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Reservoir crowding in a resource-constrained exclusion process with a dynamic defect
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To understand the complicated transport processes that occur in biological and physical systems, we inves-
tigate a constrained totally asymmetric simple exclusion process with a stochastic defect particle. The defect
particle might randomly emerge or vanish, resulting in a dynamic defect, and slows down the flow of moving
particles when attached to the lattice. Using a mean-field technique, we examine the steady-state characteristics
and boundary-layer analysis is provided to comprehend the properties of finite system. In a simplification, our
theoretical method unifies three different parameter used to define the defect dynamics into one parameter termed
the obstruction factor. It is found that the defect kinetics lead to emergence of phases where the current is defect
restricted. The system shows nine phases overall, including bulk-induced and boundary-induced shock phases,
with the phase schema showing no more than eight phases depending on the dynamics. We found that variation
of obstruction does not lead to qualitative transition in the system, whereas the change in constraint on total
particles affect the system qualitatively. All the theoretical outcomes have been validated using extensive Monte
Carlo simulations.
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I. INTRODUCTION

In recent years, there has been a surge of interest across
the investigation of complicated nonequilbrium events in
a wide range of topics spanning from physics to biology
[1–7]. In contrast to the study of thermodynamically balanced
systems, no general theoretical framework for determining
the attributes of aforementioned systems exists. As a result,
paradigmatic models play an important role in understanding
the physics of nonequilibrium systems. Totally Asymmetric
Simple Exclusion Process (TASEP) is one such model that
provides a framework for understanding properties in these
systems [3,8–12]. Furthermore, it has been frequently utilized
to investigate nonequilibrium features in a wide range of
phenomena, including vehicular traffic [13,14], intracellular
transport [3,15,16], transcription and translation [15,17–21],
etc. In the simplest variant of the TASEP, particles hop
stochastically in one direction on a lattice with unit rate and
are prohibited to fill the positions that are preoccupied by an-
other particle. The nonequilbrium steady state of the TASEP
has been precisely solved with a matrix formalism or similar
approaches such as a Bethe ansatz under open boundary con-
ditions [11,22,23]. It has been found that the system exhibits
three distinct phases namely low density (L), high density
(H), and maximal current (M). The L phase occurs when the
particle flux is restricted by particle entrance, the H phase
when particle exit restricts the flow, and the M phase when
the flow is limited by the system’s interior regardless of the
boundary rates.

This primary model has been generalized with various dy-
namics, multiple species of particles, or a spatial dependency
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of the rates for many of the applications [24–29]. The majority
of the literature uses open TASEPs to examine the collective
behavior of particles on a lattice supplied with an unlimited
reservoir, thus maintaining consistent entrance and exit rates
regardless of reservoir occupancy, which may not be realistic
in a majority of cases. In actuality, resources are limited in
physical and biological systems, which has nontrivial impact
on the dynamics owing to competition for resources. In recent
years, a variation of the TASEP model has developed where
the total number of particles in the system is preserved and
depicts the global constraint on the resources in almost all
physical and biological systems [30–35]. As a result of this,
a new phase known as shock phase (S) emerges admitting a
localized domain wall which appears as a shock in the density
profile. All of these studies have looked at TASEP models in
confined environments with a primary focus on how limited
resources affect the pace at which particles enter the lattice.
The restricted capacity of the reservoir, however, can also have
an impact on the particle exit rates. For example, when a ve-
hicle intends to leave the road and enter into a parking garage,
the impediments caused by cars in a packed garage lower
the exit rate from the road. Recent research has focused on a
TASEP version that may accurately imitate these situations by
accounting for the impact of reservoir occupancy on departure
and entrance rates [36,37]. This characteristic is known as
reservoir crowding which has been proposed as a way by
which the particles escape the reservoir’s overcrowding.

Another factor that is important to many applications and
is frequent in everyday life is the existence of imperfections
that delay or temporarily block particle flow. Examples in-
clude traffic regulation and halted cars in vehicular traffic [1],
nucleic acid binding proteins in transcription and translation
[38,39], etc. These defects such as blockages, roadblock parti-
cles, etc., can be static or dynamic, and they have a significant

2470-0045/2022/106(4)/044130(13) 044130-1 ©2022 American Physical Society

https://orcid.org/0000-0001-5231-486X
https://orcid.org/0000-0001-6671-6747
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.106.044130&domain=pdf&date_stamp=2022-10-21
https://doi.org/10.1103/PhysRevE.106.044130


BIPASHA PAL AND ARVIND KUMAR GUPTA PHYSICAL REVIEW E 106, 044130 (2022)

FIG. 1. (a) Schematic representation of the TASEP model featuring reservoir crowding with a dynamic defect at special site m. Circles
denote the particles, whereas square represents the defect at mth site. (b) Association and dissociation rates of defect at that mth site that remain
independent of presence or absence of particle.

influence on particle dynamics. When the obstacles are static,
the special sites are given hopping rates permanently which
are distinct from ordinary sites and have received extensive
research [27,40–42]. On the other hand, defects or dynamic
obstacles may appear and disappear stochastically. Dynamic
obstacles cause the particle mobility to slow down or stop;
otherwise, when unobstructed, the particle proceeds at its
typical hopping rate. Such unconstrained disordered systems
have been explored under the TASEP framework, where the
defect may emerge or disappear at random on particular sites,
causing a different hopping rate from other sites [43–45]. A
model with periodic boundaries having one-site dynamical de-
fect has been studied where the site can stochastically achieve
the state of being closed or open [46]. When open, it allows the
flow of particles and on closing, it blocks particle movement.
Several other studies with open boundaries contain a defect
particle which will generally limit the maximum feasible flow
to a value less than the maximal flux in the absence of defects
[43–45]. As a result, the M phase of the conventional TASEP
is replaced by a defect-restricted phase, in which the flux is no
longer governed by the boundary rates, but by the dynamics
at the defect.

In contrast to the lattice that represents microtubules or
roads and is considered to be homogeneous throughout, the
actual pathway may depict imperfections. In biological trans-
port, research reveal that the enzymes can alter tubulin units
in vivo [47]. Also, the microtubule-associated proteins can
bind to and unbind from the microtubule [38,39,48]. Thus, the
cell may regulate the motor transport characteristics via inho-
mogeneities or microtubule decoration elements. These may
disrupt the traffic of molecular motors and to fully describe
the such processes, and all these factors must be taken into
account. Similarly, in vehicular transport, a traffic light may
interrupt the movement of vehicles. In such systems, the avail-
able resources are limited. Motivated by these, we investigate
a generic roadblock model with a defect that stochastically
unbinds-rebinds from a single site and, when bound, stops
or slows down the passage of actively moving particles. We
use a mean-field approximation to conceptually approach the
system in order to study the dynamics of the suggested model.
The structure of our paper is as follows. We describe the
model and its dynamic rules in Sec. II. In Sec. III, we lay

out our methodology and offer the mathematical treatment of
our model. This is followed by an examination of the kinetics
of our suggested model. Using our theoretical framework, we
examine potential stationary phases in Sec. IV. The technical
aspects of the Monte Carlo simulation are then explained and
the results are discussed in Sec. V, followed by a summary of
our findings in Sec. VI.

II. MODEL DEFINITION

We consider a minimal model for nonequilibrium transport
processes that depicts the essential components such as micro-
tubules, roadways, etc., as a lattice and entities traveling along
these channels as particles. The one-dimensional lattice con-
sists of 2×L sites and both of its ends are connected to a single
reservoir having a finite number of identical particles denoted
by Nr , as depicted in Fig. 1. At any time, the total number
of particles in the system, Ntot, remains constant, effectively
reflecting the limited resources in biological and physical
systems. Particles are allowed to enter the lattice from the first
site, provided it is empty, with a modified entry rate regulated
according to the particles available in the reservoir. This rate,
indicated by ᾱ is given by

ᾱ = α f (Nr ), (1)

where α is the inherent entry rate of the particles in the
absence of any constraint on the available resources. The
particles can leave the lattice from the last site with a modified
exit rate, β̄, which also depends on the occupancy of the
reservoir and is expressed as

β̄ = βg(Nr ). (2)

In the above equation, β signifies the inherent exit rate in
the absence of a crowding characteristic. All particles move
in the same direction along the lattice, obeying the hardcore
exclusion principle, as shown in Fig. 1.

Due to the feature of reservoir crowding in our model, we
are investigating a situation in which a higher particle con-
tent in the reservoir enhances particle inflow into the lattice
while lowering particle outflow from the lattice to the reser-
voir. Therefore, it is plausible to assume f (Nr ) and g(Nr) to
be monotonically increasing and decreasing functions of Nr ,
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FIG. 2. Decomposition of the inhomogeneous system into two coupled homogeneous sublattices: L1 and L2.

respectively. As the simplest choice, these functions are de-
fined as

f (Nr ) = Nr/Ntot, g(Nr ) = 1 − Nr/Ntot, (3)

and are bounded between 0 and 1 [36]. As a result, the
modified rates are confined within 0 and the inherent rates.
Intending to investigate the influence of the total number of
particles on the system dynamics, we designate a parameter—
filling factor—defined as μ = Ntot

2L [30,36], which depicts the
population of the system relative to the lattice size.

It is also assumed that another form of particle, known as a
dynamic defect, can attach to a particular site m located away
from both ends of the lattice. We fix that site to be m = L + 1
for our analysis. The defect binds to the lattice at a rate k+
if it is free from the defect and unbinds at a rate k− if it
is not irrespective of the site’s occupancy by a particle; see
Fig. 1(b). Although the existence of particles has no effect
on the defect’s transition rates at site i = m, it does affect the
particle’s hopping rates from sites m − 1 to m. If the defect is
present, then the particle leaps at a decreased rate of pd � 1
from site m − 1 to m; else, it hops with the unit rate. The
defect’s impact is highest if pd = 0, but when pd = 1, the
particles are completely unaware of the defect’s presence. If
both the particle and the defect are present at site m, then the
particle’s hopping rate to site m + 1 stays 1. It must be noted
that the dynamic defect is different than static counterpart;
setting pd = 0 in present model does not mean that particle
flux is zero which happens in case of static defect [27].

Due to the presence of a dynamic defect at site m, the tran-
sition rates of the particles are locally affected introducing an
inhomogeneity in the system. For analytical amenability, we
partition the lattice into two homogeneous sublattices: L1 and
L2 as illustrated in Fig. 2. Each sublattice has L sites which
are labeled as i = 1, 2, . . . , L. In our theoretical paradigm,
βe represents the particle’s effective exit rate from L1 and αe

represents the particle’s effective entrance rate into L2. From
here onward, we refer to αe, βe, ᾱ, and β̄ collectively as
altered rates. These rates have to be evaluated, and to achieve
this we note that the sublattices thus obtained are coupled as
follows. First, due to the reservoir crowding feature, the rates
ᾱ and β̄ are linked. Second, owing to the continuity of current,
equal particle currents must flow through both sublattices in
the steady-state regime. Taking these into account, the altered
entry and exit rates for both the sublattices have to be accessed
to describe the dynamics of the decomposed system. In the
next section, we delineate the mathematical treatment of the
proposed model.

III. MATHEMATICAL ANALYSIS

We define τi,k as the occupancy number of particles at
the ith site of the sublattice Lk where k ∈ {1, 2}. Owing to
hard-core exclusion, τi,k can only accept binary values, 0 and
1 if the ith site of the sublattice Lk is empty or occupied by a
particle, respectively. Furthermore, we designate the defect’s
occupancy number by η, which takes the value 1 in presence
of defect and 0 when not filled by a defect. The master
equations for the evolution of bulk particle density of both
sublattices are provided by

d〈τi,k〉
dt

= Ji−1,i
k − Ji,i+1

k , 1 < i < L, (4)

where 〈. . . 〉 denote the statistical average and the term Ji,i+1
k is

the current passing from site i to i + 1 in sublattice Lk defined
as

Ji,i+1
k = 〈τi,k (1 − τi+1,k )〉. (5)

At the boundaries of sublattice L1, the densities evolve accord-
ing to

d〈τ1,1〉
dt

= ᾱ〈1 − τ1,1〉 − J1,2
1 ,

d〈τL,1〉
dt

= JL−1,L
1 − βe〈τL,1〉, (6)

whereas the evolution of density in the boundaries of the
sublattice L2 is governed by

d〈τ1,2〉
dt

= αe〈1 − τ1,2〉 − J1,2
2 ,

d〈τL,2〉
dt

= JL−1,L
2 − β̄〈τL,2〉. (7)

Solving Eqs. (4)–(7) is intractable in the present form due
to the presence of both one-point and two-point correlators.
Therefore, the mean-field approximation is used, with all cor-
relations discarded and the correlators calculated as follows:

〈τi,k τi′,k′ 〉 = 〈τi,k〉〈τi′,k′ 〉,
〈η τi,k〉 = 〈η〉〈τi,k〉, (8)

where i, i′ ∈ {1, 2, . . . , L} and k, k′ ∈ {1, 2}. Using the mean-
field approximation and coarse-graining the discrete lattice
with the lattice constant ε = 1/L to a continuum limit fol-
lowed by time rescaling as t ′ = t/L, we obtain the subsequent
continuum equation for the bulk of sublattices,

∂ρk

∂t
= ε

2

∂2ρk

∂x2
− ∂Jk

∂x
. (9)
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Here x = i/L, 0 � x � 1 is the rescaled position variable,
and ρk produces the average particle density of the sublattice
Lk . Moreover, the current in the sublattice Lk is expressed as
Jk = ρk (1 − ρk ). In steady state, Eq. (9) supplemented with
boundary conditions is expressed as follows:

∂Jk

∂x
− ε

2

∂2ρk

∂x2
= 0, (10)

ρ1(0) = ᾱ, ρ1(1) = 1 − βe, (11)

ρ2(0) = αe, ρ2(1) = 1 − β̄. (12)

In the limit ε → 0, the differential equation in Eq. (10) sim-
plifies to ∂Jk

∂x = 0, implying that the current through each
sublattice is constant.

Due to the presence of the second-order derivative term
with very small coefficient ε, Eq. (10) is a singular equation.
The singularity derives from the fact that in the limit ε → 0,
the aforementioned equation simplifies to a first-order equa-
tion that cannot satisfy two boundary conditions in general.
Solved solutions to such singular equations are known to fea-
ture boundary layers whose width is substantially dependent
on the coefficient ε.

With the division of the proposed system into two homoge-
neous sublattices, each subsystem can now be evaluated as an
open TASEP supplemented with their respective altered entry
and exit rates. Our goal is to explicitly evaluate the following
rates: ᾱ, β̄, αe, and βe. To achieve this, we intend to utilize the
coupling of the sublattices owing to the conservation of cur-
rent across the defect site and regulation of entry-exit rates due
to constrained resources. We begin with analyzing the kinetics
of the dynamic defect whose temporal evolution equation at
site m is expressed as

d〈η〉
dt

= 〈1 − η〉k+ − 〈η〉k−. (13)

In the above equation, 〈η〉 ≡ ρ∗ yields the defect density,
which attains the following value in steady state:

ρ∗ = k+
k+ + k−

. (14)

When k+ = 0, the defect can never attach to the lattice
at any time and hence its density, calculated by Eq. (14),
takes the value 0. The proposed model simplifies to the open
TASEP with reservoir crowding [36], which is homogeneous
throughout the lattice. However, the defect dynamics disrupt
the homogeneity of our system, and therefore the lattice is
selectively broken upstream of the special site m to obtain two
coupled homogeneous subsystems.

Due to the conservation of current throughout the lattice,
the current in both subsystems must be equal, that is, J1 =
J2. The expression for current in the bulk yields ρ1(1 − ρ1) =
ρ2(1 − ρ2), which provides us with two options:

ρ1 = ρ2 or ρ1 = 1 − ρ2. (15)

Furthermore, the current flowing from the site m − 1 to m,
denoted as Jlink, connects the two sublattices and is given by

Jlink = ρ∗Jd + (1 − ρ∗)Ĵd . (16)

In the above equation, Jd and Ĵd indicate the current from the
site m − 1 to m in the presence and absence of defect kinetics,
respectively, which are expressed as

Jd = pd Ĵd and Ĵd = ρ1(1)[1 − ρ2(0)]. (17)

Also, the current exiting from L1, Jexit,1 and the current enter-
ing L2, Jenter,2 are represented as follows:

Jexit,1 = βeρ1(1), Jenter,2 = αe[1 − ρ2(0)]. (18)

Invoking the continuity of current implies Jexit,1 = Jlink =
Jenter,2, which yields the following expression for αe and βe:

αe = ρ1(1)[1 − ρ∗(1 − pd )],

βe = [1 − ρ2(0)][1 − ρ∗(1 − pd )]. (19)

The obstruction provided by defect is directly proportional to
its density and inversely proportional to the slowdown rate.
Thus, we define z = ρ∗(1 − pd ) to be the obstruction factor
which quantifies the hindrance provided to particle flow. We
use this parameter hereafter because it is beneficial in two
ways. It reduces the parameter space and simplifies the en-
suing expressions.

To determine the modified entry rates ᾱ and β̄, we utilize
the particle number conservation (PNC) which states that
Nr + NL = Ntot, and NL denotes the number of particles on
the lattice. This relation in its continuum form gives

1

2

∫ 1

0
ρ1dx + 1

2

∫ 1

0
ρ2dx + r = μ, (20)

where r = Nr
2L signifies the quotient of the reservoir. On plug-

ging the values of ρ1 and ρ2, r is obtained explicitly. In terms
of quotient of reservoir, the modified rates can be rewritten as

ᾱ = αr/μ and β̄ = β(1 − r/μ). (21)

The expressions for the altered rates will be provided ex-
plicitly in the upcoming sections. In the next section, we
provide the theoretical approach to obtain the density profiles
which will be later used to characterize the system.

A. Boundary-layer analysis

In real situations, the system size L is finite, implying that
ε may not approach 0 and thus, the boundary layer cannot be
neglected. Therefore, we utilize the boundary-layer analysis to
fully describe the density profiles which mainly involves two
stages [28,29]. At the first stage, the slowly varying solution,
referred to as the outer solution, is obtained, which describes
the bulk of the density profile. The rapidly fluctuating com-
ponent of the density profile solution, known as the inner
solution, which appears in a limited section of the lattice,
is then calculated. Finally, the asymptotic matching of the
outer and inner solutions yields a uniformly valid solution
for the density profile. Following this technique, we recall the
solution for a possible collection of boundary conditions.

B. Outer solution

The solutions for the bulk of the density profiles, ρk , are de-
rived by setting ε = 0 in Eq. (10). This results in the following
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expression for the outer solution ρout,k:

ρ±
out,k = 1

2
± 1

2

√
1 + 4ck, (22)

where ck is the constant of integration and k ∈ {1, 2}. The
value of ck can be calculated using the boundary condition
that the outer solution for sublattice Lk meets. For instance, if
the solution for sublattice L1 satisfies the boundary condition
x = 0, i.e., ρ±

out,1(0) = ᾱ, then c1 = ᾱ(ᾱ − 1). If, on the other
hand, the outer solution matches the boundary condition at
x = 1, then c1 = βe(βe − 1). Clearly, from Eq. (22), in any of
these scenarios, the outer solutions are always constant.

C. Inner solution

In order to obtain the boundary-layer part, the second-order
term in Eq. (10) is crucial. To find the inner solution ρin,k ,
Eq. (10) is expressed in terms of x̃ = (x − x0)/ε (where x0

denotes the position of boundary layer) and then consider ε →
0. The second-order differential equation with respect to x̃ is
given by

1

2

d2ρin,k

dx̃2
+ (2ρin,k − 1)

dρin,k

dx̃
= 0, (23)

which, on integration, gives

1

2

dρin,k

dx̃
+ ρ2

in,k − ρin,k = bk, (24)

wherebk denotes the integration constant. Due to the fact that
the boundary-layer saturates to the outer solution in the suit-
able limit of x̃, bk = ρ2

b,k − ρb,k , where ρb,k is the bulk density
to which the boundary-layer solution saturates. The possible
solutions of the Eq. (24) are given as

ρin,k = 1

2
+ d1,k

2
coth[c1(x̃ + d2,k )], (25)

ρin,k = 1

2
+ d1,k

2
tanh[c1(x̃ + d2,k )], (26)

where d1,k and d2,k are the integration constants whose values
are obtained through the boundary conditions for sublattice Lk

which the boundary-layers solution must satisfy.

D. General form of solutions

Here we refer to the general solutions of various phases
corresponding to generic boundary conditions for the sublat-
tice L1, which may be extended to the other sublattice in a
similar manner.

1. Low-density phase

In this case, the outer solution satisfies the boundary con-
dition at x = 0 and the boundary layer satisfies the condition
at x = 1. In such a phase, ᾱ < 1/2 and βe > ᾱ. The outer so-
lution ρ−

out,1 with c1 = ᾱ(ᾱ − 1) is described by Eq. (22) and
the boundary layer must saturate to outer solution as x → 1−.
If 1 − βe > ᾱ, then the boundary layer must have positive
slope to satisfy the boundary condition and is described by
a tanh-type solution [Eq. (26)], whereas for 1 − βe < ᾱ, the
negative slope of the boundary-layer solution prompts the use
of coth-type solution [Eq. (25)]. The constants are obtained by
utilizing the boundary matching at x0 = 0,−∞, and ∞.

2. Shock phase

When this situation arises, the boundary layer deconfines
from the x = 1 and enters the bulk, which appears as a sta-
tionary shock. The position of this shock is determined using
the particle number conservation, which we discuss in detail
in Appendix B. Then the outer solution has two parts, one
with ρ−

out,1 < 1/2 satisfying the left boundary condition and
the another one with ρ+

out,1 > 1/2 satisfying the right boundary
condition, with these two parts being separated by a boundary
layer of tanh-type [Eq. (26)].

3. High-density phase

The boundary layer in high-density phase appears near x =
0. When ᾱ > 1 − βe, the boundary layer has a positive slope
to meet the boundary condition and is characterized by coth-
type solution [Eq. (25)], but when ᾱ < 1 − βe, the boundary
later solution has a negative slope which calls for the usage of
tanh-type solution [Eq. (26)]. By using the boundary matching
at x0 = 0,−∞, and ∞, the constants are found.

The above discussion provides the complete solution to the
density profile of sublattice L1, which can be extended simi-
larly to L2 provided the altered rates are known. Alternatively,
the density profiles can be obtained by utilizing numerical
schemes, which is provided in Appendix A. In the next sec-
tion we delineate the methodology to obtain these rates, which
will aid in completely characterizing the system properties.

IV. STATIONARY PHASES AND THEIR PROPERTIES

In this part, we discuss the possible phases and provide
explicit expressions for the altered entrance and exit rates,
which are essential to fully define the system’s stationary
features. We briefly recall the stationary properties of the
homogeneous open TASEP that has been well studied using a
mean-field approach [49–51]. It was found that the system can
be in one of the following phases depending on the entry and
exit rates, which are referred to as entry-dominated low den-
sity (L), exit-dominated high density (H), and bulk-dominated
maximal current (M). When the entry rate is lower than exit
rate while being less than 0.5, the system displays low density.
For the scenario where the entry rate exceeds the exit rate and
the latter is less than 0.5, the system is in a high-density phase.
In the case of entry and exit rates both greater than 0.5, the
maximal current phase occurs. The transition from both the L
and H phases to the M phase is of second order with respect
to the density. However, the phase transition from L to H is of
first order, and in this line (when entry equals the exit rate),
a low-high density coexistence phase appears which admits a
delocalized shock wandering throughout the lattice. It is seen
that as soon as a constraint is placed on the number of particles
in the system, the shock is pinned in a position [30,31,34,35].
This shock was found to be boundary induced. Moreover, the
region of low-high density coexistence phase does not remain
limited to a line and is referred to as the shock (S) phase.

Now we provide the notation for a probable phase as A/B
for clarity, where A and B are the phases indicated by sub-
lattices L1 and L2, respectively. As each sublattice can have
one of the four phases (L, H, M, and S), our system can have
up to 42 = 16 different phases. However, due to the current
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TABLE I. Summary of existence conditions as well as the altered rates that are obtained theoretically. Here L, H, S, S*, and M indicate the
low-density phase, high-density phase, boundary-induced shock phase, bulk-induced shock phase, and maximal current phase, respectively.
L/H phase appears in the transition line between the L/S and S/H phases.

Phase Existence regions ᾱ β̄ αe βe

L/L ᾱ < βe, ᾱ < 1/2, αe < β̄, αe < 1/2 αμ

α+μ

αβ

α+μ

αμ

α+μ

(
1 − αμ

α+μ

)
(1 − z)

H/H ᾱ > βe, βe < 1/2, αe > β̄, β̄ < 1/2 α(−1+β+μ)
β+μ

β

β+μ

μ(1−z)
β+μ

β

β+μ

L/S ᾱ < βe, ᾱ < 1/2, αe = β̄ < 1/2 αβ

α+β

αβ

α+β

αβ

α+β

(
1 − αβ

α+β

)
(1 − z)

S/H ᾱ = βe < 1/2, αe > β̄, β̄ < 1/2 αβ

α+β

αβ

α+β

αβ

α+β

(
1 − αβ

α+β

)
(1 − z)

H/L ᾱ > βe, βe < 1/2, αe < β̄, αe < 1/2 α
(
1 − 1

2μ

)
β

2μ

1−z
2−z

1−z
2−z

S*/L ᾱ = βe < 1/2, αe < β̄, αe < 1/2 1−z
2−z

β[(1−z)(α−1)+α]
α(2−z)

1−z
2−z

1−z
2−z

H/S* ᾱ > βe, βe < 1/2, αe = β̄ < 1/2 α[(1−z)(β−1)+β]
β(2−z)

1−z
2−z

1−z
2−z

1−z
2−z

M/M ᾱ > 1/2, β̄ > 1/2 α
(
1 − 1

2μ

)
β

2μ

1
2

1
2

continuity requirement across both the sublattices, not all of
them exist. Thus, the prospect of having the M phase in one
sublattice and the L, H, or S phase in the other, accounting
for six distinct phases, may be ruled out based on the physical
argument that these phases support different particle currents.
The circumstances of the existence of remaining possible
phases need to be investigated theoretically.

The effective rates αe and βe, as well as the reservoir den-
sities for all viable phases are to be determined, which will be
utilized to obtain the existential conditions of the conceivable
phases. In this direction, we proceed along the following steps.
Assuming that the system is in one of the probable phases, we
know their distinctive density profile. Employing this fact as
well as the expression for current and its continuity, the altered
rates are accessed in terms of reservoir quotient. Subsequently,
particle number conservation is incorporated to obtain the
reservoir quotient (except when at least one of sublattice is
in the S phase whose methodology is detailed in Appendix B)
which yields the altered densities. Having explicit values for
these quantities, the conditions of existence of the phases can
be verified. As a result, by contrasting the expected and actual
phases, a self-consistency check is offered.

By utilizing the above outlined methodology, the existence
conditions of the altered rates of the possible phases are men-
tioned in Table I and the detailed analysis are provided in
Appendix B. It is found that the dynamics lead to a defect-
restricted phase, namely H/L, which is reminiscent of the
maximal current phase in the analogous model without the de-
fects [36]. The current sustained in this phase corresponds to
the maximum magnitude that the proposed model can exhibit
with respect to the defect dynamics. Moreover, our theoretical
analysis identifies two distinct types of shock phases: bound-
ary induced and bulk induced. In order to distinguish between
them, we will hereafter refer to the shock phase in a sublattice
that is bulk induced as S* and its counterpart that is boundary
induced as S. In the sections that follow, these are covered in
detail. In addition to the H/L phase, the bulk-induced S*/L
and H/S* phases also correspond to defect-restricted phase
whose current is regulated by the defect dynamics irrespective
of entry-exit rates.

In the next section, we examine the effects of various
dynamics on the system properties.

V. RESULTS AND DISCUSSION

Our goal is to study the influence of finite resources in
terms of μ as well as the impact of defect kinetics quantified
by z on the system’s stationary properties. In this direction,
we use the analysis provided in previous sections to inves-
tigate the system behavior in the α-β plane. To validate our
theoretical results, we perform Monte Carlo simulations with
a system size of L = 1000. The computer simulations are run
for 5×109 time steps, with the first 5% of the time steps
scraped to assure occurrence of steady state. We quickly men-
tion that the system has been tested for various other pair of
functions as an alternate form for Eq. (3). The consistency of
simulation data and analytical predictions for all the regimes
is equally impressive, although we will not get into specifics
here. Nevertheless, the functional form of f and g is likely to
have a significant impact on the phase boundaries.

We now specify investigate the influence of several param-
eters in the dynamics of defect in the presence of constrained
resources.

A. Effect of filling factor

In this study, filling factor μ represents the average number
of particles available for each lattice site effectively represent-
ing how much filled the system is. We expect filling factor
to significantly affect the stationary properties: scarcity of
particles leads to a steady state with lower densities, whereas
in presence of sufficient number of particles, the system may
exhibit the steady state with higher densities depending on the
entry and exit rates.

Figure 3 shows the stationary phase diagrams for various
values of filling factors displaying the topological disparities
while keeping the obstruction factor unchanged. Theoreti-
cally, one may determine the crucial points at which these
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FIG. 3. Phase diagrams for various parameters depicting the topological changes due to variation of μ while keeping z fixed. The
parameters (μ, z) are mentioned in the subcaptions. Solid blue lines denote theoretical outcomes, whereas red circles denote Monte Carlo
simulation results. The contours in the phase diagrams represent the variation of current and the value of current is depicted in the accompanying
color bar.

qualitative changes take place, which are obtained as

μc1 = 1 − z

2 − z
, μc2 = 0.5. (27)

For μ � μc1 , the phase diagram exhibits only two stationary
phases, L/L and L/S, whereas when μc1 < μ � μc2 , another
phase emerges, leading to three distinct phases, namely L/L,
L/S, and S*/L. Moreover, for μ > μc2 , with the addition of
five more regions (H/L, H/S*, H/H, S/H, and L/H), the phase
schema now consists of eight phases. The schema remains
asymmetric for μ < 1 and becomes symmetric with respect
to α = β line when μ = 1. With further increase in μ, the
system again loses its symmetry.

Additionally, it is observed that the region occupied by
bulk-induced S*/L phase decreases with an increase in the
number of particles in the system and finally vanishes as μ →
∞. However, the other bulk-induced shock phase, namely
H/S*, persists in the limit μ → ∞. This is supported math-
ematically as the width of H/S* phase, 	H/S*, is expressed as

	H/S* = μz(1 − z)

2 − z
(28)

and remains proportional to the filling factor.
It is observed from Table I that the densities of the

defect-restricted phases remain unaffected by μ, implying
the robustness of current in these phases with respect to μ.

However, the same cannot be said about the remaining phases.
Thus, it is expected that the current of the remaining phases is
affected by the availability of particles: A dearth of particles
reduces the entry rate, thus affecting the current. To demon-
strate this, we have plotted Fig. 4 for α = 0.2, β = 25, and
z = 0.36, whereas μ is varied from 0 to 20 lying in L/L region,
which displays monotonic increase in the current.

Now we move on to investigate the impact of defect on the
stationary properties of the system.

B. Effect of defect dynamics

The defect kinetics is critical to comprehending the station-
ary state of the system. The transition rates of the particles
are locally affected when the dynamic defect is incorporated
at site m. However, when such kinetics are excluded, the
dynamics are normal and uniform. We can assess the defect
dynamics using our theoretical method and analyze its impact.
It is interesting to note that while the defect kinetics of our
model are controlled by three distinct parameters, namely k+,
k−, and pd , the theoretical method reveals much more simpli-
fied analysis where the impact of defect can be quantified by
only one parameter: the obstruction factor z.

Figure 5 depicts the dependency of the stationary current in
the H/L phase on obstruction factor z. As expected, the current
decreases with an increase in the obstruction to the flow of
particles.
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0 5 10 15 20
0

0.1

0.2

FIG. 4. Impact of filling factor μ on current: current Jk

(k ∈ {1, 2}) increases with increment in μ. The other parameters
are α = 0.2, β = 25, and z = 0.36. Solid line represents theoretical
outcome, whereas circles denote Monte Carlo simulation results.

For nonzero obstruction (i.e., z 
= 0), the defect-restricted
phases appear in the phase diagrams which vanish at z = 0
as can be seen in Figs. 3(d) and 6, respectively. In the limit-
ing case z → 0, i.e., either pd → 1 or ρ∗ → 0, the defect is
rendered ineffective and the current in H/L phase approaches
the value 0.25, which agrees with the maximal current in
the nondefective counterpart [36]. Moreover, the topology of
the phase diagram thus derived is quite similarly to that of a
homogeneous TASEP with reservoir crowding [36]. This is
simply demonstrated by considering the following grouping
of phases as listed below:

L/L ↔ L, M/M ↔ M, H/H ↔ H, L/S, S/H, L/H ↔ S.

(29)

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

FIG. 5. Impact of obstruction factor z on current in the H/L phase
(denoted as JH/L). The parameter z = 0 (1) corresponds to minimum
(maximum) obstruction to the flow of particles. The other parameter
is μ = 1. Solid line represents theoretical outcome, whereas circles
denote Monte Carlo simulation results.

FIG. 6. Phase diagram for the parameters μ = 1 and z = 0. Solid
lines denote theoretical outcomes, whereas circles denote Monte
Carlo simulation results. The contours and the color bar provide the
visualization of current across the phases.

In another extreme case when z = 1, the particle flow is
completely blocked leading to zero current in the system. In
such a scenario, the phase diagram is completely occupied by
H/L phase with the maximal sustainable current to be zero.
This is supported mathematically by the expressions in Table I
where the effective rates that govern the particle densities and
currents become zero.

Now, we discuss the two categories of shock phases, bulk
induced and boundary induced, in detail that arise in the phase
diagram.

C. Shock dynamics

As discussed in previous sections, localized shock devel-
ops in the density profiles as a result of the system’s finite
number of particles. The phases admitting these shock can
be categorized into two types: bulk induced and boundary
induced. A bulk-induced shock has been seen to exist in
the S*/L and H/S* phases. Meanwhile, a boundary-induced
shock appears in L/S and S/H phases. In thermodynamic
limit, the Eq. (9) becomes the common continuity equation,
∂ρk/∂t + ∂Jk/∂x = 0. The velocity of shock is then given by

V =
{
β̄ − ᾱ; for L/S and S/H phases,
βe − αe; for S*/L and H/S* phases.

(30)

In order to obtain a shock in the bulk, the velocity of the
shock must be zero [51,52]. Using this condition, the system
in phases with shock are analyzed, whose details can be found
in Appendix B.

Here we analyze the shock propagation on the lattice with
respect to entry-exit rates in the α-β plane, whereas the other
parameters remain fixed.

1. Bulk-induced shock

The system exhibits bulk-induced shocks as the lattice
displays low-high-low density segments in the S*/L phase and
high-low-high density segments in the H/S* phase. From the
existence conditions provided in Table I, these phases vanish
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FIG. 7. (a) Movement of shock with respect to (a) β while α is fixed at 1.5. The shock position in density profiles move from right to left
when β is increased from 0.66 to 0.72 at the difference of 0.3. (b) Variation of shock position s∗

2 in the H/S* phase. (c) Change in shock height,
δ, when β is varied. The other parameters are α = 1.5, μ = 1, and z = 0.36. Lines of various styles denote theoretical results, whereas the
outcomes of Monte Carlo simulations are represented by symbols. The position from 0 (1) to 1 (2) denotes the sublattice L1 (L2).

as soon as the impact of defect wanes. Thus, the bulk-induced
shocks emerge as a consequence of the defect dynamics. The
position of shock in S*/L phase is given as

s∗
1 = 2μ(1 − z) + α(2μ − 1)(2 − z)

αz
, (31)

whereas for the H/S* phase, the expression is

s∗
2 = 2[β − μ(1 − z)]

βz
. (32)

Their calculations are detailed in Appendix B. For finite sys-
tem size, this shock is expressed as a tanh-type boundary
layer, which was discussed in Sec. III. When α = 1.5, the
movement of shock with respect to increasing β is provided
in Figs. 7(a) and 7(b). Owing to the fact that the properties
of the bulk-induced phases are independent of the entry-exit
rates, the shock height remains constant throughout each of
these phases. The height of this shock increases with respect
to the obstruction to the flow of particles, which can be seen
in Fig. 7(c). It is observed that in absence of any obstruction,
the shock height becomes zero, which asserts that this phase
vanishes when defect is ineffective.

2. Boundary induced shock

The boundary-induced shocks appear in S/H and L/S
phases and their positions are given by

s1 = 2[β − α(−1 + β + μ)]

α(1 − 2β ) + β
(33)

and

s2 = α(1 − 2μ) + β

α(1 − 2β ) + β
, (34)

respectively. The detailed calculations are provided in Ap-
pendix B. These shocks appear as a rapidly changing solution
for finite systems and are given by tanh-type solutions as
discussed in Sec. III. It is observed that the shock emerges
from the right boundary of the lattice and moves toward the
left with respect to α. To visualize the shock propagation,
we have plotted in Fig. 8(a) density profiles for different α

while keeping the other parameters fixed. Analogously, the
shock position shifts from left to right with respect to β, as
can be seen in Fig. 8(b). Moreover, the shock height in these
phases decrease monotonically with respect to α, which is
demonstrated in Fig. 8(c). The parameters μ and z are fixed
at 1 and 0.36, respectively. Due to the symmetry of phase
diagram at μ = 1, the shock height with respect to β for fixed
α coincides with Fig. 8(c).

On contrary to the bulk-induced shock phases, the sta-
tionary properties of these phases remain unaffected by the
defect kinetics, which can be observed from the expressions
provided in the Table I. It can also be seen from Eqs. (33)
and (34) that the position of shock remains independent of the
defect dynamics.

To summarize, it is seen by theoretical analysis that our
system exhibits nine stationary phases with at most eight
phases appearing in a phase diagram for given dynamics.
Some of these phases include shock which may either be
bulk-induced or boundary-induced, and the position of shock
and their height are obtained analytically. The critical points
enabling the qualitative changes in phase schema are obtained.
All the theoretical arguments have been backed intuitively and
validated via Monte Carlo simulations.

VI. CONCLUSION

In this study, a theoretical model is developed to inves-
tigate the kinetics of a system having a constraint on the
number of particles in the presence of a dynamic defect that
may slow down particle flux. Further, reservoir crowding also
features in the system which regulates both entry and exit
of particles as functions of number of particles in the reser-
voir. We generalized a totally asymmetric simple exclusion
process exhibiting reservoir crowding by incorporating the
effect of reversible defect on a special site. The model is
analyzed theoretically using a simple mean-field approach to
understand the stationary properties of the system. The defect
site causes inhomogeneity on the lattice, and we divided our
system into two connected sublattices. This allows us to char-
acterize the dynamics of the particles at each homogeneous
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FIG. 8. Movement of shock with respect to (a) α while β is fixed at 0.5 and (b) β while α is fixed at 0.5. The shock position in density
profiles move from right to left (left to right) when α (β) is increased from 0.3 to 0.7 at the difference of 0.1. (c) Change in shock height, δ,
when β = 0.5 and α is varied. The other parameters are μ = 1 and z = 0.36. Lines of various styles denote theoretical results, whereas the
outcomes of Monte Carlo simulations are represented by symbols. The position from 0 (1) to 1 (2) denotes the sublattice L1 (L2).

sublattice individually. The boundary-layer analysis to pro-
vide the complete density profile for a finite system has also
been discussed.

A salient feature of our theoretical approach is the reduc-
tion of parameter space corresponding to the defect dynamics
from three to one. The parameters quantifying the binding
and unbinding of dynamic defect as well as the slowdown
rate which collectively describe the defect kinetics in the
model have been replaced by another parameter z, termed the
obstruction factor. Interestingly, it does not restrict the degree
of freedom of the defect dynamics and significantly simplifies
the mathematical analysis.

Utilizing the theoretical approach, of 16 probable phases,
we discarded six phases based on physical arguments and
one phase based on analytical arguments. We established
that there are at most nine potential stationary phases dis-
played by the system based on the kinetics. The properties
of five phases among these are regulated by processes at
the entry or exit from the lattice, and so are not affected
by defect dynamics in a major way. However, the remaining
phases are heavily dependent on the obstruction provided
by the defect. Further, the proposed model exhibits two
types of shocks: bulk induced and boundary induced. The
former vanishes as the effect of defect fades. The prop-
agation of shock and their height have been investigated
theoretically.

The composition of the phase diagram is found to be
strongly dependent on the population of the system which is
characterized by filling factor. On varying the filling factor,
the phase diagram is found to undergo qualitative changes at
two critical values which have been obtained analytically. It is
found that the defect gives rise to defect-restricted phases and
does not impact the properties of the remaining phases. Our
theoretical predictions match with Monte Carlo simulation
findings, indicating that our theoretical technique reflects the
process’s mechanics efficiently. Although the theoretical ap-
proach and Monte Carlo simulations have been provided for a
specific pair of functions, our method also works for different
choices of functions that fits certain conditions reflecting the
real processes.

The primary purpose of our proposed work was to explain
the dynamic properties of the system in study, and the conclu-
sions given were able to characterize the effect of dynamic
defects. We have considered a generic model that can be
implemented to comprehend the behavior of various trans-
port processes, both natural and human-made. In the future,
one may include several other dynamics such as interactions
among particles, Langmuir kinetics, etc., to study a more
generalized version.
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APPENDIX A: NUMERICAL METHOD FOR DENSITY
PROFILES OF PARTICLES

Here we provide an alternative method for obtaining den-
sity profiles using numerical techniques for the following
reasons. First, the procedure is less sophisticated than the
analytical approach mentioned in Secs. III and IV. Moreover,
similarly to the aforementioned approach, this method also
provides the complete solution to the finite system. Second,
unlike the theoretical approach, this method can be readily
modified according to a more generalized model by incorpo-
rating the changes in master equation. Finally, this method
can be employed to obtain the solution where the choice
of functions for Eq. (3) leads to an analytically intractable
form.

We begin by discretizing the partial differential equation in
Eq. (9) using a finite difference scheme where time and space
derivatives are replaced using forward and central difference
formulas, respectively. Taking 	x = 1/L and an appropriate
	t that satisfies the stability condition 	t/	x2 � 1, the so-
lution is obtained in the limit n → ∞ where n is the number
of time steps for 1 < i < L to ensure the occurrence of steady
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state. The discretized equation is given as

ρn+1
i,k = ρn

i,k + ε

2

	t

	x2

(
ρn

i+1,k − 2ρn
i,k + ρn

i−1,k

)
+ 	t

2	x

(
2ρn

i,k − 1
)(

ρn
i+1,k − ρn

i−1,k

)
, (A1)

where k ∈ {1, 2} and ρn
i,k is the mean-field density of the site

i in sublattice Lk at time step n. Due to the definition of the
proposed model, both sublattices interact with each other at
their boundaries. Hence, the boundary conditions are imple-
mented by using the discrete equations with statistical average
replaced by the mean-field density and are obtained as

ρn+1
1,1 = ρn

1,1 + 	tα

[
1 −

∑L
i=1(ρi,1 + ρi,2)

Ntot

](
1 − ρn

1,1

)
− 	tρn

1,1

(
1 − ρn

2,1

)
,

ρn+1
L,1 = ρn

L,1 + 	t
[
ρn

L−1,1

(
1 − ρn

L,1

) − pdρ
∗ρn

L,1

(
1 − ρn

1,2

)
− (1 − ρ∗)ρn

L,1

(
1 − ρn

1,2

)]
,

ρn+1
1,2 = ρn

1,2 + 	t
[
pdρ

∗ρn
L,1

(
1 − ρn

1,2

) − ρn
1,2

(
1 − ρn

2,2

)
+ (1 − ρ∗)ρn

L,1

(
1 − ρn

1,2

)]
,

ρn+1
L,2 = ρn

L,2 + 	tρn
L−1,2

(
1 − ρn

L,2

)
− 	tβ

[
1 −

∑L
i=1(ρi,1 + ρi,2)

Ntot

]
ρn

L,2. (A2)

The density of defect also evolves with time, and therefore ρ∗
must be determined using the discrete equation at each time
step. This equation is expressed as

ρ∗n+1 = ρ∗n + 	t[(1 − ρ∗n)k+ − ρ∗nk−]. (A3)

Equation (A1), together with Eqs. (A2) and (A3), provides the
density profiles for both the sublattices as well as the defect
density. Even though this method is straightforward, one must
note that this method does not provide any further analysis
explicitly, which obstructs the extensive study of proposed
model. Further, this method requires all three parameters,
k+, k−, and pd , to be studied individually, even though they
are revealed to be related using our theoretical analysis.

APPENDIX B: FEASIBLE/INFEASIBLE PHASES

In this section, we delineate the methodology to obtain the
altered rates and the position of shock, wherever applicable,
for the probable phases.

(1) L/L: In this case, the particles display low-density
phase in both sublattices and their densities are given by ρ1 =
ᾱ and ρ2 = αe. Using the continuity of current, these densi-
ties must be equal i.e., αe = ᾱ = αr/μ. Further, employing
ρ2(0) = αe in Eq. (19) gives βe = (1 − αe)(1 − z). Finally, by
using PNC, the quotient of the reservoir is calculated as

r = μ2

α + μ
, (B1)

which is used to evaluate the altered rates.

(2) H/H: Utilizing the methodology similar to that of the
L/L phase, the quotient of the reservoir is obtained as

r = μ(−1 + β + μ)

β + μ
, (B2)

and subsequently the altered rates can be obtained.
(3) L/S: This case occurs when sublattices L1 and L2 dis-

play a low-density phase and shock phase, respectively. Thus,
the particle densities are given as ρ1 = ᾱ and

ρ2 =
{
αe; 0.5 � x � s2,

1 − β̄; s2 < x � 1,
(B3)

where s2 gives the position of shock in sublattice L2. By
continuity of current, we have αe = ᾱ, and due to the coupling
of current, βe = (1 − αe)(1 − z). Moreover, for the existence
of shock, the condition αe = β̄ must hold, which gives

r = βμ

α + β
. (B4)

Finally, by using PNC, the position of shock is

s2 = α(1 − 2μ) + β

α(1 − 2β ) + β
. (B5)

(4) S/H: By arguments similar to those for the L/S phase,
the quotient of the reservoir is obtained as

r = βμ

α + β
, (B6)

and the position of shock in sublattice L1 is expressed as

s1 = 2[β − α(−1 + β + μ)]

α(1 − 2β ) + β
. (B7)

(5) H/L: This case results in particles displaying high-
density and low-density phases in sublattices L1 and L2,
respectively. Thus, the particle densities are expressed as ρ1 =
1 − βe and ρ2 = αe. By deploying the coupling of current, the
effective rates are given as

αe = βe = 1 − z

2 − z
. (B8)

Subsequently, using PNC yields the following value for quo-
tient of reservoir:

r = μ − 1

2
. (B9)

Clearly, as z → 1, the particle densities in both sublattices
tend to 0.5 and the condition of existence of this phase is
violated. Moreover, in such a limiting case, i.e., when the
defect dynamics have no effect on the system, it transitions
to the M/M phase.

(6) S*/L: This scenario occurs when the sublattices L1 and
L2 display a shock phase and a low-density phase, respec-
tively. Thus, the particle densities are expressed as

ρ1 =
{
ᾱ; 0 � x � s∗

1,

1 − βe; s∗
1 < x � 1,

(B10)

and ρ2 = αe. On using the current coupling, the following
expression for the effective rates is obtained:

αe = βe = 1 − z

2 − z
. (B11)
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For existence of shock, the condition βe = ᾱ must be satisfied,
resulting in the reservoir quotient to be expressed as

r = μ

α

(
1 − z

2 − z

)
. (B12)

By employing PNC, the position of shock is obtained as

s∗
1 = 2μ(1 − z) + α(2μ − 1)(2 − z)

αz
. (B13)

(7) H/S*: By utilizing the reasoning analogous to that for
S*/L, the quotient of the reservoir is evaluated as

r = μ[−1 + z + β(2 + z)]

β(2 + z)
, (B14)

and the position of shock in sublattice L2 is given by

s∗
2 = 2[β − μ(1 − z)]

βz
. (B15)

(8) L/H: When the particles are in the low-density phase
and high-density phases in sublattices L1 and L2, respectively,
their densities are given by ρ1 = ᾱ and ρ2 = 1 − β̄. Due to
the coupling of current, the reservoir quotient is evaluated as

r = μ(−1 + β + 2μ)

α + β + 2μ
, (B16)

whereas the continuity of current yields

r = βμ

α + β
. (B17)

The reservoir must hold a unique value, and therefore expres-
sions provided by Eqs. (B16) and (B17) must be equal, which
gives the existence curve of this phase as

α = β

2μ − 1
. (B18)

This phase arises on the transition line between L/S and S/H.
(9) M/M: In this phase, both sublattices exhibit maximal

current and their densities are equal to 0.5. Therefore, the
reservoir holds the remaining particles and its quotient is given
by

r = μ − 1
2 . (B19)

Subsequently, the altered rates are obtained and it is observed
that this phase exists only in the case when defect is ineffec-
tive, i.e., z = 0.

Theoretically discarded phase

The S/S phase arises when both sublattices display shock
phase. On obtaining the altered rate and existence conditions,
this phase is found to be on the phase transition curve between
S*/L and L/S as well as H/S* and S/H. This means the position
of shock is only on the boundaries in these sublattices. Thus
this phase can be discarded.
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