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Roughness in the periodic potential induces absolute negative mobility in a driven Brownian ratchet
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Absolute negative mobility, where particles move opposite to the direction as governed by the external load,
is an anomalous transport property of a Brownian ratchet and has technological implications in mass separation
and bioanalytical applications. We numerically investigated here the effect of roughness in symmetric periodic
potential on the negative mobility of a driven inertial Brownian ratchet in the presence of an external load. We
show that the microscopic spatial heterogeneity of the potential can generate negative mobility which would
not otherwise be possible under smooth potential in the concerned parameter space. We determined the optimal
condition in terms of parameter space for such anomalous behavior. Our calculations indicate that the shift of
balance towards the negative velocity phase in the temporal oscillations of velocity and weakly chaotic dynamics
are responsible factors for roughness-induced negative mobility. These calculations highlight a constructive role
of roughness in the anomalous transport properties of Brownian ratchet.

DOI: 10.1103/PhysRevE.106.044129

I. INTRODUCTION

Over the past few decades, a plethora of studies have been
carried out to understand the transport properties of nonequi-
librium systems such as Brownian ratchets[1–5]. Brownian
ratchets are a class of systems that generate directed motion
from unbiased nonequilibrium fluctuations by breaking the
spatial symmetry and the principle of detailed balance. Rock-
ing ratchet, flashing ratchet, diffusion ratchet and correlation
ratchet are some of the important examples of extensively
studied Brownian ratchet models that function far from
equilibrium [3,5]. Absolute negative mobility (ANM) is an
anomalous feature in transport of Brownian ratchets and it is
characterized by a net current of mass in the direction opposite
to the direction of the external load [6–16]. At equilibrium
such a physical phenomena will be contradictory to New-
ton’s laws of motion; however, in nonequilibrium condition
negative mobility has been observed in many experimental
systems. Experimentally it has been observed in a variety of
quantum mechanical systems such as the nonlinear response
in p-modulation-doped quantum wells [17], absolute nega-
tive conductance in semi-conductor super lattices [18,19],
absolute negative resistance in a two-dimensional electron
gas [20], negative absolute resistance in a Josephson Junc-
tion [21]. ANM has also been observed in classical systems
such as in charged colloidal particles in microfluidic chan-
nels [22,23]. ANM has potential technological applications
such as separation of particles based on their mass [24–26].

Spatially periodic potential in the Brownian ratchet is a key
ingredient in the transport of the particle and various types
of model potential have been explored Brownian ratchets [5].
Traditionally a smooth periodic potential devoid of any spatial
heterogeneity has been the choice in exploring the transport
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properties of Brownian particles. However, microscopic spa-
tial heterogeneity in potential landscape is known to exist in
many physical and chemical systems. For example, multiple
microscopic local minima are known to present between two
global attractor states in the protein folding pathway and such
microscopic minima creates spatial heterogeneity in the po-
tential landscape [27–29]. Metabasins which are microscopic
fine structures in the free energy landscape is known to cause
slow diffusion in structural glasses [30,31]. Highly viscous
properties of supercooled glasses and liquids are attributed to
rough potential energy landscape [32,33]. In bacteria mem-
brane transport of ions through the ion channels are also
regulated by spatially heterogeneous energy landscape [34].

In the context of Brownian ratchet, the effect of roughness
was investigated on an over-damped thermal ratchet to find
that roughness works as a hindrance to the transport support-
ing the early finding of Zwanzig on the estimation of first
passage time across rough potential barrier [35,36]. However,
more recent findings shows that roughness enhances transport
in both over-damped and inertial systems under Levy noise
and it was argued that the microscopic heterogeneity of the
potential ladders up the particle through the barrier resulting
in enhanced transport [37–39]. Recently we have shown that
in the weak noise limit, small roughness in the asymmetric
periodic potential leads to enhancement of transport as com-
pared to the smooth potential for driven inertial Brownian
ratchet [40].

In the present work, we studied the transport properties of
a driven inertial Brownian particle under a symmetric rough
periodic potential in the presence of an external load. Due to
the potential technological applications of ANM in the context
of mass separation, our objective was to investigate the fate of
ANM under the roughness of the periodic potential in a driven
inertial ratchet under an external load. We found that ANM
can be established purely by the roughness of the potential
in a moderately weak noise limit. We determined the optimal
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parameter range where the extent of ANM was maximum.
We attributed to such anomalous behavior of transport to
the shift in the balance of average duration of negative and
positive phases in the oscillations of velocity. Further, our
calculations indicate that weak deterministic chaos may also
be a responsible factor for the roughness-induced ANM. In
Sec. II the model of the driven Brownian ratchet under a rough
symmetric periodic potential in the presence of an external
load is described. The results are described in Sec. III and we
summarize the work in Sec. IV.

II. MODEL

We have considered a classical Brownian particle of mass
M under a spatially symmetric rough periodic potential U (x)
along with an external load F and the particle is driven out
of equilibrium by an unbiased time-periodic force A cos(�t )
with an amplitude A and an angular frequency �. The
Langevin equation of the particle is given by

Mẍ = −U ′(x) + F + A cos(�t ) − �ẋ + ξ (t ). (1)

The (·) and (′) above x denote derivative with respect
to time, t , and position, x, respectively. The fourth and the
fifth terms on the right-hand side of the above equation are
frictional force and thermal fluctuations, respectively, origi-
nating from the heat bath where the particle is immersed into.
The thermal noise, ξ (t ), is Gaussian, unbiased 〈ξ (t )〉 = 0,
and follows the fluctuation-dissipation relation, 〈ξ (t )ξ (t ′)〉 =
2�kBT δ(t − t ′), where �, kB and T represent the frictional
coefficient, the Boltzmann constant and the temperature, re-
spectively.

The symmetric periodic potential U (x) consists of a large
amplitude low frequency U0(x) and small amplitude large
frequency U1(x) terms and it is given as

U (x) = U0(x) + U1(x). (2)

The U0(x) represent smooth part of the periodic potential
and was chosen as

U0(x) = −�U sin

(
2π

L
x

)
, (3)

with L as the periodicity and �U as the barrier height. To
achieve roughness in the potential, U1(x) was superposed with
the smooth potential U0(x) and was chosen as [36]

U1(x) = �Uε0 cos(	x), (4)

where ε0 is the amplitude of the roughness and 	 is the
periodicity of the rough part of the potential. Typically the
periodicity of smooth part is much larger than that of the rough
part of the potential. To reduce the number of variables, we
nondimensionalized Eq. (1) and the dimensionless version of
the equation of motion is given as [15]

¨̂x = −Û ′(x̂) + f + a cos(ωt̂ ) − γ ˙̂x + ξ̂ ˆ(t ). (5)

The x̂(= 2πx/L) and t̂ (= t/τ0) are the dimension-
less position and time, respectively, with τ0 = L

2π

√
M/�U .

The other parameters are rescaled as γ = τ0�/M, a =
AL/2π�U , f = FL/2π�U , Q = kBT /�U , ε = ε0/�U ,
λ = 	L/2π , and ω = τ0�. The rescaled thermal noise is
ξ̂ ˆ(t ) [= (L/2π�U )ξ (τ0t̂ )] and follows the following relations
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FIG. 1. Schematic representation of symmetric periodic poten-
tial, U (x), without and with roughness and load.

〈ξ̂ (t̂ )〉 = 0 and 〈ξ̂ (t̂ )ξ̂ (t̂ ′)〉 = 2γ Qδ(t̂ − t̂ ′). The dimension-
less potential is given by Û (x̂) = U ((L/2π )x)/�U possesses
the period L = 2π . The rescaled potential is now given as

Û (x̂) = − sin (x̂) + ε cos(λx̂). (6)

The parameter ε determines the amplitude of roughness of
the periodic potential. We set the value of λ as 50 throughout
the paper. Figure 1 shows the smooth (ε = 0) and rough pe-
riodic (ε = 0.1) potential with ( f = 0.5) and without ( f = 0)
the external load.

To determine transport properties of the Brownian parti-
cle under rough symmetric periodic potential in presence of
an external load, we computed the asymptotic ensemble and
period average velocity, 〈v〉, defined as [41]

〈v〉 = lim
t→∞

1

T

∫ t+T

t
ds〈ẋ(s)〉. (7)

The angular bracket, 〈〉, represents the ensemble average
over many different initial x and ẋ. The period average was
preformed over a period (T = 2π/ω) of the external driving
force. We numerically integrated the Langevin equation (5)
using second-order predictor-corrector method with randomly
chosen initial values of x and ẋ, and the values were sam-
pled from uniform distributions over the interval [0, 2π ] and
[−2, 2], respectively, for the x and ẋ. Due to the short period-
icity of the rough part of the potential, we chose a very small
step size 10−4 × 2π

ω
in the calculations. In all calculations,

simulations were carried out for a total time of 10 000 × T
and ensemble averaging were carried out over 2048 initial
conditions. We calculated 〈v〉 using Eq. (7) where we first
averaged the velocity over a period in the long time limit and
finally averaged the resultant over an ensemble of trajecto-
ries. In addition we also calculated 〈v〉 from the x(t ) of the
particle. Here we subtracted the position at a transient time
(t = 20T ) from the position at the final time (t = 10 000T )
and dividing the difference by the time interval and finally
averaging the resultant over an ensemble of trajectories. We
showed that both the methods leads to identical outcomes
[Figs. 2(a) and 2(b)]. We point out here that calculation of 〈v〉
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FIG. 2. The ensemble and period-average velocity calculated from x(t ) (a) and ẋ(t ) (b) as a function of γ for different values of ε. The
shaded part indicate the region of γ where the system shows ANM. (c) The plot of difference between the 〈v〉 without and with roughness
(〈v〉ε=0 − 〈v〉) with γ . The vertical line represents maximum difference between the 〈v〉 without and with roughness. Other parameters were
f = 0.015, Q = 0.00035, a = 1.589, and ω = 0.559.

from the position is computationally slightly less expensive
as compared to the first method as the first method requires
greater ensemble averaging to minimize fluctuation.

III. RESULTS AND DISCUSSIONS

The dynamics of the driven inertial ratchet is governed
by a six-dimensional parameter space (ε, a, ω, γ , f , Q).
Previous studies have shown the importance of the parame-
ters in dictating the nontrivial behavior of the similar system
under smooth periodic potential [42]. As our objective is to
determine a condition of roughness-induced ANM, we first
determined the parameter space relevant to the anomalous
negative mobility of the system by numerically scanning the
parameters individually. Figure 2(a) shows the dependence of
〈v〉, calculated from x(t ), on the dissipation constant, γ , for
different degrees of the roughness, ε, at a particular value of
external load, f = 0.015. Figure 2(b) shows 〈v〉 versus γ plot
where 〈v〉 was calculated using Eq. (7). The visual comparison
of these two plots points out nearly identical outcomes from
both the methods. The variation of 〈v〉 with γ for different
values of the ε underscores the parametric dependence of
ANM. There are two regions (shaded areas) where the system
exhibits ANM. The region on the left, the system shows ANM
under the smooth potential and with roughness the extent of
ANM decreases. Although in the region on the right both the
rough (ε 	= 0) and smooth (ε = 0) systems exhibit ANM and,
however, there is a region of γ where ANM is purely due
to roughness in the potential as the smooth system results in
positive values of 〈v〉 against a positive load of f = 0.015.
Thus, there is a region of γ where ANM can be driven only

by the microscopic spatial heterogeneity of the potential. To
determine the value of γ where the extent of roughness-
driven ANM is maximum, we calculated the difference of 〈v〉
between the smooth and rough systems and determined the
value of γ corresponding to the maximum in the difference
[Fig. 2(c)]. We followed similar procedure to identify the val-
ues of amplitude (a) and frequency (ω) of the external driving
force [Figs. 3(a) and 3(b)]. These calculations also highlight
that there are regions of parameter values where the system
does not show any directed transport. Thus, even for normal
transport against the external load an optimal combination of
all parameters are necessary. Based on these calculations we
fixed the values of the γ , a, and ω as 0.771, 1.589, and 0.558,
respectively, for the subsequent calculations.

After determining the initial parameter space correspond-
ing to roughness-driven ANM, we investigated the effect of
the external load on the anomalous nature of the transport
across different degrees of the roughness. Figure 4(a) shows
〈v〉 as a function of load, f , for different values of ε at a
particular value of noise intensity, Q. It indicates that the the
system does not exhibit anomalous transport across a large
range of load under the smooth potential (ε = 0). However,
with the introduction of roughness the system exhibits ANM
that increases with the load and with subsequent increase of
load the particle changes the direction of the current from
negative to positive leading to current reversal. The extent
of ANM increases initially with roughness (more negative
〈v〉); however, at a large roughness the system does not
show ANM. Thus, introduction of roughness in the periodic
potential leads to two key aspects of transport—anomalous
transport and current reversal. It further points out that there
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(b)

(a)

FIG. 3. Parameter scanning for amplitude, a (a), and frequency,
ω (b), of the external driving force. The values of γ , Q, and f were
0.771, 0.00035, and 0.015, respectively. In the scans of a and ω, ω

and a were chosen to be 0.558 and 1.589, respectively. The verti-
cal lines represent the selected values of the respective parameters
where the difference between the average velocities without and with
roughness was maximum.

is an optimal roughness where the system exhibits maximum
ANM. Across various values of ε, the load corresponding to
maximum negative average velocity was determined to be at
f ≈ 0.03. Repeat of these calculations for increasing values of
the noise strength show that [Figs. 4(c) and 4(d)] the ANM and
current reversal diminishes with in the regime of large noise.
Particularly the range of load for which the system exhibits
ANM decreases with the increase of Q. It is important to
note that the transport property of the system under smooth
potential remains somewhat unaltered across different values
of noise strength. Thus it seems that the roughness-induced
ANM and current reversal is a property of the system in the
weak noise limit. This finding is consistent with our previous
observation that enhancement of transport of particle occurs
only in the limit of weak noise in the context of transport under
asymmetric periodic potential [40].

Our calculations show that roughness-induced ANM is
observed at a smaller amplitude of roughness along with a
smaller range of positive load. It is possible that the small
amplitude roughness in the potential energy acts as a hin-
drance to the movement of the particle in the small positive
range of load and thereby forcing the particles to move in the
opposite direction leading to negative mobility. To verify that,
we calculated 〈v〉 in the negative range of load for the same
domain of roughness as well as other parameters (Fig. 5). In
the small negative load region, the direction of the current is
opposite to the direction of the load indicating that the small

(d)

(b)(a)

(c)

FIG. 4. The variation of 〈v〉 as a function of external load, f ,
for different values of Q and ε. Other parameters were γ = 0.771,
a = 1.589, and ω = 0.558.

amplitude roughness force the particles to move against the
direction of the load in the small load region.

Next we studied the dependence of the 〈v〉 on the ε at
a load corresponding to the maximum negative velocity ( f
corresponding to minimum in the Fig. 4) at different value of
Q (Fig. 6). Across different noise strengths, in the limit of ε =
0 the system exhibits normal transport and with increasing
roughness it shows negative average velocity that decreases
sharply with the increase of ε. With subsequent increase of
roughness, the value of negative current deceases and direc-
tion of the current becomes positive and in the large roughness
limit it becomes negative again. Therefore, the system under-
goes multiple current reversal with the increasing value of ε.

FIG. 5. The plot of 〈v〉 as a function of external load, f , at Q =
0.0004 for different values of ε. Other parameters were the same as
in Fig. 4.
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FIG. 6. The variation of 〈v〉 as a function of ε for different values
of Q. Other parameters were the same as in Fig. 4.

The extent of ANM is more in the limit of small value of Q. To
find out the fate of ANM across a large range of noise strength,
we calculated 〈v〉 as a function of Q for different values of ε

(Fig. 7) at an external load ( f = 0.03) corresponding to the
maximum ANM as indicated in the Fig. 4. In the very weak
noise limit (Q < 0.0002), the system under smooth potential
exhibits ANM. With the introduction of a small roughness,
the extent of ANM increases; however, large roughness forces
the particle to move along the direction of the external load
diminishing the ANM. In the intermediate region of the noise
strength (0.0002 < Q < 0.003), only the rough system moves
opposite to the direction of the load exhibiting substantial
amount of ANM. In the large noise limit the system does not
exhibit ANM at all. Therefore, in an intermediate range of
noise strength ANM can be observed due to the roughness of
the potential energy.

Previously the direction of current have been associated
to the direction of the running states of the trajectories[7,43].

FIG. 7. The variation of 〈v〉 as a function of Q for the indi-
cated values of ε. The shaded part indicates the region of Q where
roughness-driven ANM occurs. Other parameters were the same as
in Fig. 4.

(c)

(d)(b)

(a)

FIG. 8. Temporal oscillation of velocity, ẋ(t ) (a). The average
fraction of time with negative (〈t−〉) and positive (〈t+〉) velocity in
ẋ(t ) during onefull time period (T ) of external driving are plotted as
a function of ε for different values of Q (b, c). The correlation plots
of 〈v〉 with 〈t−〉 for different values of Q. Other parameters were the
same as in Fig. 4.

Typically with a net nonzero average velocity, x(t ) exhibits a
running state defined as the increasing (or decreasing) values
of x with time. However, irrespective of the value of the
current, ẋ(t ) oscillates over time due to the periodic driving
force [Fig. 8(a)]. To make an association between the ANM
and the dynamics of the system, we calculated the average
fraction of duration the system spends with positive (〈t+〉)
or negative (〈t−〉) velocities during a full time period of the
external driving (T ). Intuitively, if the system spends more
time in the negative velocity phase then the sign of the 〈v〉
must be negative. Therefore, the sign of the current must be
predicted from by looking into either 〈t−〉 or 〈t+〉. Figure 8(b)
shows the variation of the 〈t−〉 with ε and it indicates that the
increase in 〈t−〉 leads to the increase in the average negative
velocity (Fig. 6). Therefore, its variation with ε is consistent
with the 〈v〉 versus ε plot in Fig. 5. Consequently, 〈t+〉 behaves
in a complementary manner [Fig. 8(c)]. 〈v〉 shows a good
correlation with t− and large negative 〈v〉 strongly correlates
with the large 〈t−〉 [Fig. 8(d)]. These suggest that the shifts
in the balance of positive and negative velocity phases in the
temporal oscillation of ẋ(t ) ultimately dictates the direction of
the average current in the transport.

Previous works have suggested chaotic dynamics as the
origin for the ANM [7,8,44]. To determine any potential role
of chaotic dynamics in generating ANM, we calculated the
bifurcation diagram where the maximum of the temporal ve-
locity, ẋmax, is plotted against the roughness parameter, ε, for
the deterministic (Q = 0) dynamical system (Fig. 9). With
ε, the chaotic nature of the system varies quite extensively.
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FIG. 9. Bifurcation diagram (ẋmax vs ε) of the deterministic
dynamical system with Q = 0.0 and f = 0.03 (top panel). Represen-
tative phase-space plots for the indicated values of ε (bottom panel).

In the very small (ε < 0.0075) and intermediate (0.05 < ε <

0.07) roughness regimes, the system is moderately chaotic and
for other values of roughness the system is highly chaotic.
Comparison of bifurcation diagram and the 〈v〉 vs ε plot
(Fig. 6) indicate a strong correlation between the ANM and
the weak chaotic dynamics of the system. We plotted the
phase-space diagram of the system for the ε values corre-
sponding to maximum ANM (ε = 0.005 and ε = 0.06) and
we found that system is weakly chaotic. On the contrary,
phase-space plot reveals strongly chaotic dynamics at the
roughness (ε = 0.035) where the system shows maximum
positive velocity. Therefore, weak chaos seems to be the origin
of the roughness-induced ANM.

Diffusion anomalies are known to occur in driven inertial
Brownian ratchets under smooth periodic potential. Previous
studies have indicated the existence of super- and subdiffusive
regimes across different time scales of the dynamics [41,45–
47]. To determine the nature of diffusion under roughness of
the potential, we looked at the mean square displacement,
〈�x2(t )〉(= 〈[x(t ) − 〈x(t )〉]2〉), and time-dependent diffusion
coefficient, D(t )(= 〈�x2(t )〉/2t) (Fig. 10). 〈�x2(t )〉 versus
t plot indicate that the system exhibits ballistic behavior in
the early time and normal diffusion is established at a later
time. While the smooth system takes a substantially long time
to establish normal diffusion, the roughness enforces normal
diffusion early. In fact, duration of ballistic phase becomes
progressively shorter with increasing roughness. We also plot-
ted the time-dependent diffusion coefficient, D(t ), and indeed
the smooth system takes a long time to establish normal
diffusion where D(t ) becomes time independent. These plots
clearly show that normal diffusion is established early under
roughness. Therefore, these results indicate that the ANM
is not a by product of anomalous diffusion of the Brownian
system under rough potential.

FIG. 10. (a) The plot of mean square displacement, 〈�x2(t )〉, as
a function of time for different values of ε. The ballistic diffusion
(〈�x2(t )〉 ∝ t2) in the early phase and normal diffusion in the later
phase (〈�x2(t )〉 ∝ t) in the long time are indicated by the dashed
lines. (b) The plot of time-dependent diffusion coefficient, D(t ), as a
function of time. Parameters were the same as in Fig. 4.

The role of asymmetry in a periodic potential has been
extensively studied in the context of ratchet models as it
becomes crucial in breaking spatial symmetry of the system in
absence of an external load. Therefore, we looked at the effect
of the asymmetry on the ANM in presence of roughness of the
periodic potential. To introduce asymmetry in the potential,
U2(x) was added to the U (x) in Eq. (6) [48],

U2(x) = �

2
sin (2πx), (8)

where � is the asymmetry parameter and in absence of an
external load it leads to the loss of reflection symmetry of
the symmetric periodic potential [40,41]. After dropping the
ˆ notation, the full expression of the potential energy now
becomes

U (x) = − sin (x) + ε cos(λx) + �

2
sin (2πx). (9)

In Fig. 11 the effect of asymmetric parameter, �, on the
transport of the particle is presented for different values of ε.
In the regime of small asymmetry (� < 0.1), again roughness
leads to ANM. The variation of 〈v〉 with � indicate that
the asymmetry in the periodic potential can lead to current
reversal both for the smooth and rough systems. Particularly
at a small roughness (ε = 0.001) the system exhibits multi-
ple current reversals. However, with increased asymmetry the
current follows the direction as dictated by the external load.
These results indicate that the ANM can be generated in the
asymmetric periodic potential as well and the directionality of
the current can be tuned by dialing the asymmetric parameter
of the potential.
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FIG. 11. The plot of 〈v〉 as a function of asymmetry parameter,
�, for the indicated values of ε with a load f = 0.03. Other parame-
ters were Q = 0.0004, γ = 0.771, a = 1.589, and ω = 0.558.

IV. CONCLUSION

We have numerically examined how roughness, a micro-
scopic spatial heterogeneity, in a symmetric periodic potential
of a driven inertial Brownian ratchet affects the transport
characteristics in the presence of an external load. Our main
objective was to investigate the consequences of roughness
on ANM—an anomalous nature of transport where the di-
rection of the mass transport is opposite to the direction as
dictated by the external load. As ANM is sensitive to param-
eter space [42], we have determined an optimal parameter
space where ANM is generated purely due to the roughness
in the periodic potential. We show that the roughness-driven
ANM is a property of the system in the limit of moderately
weak noise. In the quest for finding the dynamic origin of
ANM, we found that in presence of roughness the average
duration of negative velocity phase is larger than the aver-
age duration of the positive velocity phase in the temporal

oscillatory dynamics of velocity during a period of the ex-
ternal driving. Therefore, the roughness skews the balance be-
tween the negative and positive velocity phases towards neg-
ative velocity phase thereby forcing the particle run in the op-
posite direction of the external load. Furthermore, we find that
the system is weakly chaotic in the regime of roughness where
ANM is observed indicating a possible connection of weak
chaos with the roughness-induced ANM. We show that the
roughness-driven anomalous transport is also possible for the
system under asymmetric periodic potential where multiple
current reversals can be generated as function of asymmetric
parameter of the potential.

Charged colloidal particles in microfluidic devices consist-
ing of alternating large and small gaps were shown to generate
ANM under periodic external electric field. The periodic
physical obstacles with intervening gaps represent periodic
potential energy landscape and the microscopic heterogeneity
of the gaps sizes were reasoned to be the origin of ANM in
such systems [22,23]. Our calculation of roughness-induced
ANM can be treated as an example of theoretical consid-
eration of such phenomena. Further recent theoretical work
highlighted the role of potential energy function in generating
ANM in a driven inertial ratchet [49]. Therefore, our work
of roughness-driven ANM falls under the broad consideration
of role of potential energy in ANM. Historically, roughness
has been considered as the nuisance as it was predicted to
be disruptive in barrier crossing dynamics and ratchet trans-
port [35,36]. Our work underscores a constructive role of
microscopic spatial heterogeneity in transport properties of
driven inertial ratchet and thus can have a potential role in
designing mass separation and bioanalytical applications.
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