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We study the statistics of the first-passage time of a single run-and-tumble particle (RTP) in one spatial
dimension, with or without resetting, to a fixed target located at L > 0. First, we compute the first-passage
time distribution of a free RTP, without resetting or in a confining potential, but averaged over the initial position
drawn from an arbitrary distribution p(x). Recent experiments used a noninstantaneous resetting protocol that
motivated us to study in particular the case where p(x) corresponds to the stationary non-Boltzmann distribution
of an RTP in the presence of a harmonic trap. This distribution p(x) is characterized by a parameter ν > 0, which
depends on the microscopic parameters of the RTP dynamics. We show that the first-passage time distribution
of the free RTP, drawn from this initial distribution, develops interesting singular behaviors, depending on the
value of ν. We then switch on resetting, mimicked by relaxation of the RTP in the presence of a harmonic trap.
Resetting leads to a finite mean first-passage time and we study this as a function of the resetting rate for different
values of the parameters ν and b = L/c, where c is the position of the right edge of the initial distribution p(x).
In the diffusive limit of the RTP dynamics, we find a rich phase diagram in the (b, ν ) plane, with an interesting
reentrance phase transition. Away from the diffusive limit, qualitatively similar rich behaviors emerge for the
full RTP dynamics.

DOI: 10.1103/PhysRevE.106.044127

I. INTRODUCTION

Search processes appear naturally in a wide range of
contexts, such as in animal movements during foraging, bio-
chemical reactions, data search by randomized algorithms,
and all the way to behavioral psychology (for a review see
Ref. [1]). Finding an optimal search strategy in a given context
is fundamental for practical applications. Among randomized
search strategies, an interesting one involves stopping and
restarting the search from scratch at randomly distributed
Poissonian times. There has been enormous activity on search
processes via stochastic resetting (see Ref. [2] for a recent
review). Stochastic resetting has been found to provide an
efficient search algorithm in several contexts, such as in
optimization algorithms [3–8], chemical reactions [9,10], syn-
chronization [11], space-dependent diffusion [12,13], animal
foraging [14–20], and catastrophes in population dynamics
[21–23].

One of the simplest models describing such situations is
provided by a particle performing Brownian motion with
stochastic resetting: the particle diffuses with diffusion con-
stant D, and, randomly in time with constant rate r, its position
is instantaneously reset to a fixed location xr [24,25]. Re-
setting of stochastic processes turns out to have two rather
generic major consequences: (i) it typically drives the system
into a nontrivial stationary state and (ii) in many cases, an
optimal resetting rate emerges which minimizes the mean
first-passage time (MFPT) of the reset process to a given fixed
target. Both aspects have motivated a lot of theoretical work
during the last few years [2,26–42].

It is only recently that resetting protocols were realized
experimentally [43–46]. These experimental works revealed
two important facts: (i) physical resetting is often noninstan-
taneous and (ii) it is unrealistic to reset the particle exactly
at a fixed position xr . Noninstantaneous resetting has been
studied in various theoretical models [47–55], but here we are
interested in a particular noninstantaneous resetting protocol
that has been used in recent experiments in optical traps. In
particular, in Refs. [44–46], the experiments were conducted
on colloidal particles diffusing in the presence of a harmonic
trap. There were two protocols used for the duration of the
free diffusion: either the duration is a fixed period T (peri-
odic resetting) or it is an exponentially distributed random
variable (Poissonian resetting). The trap was realized via op-
tical tweezers and it was well approximated by a harmonic
potential V (x) = κx2/2. This experimental protocol consists
of two distinct phases which alternate in time. First we have
an equilibration phase of fixed duration Teq: the harmonic trap
is switched on and the dynamics of the particle reaches a
thermal equilibrium at inverse temperature β [56]. This phase
is indicated by the red shaded area in Fig. 1. It follows that
the position x of the particle is distributed according to the
Boltzmann weight p(x) ∝ e−βV (x), with V (x) = κx2/2, i.e., a
Gaussian distribution centered at x = 0 with variance σ 2 ∝
1/β. Equilibrium is attained if the relaxation time scale of
the particle in the trap, τrel, is much smaller than the duration
Teq of the equilibration phase. At the end of the equilibration
phase, the trap is switched off and the particle diffuses freely
during a certain time T (represented by the blue shaded area
of Fig. 1). Then, these two phases are repeated cyclically.
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FIG. 1. A typical trajectory of a Brownian particle evolving ac-
cording to the experimental protocol proposed in Refs. [44,46] with
periodic resetting. During the equilibration phase (red shaded areas),
the Brownian particle relaxes in a harmonic trap for a time Teq. At
the end of this phase, the trap is switched off and the particle diffuses
freely (blue shaded area) for a period T . For this particular realization
of the process we have chosen Teq = 10τrel and T = 40τrel, where τrel

denotes the relaxation time scale of the particle in the trap.

For Teq � τrel, we see that this setup mimics a noninstanta-
neous resetting protocol where the particle is reset to a random
position xr . One important feature of this protocol is that xr is
itself drawn randomly from a certain probability distribution
function (PDF) p(x), which in the case of a Brownian particle
is the Boltzmann distribution p(x) ∝ e−βV (x).

One of the main focuses of Refs. [44–46] was on the
first-passage time (FPT) distribution to a target located at
x = L. Note that no measurement was performed during the
equilibration phase—this is meant to reproduce instantaneous
resetting. Moreover, the experimental protocol presented
above can be easily adapted to the case of no resetting, i.e.,
by taking the limit T → ∞ [44–46]. In this case, a natural
question is thus what happens to the FPT distribution to a fixed
target located at L after averaging over the initial position,
distributed with a certain PDF p(x), the stationary distribution
corresponding to the external potential V (x). In the case of
Brownian motion, for which p(x) is simply the Boltzmann
weight p(x) ∝ e−βV (x), i.e., for the present choice of harmonic
V , a Gaussian of zero mean and variance σ 2 ∝ 1/β, it was
shown that the averaged FPT exhibits a very rich behavior,
including a dynamical phase transition between a two-peak
and a one-peak shape as the ratio L/σ is varied [45]. This tran-
sition was not only predicted theoretically but also observed
in experiments [45]. Given the relevance of FPT for a variety
of applications in physics literature [57,58], it is then natural
to extend these studies to other stochastic processes, beyond
the simple Brownian motion.

In this paper, we study the one-dimensional persistent ran-
dom walk, also known as the run-and-tumble particle (RTP).
The dynamics of this model consists of two alternating phases:
running and tumbling. During the running phase, the particle
moves ballistically with a fixed velocity v, for an exponen-

tially distributed random time with mean 1/γ . At the end of
the running phase, the particle tumbles instantaneously and
chooses a new direction for the next running phase. This
simple model has been used to describe the motion of some
species of bacteria, e.g., Escherichia coli [59,60]. In these
cases, the bacteria self-propel by consuming energy directly
from the environment [60–64]. The existence of a finite run
time induces a memory in the RTP dynamics, rendering it non-
Markovian, as opposed to the Markovian Brownian motion.
The dynamics of a free RTP has been studied extensively
and many exact results are known [65–70]. Very recently,
for the RTP, the effect of instantaneous resetting to a fixed
location xr was studied in Refs. [71–74]. It was found that, as
in the Brownian case, resetting drives an RTP into a nontrivial
stationary state and can optimize the MFPT to a fixed target.

As discussed above, it is very hard to achieve experimen-
tally the instantaneous resetting usually assumed in theoretical
settings [44–46]. Typical experimental protocols, used for
Brownian particles, involve switching on and off the trap and
letting the particles equilibrate in between. One of the main
effects of this protocol corresponds to choosing the resetting
position xr randomly from the stationary distribution inside
the trap, which for the Brownian case happens to be the equi-
librium Boltzmann distribution. It is then natural to ask: What
is the corresponding effect of this experimental protocol in the
case of RTP, where the stationary distribution is known to be
non-Boltzmann? This is the main question that we address in
this paper. Moreover, in the case of an RTP in a harmonic
trap, the non-Boltzmann stationary distribution has a finite
support or width. We demonstrate that the combined effect of
the finite width of the stationary distribution and the resetting
leads to a rather rich and interesting physics. We expect that
the results presented in this paper will be useful for possible
future experimental investigations of RTP with resetting.

The rest of the paper is organized as follows. In Sec. II, we
review some results on the FPT of a free RTP as well as some
properties of the stationary state of an RTP in the presence of
an external confining potential V (x). In Sec. III, we consider
the case without resetting and compute the FPT distribution
of a free RTP averaged over the initial position drawn from
the stationary distribution of the RTP in the presence of a
harmonic trap. In Sec. IV, we study how stochastic resetting
affects the MFPT for the particles. In Sec. V, we extend our
results to the periodic resetting protocol. Finally, we conclude
in Sec. VI. Some details of the computations are relegated to
the Appendixes.

II. ONE-DIMENSIONAL RTP WITH AND WITHOUT
AN EXTERNAL POTENTIAL: A REMINDER

The position x(t ) of a one-dimensional RTP starts from
x(t = 0) = x0 and then evolves according to the following
Langevin equation [75]:

ẋ(t ) = vσ0(t ), (1)

where σ0(t ) is a telegraphic noise which switches between +1
and −1 with rate γ , while v > 0 is the modulus of the velocity
of the particle (which is fixed here). We now assume that
there is an absorbing target at position L: typical trajectories
of the process are represented in Fig. 2. We denote by S0(t |dL )
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FIG. 2. Typical trajectories of RTPs, in the presence of an ab-
sorbing boundary located at L = 1 (shown by a solid black vertical
line). The two rightmost trajectories were already absorbed at L
within the time shown, while the two leftmost trajectories are yet
to be absorbed. We chose the parameters to be γ = 0.15, v = 0.2,
and ν = 1.5.

[respectively F0(t |dL ) = −∂t S0(t |dL )] the survival probability
at time t (respectively the FPT distribution) given that the
particle started at a distance dL(x0) ≡ |L − x0| from the target.
These observables have been widely studied in the literature
[65–70]. The Laplace transform of the survival probability
S0(t |dL(x0)) reads

S̃0(s|dL(x0)) =
∫ ∞

0
dt e−st S0(t |dL(x0))

= 1

s

[
1 + vλ(s) − s − 2γ

2γ
e−λ(s)dL (x0 )

]
, (2)

where

λ(s) ≡
√

s2 + 2γ s

v
. (3)

It is actually more convenient to consider the FPT distribution,
for which the Laplace inversion can be explicitly carried out,
and it reads, in dimensionless units,

F0(t |dL(x0)) = γ f0

(
τ ≡ γ t |y ≡ γ

dL(x0)

v

)
,

with f0(τ |y) = e−τ

2
[δ(τ − y) + θ (τ − y)g0(τ |y)], (4)

where θ (z) denotes the Heaviside step function. The function
g0(τ |y) reads

g0(τ |y) ≡ y

y + τ
I0(

√
τ 2 − y2)

+
[ √

τ − y

(τ + y)
3
2

+ y√
τ 2 − y2

]
I1(

√
τ 2 − y2), (5)

where In(z) denotes the modified Bessel function of the first
kind of index n [76]. The first term in Eq. (4), proportional to
δ(τ − y), accounts for trajectories that reach the target located
at L without tumbling, which occurs with probability e−τ in

rescaled units. The factor 1/2 comes from the initial condi-
tion, where the initial velocity is ±v with equal probability. In
contrast, the second term comes from trajectories with at least
one tumbling event. The function θ (τ − y) in the second con-
tribution to f0(τ |y) in Eq. (4) expresses the fact that particles
need a minimal (dimensionless) time τ0 = y to reach the target
at L. For large time τ , using the asymptotic behavior of the
Bessel function In(z) � (2πz)−1/2 ez[1 + O(z−1)] for large z,
one finds that g0(τ |y) in Eq. (5) behaves, when τ → ∞, as

g0(τ |y) � 2eτ

√
2πτ 3

(y + 1/2). (6)

By substituting this asymptotic behavior (6) in Eq. (4), one
obtains the (scaled) FPT distribution f0(τ |y) in Eqs. (4) and
(5) for large τ as

f0(τ |y) � (y + 1/2)√
2πτ 3

. (7)

Its long-time algebraic decay ∝ τ−3/2 coincides with that of
a free Brownian motion, albeit with a different amplitude. In
particular, the amplitude does not vanish as y → 0 [77]. The
expression for the Brownian motion is recovered in the scaling
limit

v → ∞, γ → ∞ with
v2

2γ
= D fixed. (8)

In this limit, one finds indeed that F0(t |dL(x0)) →
FBM(t |dL(x0)), where

FBM(t |dL(x0)) = dL(x0)√
4πDt3

exp
( − d2

L (x0)/(4Dt )
)
. (9)

Thus one recovers the well-known result for the Brownian
motion [57,58].

The properties discussed so far are relevant to describe the
dynamics of the RTP during the phases where the external
potential is switched off, such that the RTP moves freely as
in Eq. (1). What happens when the external potential V (x)
is turned on? During this phase, the dynamics of the RTP is
described by the overdamped Langevin equation

ẋ(t ) = −V ′(x) + vσ0(t ). (10)

Interestingly, it was shown that, rather generically [namely,
if V (x) is sufficiently confining], the RTP will converge to
a stationary state. In this stationary state, the PDF of the
position of the RTP can be calculated explicitly [66,78–82]. In
particular, in the case of the harmonic potential V (x) = κx2/2,
the stationary state is characterized by three parameters:

γ (flip rate), v (intrinsic speed), and κ (trap stiffness). (11)

The stationary PDF p(x) has a finite support [−c,+c], with
c = v/κ [60,81,82]:

p(x) = 1

c
ρ
(x

c

)
,

where ρ(z) = θ (1 − z2) N (ν) (1 − z2)ν−1, (12)

with ν = γ /κ and the normalization constant N (ν) given by

N (ν) = �(ν + 1/2)√
π �(ν)

. (13)

044127-3



TUCCI, GAMBASSI, MAJUMDAR, AND SCHEHR PHYSICAL REVIEW E 106, 044127 (2022)

FIG. 3. Plot of the probability distribution p(x) = ρ(x/c)/c in
Eq. (12) with c = 2 and different choices of ν. Passive regime: The
red and green lines correspond respectively to ν = 2.5 and ν = 1.5.
Active regime: The blue line corresponds to ν = 0.5.

Physically, the location of the edges ±c of the support of the
distribution p(x) correspond to the points where the velocity
of the particle vanishes, i.e., V ′(±c) = ±v. Near the edges, as
x → ±c, the PDF p(x) behaves as p(x) ∝ (c − |x|)ν−1. This
indicates that p(x) exhibits a qualitative change as ν crosses
the value ν = 1 [81]. For ν > 1, p(x) is bell shaped and
vanishes at the edges ±c: this case is called passive [81] since
this bell-shaped curve is qualitatively similar to the Gaussian
distribution corresponding to a Brownian passive particle.
Note also that for ν > 2, the slope of p(x) at x = ±c is finite,
while it diverges for 1 < ν < 2, corresponding, respectively,
to the red and the green curves in Fig. 3. On the other hand,
for 0 < ν < 1, the particle tends to accumulate at the edges
of the distribution: this results in a U-shaped p(x) that di-
verges at ±c (see the blue curve of Fig. 3)—this is the active
case [81].

III. THE FPT DISTRIBUTION FOR A FREE
ONE-DIMENSIONAL RTP AVERAGED

OVER INITIAL CONDITION

In this section, motivated by the experimental resetting
protocol discussed in the Introduction, we first consider the
distribution F (t ) of the FPT of a free run-and-tumble particle
to a target located at L, averaged over the initial position. This
reads

F (t ) =
∫ ∞

−∞
dx0 p(x0) F0(t |dL(x0)), (14)

where F0(t |dL(x0)) is the FPT distribution for a free RTP
starting at a certain distance dL(x0) = |L − x0| from the target
given in Eq. (4). Here, p(x0) is the stationary PDF of the
position of an RTP in the presence of an external potential
V (x) = κ x2/2, given in Eq. (12).

It is convenient to express F (t ) in terms of the dimension-
less variables

a = γ L

v
and b = L

c
, (15)

FIG. 4. Schematic space-time trajectories of the RTP that starts
at t = 0 and reaches L for the first time at time t without tumbling.
The trajectory can arrive either from the left or from the right of L,
as represented by the two straight lines. In order to arrive from the
right (respectively from the left), the trajectory must have started at
L + vt = z+ c (respectively from L − vt = z− c).

where a represents the ratio between the position of the target,
L, and the typical distance lγ = v/γ traveled by the particle
between two consecutive tumblings, while b expresses how
far the target is compared to the size 2c of the support of p(x).
To simplify the discussion, we choose L � 0 (by symmetry
the case L � 0 can be treated in the same way). Substituting
Eqs. (4) and (5) in Eq. (14), we get

F (t ) = γ f (τ = γ t ),

f (τ ) = e−τ

2

{
b

a
[θ (1 − |z+|)ρ(z+) + θ (1 − |z−|)ρ(z−)]

+
∫ min(1,z+ )

max(−1,z− )
dz ρ(z)g0(τ | a l (z))

}
, (16)

where we have introduced the dimensionless variables

z± = b
(

1 ± τ

a

)
= L ± v t

c
, (17)

l (z) =
∣∣∣ z

b
− 1

∣∣∣, (18)

while the expression of g0(τ |y) is given in Eq. (5). The first
two terms in the expression of f (τ ) in Eqs. (16) correspond
to particles that have reached the target for the first time at the
(scaled) time τ without experiencing a tumble, which occurs
with a probability ∝ e−τ . The first term ∝ θ (1 − |z+|)ρ(z+)
corresponds to particles having a velocity −v (which thus
started from the initial position L + v t). The second one
∝ θ (1 − |z−|)ρ(z−) corresponds to particles having a velocity
+v (which thus started from the initial position L − v t) (see
Fig. 4). The third and last term in Eq. (16) corresponds to
particles that reached the target for the first time at τ , having
experienced at least one tumble. It turns out that this last term
controls the long-time asymptotic behavior of f (τ ). To derive
this asymptotic behavior of f (τ ), we use in the third term in
Eq. (16) the expression for g0(τ |y) from Eq. (6) for large τ .
This gives

f (τ ) � 1√
2πτ 3

[
1

2
+ a

∫ +1

−1
dz ρ(z) l (z)

]
. (19)
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FIG. 5. Schematic representation of the position of the target
(at L > 0) relative to the right edge (at +c) of the stationary RTP
distribution p(x) with ν = 3/2. On the left panel, the target is outside
the support, corresponding to b = L/c > 1, while on the right panel,
the target is inside the support, corresponding to b = L/c < 1.

For ρ(z) in Eq. (12), one has∫ +1

−1
dz ρ(z) l (z)

=
{

1 for b > 1,

N (ν)
[
2b 2F1

(
1
2 , 1 − ν, 3

2 , b2
) + (1−b2 )ν

νb

]
for b < 1,

(20)

where 2F1 denotes the hypergeometric function and N (ν) is
given in Eq. (13). The FPT in Eq. (19) exhibits a standard
τ−3/2 decay—as in the Brownian case—albeit with a different
amplitude that depends on the distribution p(x). In the oppo-
site limit of shorter times, the average FPT distribution F (t )
develops singularities which are due to the two first terms in
Eq. (16). These singularities arise because of the θ functions
and they thus occur for |z±| = 1. Their nature differs depend-
ing on whether the target L is inside the support [−c,+c]
of p(x) (corresponding to b < 1) or outside it (corresponding
to b > 1) (see Fig. 5 for a schematic illustration). We thus
discuss these two cases separately.

a. The case 0 < b < 1. The target is inside the support of
p(x), i.e., 0 � L < c. Consequently, there are trajectories that
hit the target exactly at time t = 0 (namely, the trajectories
that start from x = L). Hence the left edge of the support of
f (τ ) is τ0 = 0. The θ functions in Eq. (16) indicate that f (τ )
is singular at |z±(τ∓)| = 1, i.e., at

τ± = a

(
1

b
± 1

)
= γ

c ± L

v
. (21)

Clearly, τ+ (τ−) is the time needed for a particle moving
ballistically with velocity +v (−v) to reach the target located
at L < c (see the top panel of Fig. 6). The behavior of f (τ )
close to these singular points depends on the one of p(x) close
to the edges at x = ±c. One finds indeed that for small ε > 0

f (τ± − ε) = e−τ±

2

b

a
ρ

(
1 − ε

b

a

)
+ O(ε0)

= e−τ±

4

(
2b

a

)ν

N (ν) εν−1 + O(ε0), (22)

where we recall that N (ν) is given in Eq. (13). Hence, in
the active regime 0 < ν < 1, f (τ ) diverges on the left of τ±:
this behavior is displayed by the blue curve of Fig. 7(a). This
divergence comes from particles that are initially located near
the edges, where p(x) exhibits a divergence in this case (see
Fig. 3), and reaches the target from ∓c at the time τ± without

FIG. 6. Schematic space-time pictures representing the RTP tra-
jectories corresponding to the first two terms on the right-hand side of
Eq. (16). In the top panel (b < 1), the left straight line corresponds to
the trajectories of the RTP starting from the left edge of the support at
−c and arriving for the first time at L at time τ+, without undergoing
any tumbling in between. The right straight line corresponds to an
RTP that starts at the right edge +c and arrives, without tumbling,
at L at time τ− for the first time. We use the notation τ− and τ+
to indicate that τ− < τ+ (for L > 0). In the bottom panel (b > 1), the
two lines again correspond to the trajectories that start from the edges
±c of the support and reach L without tumbling for the first time at
time τ∓.

tumbling. In the passive regime ν > 1, f (τ ) is continuous at
τ± but it still exhibits a singular behavior close to these points
τ±. For instance, for 1 < ν < 2 its first derivative diverges on
the left of τ±, while for ν � 2 it is also continuous: this is dis-
played, respectively, in the green and red curves of Fig. 7(a).
Note that the FPT distribution is always finite at τ± + ε, i.e.,

f (τ+ + ε) = e−τ+

2

∫ +1

−1
dz ρ(z)g0(τ+|l (z)) + O(ε),

f (τ− + ε) = e−τ−

2

[∫ +1

2b−1
dz ρ(z)g0(τ−|l (z))

+ρ(2b − 1) + O(ε)

]
, (23)

in agreement with the fact that the particles reaching the target
at τ± + ε have experienced at least one tumble. At large times,
the FPT distribution scales as τ−3/2 and the corresponding
prefactor in Eq. (19) depends on the behavior of p(x) at its
boundaries and the location of the target, namely, on ν, c, and
L. In Fig. 7(a), on the scale used here, the dependence of the
function f (τ ) for τ > τ+ on these parameters is hardly visi-
ble. However, we have checked carefully that the differences
show up by zooming in on this region. By integrating the
FPT distribution in Eq. (16), we also computed the survival
probability up to time t , namely, S(t ) = ∫ ∞

t dt ′F (t ′). This
is plotted in Fig. 7(b), where it is compared to numerical
simulations, finding excellent agreement.

b. The case b > 1. The target is outside the support of p(x),
i.e., L > c. In this case, the minimal time τ0 to reach L is
given by τ0 = |τ−| > 0 [with τ− = (c − L)/v < 0]. This sim-
ply corresponds to the time needed for the particles initially
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FIG. 7. (a) The first-passage time distribution density F (t ) and (b) the survival probability S(t ) = ∫ ∞
t dt ′ F (t ′), in the case where the target

is inside the support of the initial distribution p(x) of the RTP in Eq. (12), i.e., with b < 1. The parameters are L = 1, c = 2, γ = 1, v = 5,
and ν = 0.5 (blue curve), ν = 1.5 (green curve), and ν = 2.5 (red curve). We evaluated F (t ) from the analytical expressions given in Eqs. (4)
and (16). In contrast, the integral S(t ) = ∫ ∞

t dt ′ F (t ′) had to be evaluated numerically at few discrete values of t and hence we represent them
by symbols in (b), even though these results are analytical. We also evaluated S(t ) by simulating the corresponding Langevin equation (1) and
the data can be easily obtained for a larger set of discrete times. Hence in (b) we represent the numerical Langevin data by solid lines, even
though they are numerical. We find an excellent agreement between the analytical prediction and the numerical results. The dashed vertical
lines coincide with t± = τ±/γ , the times at which particles starting at the edges ±c reach the target without tumbling. Analogously, we plot
(c) F (t ) and (d) S(t ) for b > 1, with L = 3. In this case, the support of F (t ) is limited from below by t− = |τ−|/γ , the time at which particles
from +c hit the target at L > c without tumbling (see Fig. 6). The second vertical dashed line corresponds to t+ = τ+/γ . Numerical predictions
are computed by simulating with Euler’s numerical integration method N = 105 trajectories with a time step �t = 10−4. Error bars are not
visible on the scale of the plot.

located at +c and moving ballistically with velocity +v (i.e.,
without tumbling) to reach the target located at L > c (see
the bottom panel of Fig. 6). In this case, as for 0 < b < 1 dis-
cussed above, we find that the leading contribution to f (|τ∓| ±
ε) is the same as in Eq. (22) with |τ±| replacing τ±. In the
active regime 0 < ν < 1 [see the blue curve of Fig. 7(c)], the
divergence of f (τ ) at |τ∓| ± ε corresponds to fronts of parti-
cles, initially at ±c, that hit the target with constant velocity
±v without tumbling. In the passive regime ν > 1, the MFPT
f (τ ) is finite at |τ∓|: it displays an infinite derivative for
1 < ν < 2 [green curve in Fig. 7(c)], or a finite one for ν � 2
[red curve of Fig. 7(c)]. As in the case b < 1, we find that
f (τ+ + ε) is given by Eq. (23), while f (|τ−| − ε) = 0 since
|τ−| − ε < τ0 is outside the support of f (τ ). At long times,
the leading behavior of f (τ ) ∼ (1/2 + (γ L/v))/

√
2πτ 3 [see

Eqs. (19) and (20)] is independent of c and ν. Correspond-
ingly, the curves for different values of ν in Fig. 7(c) are
expected to almost coincide. This is indeed the case, except
that, for τ > τ+, there are still dependencies on ν (coming
from the subleading terms), though they are not visible on
the scale of Fig. 7(c). As in the previous case, we have also

computed the survival probability S(t ) = ∫ ∞
t dt ′F (t ′), which

is plotted in Fig. 7(d). The comparison with simulations, once
again, is excellent.

In general, the properties discussed above are found when-
ever the initial probability density p(x) has qualitative features
similar to those discussed here: a finite support, and a transi-
tion from the passive to the active regime. For example, we
may consider p(x) to be the stationary probability density
of an RTP in the more general confining potential Vq(x) =
μ|x|q, where q > 1. As for the harmonic trap, the correspond-
ing stationary probability density pq(x) has a finite support
(−cq, cq ), with cq = [v/(μq)]1/(q−1) [81]: the modulus of the
velocity of the RTPs vanishes at ±cq according to the zero
velocity condition V ′

q (±cq) = ±v. Moreover, the behavior of
pq(x), in correspondence of points at a distance ε > 0 from
the edges, is given by

pq(x = ±cq ∓ ε) ∼ εν(μ,q)−1, (24)

where the exponent reads ν(μ, q) = (μc/μ)1/(q−1), with μc =
(v/q)2−q[γ /(q(q − 1))]q−1. The passive regime is realized for
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ν > 1, corresponding to μ < μc, and the active one otherwise.
As for the case of the harmonic trap, the qualitative properties
of the average FPT near τ± depend only on the behavior of
pq(x) near the edges of its support. Namely, except for the
potential-dependent prefactor, f (τ ) shows the same scaling
as in Eq. (22): for 0 < b < 1, f (τ± − ε) ∝ εν(μ,q)−1, while for
b > 1, one has f (|τ±| ∓ ε) ∝ εν(μ,q)−1.

Thus, to summarize, the FPT distribution of an RTP, when
averaged over the initial condition with a finite support,
exhibits generically two singular points at τ = τ∓, corre-
sponding to contributions from the purely ballistic trajectories
that originate from the two edges of the supports. They carry
the information about the singular behavior of the initial con-
dition (density) near the two edges. They manifest themselves
as singularities in the FPT distribution at τ±. This picture is
rather generic for an RTP and holds for any initial condition
with a finite support.

IV. RTP WITH STOCHASTIC RESETTING

In this section, we study the dynamics of an RTP whose
velocity as well as the position are reset at random times as
follows. At the initial time, the position x of the particle is
randomly distributed according to the distribution p(x) and it
starts with a velocity ±v with equal probability. The particle
then evolves according to Eq. (1) for a certain random time τ ,
which is distributed according to an exponential distribution
P(τ ) = r e−rτ , after which the velocity and the position of
the particles are reset instantaneously. The new velocity is
set randomly to ±v with equal probability while the resetting
position of the particle is again distributed according to the
distribution p(x). The resetting protocol is thus similar to the
“fully randomized” protocol introduced in Ref. [71] except
that here the resetting position is chosen randomly from p(x)
at each resetting event. Here we are interested in the case
where p(x) is given by Eq. (12).

Our main focus here is on the FPT to a target, modeled
by an absorbing boundary, at x = L > 0. Following a renewal
approach [2,71], we first relate the survival probability Sr (t )
with resetting [after averaging over initial positions drawn
from a distribution p(x0)] to the averaged survival probability
without resetting, i.e.,

S0(t ) =
∫

dx0 S0(t |x0) p(x0), (25)

where S0(t |x0) is the survival probability without resetting for
a given initial position x0. This relation is best expressed in the
Laplace space. We thus define the pair of Laplace transforms

S̃r (s) =
∫ ∞

0
dt Sr (t ) e−st , (26)

S̃0(s) =
∫ ∞

0
dt S0(t ) e−st . (27)

Then, the relation between the two reads (see Appendix A)

S̃r (s) = S̃0(s + r)

1 − rS̃0(s + r)
. (28)

Averaging Eq. (2) over p(x0), the Laplace transform S̃0(s) is
then given by

S̃0(s) = 1

s

[
1 + vλ(s) − s − 2γ

2γ

∫ +c

−c
dx0 e−λ(s)dL (x0 ) p(x0)

]
,

(29)

where we recall that λ(s) =
√

s2 + 2sγ /v and dL(x) = |L −
x|.

The FPT distribution Fr (t ) is obtained from Sr (t ) as
Fr (t ) = −∂t Sr (t ) and the MFPT to the target is thus given by
〈t f 〉 = S̃r (0), yielding, from Eq. (28),

〈t f 〉(r) = S̃0(r)

1 − rS̃0(r)
, (30)

where S̃0(r) is given in Eq. (29). Below, we analyze the be-
havior of 〈t f 〉(r) as a function of r, in the two extreme limits
r → 0 and r → ∞, and then for intermediate values of r.

A. MFPT in the limits of small and large r

In order to understand the behavior of 〈t f 〉 as a function
of the resetting rate r, we consider separately the two limits
r → 0 and r → ∞.

The limit r → 0. In this case 〈t f 〉 is found by Taylor-
expanding Eqs. (29) and (30) for small r, yielding

〈t f 〉(r) = 1√
2γ r

[
1 + 2γ

v

∫ +c

−c
dx0 p(x0)dL(x0)

]
+ O(r0),

(31)

where the convergence of the integral follows from the fact
that p(x0) has a finite first moment. As in the case of Brownian
motion [24], the mean first-passage time diverges as r−1/2 for
r → 0, albeit with a different prefactor, as given in Eq. (31).

The limit r → ∞. This limit, by contrast, depends crucially
on whether b = L/c < 1 or b > 1, i.e., whether the target is
inside or outside the support. We consider below the two cases
separately.

The case 0 < b < 1. To analyze the large-r behavior in
Eq. (30), we need to analyze the integral that appears in
Eq. (29), namely,

I (r) =
∫ +c

−c
dx0 p(x0) exp (−λ(r)dL(x0)), (32)

keeping in mind that p(x0) has a finite support over the inter-
val (−c, c) and dL(x0) = |L − x0|. We start by evaluating the
asymptotic behavior of the integral I (r) in powers of r−1 as
r → ∞. We then make a change of variable y = (x − L)λ(r),

I (r) = 1

λ(r)

∫ λ(r)(c−L)

−λ(r)(L+c)
dy p

(
y

λ(r)
+ L

)
e−|y|

= 2v

r
p(L) + O(r−2), (33)

where, using λ =
√

r2 + 2γ r/v ∼ r/v to leading order in
1/r, we expanded p(y/λ(r) + L) and we integrated over y.
Since L is inside the support of p(x0), one has p(L) > 0. By
direct substitution of Eq. (33) in Eq. (30), we get

〈t f 〉(r) = 1

v p(L)
+ O(r−1), (34)
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FIG. 8. Mean first-passage time 〈t f 〉(r) in Eq. (30) as a function
of the resetting rate r. (a) 〈t f 〉 when the target is inside the support
of p(x), i.e., b < 1 (L = 2), and the corresponding asymptotic value
(vp(L))−1 is denoted by the horizontal line. (b) The target is outside
the support, i.e., b > 1 (L = 3). The values of the relevant parameters
are v = 1.5, γ = 2.5, c = 2.5, and ν = 0.5. In both figures, the
dashed line represents the analytical expression in Eq. (30), while
dots refer to the corresponding numerical results, computed by sim-
ulating with Euler’s numerical integration method wth N = 4 × 104

trajectories with time step �t = 10−3. Error bars, not always visible
on the scale of the plot, are computed by standard deviation over the
ensemble average.

which tells us that 〈t f 〉(r) tends to a constant in the large-r
limit. The fact that 〈t f (r)〉 approaches a nonzero constant as
r → ∞ is shown in Fig. 8(a), where 〈t f 〉(r) is plotted for
certain representative values of the parameters. This approach
can be either monotonic from above [as in Fig. 8(a)] or from
below. In the latter case, there is a global minimum at some
intermediate optimal value r∗ as will be discussed in detail
later in Sec. IV B 2.

The case b > 1. For L > c, we can bound the integral in
Eq. (32) by

I (r) = e−λ(r)L
∫ c

−c
dx0 p(x0) eλ(r)x0 � e−λ(r)(L−c), (35)

where we have exploited the monotonicity of the exponential.
Substituting this inequality in Eqs. (29) and (30), we obtain a
lower bound for the MFPT:

〈t f 〉(r) � 1

r

[
2γ eλ(r)(L−c)

r + 2γ − vλ(r)
− 1

]
. (36)

Recalling that λ(r) =
√

r2 + 2γ r/v, we see that the right-
hand side of inequality (36) diverges exponentially as r → ∞,
reflecting the fact that the probability to hit the target outside
of the support decreases exponentially at large r. Accordingly,
for b > 1, there always exists a finite minimum r∗ of the
MFPT: this case is shown in Fig. 8(b).

B. MFPT for intermediate values of r

To analyze Eqs. (29) and (30) for intermediate values of r,
it turns out to be convenient to use the dimensionless variables

X = Lλ(r), a = γ L

v
, b = L

c
, (37)

where we recall that λ(r) =
√

r2 + 2γ r/v and L and c denote
respectively the location of the target and the right edge of the
support of the initial distribution p(x0) = c−1ρ(x0 c−1), with
ρ(z) given in Eq. (12). We define the dimensionless MFPT
〈τ f 〉 = γ 〈t f 〉/(8a2), which can be expressed, using Eqs. (29)
and (30), as

〈τ f 〉 = γ 〈t f 〉
8a2

= 1

4aX 2

×
[

(2a +
√

4a2 + X 2)

(
1

ρr (X, b)
− 1

)
+ X

ρr (X, b)

]
,

(38)

where we denote

ρr (X, b) =
∫ +1

−1
dz ρ(z) e−X l (z), (39)

with l (z) = |z/b − 1| and ρ(z) given in Eq. (12). Thus
Eq. (38) gives the rescaled MFPT as a function of the resetting
rate r through the variable X = Lλ(r) = L

√
r2 + 2γ r/v for

fixed values of the two parameters a and b as well as the
initial rescaled density ρ(z) with a finite support with edges
at z = ±1.

Below we analyze Eq. (38) as a function of X , and hence of
r, keeping a, b, and ρ(z) fixed. It turns out to be convenient to
discuss the simpler diffusive limit first, where γ → ∞, v →
∞ with fixed v2/(2γ ) = D [see Eq. (8)]. In this limit a =
γ L/v = √

γ /(2D)L → ∞, while b and ρ(z) are kept fixed.
This is done below in Sec. IV B 1, followed by the analysis of
the generic case in Sec. IV B 2.

1. The diffusive limit of the RTP

In the diffusive limit, the parameter a → ∞, as discussed
above, while we keep b and ρ(z) fixed. Physically, this con-
dition is satisfied for L � lγ = v/γ : the distance of the target
from the origin is much larger than the mean free path between
two consecutive tumblings, which may be regarded effectively
as a diffusive step. Furthermore, we recall that the initial
scaled distribution, ρ(z) = N (ν) (1 − z2)ν−1 for −1 < z < 1
with N (ν) given in Eq. (13), is characterized by a single
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parameter ν > 0. Thus, in this limit, the rescaled MFPT in
Eq. (38) reduces to

〈τ f 〉 = 1

X 2

[
1

ρr (X, b)
− 1

]
, (40)

with ρr (X, b) given in Eq. (39). We analyze 〈τ f 〉 in Eq. (40) as
a function of X = L

√
r/D for two fixed parameters b and ν >

0. In fact, for b > 1, the scaled 〈τ f 〉 has always a minimum
(as a function of r) at some optimal value r∗ [see Fig. 8(b)],
irrespective of the parameter ν. In contrast, more interesting
behavior emerges, as shown below, for the complementary
case 0 < b < 1, when the target is inside the support of the
initial distribution. Hence, below, we focus on 0 < b < 1,
considering various values of the parameter ν.

We first focus on the two extreme limits X � 1 and X →
∞. To understand their physical significance, it is useful to
rewrite X = L

√
r/D = √

τd/τr , where τd = L2/D and τr =
1/r. Note that τd is the typical time to cover a distance L
purely by diffusion and τr is the typical time between two suc-
cessive resettings. When X � 1, i.e., for r → 0, the resetting
is rare compared to diffusion. From Eq. (39), expanding for
small X and using the normalization condition

∫ +1
−1 dz ρ(z) =

1, we get

ρr (X, b) = 1 − X
∫ +1

−1
dz ρ(z)l (z) + O(X 2), (41)

where l (z) = |z/b − 1|. Substituting this result in Eq. (40), we
find

〈τ f 〉 =
∫ +1
−1 dz ρ(z)l (z)

X
+ O(X 0), X → 0. (42)

In the opposite limit where X → ∞ (when resetting is more
frequent than diffusion), we first analyze ρr (X, b) in Eq. (39).
Performing the change of variable X (z/b − 1) = y, we get

ρr (X, b) = b

X

∫ X ( 1
b −1)

−X (1+ 1
b )

dy ρ

(
b + by

X

)
e−|y|. (43)

Note that the upper limit in the integral approaches +∞ as
X → ∞ (since 0 < b < 1) while the lower limit approaches
−∞. Expanding for large X , we then get

ρr (X, b) = 2bρ(b)

X
+ O(X −3). (44)

Consequently, 〈τ f 〉 in Eq. (40) behaves as

〈τ f 〉 = 1

2bρ(b)

1

X
+ O(X −3). (45)

Thus, from Eqs. (42) and (45), we see that 〈τ f 〉 diverges as
X → 0 as 〈τ f 〉 ∝ 1/X and it decays very slowly still as 〈τ f 〉 ∝
1/X , for large X .

The interesting question is this: How does 〈τ f 〉 behave for
intermediate values of X , between these two extreme limits?
For instance, does 〈τ f 〉 decrease monotonically upon increas-
ing X or is there any possibility of a nonmonotonic behavior?
Indeed, it turns out that this monotonicity depends on both
parameters ν and b. By evaluating 〈τ f 〉 numerically from
Eq. (40), we generically find two types of behavior, depending
on ν and b: (i) the function 〈τ f 〉 decreases monotonically upon
increasing X , implying that r → ∞ is the optimal resetting

FIG. 9. Sketch of the phase diagram for the simpler diffusive
limit in the (b, ν ) plane (see the text for details).

rate, and (ii) the function 〈τ f 〉 develops an additional local
minimum at X = Xmin—we call it a “kink” in the following.
However, this minimum is “metastable” in the sense that
τmin = 〈τ f 〉(X = Xmin) is larger than the true global mini-
mum which occurs always at X → ∞. A similar metastable
behavior was also noticed in the theory and experiments of
pure Brownian diffusion, but starting only from the Gaussian
initial distribution with a finite width σ [44–46]. In our study
here, the initial distribution (corresponding to the stationary
distribution of an RTP in a harmonic trap) also has a finite
width but an additional parameter ν which can be tuned to
generate a family of shapes of the initial distribution. This
leads to a richer phase diagram in the two-parameter plane as
discussed below. Our findings are summarized in the “phase
diagram” in the (b, ν) plane shown in Fig. 9. In this plane,
there are two lines ν1(b) and ν2(b) [> ν1(b)], for 0 � b < 1.
For ν < ν1(b), there is a metastable minimum (i.e., a kink)
at X = Xmin and the rescaled MFPT 〈τ f 〉 in Eq. (40), as a
function of X , has a local (but not global) minimum at some
finite X (see Fig. 9). We call this phase “metastable.” For
ν1(b) < ν < ν2(b), the rescaled MFPT is a monotonically
decreasing function of X—we call this phase “monotonic.”
When ν exceeds ν2(b), a kink develops again in the 〈τ f 〉 vs
X curve, indicating the reappearance of the metastable phase.
Thus, we find a reentrance “phase transition” across the lines
ν1(b) and ν2(b). In the limit b → 0, we find that ν2(b →
0) → ∞ while ν1(b → 0) = ν1(0) ≈ 0.1. In the other limit
b → 1, we find that ν1(b → 1) = ν∗

1 ≈ 0.07, while ν2(b →
1) = 2 (see below). Our numerical simulations indicate that
the curve ν1(b) is nonmonotonic as b approaches the value
b = 1 (see Fig. 9). In addition, it turns out that the behavior
exactly at b = 1 is different from the limit b → 1− in the
following sense. Indeed, exactly at b = 1, there are only two
phases (instead of three in the limit b → 1−), depending on
whether ν < ν2(b = 1) = 2 or ν > ν2(b = 1) = 2. For 0 <

ν < ν2(b = 1) = 2, the scaled MFPT 〈τ f 〉 is a monotonically
decreasing function of X , thus indicating that ν1(b = 1) = 0.
This implies that ν1(b → 1) ≈ 0.07 �= ν1(b = 1) = 0. In ad-
dition, the phase for ν > ν2(b = 1) = 2 is slightly different
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from the metastable phase for b < 1. Indeed, it turns out that
for b = 1 and ν > ν2(b = 1) = 2, the scaled MFPT 〈τ f 〉 has
a single global minimum at X = Xmin < ∞, which thus is not
metastable. This phase is shown by the solid vertical blue line
in the phase diagram (see Fig. 9). As one crosses the phase
boundaries ν1(b) and ν2(b), for fixed b, upon increasing ν,
the transition from the metastable to the monotonic phases is
somewhat similar to the “spinodal” transition that happens in
thermodynamics systems.

This reentrance transition, as the parameter ν increases, can
be qualitatively understood by the following argument. The
parameter ν controls the location of the peak of the initial
distribution. For example, when 0 < ν < 1, the peak of the
initial distribution occurs close to z = 1 (and symmetrically
at z = −1); i.e., more particles are concentrated, in the initial
condition, at the edges of the support. We recall that the target
is located at a fixed scaled distance b = L/c < 1 to the right of
the origin. Thus for small ν, the peak of the initial distribution
at z = 1 is to the right of the target and well separated from
it. A similar situation arose in Refs. [44–46], where the initial
distribution was Gaussian, centered at the origin with a finite
width σ . There, it was shown that if the target and the peak of
the Gaussian initial distribution are well separated, indeed one
finds a metastable state with a kink, while the true minimum
still occurs at Xmin = ∞. This nonmonotonic decay of 〈τ f 〉 vs
X is shown schematically in the inset of the lower metastable
phase in Fig. 9. In the opposite limit ν � 1, the peak of the
initial distribution will be concentrated around z = 0, i.e., on
the left side of the target at b and again clearly separated from
it. Since the diffusion is symmetric, this is qualitatively similar
to the case when the initial peak was to the right of the target.
Thus, one would again expect a metastable state with a kink
in the curve 〈τ f 〉 vs X , as shown schematically in the inset
of the upper metastable phase in Fig. 9. For the intermediate
values of the parameter ν, the peak of the initial distribution is
rather close to the target and, hence, following the argument
of Refs. [44–46], one would expect a monotonic decay of 〈τ f 〉
vs X , as shown schematically in the inset of the middle phase
in Fig. 9. However, this qualitative argument does not provide
a detailed location of the phase boundaries ν1(b) and ν2(b), for
which one needs to analyze Eq. (40) in more detail (which we
did numerically). While it is difficult to extract the analytical
expressions of the two curves ν1(b) and ν2(b), we can estimate
them numerically for generic b. However, the two limiting
cases b → 0 and b → 1− can be studied analytically, as we
now show.

The case b → 0. This case corresponds to the target be-
ing located at the origin. From the expression of ρr (X, b) in
Eq. (39), which explicitly reads

ρr (X, b) =
∫ +1

−1
dz ρ(z) e−X | z

b −1|, (46)

one sees that in the limit b → 0, it becomes only a function of
X/b,

ρr (X, b) ≈ ρ̃r

(
Y = X

b

)
,

where ρ̃r (y) =
∫ 1

−1
dz ρ(z) e−Y |z|. (47)

FIG. 10. Sketch of W̃ (Y ) in Eq. (48) as a function of Y as ν

increases across the critical value ν1(0).

Plugging this result in Eq. (40), we see that the scaled MFPT
can be expressed in a scaling form when b → 0 as

〈τ f 〉 ≈ 1

b2
W̃

(X

b

)
with

W̃ (Y ) = 1

Y 2

[
1

2
∫ 1

0 dz ρ(z) e−Y z
− 1

]
, (48)

where we used ρ(z) = ρ(−z) [see Eq. (12)]. By plotting the
scaling function W̃ (Y ) vs Y , we see two types of behaviors
depending on the value of ν that characterizes ρ(z) given
in Eq. (12). For ν < ν1(0), the function W̃ (Y ) exhibits a
metastable behavior, while for ν > ν1(0), the curve W̃ (Y ) vs
Y is a monotonically decreasing function (see Fig. 10). To
determine this critical point ν1(0), we notice that when the
metastable minimum disappears, both the first and the second
derivative of W̃ (Y ) vanish at the value Y = Yc, thus making it
a point of inflection (see Fig. 10). In this sense, this is a “spin-
odal phase transition.” Setting W̃ ′(Yc) = 0 and W̃ ′′(Yc) = 0,
we have two equations for the two unknowns Yc and ν1(0).
This determines ν1(0) and numerically we find ν1(0) ≈ 0.1. In
this case, there is no reentrance phase transition at ν = ν2(0),
since ν2(0) → ∞. As opposed to b > 0, where the right peak
of the initial distribution can cross the target from right to left
as ν increases (leading to the second metastable phase for
ν > ν2(b)), in the limit b → 0, this crossing cannot happen,
indicating that for any ν > ν1(0) the phase must be mono-
tonic. This leads to the divergence of ν2(b) as b → 0.

The case b → 1−. In this case, the numerical study of 〈τ f 〉
in the metastable phase ν < ν1(b) shows that the location of
its local minimum Xmin diverges as Xmin ∝ 1/(1 − b). It is
thus natural to study 〈τ f 〉 in Eq. (40), and hence ρr (X, b) in
Eq. (39), in the scaling limit b → 1, X → ∞ but keeping the
product Z = X (1 − b) fixed. To study ρr (X, b) in this limit, it
is convenient to start from the expression given in Eq. (43),
obtained from the original expression in Eq. (39) after a sim-
ple change of variable. After straightforward manipulations,
one finds that, in this scaling limit, ρr (X, b) takes the scaling
form

ρr (X, b) ≈ (1 − b)ν ρ̄r (Z = (1 − b)X ), (49)

where the the scaling function ρ̄r (Z ) is given by

ρ̄r (Z ) = 2ν−1 N (ν)

Zν

∫ Z

−∞
dy (Z − y)ν−1e−|y|, (50)

with N (ν) = �(ν + 1/2)/(
√

π �(ν)). By substituting this
scaling form [Eqs. (49) and (50)] in Eq. (40), one finds that
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in this scaling limit 〈τ f 〉 reads

〈τ f 〉 ≈ (1 − b)2−νW (Z ), (51)

where

W (Z ) = 21−ν

N (ν)

Zν−2∫ Z
−∞ dy (Z − y)ν−1e−|y| . (52)

One can then analyze the function W (Z ) in Eq. (52) exactly
as we did before for the function W̃ (y) in Eq. (48). By varying
ν, we actually find a behavior qualitatively similar to the
one depicted in Fig. 10, with ν1(0) replaced by a different
value, ν∗

1 = limb→1 ν1(b) ≈ 0.07. Here also, this critical value
separates a phase, for ν < ν∗

1 , where W (Z ) exhibits a non-
monotonic behavior with a local minimum at Z = Zmin from
a phase, for ν > ν∗

1 , where W (Z ) is monotonically decreas-
ing. Exactly at ν = ν∗

1 , the scaling function W (Z ) exhibits an
inflection point at some point Z = Zc [as shown for W̃ (Y ) in
Fig. 10].

The case b = 1. This special value is singular and needs to
be treated separately. In this case, the integral for ρr (X, b = 1)
in Eq. (39) can be computed explicitly (see Appendix B) and
it reads

ρr (X, b = 1) = �

(
ν + 1

2

)(X

2

) 1
2 −ν

Iν− 1
2
(X ) e−X , (53)

where Iα (x) is the modified Bessel function of index α. Sub-
stituting this result in Eq. (40), we get an explicit expression
of 〈τ f 〉 as a function of X . Let us first examine the X → 0
behavior. In this limit, it is easy to see that

〈τ f 〉 ≈ 1

X
as X → 0. (54)

Thus 〈τ f 〉 diverges as X → 0 with an amplitude which is in-
dependent of ν. We next consider the opposite limit X → ∞.
Taking this limit in Eqs. (53) and (40), we find

〈τ f 〉 ≈
√

2π

2ν− 1
2 �(ν + 1/2)

X ν−2, as X → ∞. (55)

Accordingly 〈τ f 〉 diverges as X → ∞ for ν > 2. This indi-
cates that 〈τ f 〉 is a nonmonotonic function of X for ν > 2. By
plotting this function, one can see indeed that it has a unique
minimum at X = Xmin for all ν > 2. In contrast, for ν < 2,
the expression in Eq. (55) indicates that 〈τ f 〉 decays to zero
as X → ∞, hinting that the function 〈τ f 〉 may be monotonic
for any X > 0. By plotting 〈τ f 〉 for ν < 2, we see that it is in-
deed a monotonically decreasing function of X . This last fact
shows that ν1(b = 1) = 0 and ν2(b = 1) = 2. As discussed
above, we thus see that the curve ν1(b) is discontinuous since
ν1(b → 1) ≈ 0.07 > ν1(b = 1) = 0.

2. The more general RTP case

We now consider the more general RTP case, where the
parameter a = γ L/b is now finite (recall that in the diffusive
limit discussed above, the parameter a → ∞). For finite a,
we need to investigate Eqs. (38) and (39) and plot 〈τ f 〉 as a
function of X for fixed parameters a, b, and ν. Thus, com-
pared to the previously discussed diffusive case, we have an
additional parameter a here. It turns out that the finiteness of

FIG. 11. (a) The dimensionless mean first-passage time 〈τ f 〉 in
Eq. (38) is plotted as a function of X for various values of the
exponent ν, with parameters b = 0.95 and a = 0.5. (b) The value
Xmin of the point of minimum of 〈τ f 〉 is plotted as a function of the
exponent ν: the dashed vertical lines identify the values of ν used to
plot, with the same color, the curves of 〈τ f 〉 in (a), while the grey
area marks the range of ν ∈ (ν1, ν2) for which Xmin = +∞, with
ν1(a = 0.5, b = 0.95) � 0.89, and ν2(a = 0.5, b = 0.95) � 1.32.

the parameter a induces interesting changes on the 〈τ f 〉 vs X
curve for fixed parameters a, b, and ν. We recall that we only
consider the case b = L/c < 1 such that the target is inside the
support of the initial distribution. In the case b > 1, we have
seen that there is always a true global minimum in the 〈τ f 〉 vs
X at a finite value X = Xc and there is no metastable phase.
In contrast, for b < 1, both metastable and monotonic phases
may appear, as we have seen in the limit a → ∞. Hence, here,
we focus on b < 1 but with a finite.

It turns out that in this case of finite a and b < 1, the 〈τ f 〉 vs
X develops additional features as summarized in Fig. 11. We
see from Fig. 11(a) that 〈τ f 〉 always approaches a constant
asymptotically as X → ∞ [see the discussion in Eq. (34)
and below]. However, the approach to this asymptotic con-
stant may be either monotonic or nonmonotonic, depending
on the parameter values. The three representative cases are
shown in Fig. 11(a) where we plotted 〈τ f 〉 vs X for a = 0.5,
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b = 0.95 and three different values of ν = 0.2, 1.0 and ν =
1.5. For ν = 0.2 (the green line), the curve develops a global
minimum at some value of Xmin and then increases before
finally approaching the asymptotic constant from above. For
ν = 1.5 (blue line), this curve again has a global minimum
(though a shallow one), after which it increases monotonically
to approach the asymptotic constant from below. For the in-
termediate value ν = 1.0 (red line), the curve approaches the
asymptotic constant purely monotonically from the beginning.
Thus, this is somewhat different from the diffusive a → ∞
limit. Here, as the parameter ν increases, we again have a
reentrance transition but from a “true minimum” to another
“true minimum” phase, separated by a monotonic phase in
between, where the minimum occurs at X → ∞. The loca-
tion Xmin of the global minimum is plotted as a function of
increasing ν in Fig. 11 for fixed a = 0.5 and b = 0.95. We
see that for ν < ν1(a, b), Xmin is finite and increases upon in-
creasing ν. When ν1(a, b) < ν < ν2(a, b), the location of the
minimum Xmin jumps to +∞ (shown by the shaded region).
For ν > ν2(a, b), the location Xmin again becomes finite and
increases further upon increasing ν. For the RTP, this is the
analog of the reentrance phase transition discussed before in
the diffusive limit (see Fig. 9).

V. PERIODIC RESETTING AND EXPERIMENTAL
PROTOCOL

In the previous sections, we have studied the first-passage
properties of an RTP in the presence of Poissonian resetting
where the time interval T between two successive resettings
is a random variable drawn from an exponential distribution
P(T ) = r e−r T . While this case is easier to study analytically,
experimentally it is easier to implement a periodic protocol
[44,46] where the interval T is fixed and not a random vari-
able. As in the Brownian case, the details of the first-passage
properties of the RTP in these two protocols differ from each
other. However, the qualitative behaviors of the MFPT as
a function of the system parameters are similar, as in the
Brownian case [44,46]. Hence, we do not present the details
of these calculations with a periodic protocol here, but instead
we outline below the salient features of the protocol and the
main results.

The periodic protocol proceeds as follows. Initially, we
let the dynamics of the RTP relax in a harmonic trap, with
potential V (x) = κx2/2, for a time Teq. At the end of this equi-
libration phase, the particle position is distributed according
to Eq. (12): this is true only if the typical relaxation time τrel of
the particle in the harmonic trap is much smaller than Teq, i.e.,
τrel � Teq. We recall that Teq is the time interval during which
the harmonic trap is switched on. The relaxation time τrel of
the RTP in this harmonic trap has been computed recently and
it is given by τrel = κ−1 [81]. At the end of this equilibration
phase, the confining potential is switched off and the particle
resumes its free RTP dynamics for a given period T . During
this search phase, we keep track of the FPT statistics to a
target at position L. After a time T , a new equilibration phase
starts and measurements on the system are suspended. The
process goes on by alternating search and equilibration phases
(see Fig. 1). Thus, effectively, the motion of the RTP consists
of a periodic resetting after a time T to points drawn from the

FIG. 12. Numerical estimates (symbols) of the the mean first-
passage time as a function of the equilibration time Teq/τrel, for
different values of b = L/c. The dashed horizontal line corresponds
to the prediction of Eq. (56), i.e., with full realization. The values of
〈t f 〉 have been computed numerically via N = 2.5 × 104 realizations
of the process x(t ) with time step �t = 0.005, with parameters τrel =
0.5, v = 5, γ = 2.5, c = v/κ = 2.5, T = 35, and ν = γ /κ = 1.25.
Error bars are given by standard deviation.

probability density p(x) in Eq. (12). As for the case of Brown-
ian particles, it can be shown that the mean first-passage time
〈t f 〉 is given by [44,46,83]

〈t f 〉 =
∫ T

0 dτ S(τ )

1 − S(T )
, (56)

where S(t ) = ∫ +∞
−∞ dx p(x)S0(t |x) is the survival probability

of the same process without resetting, and initial position
distribution p(x) in Eq. (12). As mentioned before, the results
for the MFPT obtained by analyzing Eq. (56) turn out to
be qualitatively similar to the Poissonian resetting case, for
which Eq. (30) was the relevant formula. Effectively, the rate
r in the Poissonian resetting plays the same role as 1/T in the
periodic resetting.

As in the case of Poissonian resetting, one of the main
consequences of the periodic resetting is to make the MFPT
of the RTP finite. We recall that in the absence of resetting,
the MFPT of the RTP is infinite, since the FPT distribution
has a power law decay ∝ t−3/2

f for large t f . This finite value is
given by the formula (56) for periodic resetting. This formula
is of course valid only when the system has relaxed to its
true stationary state during the equilibration phase, i.e., when
Teq � τrel = κ−1. Hence, for experimental measurements of
the MFPT, it is first important to verify whether this condition
is satisfied of not. Note that if Teq � τrel, which means that
the RTP rarely resets, the MFPT should diverge. Hence, the
MFPT 〈t f 〉, when plotted as a function of the ratio Teq/τrel,
is expected to diverge when the ratio goes to zero and to
approach a constant value given by Eq. (56) when this ratio
approaches +∞. The measured data in experiments will cor-
respond to the theoretical results discussed here only when the
curve has flattened. We have performed numerical simulations
with this periodic protocol and measured 〈t f 〉 as a function of
this ratio Teq/τrel = κTeq, as shown by the symbols in Fig. 12.
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As expected, we see that this curve converges to a constant
value, as the ratio Teq/τrel → ∞. Finally, we also computed
the asymptotic value from the theoretical result in Eq. (56), as
shown by the dashed horizontal lines. As seen in Fig. 12, the
agreement between simulations and the theory is excellent.

VI. CONCLUSIONS

In this work, we have studied how the statistics of the
first-passage time for RTPs, in one spatial dimension, to a
target at position L is modified by the introduction of two
extra ingredients to their dynamics. First we studied the first-
passage time distribution of a free RTP, without any resetting
or any confining potential, but starting from an initial position
drawn from an arbitrary distribution p(x). For experimental
purposes, it is relevant to consider the initial distribution p(x)
to be the stationary distribution of the RTP in the presence of
a harmonic trap. This stationary distribution turns out to be
non-Boltzmann and its shape is tunable by a parameter ν > 0.
This parameter ν depends on the microscopic parameters of
the RTP dynamics. In this particular case, we have shown that
the first-passage time distribution of the free RTP, averaged
over this initial distribution, develops interesting singularities
depending on the parameter ν. This is summarized in Fig. 7.

In the second part of this work, we studied the mean
first-passage time (MFPT) of an RTP subjected to stochastic
resetting. In particular, the experimental protocol suggests
to study the MFPT for the case where the resetting posi-
tion is distributed according to the non-Boltzmann stationary
distribution p(x) mentioned above, parametrized by ν > 0.
Then, we first focused on the diffusive limit of the RTP and,
by varying the parameter ν and the scaled target location

b = L/c, we found a very rich phase diagram in the (b, ν)
plane, with a reentrance phase transition. In one phase (which
we refer to as metastable), the scaled MFPT 〈τ f 〉 as a func-
tion of the scaled resetting rate X exhibits a nonmonotonic
decay, with a local minimum or a kink at Xmin. In the second
phase (referred to as monotonic), the corresponding decay is
monotonic. In the (b, ν) plane, there are two phase boundaries
ν1(b) and ν2(b) > ν1(b) such that, for a fixed b, the phase is
metastable for ν < ν1(b), monotonic for ν1(b) < ν < ν2(b),
and metastable again for ν > ν2(b), as shown schematically
in Fig. 9. In the case of a more general RTP dynamics, i.e.,
beyond the diffusive limit, we found a qualitatively similar yet
somewhat richer behavior of 〈τ f 〉 vs X (see Fig. 11). Finally,
we have discussed the case of periodic resetting (see Fig. 12).

The results presented here are expected to be useful for
possible future experiments for noninteracting RTPs in the
presence of a stochastic resetting, implemented by the thermal
relaxation in a harmonic trap.

APPENDIX A: DERIVATION OF EQ. (28)

We consider an RTP trajectory, starting at the initial po-
sition x0, and resetting to the new positions {x1, x2, . . .} after
successive resettings, where {x0, x1, x2, . . .} are independent
and identically distributed random variables, each drawn from
p(x). Let Sr (t, {xi}) denote the joint probability that the parti-
cle survives up to time t and the resetting positions take the
values {x0, x1, x2, . . .}. We note that in a fixed time t , there
can be no resetting event, or one resetting event, two resetting
events, etc. Hence, one can write a renewal equation using the
fact that the intervals between successive resetting events are
statistically independent:

Sr (t, {xi}) = e−rt S0(t |x0) + r
∫ t

0
dτ1e−rτ1 S0(τ1|x0) S0(t − τ1|x1) (A1)

+ r2
∫ t

0
dτ1

∫ t−τ1

0
dτ1 e−rτ1−rτ2 S0(τ1|x0)S0(τ2|x1)S0(t − τ1 − τ2|x2) + · · · , (A2)

where S0(t |xi ) denotes the survival probability of the RTP up to time t , starting at xi, and without any resetting. Equation (A1)
can be understood very simply. The first term corresponds to the event when there is no resetting up to time t . The second term
corresponds to the event where there is only one resetting at time 0 � τ1 � t . Here x1 is the new starting point after the resetting
event. Similarly the third term corresponds to the event with exactly two resettings in time t , at time τ1 and τ2 and with x1 and
x2 denoting the positions after the two resettings, respectively. The dots in (A1) represent the events with three, four, and higher
number of resettings in time t and all these terms have a similar convolution structure.

We first take the average of relation (A1) over the xi’s, each drawn independently from p(x). Let Sr (t ) denote the averaged
survival probability with resetting and S0(t ) the averaged survival probability without resetting. This gives, from Eq. (A1),

Sr (t ) = e−rt S0(t ) + r
∫ t

0
dτ1e−rτ1 S0(τ1) S0(t − τ1) + r2

∫ t

0
dτ1

∫ t−τ1

0
dτ2 e−rτ1−rτ2 S0(τ1)S0(τ2)S0(t − τ1 − τ2) + · · · , (A3)

where

S0(t ) =
∫

dx0 S0(t |x0) p(x0) . (A4)

The convolution structure in Eq. (A3) naturally leads us to take the Laplace transform with respect to time t . We define

S̃r (s) =
∫ ∞

0
dt Sr (t )e−st , (A5)

S̃0(s) =
∫ ∞

0
dt S0(t )e−st . (A6)
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Taking the Laplace transform of Eq. (A3) one finds a geometric series for S̃0(s) over the number of resets that, once resummed,
gives the desired result

S̃r (s) = S̃0(s + r)

1 − rS̃0(s + r)
, (A7)

given in Eq. (28) in the main text.

APPENDIX B: DERIVATION OF EQ. (53)

In this Appendix, we provide the details of the derivation of the formula given in Eq. (53). Our starting point is the expression
for ρr (X, b) in Eq. (39) with ρ(z) given in Eq. (12) which, for b = 1, reads

ρr (X, 1) = N (ν)
∫ 1

−1
dz (1 − z2)ν−1e−X (1−z) , (B1)

where we have used |z − 1| = (1 − z) for −1 � z � 1 and where N (ν) = �(ν + 1/2)/(�(ν)
√

π ). To make progress, we expand
the exponential in Eq. (B1) in power series to get

ρr (X, 1) = N (ν)
∞∑

n=0

(−X )n

n!

∫ 1

−1
dz (1 − z2)ν−1(1 − z)n. (B2)

The integral over z can then be performed term by term, i.e.,∫ 1

−1
dz (1 − z2)ν−1(1 − z)n = 22ν+n−1 �(ν + n)�(ν)

�(2ν + n)
. (B3)

Inserting this result in Eq. (B2) and rearranging, one obtains

ρr (X, 1) = 22ν−1

√
π

�

(
ν + 1

2

) ∞∑
n=0

(−2X )n �(ν + n)

�(2ν + n)n!
. (B4)

Finally, the sum over n can be performed explicitly leading to the result given in Eq. (53).
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