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Universal Matsubara time decay of quantum autocorrelations for Boltzmann particles
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The general properties of time dependent autocorrelations in many-body quantum systems are here analyzed
at thermodynamic equilibrium in the Boltzmann canonical ensemble at temperature T , by means of the expo-
nential expansion theory (EET). It is shown that the Kubo-Martin-Schwinger (KMS) symmetry applied to the
exponential expansion of the correlation leads to the existence of two different sets of decay modes (channels)
here indicated as “Matsubara modes” and “system modes,” respectively. The Matsubara modes are a series of
pure decay channels with time constants representing a direct action of the thermostat upon the correlation, with
a characteristic principal decay time τ1 = h̄/(2πkBT ), where h̄ and kB are the Planck and Boltzmann constants,
and T is the temperature. Moreover, the KMS condition implies that the amplitudes pertaining to the even and
odd contribution of the system modes to the quantum correlation are not independent. These two properties are
quantum mechanical in nature and “universal,” in the sense that they are present for any autocorrelation of a
quantum system at equilibrium at a temperature T . The Matsubara modes’ contribution to the time behavior of
a quantum correlation is limited to times of the order of τ1, which however can be comparable with some of
the characteristic decay times of the system modes. In addition, since the parameters representing the overall
time behavior of the quantum correlation can be given in terms of the parameters of its Kubo transform, the
EET representation turns out to be useful in calculations exploiting the outputs of some widespread quantum
simulation methods. A discussion of the properties of these relations is described in detail with numerical
examples. The case of the velocity autocorrelation function of para hydrogen at low temperature is also reported
as a final example for a real system.
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I. INTRODUCTION

The dynamical properties of a quantum mechanical many-
body system at thermal equilibrium are predominantly
determined by studying the time dependence of correlation
functions of relevant variables. From the experimental side,
information on some correlation functions is usually achieved
by spectroscopic measurements in which the Fourier trans-
form (FT) of the correlations is detected.

Correlation functions and their spectra can be analyzed
referring to the exponential expansion theory (EET) [1–3],
which allows one to determine the processes through which
the correlation decays in time. The EET method has been
applied successfully to various cases in order to discuss the
nature of propagating and nonpropagating collective modes
[4,5], as well as important single-particle properties of clas-
sical [6–8] and quantum [9,10] fluids. Nevertheless, the very
general consequences of the Kubo-Martin-Schwinger (KMS)
symmetry [11,12] within the EET of quantum correlation
functions have not been discussed in detail previously. Here,
we will show, in particular, that this symmetry leads to a
peculiar set of decay channels of the correlation having a
universal character.

Calculations of some correlation functions relevant to
the microscopic dynamics of the system can be performed
in weakly quantum fluids [13] by approximate molecular
dynamics simulation methods like centroid molecular dynam-

ics (CMD) [14,15] and ring polymer molecular dynamics
(RPMD) [16–19], and those based on the Feynman-Kleinert
approach [20,21]. However, in both the CMD and RPMD
methods, the time behavior of the Kubo transform (KT) [12],
and not that of the quantum correlation itself, is derived.
Actually, this is not a drawback at all, since also the KT of a
quantum correlation can be expanded in the EET framework,
and it has been shown that it depends on a set of modes strictly
related to the “system modes” of the quantum correlation,
with a consequent great simplification of the data analysis. Of
course, as a further step, it is important to have a general and
direct functional connection between the quantum correlation
and its KT in the time domain.

The first derivation was provided by Braams et al. using
the convolution theorem [22], in order to invert the well-
known relation between genuine quantum correlations and
Kubo-transformed ones, once these are studied in Fourier
space (a consequence of the fluctuation-dissipation theorem
[12]). However, such an important step regarded the time
behavior of the whole correlation function and the link with its
KT, without focusing on the role that each single dynamical
process (e.g., relaxations and propagating modes of density
fluctuations) plays in the overall time decay of the quantum
correlation.

Such a possibility was explored only rather recently by
combining Braams et al.’s results for the total correlation [22]
with its EET decomposition [23], the latter approach being

2470-0045/2022/106(4)/044128(12) 044128-1 ©2022 American Physical Society

https://orcid.org/0000-0003-0997-4074
https://orcid.org/0000-0002-5858-1376
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.106.044128&domain=pdf&date_stamp=2022-10-20
https://doi.org/10.1103/PhysRevE.106.044128


FABRIZIO BAROCCHI AND ELEONORA GUARINI PHYSICAL REVIEW E 106, 044128 (2022)

able to give more insight about the contribution of individ-
ual decay mechanisms. In fact, the important achievement of
Ref. [23] was to show that the quantum correlation can be
written in terms of the parameters determining the exponential
expansion of the KT. Reference [23] followed a different
derivation from the one we illustrate in the present paper. The
previous derivation leads to a compact, closed-form, expres-
sion which is indeed particularly suited for numerical calcula-
tions. However, it does not fully highlight some very general
properties of the exponential expansion of quantum correla-
tion functions, or the “universal” character of some of them.

Here we propose to discuss in detail the EET-based mode
decomposition of a quantum correlation function with the aim
of shedding light on some of its physical and fundamental
properties. We also find it significant to better disclose the un-
derlying physics and to outline some mathematical properties
descending from the theory. This paper is also a comple-
tion of what done in Ref. [23] that might help reaching a
deeper understanding of the, either universal or specifically
system-dependent, modes that determine the time behavior
of a quantum correlation at finite (nonzero) temperature. In
the present description, the “structure” of both the universal
and system-dependent components of the correlation can be
deduced and compared in their trends as a function of time.

II. GENERAL PROPERTIES OF THE QUANTUM
CORRELATION AND ITS KUBO TRANSFORM

Here we recall the symmetry properties and relations re-
garding the quantum correlation and its KT which are useful
for the following development of the theory.

As mentioned, we refer to a quantum many-body system
in thermodynamic equilibrium at a temperature T . The auto-
correlation of a physical variable depending on real time t and
represented by the Hermitian operator A is defined as the inner
product

c(t ) = (A(0), A(t )) = 〈A(0)A(t )〉 = Tr[AeiHt/h̄Ae−iHt/h̄ρ],

(1)

where in the last member we used A in place of A(0) and
exploited the Heisenberg representation of A(t ), with H rep-
resenting the Hamiltonian operator of the system and h̄ the
reduced Planck constant. The density operator is finally given
by ρ = e−βH

Tr[e−βH] , with β = 1
kBT , kB being the Boltzmann con-

stant.
The time reversal symmetry property of c(t ) descends from

Eq. (1) as

c∗(t ) = c(−t ), (2)

while the KMS relations [11,12], can be demonstrated to give

c(t ) = c(−t + iβ h̄) (3)

and

c∗(t ) = c(t + iβ h̄). (4)

The last two relations define a property of c(t ) in the com-
plex plane and, similarly to what is done in thermal quantum
field theory [24], by applying the Wick rotation τ = it to
c(t ), the imaginary time representation c(τ ) of c(t ) will be

shown in the following to contain a periodic behavior with
period equal to the “quantum thermal time” τ = β h̄ [25].
This periodicity can be decomposed in a Fourier series with
contributions from all harmonics ωn = nω1 of the principal
frequency ω1 = 2π/τ = 2π/(β h̄). As mentioned, the various
harmonics ωn are the so called Matsubara frequencies that
have been introduced in the imaginary time description of the
thermal quantum field [24].

In what follows we will discuss the properties of the quan-
tum correlation c(t ) within the EET [1–3] taking into account
the symmetry properties given in Eqs. (2), (3), and (4). Dif-
ferently from what was done in Refs. [22,23], where Fourier
transforms were used [26], we consider it more appropriate to
work directly in the complex plane and to develop the theory
with the use of the two-sided Laplace transform [27] (LT)
indicated by L[. . . ]. In particular, such a transform, L[c(t ), s],
of c(t ) is defined as

L[c(t ), s] = C(s) =
∫ ∞

−∞
dt e−st c(t ), (5)

where s is complex. The transform of c∗(t ) is therefore given
by

L[c∗(t ), s] =
∫ ∞

−∞
dt e−st c∗(t )

=
[ ∫ ∞

−∞
dt e−s∗t c(t )

]∗
= C∗(s∗). (6)

Moreover, the time symmetry of Eq. (2) implies that

C∗(s∗) =
∫ ∞

−∞
dt e−st c(−t ) = L[c(−t ), s]. (7)

Finally, by transforming both members of Eq. (4) we have

C(s) = e−iβ h̄sC∗(s∗), (8)

which represents the detailed balance condition for C(s) in
the complex plane. Usually, this property is given for the FT,
C(ω), of c(t ) in the form C(−ω) = e−β h̄ωC(ω), and descends
directly from the KMS relation.

It is useful to introduce the real and even part, ce(t ), and
the imaginary and odd part, co(t ) [with co(t ) real too], of
the quantum correlation, so that c(t ) = ce(t ) + ico(t ). Corre-
spondingly, the LT can be written as C(s) = CS(s) + CA(s),
where the subscripts are meant to indicate the symmetric (S)
and antisymmetric (A) parts of the transform, given, respec-
tively, by

CS(s) = 1
2 [C(s) + C∗(s∗)] = 1

2 [C(s) + eiβ h̄sC(s)], (9)

and

CA(s) = 1
2 [C(s) − C∗(s∗)] = 1

2 [C(s) − eiβ h̄sC(s)]. (10)

The above equations also imply the relation

CS(s) = 1 + eiβ h̄s

1 − eiβ h̄s
CA(s) = − coth(iβ h̄s/2)CA(s), (11)

which is meaningful only for β > 0, i.e., T < +∞, where
T → +∞ in Eqs. (9) and (10) represents the classical limit.

The time symmetries of ce(t ) and co(t ) also imply that
CS(s) = C∗

S (s∗) and CA(s) = −C∗
A(s∗).
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The Kubo transform z(t ) of c(t ) is defined as [12]

z(t ) = 1

β

∫ β

0
dλ c(t + ih̄λ) = 1

β

∫ β

0
dλ (A(−ih̄λ), A(t ))

= 1

β

∫ β

0
dλ Tr[eλH Ae−λH eiHt/h̄Ae−iHt/h̄ρ]. (12)

Here c(t ) and z(t ) represent physical properties and there-
fore are supposed to be, in general, continuous, integrable, and
differentiable functions, even though in practical applications
the number of well defined useful derivatives is finite. It is
also important to remember that by definition z(t ) has physical
meaning only for β �= ∞ and 0.

The time-reversal symmetry for z(t ) is

z(t ) = z∗(t ) = z(−t ), (13)

that is, z(t ) is symmetric in time and real valued. The LT of
z(t ) is

L[z(t ), s] = Z (s) =
∫ ∞

−∞
dt e−st z(t ), (14)

and, due to Eq. (13), has the property Z (s) = L[z(t ), s] =
L[z∗(t ), s] = Z∗(s∗).

Using the definition of z(t ) given in the first row of
Eq. (12), together with Eqs. (4) and (8), it is possible to write
Z (s) in terms of C(s) as

Z (s) = 1

β

∫ β

0
dλ eish̄λC(s) = eisβ h̄ − 1

isβ h̄
C(s). (15)

Therefore, we also have

C(s) = isβ h̄

2
[coth(isβ h̄/2) − 1]Z (s). (16)

By means of Eqs. (9) and (11), the relations between Z (s)
and, respectively, CS(s) and CA(s) are found to be

CS(s) = eisβ h̄ + 1

2
C(s) = isβ h̄

2

eisβ h̄ + 1

eisβ h̄ − 1
Z (s)

= isβ h̄

2
coth(isβ h̄/2)Z (s), (17)

for the symmetric part of C(s), and

CA(s) = − isβ h̄

2
Z (s), (18)

for the antisymmetric one.
The previous relations connecting the various LTs of the

correlation functions in the complex plane, defined by the
variable s = σ + iω, are generalizations of analogous rela-
tions for the FT of the correlation functions in the real variable
ω (see, e.g., Sec. III of Ref. [28]). In particular, the various FTs
(indicated by F[. . . ]) can be easily derived from Eqs. (16),
(17), and (18) by remembering that

F[c(t ), ω] = C(ω) = 1

2π

∫ +∞

−∞
dte−iωt c(t )

= 1

2π
L[c(t ), s = iω]. (19)

Equations (17) and (18) can in principle be used to discuss
the properties of CS(s) and CA(s) in the complex plane. The

properties of CS(s) could be deduced by studying the behavior
of either the functions isβ h̄

2 coth(isβ h̄/2) and Z (s), or the func-
tions iβ h̄

2 coth(isβ h̄/2) and sZ (s). However, in the first case,
the function s coth(s) diverges for s → ∞. In the second case,
the function coth(s) equally has a pole at s = 0. This difficulty
can be circumvented by rewriting CS(s) in the different form

CS(s) = F (s)s2Z (s) + Z (s) = C̃S(s) + Z (s), (20)

where we defined

F (s) = 1

s2

[
isβ h̄

2

eisβ h̄ + 1

eisβ h̄ − 1
− 1

]

= 1

s2

[
isβ h̄

2
coth(isβ h̄/2) − 1

]
= C̃S(s)

s2Z (s)
. (21)

The limiting values of F (s) for s → 0 and ∞ are both finite
and equal to (iβ h̄)2/12 and 0, respectively. In addition, F (s)
has the property F (s) = F ∗(s∗).

In the following we will discuss the behavior of C̃S(s) as
determined by those of the two functions F (s) and s2Z (s). In
other words, we choose not to attribute s2 to F (s) because
s2F (s) diverges at ±∞. Therefore, we will consider the prop-
erties of the above mentioned functions. Note that the LTs of
the derivatives of a generic correlation c(t ) are given by

L
[

dkc(t )

dtk
, s

]
= skC(s) k = 1, 2, . . . , (22)

so s2Z (s) is the LT of the second time derivative of z(t ).
From Eq. (21) it is seen that F (s) has poles of the first

order at the Matsubara frequencies ±ωn with n = 1, 2, . . . .
Therefore, it can also be written in the form

F (s) =
∑

n

Res[F (s)]s→+ωn

1

s − ωn

+
∑

n

Res[F (s)]s→−ωn

1

s + ωn
, (23)

where the residues at the various poles are readily obtained
considering the first definition of F (s) in Eq. (21). In particu-
lar, it is found that

Res[F (s)]s→±ωn = lim
s→±ωn

[(s ∓ ωn)F (s)] = ± 1

ωn
, (24)

and Eq. (23) becomes

F (s) =
∑

n

1

ωn

1

s − ωn
−

∑
n

1

ωn

1

s + ωn
=

∑
n

2

s2 − ω2
n

.

(25)

III. EXPONENTIAL EXPANSION
OF QUANTUM CORRELATIONS

In this section we will discuss the properties of the expo-
nential representation of c(t ). Then, we will give expressions
for the parameters of c(t ) in terms of those of the exponential
representation of the Kubo correlation z(t ). We remind the
reader that, since z(t ) is defined only for T �= 0 and ∞, the
connection between c(t ) and z(t ) is valid only for 0 < β < ∞.

First, let us recall that c(t ) and z(t ), and all their derivatives,
are assumed to be continuous functions which, in general, can
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always be expanded in an infinite sum of exponentials: this is
an intrinsic property of correlation functions of Hamiltonian
dynamical systems at thermodynamic equilibrium [1–3]. In
particular, we express c(t ) at t � 0 as

c(t ) = ce(t ) + ico(t ) = c(0)
∑

j

c j (t ) = c(0)
∑

j

J je
w j t (26)

with ce(t ) and co(t ) both real. The set of (generally) com-
plex amplitudes and frequencies {c(0)Jj,w j} must satisfy the
condition Re w j < 0 [in order that c(t ) → 0 as t → ∞], and
the general sum rules leading to the condition for the spectral
moments C(k):

C(k) =
[

dk

dtk
c(t )

]
t=0

= c(0)
∑

j

J jw
k
j , (27)

which are supposed to be finite. Of course, the zeroth moment
C(0) = c(0) leads to the condition

∑
j J j = 1.

Here and in the following we will refer to the terms of the
series in Eq. (26) as “modes” of the correlation, each mode
being identified via the pair of generally complex parame-
ters c(0)Jj and w j , both depending on the thermodynamic
state and Hamiltonian dynamics of the system. The modes
satisfying the KMS symmetry are either real, with Jj and
w j both real, or “complex,” with Jj ∈ C \ R (i.e., with a
nonzero imaginary part), and w j either belonging to R or to
C \ R. We will carefully illustrate that, except for purely real
modes, fulfillment of the symmetry condition leads to precise
properties as far as the amplitudes are concerned.

Concerning the frequencies, it will be clearer in the fol-
lowing that when w j is complex, i.e., belongs to C \ R, the
frequencies w j and w∗

j are both present in the series, and the
physically significant contribution to Eq. (26) is expressed by
the sum of the corresponding terms, i.e., by a pair of modes
with complex conjugate frequencies.

The general expansion given in Eq. (26) can be specified
in order to explicitly satisfy the symmetry properties of c(t ).
The first of these is Eq. (2), which is equivalent to define the
parity properties of ce and co, i.e.,

ce(t ) = ce(−t ) = c(0)
∑

j

ce j (t ),

co(t ) = −co(−t ) = c(0)
∑

j

co j (t ). (28)

The complex amplitude Jj in Eq. (26) can thus be con-
veniently separated into two contributions: the first is Je, j ,
which is generally complex, and contributes to that part of
the single jth mode which is even in time, and can be written
as c(0)Je, jew j |t |. Since ce j (t ) is a real quantity, the latter term
and its complex conjugate of course add up to give the real
and even result:

ce j (t ) = c(0)(Je, je
w j |t | + J∗

e, je
w∗

j |t |). (29)

The second contribution, Jo, j , determines that part of the
single jth mode which is odd in time, and similarly to
Eq. (29), leads to a real and odd result when summed up with
its complex conjugate, according to

co j (t ) = c(0) sgn(t )(Jo, je
w j |t | + J∗

o, je
w∗

j |t |). (30)

In Eq. (30), the function sgn(t ) guarantees the odd character
of co j (t ).

With the above clarification on how complex-frequency
modes appear in the series, Eq. (26) can be written in general
as

c(t ) = c(0)
∑

j

[Je, j + i sgn(t )Jo, j]e
w j |t | = c(0)

∑
j

J je
w j |t |,

(31)

with the identification

Jj = Je, j + i sgn(t )Jo, j, (32)

for each individual mode. Thus, in Eq. (31) the sum runs over
all Je, j , Jo, j , w j and their complex conjugates, when w j ∈
C \ R. Given the form of Eq. (32), this means that in the last
member of Eq. (31) the sum is over pairs of modes which have
conjugate frequencies (w j,w

∗
j ) but not conjugate amplitudes.

In other words, complex conjugate pairs in the general expan-
sion do not correspond to Jjew j |t | + J∗

j ew∗
j |t |, which would be

a real-valued quantity in any case, but [see Eqs. (29) and (30)]
to [Je, j + i sgn(t )Jo, j]ew j |t | + [J∗

e, j + i sgn(t )J∗
o, j]e

w∗
j |t |.

Equation (31) must also satisfy the KMS condition ex-
pressed by Eq. (4). Since three different kinds of modes may
contribute to c(t ), we carefully discuss in the following how
this occurs for each set.

A. Pure real modes

Real modes, characterized by real values of both Jj and
w j in Eq. (26), represent pure exponential decays of c(t ),
and only contribute to ce(t ), with Jo, j = 0 and Je, j ∈ R in
Eq. (32). Such purely real modes of c(t ) comply with the
symmetry request of Eq. (4) if eiβ h̄w j = 1, which implies w j =
−nω1 = −ωn, with n = 1, 2, . . . . Note that such frequencies
only depend on temperature, and will be present whatever the
quantum system under consideration, and independently of
the specifically investigated variable A(t ). Therefore, they can
be seen as the fingerprint of the way in which any quantum
system responds to a thermostat. How the specific system,
and dynamical variable, couples with the thermostating bath
will be clarified in what follows. We can anticipate, however,
that the interaction between the thermostat and the system is
contained in the amplitudes of the Matsubara modes, which
will be shown to depend on the parameters describing the
dynamical processes typical of a liquid.

With this purpose, we note that Eq. (31) can also be written,
in general, in the form

c(t ) = c(0)

{∑
n

JM
n e−ωn|t | +

∑
i

[Je,i + i sgn(t )Jo,i]e
wi|t |

}

= c(0)

[∑
n

JM
n e−ωn|t | +

∑
i

JS
i ewi|t |

]
, (33)

where we separated the real modes of real amplitudes JM
n (the

superscript meaning “Matsubara”) and real damping −ωn,
from the other modes, synthetically designated in the last row
of Eq. (33) as JS

i (the superscript meaning the system).
The previously described implications when dealing with

real-valued amplitudes of the modes readily indicate that the
other modes of the exponential expansion are characterized
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by complex amplitudes and enter both ce(t ) and co(t ). In fact,
the quantum character of the system dictates the existence of a
nonzero imaginary part of the correlation, and this can happen
only if the amplitudes of the other processes described by the
exponential expansion take complex values.

B. Mixed modes

The system modes in Eq. (33) may have either real or
complex (i.e., with a nonzero imaginary part) frequencies
wi. Here we define as “mixed” modes those having real fre-
quencies (dampings). Physically, they represent the relaxation
mechanisms of the system itself (like diffusive processes and
structural relaxation), corresponding to simple exponential
decays that contribute to both ce(t ) and co(t ), with both Je,i

and Jo,i real. These modes, with real frequency, differ from the
previous ones because, as mentioned, they originate from the
system decay mechanisms such as those observed in classical
systems.

For this set of modes one can also make the identification

Je,i = ReJS
i ,

Jo,i = ImJS
i , (34)

so that Eq. (4) leads to the condition ReJS
i − i ImJS

i =
(ReJS

i + i ImJS
i )eiwiβ h̄, which implies

ReJS
i = − cot

(
wiβ h̄

2

)
ImJS

i . (35)

Equation (35) introduces divergences in c(t ) whenever wi

equals −ωn. However we will show (Appendix B) that these
are removed by terms appearing in the amplitudes of the
Matsubara modes.

C. Complex modes

Complex modes are those present in Eq. (26) when wi ∈
C \ R and amplitudes [see Eq. (32)] have complex Je,i and
Jo,i. Consequently, the identification reported in Eq. (34) is no
longer allowed. As explained before, the series contains these
modes in pairs with complex conjugate frequencies (wi,w

∗
i )

and amplitudes (Je,i, J∗
e,i, and Jo,i, J∗

o,i). As a consequence, in
Eq. (33) the modes of one pair do not have conjugate ampli-
tudes JS

i , although they are conjugate in frequency. From a
physical point of view, this set accounts for collective damped
oscillatory processes occurring in the system, like longitudinal
and transverse acoustic waves, each with damping Rewi < 0
and frequency Imwi.

It can be shown that relations similar to Eq. (35) are valid
also in this case. In particular, Eq. (4) leads to

Je,i = − cot

(
wiβ h̄

2

)
Jo,i (36)

and

J∗
e,i = − cot

(
w∗

i β h̄

2

)
J∗

o,i, (37)

and this is confirmed by the final expressions for JS
i [Eqs. (46)

and (47)] given in the following.
In summary, Eq. (33) shows that any quantum correlation

can be expressed, in general, as a sum of exponentials, as

anticipated in Eq. (26), where the set of modes {c(0)Jj,w j} is
divided in two global sets. The first set, indexed by n, consists
of the Matsubara modes (M modes) the existence of which is a
necessary consequence of the KMS and EET properties of the
correlation, and is mostly a direct and genuine manifestation
of the quantum character of the system and of the temperature
imposed by the thermostat, leading to the physical existence
of a quantum thermodynamic time scale, t0 = β h̄, which also
determines the time behavior of the system. Such a set is uni-
versal, in the sense that it is present with the same frequencies
for any system and any correlation under consideration at a
temperature T . How the specific system couples with the ther-
mostating bath is instead reflected by the system-dependent
amplitudes JM

n , as we are going to illustrate. The second set,
indexed by i, which includes both mixed and complex modes,
is directly connected with the physical system, described by
the Hamiltonian H , and the property A(t ) under investigation.
We will refer to these modes as S modes. Note that also the
property expressed by Eqs. (35) or (36) for the amplitudes of
the S modes is universal.

We remark that Eqs. (31) and (33), derived from the general
Eq. (26) by applying the discussed symmetry properties, are
expressions of the exponential functionality of the correlation
function. It is worth discussing here the mathematical impli-
cation of having |t | and sgn(t ), the former having a cusp, and
the latter being discontinuous at t = 0. These facts introduce
divergences in the derivatives of c(t ) at t = 0, in the form of
a Dirac delta distribution δ(t ), and of its derivatives. On the
other hand, we have assumed c(t ) to be a continuous function,
with all the derivatives: its continuity being guaranteed by
the finite values of the moments C(k) in Eq. (27). Therefore,
in the following we will neglect all the mathematical diver-
gences caused by |t | and sgn(t ), since these have no physical
significance for the present discussion. In particular, it has
been shown [23] that the divergence at the level of the second
derivative of c(t ) can be canceled, thanks to the first moment
sum rule [see next Eq. (40)], when the properties of the KT
z(t ) are considered.

The KT z(t ) associated with c(t ) can also be expanded for
t � 0 as

z(t ) = z(0)
∑

i

Iie
zit , (38)

with the set {z(0)Ii, zi} satisfying the sum rules

Z (2k) =
[

d2k

dt2k

]
t=0

= z(0)
∑

i

Iiz
2k
i , (39)

Z (2k+1) =
[

d2k+1

dt2k+1

]
t=0

= z(0)
∑

i

Iiz
2k+1
i = 0, (40)

where the last equation descends from the symmetry of
Eq. (13). The amplitudes z(0)Ii and frequencies zi characterize
the modes (K modes) of the Kubo z(t ), with Rezi < 0. Again,
the zeroth moment, Z (0) = z(0), implies

∑
i Ii = 1. As done

previously for c(t ), the symmetry property of Eq. (13) allows
us to write z(t ) on the whole time axis as

z(t ) = z(0)
∑

i

Iie
zi|t |. (41)
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TABLE I. Summary of the properties of the various sets of modes (see Secs. III A–III C) contributing to c(t ). For complex modes,
representing damped propagating excitations, the prime (double prime) is used to synthetically indicate the real (imaginary) part of both
amplitudes and frequencies.

Modes Amplitude Frequency/damping Origin

Matsubara Je, j ∈ R, Jo, j = 0, w j ∈ R Existence of a
Je, j = JM

n w j = −ωn = −2πn/(β h̄) quantum thermal
n = 1, 2, . . . time scale t0 = β h̄

Mixed Je,i, Jo,i ∈ R wi = zi ∈ R Diffusion and
Je,i + iJo,i = JS

i ∈ C \ R relaxation phenomena
of the system

Complex Je,i, Jo,i ∈ C \ R wi = zi ∈ C \ R Collective
(J ′

e,i + iJ ′′
e,i ) + sgn(t )(−J ′′

o,i + iJ ′
o,i ) = JS

i zi = z′
i + iz′′

i excitations
(J ′

e,i − iJ ′′
e,i ) + sgn(t )(J ′′

o,i + iJ ′
o,i ) �= JS∗

i z∗
i = z′

i − iz′′
i (pairs of modes)

The modes of z(t ) can have Ii and zi either both real or both
complex. As it happened before in the case of Je, j and Jo, j , the
complex modes appear in the Kubo series in conjugate pairs
[see, e.g., Eq. (29)].

It can be shown (see Appendix A) that ce(t ) and co(t ) are
expressed in terms of the Kubo and Matsubara modes by

ce(t ) = z(t ) + c̃e(t )

= z(t ) + z(0)
∑

i

∑
n

[(
− 1

ωn
Iiz

2
i

2zi

ω2
n − z2

i

)
e−ωn|t |

+
(

Iiz
2
i

2

z2
i − ω2

n

)
ezi|t |

]
, (42)

and

co(t ) = − π

ω1
z(0)

∑
i

Iizisgn(t )ezi|t |. (43)

The total correlation was also written in Eq. (33) as

c(t ) = ce(t ) + ico(t )

= c(0)

[ ∑
n

JM
n e−ωn|t | +

∑
i

JS
i ewi|t |

]
, (44)

so, one can readily make the identification wi = zi, i.e., the
frequencies of the S modes of c(t ) coincide with those of the
K modes of z(t ), implying that the physical processes charac-
terizing the time behavior (regardless of the amplitudes) of the
quantum system are grasped very well by the Kubo symmetric
and real—and easy to handle—version of the correlation.
Indeed, c(t ) and z(t ) are correlation functions of the same
physical observable A(t ), so the characteristic frequencies of
the physical system are bound to appear in both functions,
although with different amplitudes.

Following the details given in Eqs. (A8)–(A11) regarding
the various ways of expressing ce(t ), it is possible to make
further identifications. In particular, one finds

JM
n = z(0)

c(0)

∑
i

Iizi

ω1

[
ϕn

(
− zi

ω1

)
+ ϕn

(
zi

ω1

)]
, (45)

for the M modes, where ϕn is the fractional function ϕn(s) =
s

n(n+s) . Note that the system-thermostat coupling is expressed

by the dependence of JM
n on the parameters of the S modes,

while the Matsubara frequencies are system independent.
Regarding the amplitudes of the S modes, from the calcu-

lations reported in Appendix A it is found that

JS
i = z(0)

c(0)

Iizi

ω1

[
ω1

zi
+ ψ

(
− zi

ω1
+ 1

)

− ψ

(
zi

ω1
+ 1

)
− i sgn(t )π

]
, (46)

ψ being the digamma function. In particular, the real and
imaginary parts in Eq. (46) can be verified to satisfy Eq. (36)
thanks to the recurrence and reflection formulas (see 6.3.5 and
6.3.7 in Ref. [29]) for the digamma function, which lead to the
relation 1/s + ψ (1 − s) − ψ (1 + s) = π cot(πs). Therefore,
one finally has

JS
i = z(0)

c(0)

Iizi

ω1
π

[
cot

(
π

zi

ω1

)
− i sgn(t )

]
. (47)

The previous results finally allow us to give in Table I a
synoptic description of the properties of the sets of modes
(introduced in Secs. III A–III C) which build up the quantum
c(t ). Their main physical origin is also recalled. Note that,
for a more compact notation, we use in Table I the prime
and double prime in place of ReJe, ReJo and ImJe, ImJo,
respectively.

IV. CHARACTERISTIC FEATURES OF c̃e(t )

In what follows, we are interested in analyzing in more
detail the properties of c̃e(t ) of Eq. (42) as a function of
T , via the variation of the quantity zi/ω1. In particular, by
considering the structure of Eqs. (45) and (46), it is useful
to distinguish four terms characterizing the time behavior of
each mode of c̃e(t ):

c̃e(t ) = z(0)
∑

i

Ii

{∑
n

[
M (−)

i,n

(
zi

ω1

)
+ M (+)

i,n

(
zi

ω1

)]
e−ωn|t |

+
[

S(−)
i

(
zi

ω1

)
+ S(+)

i

(
zi

ω1

)]
ezi|t |

}
, (48)
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Re z /ω1

A
m

p
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d
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M

n 
=

 
M

n(+
) 
+

 M
n (

–
)

Mn=2

Mn=1

Mn=3

Mn=4

Mn=5

FIG. 1. First five terms, as a function of Rez/ω1, for the overall
amplitudes Mn = M (+)

n + M (−)
n of the Matsubara series in Eq. (48).

The color code is specified in the legend.

where, according to Eqs. (A9) and (A10), the four individual
terms depending on zi/ω1 in Eq. (48) are given by

M (−)
i,n

(
zi

ω1

)
= zi

ω1
ϕn

(
− zi

ω1

)
,

M (+)
i,n

(
zi

ω1

)
= zi

ω1
ϕn

(
zi

ω1

)
,

S(−)
i

(
zi

ω1

)
= zi

ω1
ψ

(
1 − zi

ω1

)
,

S(+)
i

(
zi

ω1

)
= − zi

ω1
ψ

(
1 + zi

ω1

)
. (49)

Our analysis is aimed at understanding whether the above
contributions play comparable roles or some of them dom-
inate over the others with varying z/ω1. Preliminarily, we
show in Fig. 1 the global amplitude, Mn = M (+)

n + M (−)
n , for

n = 1, . . . , 5 of the, clearly converging, Matsubara series in
Eq. (48) in the case of real z, with −1 < z/ω1 < 0. For the
same case (real z), the dependence on z/ω1 of the terms
in Eq. (49) is reported in Fig. 2, for both an S mode and
the leading term (n = 1) of an M mode. As expected from
Eqs. (A9)–(A11), S(+) and M (+)

n=1 show nearly opposite be-
haviors (both diverging at z/ω1 = −1), and leading to the
eventual total cancellation of S(+) and

∑
n M (+)

n in c̃e(0).
Figure 3 shows the same quantities of Fig. 2 in the case of
complex z, with Rez < 0. Of course, the sum of complex
conjugate terms provides real-valued S and M contributions
that we plotted as a function of the real and imaginary parts
of z/ω1. Again, the competing behavior of S(+) and M (+)

n=1 is
evident also for complex pairs. By contrast, the amplitudes
S(−) and M (−)

n=1 give the dominant contribution of the S and M
modes to c̃e(t ).

The trends shown in Figs. 2 and 3 are not qualitatively
modified by considering the role of the amplitudes Ii in
Eq. (48), as we verified in a realistic case like, e.g., the one
of a Kubo correlation function composed of a real mode and

Re z /ω1

A
m

p
li

tu
d
es

S(+
) , 

S(–
) , 

M
n =

1
(+

) , 
M

n =
1

(–
)

S(–)

S(+)

Mn=1
(–)

Mn=1
(+)

FIG. 2. Dependence on Rez/ω1 of the individual terms contribut-
ing to the amplitude [see Eq. (49)] of an M mode and of an S mode
in c̃e(t ), for real z (z < 0) . For the M mode only the leading term
(n = 1) is displayed (red curves). The two terms of the S mode are
shown with black curves. Solid curves are used for S(+) and M (+),
while dashed curves are used for S(−) and M (−).

a complex pair, satisfying both normalization
∑

i Ii = 1 and
first moment sum rule [Eq. (40) for k = 0]. In the just men-
tioned case, it is more interesting to study the time behavior
of the whole Matsubara part, M(t ) = ∑

i Ii
∑

n[M (−)
i,n ( zi

ω1
) +

M (+)
i,n ( zi

ω1
)]e−ωn|t |, and that of the system, S(t ) =∑

i Ii[S
(−)
i ( zi

ω1
) + S(+)

i ( zi
ω1

)]ezi|t |, in c̃e(t ), for different values
of zi/ω1. For instance, we considered the case in which the
damping of the real mode (zR) equals the one of the complex
pair (z′

C = RezC), as well as the frequency of the oscillatory
mode (z′′

C = ImzC). Figure 4 shows these parts of c̃e(t ), along
with their sum, in the three different situations indicated at

A
m

p
li

tu
d
es

S(+
) , 

S(–
) , 

M
n=

1
(+

) , 
M

n=
1

(–
)

S(–)
S(+)

Mn=1
(–)

Mn=1
(+)

FIG. 3. As in Fig. 2, but for an M pair and an S pair with complex
z (Rez < 0) in c̃e(t ).
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t [ps]

|zR|/ω1 = |z′C|/ω1 = z′′C/ω1 = 0.2 |zR|/ω1 = |z′C|/ω1 = z′′C/ω1 = 0.5 |zR|/ω1 = |z′C|/ω1 = z′′C/ω1 = 0.7 

FIG. 4. c̃e(t ) as a function of time (cyan thick curve) for a Kubo correlation characterized by one real mode and one complex pair, for
different values of z/ω1 (see text): 0.2 (left frame), 0.5 (central frame), and 0.7 (right frame). The global Matsubara (dashed red curve) and
system (black thin curve) contributions are also shown separately.

the top of each frame. It is seen that the importance of the
Matsubara term grows (in absolute value), and also changes
sign, as ω1 decreases, correctly witnessing the enhancement of
quantum effects (and the growing “correction” role it plays) as
the temperature is decreased. The last frame shows that there
are conditions in which both the system and the Matsubara
series almost equally contribute to c̃e(t ) as t → 0. Although
the three frames of Fig. 4 necessarily cover different time
ranges, it is also evident that the Matsubara part influences
c̃e(t ) over progressively larger time intervals as ω1 (i.e., T )
diminishes.

Finally, in Fig. 5 we compare the Matsubara and system
parts for a real case. In particular, we show the real part
of the velocity autocorrelation function of dense liquid para
hydrogen at T = 30 K and density n = 26.73 nm−3, as ob-

t [ps]

c e
(t)

  
[n

m
2
p

s-2
] 

Para H2 VAF T = 30 K 

t [ps]

τ1 = 1/ω1 = /2π = 0.04 psβ

FIG. 5. Real part of the velocity autocorrelation function of liq-
uid para H2 at T = 30 K obtained by RPMD simulations [9] (blue
circles) compared with the result of Eqs. (44)–(46) (cyan curve) us-
ing the parameters of the Kubo z(t ), fitted as described in Ref. [9]. As
before, the global Matsubara (dashed red curve) and system (black
curve) contributions are also shown separately. The inset is a zoom
of the plot at short times, and extends up to the value of the Matsubara
time constant τ1 at the chosen temperature.

tained by RPMD simulations [9], and via Eqs. (44)–(46) using
the parameters of the exponential representation of the Kubo
z(t ), fitted as described in Ref. [9]. Again the system and
Matsubara parts are shown together with the total. At the
chosen temperature, the principal Matsubara time constant is
τ1 = 0.04 ps. The inset shows that, actually, the Matsubara
series non-negligibly contributes only in such a limited time
range, but its presence is crucial to obtain the correct behavior
of the function as t → 0.

V. DISCUSSION AND CONCLUDING REMARKS

Equation (44) shows that the quantum correlation can
be represented as an exponential series, in agreement with
Eq. (26), where there are two sets of modes that characterize
the time behavior. Both these sets are related to the parameters
defining z(t ). As mentioned, the S modes characterized by
the complex amplitudes c(0)JS

i and either real or complex
frequencies zi are those strictly related to the physical system
and property A under investigation.

The second set of modes with real amplitudes c(0)JM
n

and real frequencies ωn represents pure decay channels (with
characteristic times τn = 1/ωn) which are directly connected
with the KMS relations of Eqs. (3) and (4) and the EET
representation.

At the present stage, it should be clear that the set of modes
describing c(t ) is different from that describing z(t ), although
strongly related. Indeed, the amplitudes JM

n and JS
i depend on

the parameters of the K modes and on ω1. The latter depends
linearly on T and tends to zero as T → 0. Therefore, the
M modes increasingly contribute at longer times when the
temperature is decreased towards zero. Of course, also the
frequencies zi can decrease with T → 0, also contributing to
c(t ) at longer times.

If the dependence on temperature of the dampings dif-
fers from the one of ω1, there may be cases in which, at
a given temperature, the damping of a real S mode equals
−ωn, i.e., zi coincides with one of the Matsubara frequencies
−ωn = −nω1 indicating a resonance between an S mode and
an M mode. This means that in Eq. (A8) of Appendix A, and
consequently in Eqs. (42) and (44) giving, respectively, ce(t )
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and c(t ), the fractional function ϕn(t ) = zi/ω1

n(n+zi/ω1 ) has a pole
on the real axis for zi/ω1 = −n. This pole of course affects the
amplitudes JM

i and JS
i given in Eqs. (45) and (46), therefore

the behavior of ce(t ) and c(t ) needs to be analyzed with some
care.

The existence of a possible pole in c(t ) is a direct conse-
quence of the mathematical structure of C̃S(s) in Eq. (A6),
which shows that the function has a pole for zi = −ωn. The
apparent divergence of c(t ) is however unphysical and should
eventually disappear, as shown in Appendix B, where we find
that the resonance between an S mode and an M mode leads
to a different time behavior of the kind |t |e−nω1|t |, anyway
decaying to zero at long times.

As mentioned in the Introduction, in the previous work
based on the EET [23], the general exponential series of
Eq. (31) was not given explicitly and the M modes of our
Eqs. (33) and (45) were expressed via hypergeometric func-
tions. Indeed, the equality between the previous and present
expression for c(t ), that we omit for brevity, can be demon-
strated without difficulties once the hypergeometric functions
of Ref. [23] are expanded according to the Gaussian series
defining them as F (1, b; c; x) = ∑

n
(b)n

(c)n
xn, with the Pochham-

mer symbol meaning (q)n = q(q + 1)(q + 2) . . . (q + n − 1).
However, what we find more significant is that the present
form allowed us to recognize and properly discuss also the
case of possible resonances between S modes and M modes,
differently from Ref. [23] where the analytic properties and
convergence of the digamma and hypergeometric functions
were not tackled in detail.

In conclusion, we can state that the EET exactly predicts
the functionality of any classical, semiclassical, and quantum
correlation function of many-body Hamiltonian systems in
thermodynamic equilibrium. In particular, this paper shows
that the correct symmetry properties of quantum correlations
(KMS) applied within an exact theory like the EET lead to
a remarkable result from the physical point of view: in the
quantum case, correlations decay not only because we are
dealing with an interacting many-body system governed by a
certain Hamiltonian (like it happens in classical systems), but
also because the interaction with the thermostat is highlighted
by the existence of the nonzero time scale τ1 entering the
Matsubara part of the expansion.

Although other ways of expressing c(t ) can be preferred in
numerical computations (within the EET [23]) we find that the
one presented here can be more appropriate for understanding
the role played by the Matsubara modes, which may affect
substantially the time evolution of the correlation. As noticed,
the M modes do contribute within times of the order of τ1.
The presence of these modes in the correlation also clarifies
that the classical limit for c(t ) is not only represented by the
fact that its imaginary part co(t ) tends to zero, but also by
the assumption of disregarding any dynamical process with
characteristic time τi � τ1.

As a fact, the present form gives more physical insight
about the properties of a quantum correlation, also elucidating
the quantum coupling between the thermostat and the system.
Such a coupling, embodied by the presence of (numerous)
Matsubara modes, has growing importance with decreasing
temperature, accordingly with a more and more marked quan-
tum behavior of the system as T diminishes. By lowering the

ω [rad ps-1] 

c(
ω

)/
z(

0
) 

 [
p

s]

FIG. 6. Fourier transform of c(t )/z(0) = [z(t ) + c̃e(t ) + ico(t )]/
z(0) in the same example case analyzed in the right frame of
Fig. 4 for c̃e(t )/z(0). The total asymmetric spectrum (blue curve)
is shown together with its components: the Matsubara part (red
dashed curve), and the system symmetric (black thin curve) and
antisymmetric (green dot-dashed curve) parts. The magenta circles
correspond to the Kubo-asymmetrized spectrum of z(ω)/z(t = 0),
i.e., β h̄ω/(1 − e−β h̄ω )z(ω)/z(0), perfectly coinciding with the to-
tal asymmetric spectrum in blue. The magenta spectrum is simply
Eq. (15) for real frequency.

temperature, the M modes affect c(t ) in wider and wider time
ranges: an effect that represents, in the time domain, the KMS
symmetry, and which, together with the imaginary part of
c(t ), translates into the well-known increasing asymmetry of
the corresponding quantum spectra observed, for instance, by
scattering techniques able to access some measurable quan-
tum correlation function in the frequency domain, like, e.g.,
the dynamic structure factor of a quantum or semiquantum
liquid. An example of the strong asymmetry of the measured
(genuinely quantum) spectra can be found in Ref. [5], which
regards a “weakly” quantum fluid as molecular deuterium.
Here we give another example in Fig. 6, referring to the
case analyzed in the last frame of Fig. 4 and showing the
corresponding spectrum of c(t ) with all its components, the
spectrum of the S modes [i.e., the FT of ce(t ) plus the one of
co(t )], and providing, on the whole, the strongly asymmetric
total spectrum.

Perspectives of this paper can be envisaged in the gener-
alization of the present description also to space-dependent
quantum correlations, and in the study of the Matsubara con-
tribution to experimentally accessible correlation functions,
like the intermediate scattering function of appropriate fluids.
Indeed, it is expected, though not yet directly demonstrated
to our knowledge, that the Matsubara role played in the
overall fulfilment of the KMS symmetry of correlation func-
tions of real dense systems grows in importance as smaller
and smaller length scales are probed at fixed temperature.
This should, in fact, be another route to observe enhanced
quantum effects, in addition to the canonical ones of either in-
creasing density or lowering the temperature (within obvious
limits).
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APPENDIX A: DERIVATION OF EQS. (42) AND (43) AND EXPRESSIONS FOR ce(t )

Following Eq. (41), with Rezi < 0, the LT Z (s) can be written in terms of the exponential mode parameters as

Z (s) = z(0)
∑

i

Ii
2zi

s2 − z2
i

= z(0)
∑

i

Ii

(
1

s − zi
− 1

s + zi

)
. (A1)

By remembering Eq. (22), it follows that sZ (s) and s2Z (s) are, respectively, the transforms L[ d
dt z(t ), s] =

L[z(0)
∑

i Iizisgn(t )ezi|t |, s] and L[ d2

dt2 z(t ), s] = L[z(0)
∑

i Iiz2
i ezi|t |, s]. As a consequence, with the aid of Eqs. (25) and (A1),

we can express C̃(s) of Eq. (20) in terms of F (s) and of the parameters Ii and zi of the modes of z(t ):

C̃S(s) = z(0)
∑

n

2

s2 − ω2
n

∑
i

Iiz
2
i

2zi

s2 − z2
i

. (A2)

Equation (A2) shows that the poles of C̃S are at s = ±ωn and ±zi with residues given by

Res[C̃S(s)]s→±ωn = lim
s→±ωn

(s ∓ ωn)C̃S(s) = ± z(0)

ωn

∑
i

Iiz
2
i

2zi

ω2
n − z2

i

, (A3)

Res[C̃S(s)]s→±zi = lim
s→±zi

(s ∓ zi )C̃S(s) = ±z(0)Iiz
2
i

∑
n

2

z2
i − ω2

n

(A4)

where we made use of Eqs. (24) and (25). Consequently we can also write

C̃S(s) = z(0)
∑

n

∑
i

[(
1

ωn
Iiz

2
i

2zi

ω2
n − z2

i

)
1

s − ωn
+

(
− 1

ωn
Iiz

2
i

2zi

ω2
n − z2

i

)
1

s + ωn

+
(

Iiz
2
i

2

z2
i − ω2

n

)
1

s − zi
−

(
Iiz

2
i

2

z2
i − ω2

n

)
1

s + zi

]
, (A5)

which can be recast in the form

C̃S(s) = z(0)
∑

n

∑
i

[(
1

ωn
Iiz

2
i

2zi

ω2
n − z2

i

)
2ωn

s2 − ω2
n

+
(

Iiz
2
i

2

z2
i − ω2

n

)
2zi

s2 − z2
i

]
, (A6)

while, following Eq. (18), for the antisymmetric function we have

CA(s) = − iβ h̄

2
z(0)

∑
i

Iizisgn(t )
2zi

s2 − z2
i

. (A7)

By using Eqs. (20), (A8), and (A7), the inverse transforms L−1[CS(s), t] = ce(t ) and L−1[CA(s), t] = ico(t ) are found to be
those given in Eqs. (42) and (43).

The inverse Laplace transform L−1[C̃S(s), t] = c̃e(t ) is then

c̃e(t ) = z(0)
∑

n

∑
i

[(
− 1

ωn
Iiz

2
i

2zi

ω2
n − z2

i

)
e−ωn|t | +

(
Iiz

2
i

2

z2
i − ω2

n

)
ezi|t |

]

= z(0)
∑

n

∑
i

Iizi

ω1

{[ −zi/ω1

n(n − zi/ω1)
+ zi/ω1

n(n + zi/ω1)

]
e−ωn|t | +

[ −zi/ω1

n(n − zi/ω1)
− zi/ω1

n(n + zi/ω1)

]
ezi|t |

}
. (A8)

Considering the inverse LT of Eq. (20) we thus obtain the real part of the correlation as

ce(t ) = z(t ) + c̃e(t )

= z(0)
∑

i

Iie
zi|t | + z(0)

∑
i

Iizi

ω1

{ ∑
n

[
ϕn

(
− zi

ω1

)
− ϕn

(
zi

ω1

)]
ezi|t | +

∑
n

[
ϕn

(
− zi

ω1

)
+ ϕn

(
zi

ω1

)]
e−ωn|t |

}
, (A9)

044128-10



UNIVERSAL MATSUBARA TIME DECAY OF QUANTUM … PHYSICAL REVIEW E 106, 044128 (2022)

where we introduced the fractional function ϕn(s) = s
n(n+s) that enters the expansion (see 6.3.16 in Ref. [29]) of the digamma

function ψ (s + 1), according to

ψ (s + 1) = −γ +
∑

n

ϕn(s), s �= −1,−2,−3, . . . (A10)

where γ is the Euler-Mascheroni constant. Therefore, Eq. (A9) can equivalently be written as

ce(t ) = z(0)
∑

i

Iie
zi|t | + z(0)

∑
i

Iizi

ω1

{[
ψ

(
− zi

ω1
+ 1

)
− ψ

(
zi

ω1
+ 1

)]
ezi|t | +

∑
n

[
ϕn

(
− zi

ω1

)
+ ϕn

(
zi

ω1

)]
e−ωn|t |

}
. (A11)

APPENDIX B: INVESTIGATING POSSIBLE RESONANCES IN c̃e(t )

One can readily observe that Eq. (A8) contains resonances whenever zi/ω1 = −n. In order to understand the role of these
resonances, let us consider the case in which, for a particular i, the quantity zi/ω1 is very close to −n, i.e., zi/ω1 = −n −  with
n � . The interesting quantity in Eq. (A8) is then

φi(t ) =
[

zi/ω1

n(n + zi/ω1)

]
e−ωn|t | −

[
zi/ω1

n(n + zi/ω1)

]
ezi|t |, (B1)

which has two apparent poles leading to two divergences, opposite in sign, which can be discussed in the previously introduced
approximation. When zi/ω1 = −n −  with n � , Eq. (B1) becomes

φi(t ) = n + 

n
e−nω1|t | − n + 

n
e−(n+)ω1|t |

 1


e−nω1|t |(1 − e−ω1|t |) → ω1|t |e−nω1|t |, (B2)

where the last term corresponds to the limit for  → 0. Thus, the contribution to c̃e(t ) of this pair of resonances is c̃i(t ) given by

c̃i(t ) = z(0)
Iizi

ω1
ω1|t |e−nω1|t | = z(0)Iizi|t |ezi|t |, (B3)

which shows that the two resonances are removed, leading to a different type of contribution to the correlation function, which
can be of non-negligible intensity for times t > 1/ω1, compared to the others (without resonances) present in Eq. (A8). Finally,

it is worth noting that the last equation implies that the pair of resonances contributes to C̃(s) with L−1[c̃i(t ), s] = z(0)Iizi
2(z2

i +s2 )
(z2

i −s2 )2 .
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