
, (C1)

where [νi]τ gives the marginal measure on vertex i at the
τ th update, ln ψi = −βhi captures the statistical weights of
external fields, and Ni = { j ∈ V : (i, j) ∈ E } denotes the
neighborhood of vertices connected to the vertex i ∈ V . The
update can be viewed as a message-passing process on the fac-
tor graph � with messages, m̃ : E × [−π, π ) → R+, passed
back and forth along the edges,

νi(ϑ ) ∝ ψi(ϑ )
∏
j∈Ni

m̃i j (ϑ ) Ni 
→ i, (C2)

m̃i j (ϑ ) ∝ exp

[
−β

∫
dϑ ′Vi j (ϑ, ϑ ′)ν j (ϑ

′)
]

i 
→ Ni, (C3)

where Eqs. (C2) and (C3) indicate the flow of accessible
information into and out of node i respectively. In practice,
we work with a dense but finite subset of the one-body phase
space to approximate the marginal measures [νi]τ over the
continuous variables ϑi. Figure 13 illustrates the performance
of such a MF message-passing algorithm starting from a uni-
form prior [νi]0(ϑ ) = 1/2π . We adopt a discretized scheme
with a finite sample of 102 evenly spaced grid points on
[−π, π ). A comparison between the MF profiles generated
from the implicit message-passing [νi]τ 
→ [νi]τ+1,

X ν
τ = ×i∈V 〈di cos ϑi〉[νi]τ 
→ X ν

τ+1, (C4)

Y ν
τ = ×i∈V 〈di sin ϑi〉[νi]τ 
→ Y ν

τ+1, (C5)

and the explicit recursion, X τ 
→ X τ+1, reveals that GMF(X )
indeed recovers the MF solution as claimed and meanwhile
saves the computational time by orders of magnitude.

APPENDIX D: HIGHER DIMENSIONAL SPHERICAL
SPINS

The main convergence theorems, Theorem 2.1 and The-
orem 2.3, apply to spherical spin models where the orienta-
tional degrees of freedom ω reside on a (p − 1)-sphere S p−1,

ϑi ∈ [0, 2π ) 
→ ωi ∈
{
Z2 p = 1
[0, π ]p−2 × [0, 2π ) p � 2

, (D1)

with system Hamiltonian

H (ω|d�) =
∑

(i, j)∈E

Vi j (ωi, ω j ) +
∑
i∈V

hi(ωi), (D2)

= 1

2

n∑
i �= j=1

did jμ̂i(ωi )
�Ti j (ri j )μ̂ j (ω j ) −

n∑
i=1

diμ̂i(ωi )
�Eext

i ,

(D3)
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FIG. 13. Numerical closure of mean field message passing. The
algorithm is run for the model parameters (n, β, Eext, d1, dbulk, a) =
(100, 1, 0.2, 2, 1, 1). (a) Convergence error measured by successive
mean discrepancy (X ν

τ+1 − X ν
τ ,Y ν

τ+1 − Y ν
τ ) is plotted over iterations,

where the dashed line in black marks a reasonable tolerance. (b) Cor-
responding MF dipole configuration is plotted against the dipole
positions on a 1D lattice.

on some fully connected graph � = (V ,E ), where Ti j ∈
Rp×p gives the two-body interaction disclosing a preference
along, say, the primitive lattice vector x̂ = (1, 0, . . . , 0) ∈ Rp

Suppose X = Vk (Rp) = {W ∈ Rp×k : W �W = Ik×k},
i.e., the set of orthonormal k-frames in Rp. For example,
consider

H (W ) = −
∑

(i, j)∈E

did j tr
(
W �

i W j
) −

∑
i∈V

ditr
(
E�

i Wi
)
, (D4)

where Wi ∈ V3(R3) ≡ O(3) and Ei ∈ R3×3. Under the MF
assumption, the derived one-body measure with respect to the
canonical Haar measure over O(p), or more generally over
Vk (Rp), takes the parametrized form,

ν�
i (Wi ) = exp

[
βtr

(
��

i Wi
)]

0F1
(
p/2; β2��

i �i/4
) , (D5)

where 0F1 is the hypergeometric function of matrix argu-
ment. The matrix parameter �i = diUiγi ∈ Rp×k under its
polar decomposition of partial isometry Ui and dilation γi can
be completely expressed in terms of the mean spin orien-
tation Wi = Eν�

i
[Wi] ∈ Bp,k = {W ∈ Rp×k : tr(W �W ) � k}.

Assuming isotropy of the external field, Ei 
→ EiI3×3, the
global maximizer W ∗ ∈ Bn

3,3 of the MF free energy functional
must lie in the cone PS3

+ = {W = W � ∈ R3×3 : x�W x �
0, ∀x ∈ R3}, based on the simple observations that tr(γ ) �
tr(�) for a polar decomposition � = Uγ , ∀� ∈ Rp×p, and
the measure ν�

i is invariant under the conjugacy (Wi,�i ) 
→
(g1Wig

−1
2 , g1�ig

−1
2 ), ∀g1 ∈ O(p) and ∀g2 ∈ O(k). In fact, a

rearrangement argument [44] shows that we should search for
W ∗ within a subcone D3

+ = {W ∈ R3×3 : Wkl = κlδkl , κ1 �
κ2 � κ3 � 0} of diagonal matrices and introduce the projected
MF coordinates,

X = (d1(W1)11, d1(W1)22, d1(W1)33, · · · ,

dn(Wn)11, dn(Wn)22, dn(Wn)33), (D6)

where (Wi)kk � 1. Thus GMF = ×i∈V diQ(βdiEMF,i ) for
which

EMF,i(X ; p) = EiIp×p +
j �=i∑

j∈V

p∑
I=1

(Xj )I eI e
�
I , (D7)

with rank-1 projectors eI e�
I defined by the standard basis eI of

Rp, and ∀W ∈ D p
+ we have

Q(W ) = [−∇κSi]
−1(W11,W22, . . . ,Wpp), (D8)

where the one-body entropy Si of ν�
i from Eq. (D5) depends

on the p singular values κ ∈ R+p of the mean orientation
due to the observed invariance under orthogonal conjuga-
tion (here p = 3). The iterator GMF picks up the previous
form when we consider the simplified model with chirality
frozen in Eq. (D4), Wi ∈ V2(R3) ∼= SO(3). We view each W ∈
SO(3) as a rotation around some axis �v ∈ S2 together with
an angle ϑ ∈ [0, 2π ], and exploit the isomorphism SO(3) ∼=
SU (2)/Z2 using the adjoint representation,

W (ϑ, �v) = exp
(
ϑ�v · �E) ↔ ± exp

(
iϑ�v · �σ

2

)
, (D9)

where the rotation generators �E and Pauli matrices �σ form
the standard basis of the Lie algebras so(3) and su(2) respec-
tively. The above axis-angle information (ϑ, �v) is stored as a
pair of antipodal vectors ±μ̂(ϑ, �v) ∈ S3 whose entries specify
the r.h.s. of Eq. (D9) via the identification

± exp

(
iϑ�v · �σ

2

)
= ±

[
b(ϑ, �v) c(ϑ, �v)

−c(ϑ, �v)∗ b(ϑ, �v)∗

]

↔ ±(Reb, Imb, Rec, Imc) = ±μ̂(ϑ, �v),
(D10)

where ∗ denotes the C-conjugation. The tracial terms in the
original Hamiltonian then appear as �2-inner products, i.e.,
tr(W �

i W j ) = 4(μ̂�
i μ̂ j )2−1 and tr(E�

i Wi ) = Ei[4(μ̂�
i x̂)2−1],
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FIG. 14. Indirect use of MF iterator for solving spin models.
The inset shows an example of hybrid approach that combines a
deterministic walk from GMF at a given location on the MF landscape
and a stochastic walk visiting different parts of the landscape. The red
curve represents a generated stochastic trajectory whose evolution
depends on evaluation of the MF free energy function FMF via GMF,
and the red dots correspond to states sampled along the trajectory.

so we can write

H (W |d�) ≡
∑

(i, j)∈E

did j (μ̂i ⊗ μ̂i )
�T i j (μ̂ j ⊗ μ̂ j )

−
∑
i∈V

di(μ̂i ⊗ μ̂i )
�Eext

i , (D11)

where T i j = −2I4×4 ⊗ 2I4×4 and Eext
i = Ei(2E1/2

i x̂ ⊗
2E1/2

i x̂). We have dropped a constant energy shift from the
traces and restricted our attention to the diagonal subset of
the product space R4 ⊗ R4. Although the local effective field,
EMF, gains a quadratic dependence on the MF coordinates,
a conditioned version of Theorem 2.3 applies under the
high temperature or large external field limit upon accordant
change of the convergence constants. On the other hand, both
Theorem 2.1 and Theorem 2.3 hold if we replace the spin
phase space SO(3) with SU (2) and matrix transpose with
Hermitian conjugate due to the diffeomorphism SU (2) ∼= S3.

APPENDIX E: INDIRECT UTILITY OF MF ITERATOR

We consider an indirect use of the iterator GMF to extract
the MF solution when a particular model falls outside the
model space region with direct iterator applicability. A hier-
archy of iterator applicability is illustrated schematically in
Fig. 14. We recall that GMF establishes a deterministic walk
in the space of configurational probabilities. For ferromag-
netic spin models, this walk converges when the effective
field EMF,i(θ ) on each spin meets the positivity condition
E�

MF,iEMF, j � 0, ∀(i, j) ∈ E (irrespective of whether the con-
verged spin polarity comes from optimal θ ). Since we are

interested in finding the global minimum of the MF landscape,
now without precise resolution over the θ coordinate, we
employ a hybrid approach which relies on both deterministic
and stochastic walk in search for optimal θ .

In such scenarios, we can use GMF in junction with
a global optimization routine to search across the MF
landscape. Here, we choose the generalized stimulated
annealing (GSA) schedule [30,45] as our gradient-free op-
timization routine. Given some objective function f : � ⊂
Rn → R over a search domain �, GSA locates its global min-
imum by attempting stochastic moves in the search domain
with a radial-symmetric visiting distribution,

ptrial(�x, t ) ∝ T (t )−
n

3−qv[
1 + (qv − 1) �x2

T (t )
2

3−qv

] 1
qv−1 + n−1

2

, (E1)

where the visiting parameter qv ∈ (1, 3] controls the shape of
ptrial along a stochastic trajectory parametrized by the artificial
time t ∈ [1,∞). Apart from setting the typical size of �x, the
artificial temperature, T (t ), also determines the likelihood of
accepting the trial move x 
→ �x + x with a probability

paccept (�x, t ; x) = min

{
1,

[
1 − γ (t )(1 − qa)� f

T (t )

] 1
1−qa

}
, (E2)

where the accepting parameter qa controls the success of
the trial move through the evaluated difference � f = f (x +
�x) − f (x), and the prefactor γ (t ) is commonly taken to
be γ = 1 or γ = t for reasonable convergence. To avoid
the sign issue in the regime qa < 1, we let paccept = 0 when
γ (1 − qa)� f /T < 1. Over the course of optimum search, the
annealing process occurs with continuously lowered tempera-
ture T (t ),

T (t ) = T (1)
2qv−1 − 1

(1 + t )qv−1 − 1
. (E3)

Note that in the limit (qv, qa) = (1, 1), we essentially recover
a Metropolis MCMC walk on the energy landscape f (x),
where a low energy state can be asymptotically reached.

To resolve the MF response in Fig. 10, we can identify our
objective function,

f (θ ) = FMF(θ, rc(θ )); rc = GMF(rc|θ ), (E4)

on angular domain � = [−π/4, π/4]n, where rc(θ ) rep-
resents the mean spin polarity satisfying the conditioned
optimality. The rapid evaluation of the conditioned MF free
energy f (θ ) via a GMF iteration therefore provides the neces-
sary ingredient for GSA calculation. For implementation of
GSA, we use the optimize package available from SciPy.
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