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Transverse dichotomic ratchet in a two-dimensional corrugated channel
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A particle diffusing in a two-dimensional channel of varying width h(x) is considered. It is driven by a force
of constant magnitude f , but random orientation across the channel. We suggest the projection technique to
study the ratchet effect appearing in this system. Reducing the transverse coordinate, as well as the orientation
of the force in the full-dimensional Fokker-Planck equation, we arrive at the generalized Fick-Jacobs equation,
describing dynamics of the system in the longitudinal coordinate x only. The additional effective potential −γ (x),
calculated within the mapping procedure, exhibits an increasing or decreasing part in the channel shaped by an
asymmetric periodic h(x), which determines the appearing ratchet current. As shown on a specific example,
random driving in the transverse direction is much more effective than that in the longitudinal direction, at least
for quickly flipping orientation of the force. Also, the transverse and the longitudinal driving push the rectified
current in opposite directions along the same channel.
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I. INTRODUCTION

One of the mechanisms keeping the world moving instead
of its decay in the thermodynamic equilibrium, is rectification
of the stochastic motion of a diffusing particle (or a system
represented by a point in the space of relevant parameters).
To avoid approaching the equilibrium, the particle has to be
driven by some source of energy, which usually does not
prefer any specific direction. Nevertheless, the net motion
becomes finally rectified due to asymmetric confinement,
working as a ratchet. There are many ways to drive the system
out of equilibrium and rectify its motion, which enables us to
specify various classes of ratchets [1,2].

Anyway, the detailed analysis of such systems is rather
complicated, especially because of interaction of the driven
particle with a nontrivial confinement, resulting in the ratchet
effect. Recently, an idea of applying the dimensional re-
duction for the Feynman-Smoluchowski (FS) ratchet was
introduced [3–5]. The two-dimensional (2D) Fokker-Planck
equation describing the stochastic motion of the system was
projected onto the “reaction” coordinate x (rotation of the
wheel). After integration over the “transverse” coordinate
(position of the pawl), the interaction with confinement is in-
volved in the structure of the resulting mapped 1D generalized
Fick-Jacobs (FJ) [6] equation, which noticeably simplifies the
next analysis.

Another system which can be studied by a similar pro-
cedure are the active particles [7,8] in a confinement. Aside
from diffusion, they are self-propelled by some force of a
(roughly) constant magnitude in a direction depending on
their orientation. The particles stochastically rotate, so the
direction of the force is random. Unlike the FS ratchet, the
active particles reflect real experiments. They can represent,
e.g., bacteria [9], or they are prepared artificially as the
Janus particles [10,11], having platinum spots on their sur-
faces. If immersed in the solution of H2O2, Pt catalyzes its

decomposition, which pushes the particles in the opposite
direction. The experiments [12–14] as well as the numerical
simulations [15–21] show that the active particles placed in
an asymmetric confinement exhibit either violation of their
equilibrium distribution or rectification of their motion.

The theoretical analysis of the ratchet effect in such
systems [22–27] requires us to study correlations of mo-
tion of particles in particular directions near the boundary.
In the simplest case of active disks placed in a corru-
gated two-dimensional (2D) channel, we have to consider
driven diffusion in two spatial coordinates and the third one,
orientation of the disk, determining the direction of the self-
propulsion. It is still a rather complicated task, so other
simplifications are introduced. Diffusion in the 2D channel
of varying width h(x) is often approximated by 1D diffusion
along the longitudinal coordinate x in the entropic potential
Uen(x) = − ln h(x). Consistently, only two possible orienta-
tions remain in this reduced 1D picture, with the random force
acting forward or backward along the channel. This model
can also describe a passive particle driven by the random
dichotomic force.

Dichotomy of the random force represents one of the sim-
plest possible ways to drive the system (the diffusing particle)
out of equilibrium. It results in a nonzero rectified current in
asymmetric periodic potentials, described as the fluctuating
force ratchet [1,28,29]. Recently, we showed [30] that the
projection technique similar to that used in a FS ratchet can
also be effectively applied to study this simple ratchet model.

The projection technique was originally developed for dif-
fusion in 2D (or 3D) channels of varying cross sections,
which is reduced to a 1D description working in the only
spatial coordinate x. The method is based on scaling of the
transverse coordinate(s) by a small auxiliary parameter

√
ε,

(or the transverse diffusion constant, becoming ∼1/ε), which
makes the diffusion across the channel very fast. In the limit
ε → 0, the transverse profile of the particle’s density becomes
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flat, which leads to the FJ equation [6] after integration of the
2D or 3D diffusion equation over the cross section. A slower
transverse relaxation for ε > 0 deflects the transverse profile
from the uniform distribution, depending on the shape of
the boundaries and the flux. Calculating these deviations, the
projection technique [31,32] enables us to derive recursively
the corrections Ẑn to the FJ equation controlled by ε,

∂t p(x, t ) = D0∂xA(x)[1 − Ẑ (x, ∂x )]∂x
p(x, t )

A(x)
;

Ẑ (x, ∂x ) =
∞∑

n=1

εnẐn(x, ∂x ), (1.1)

which can be simplified in the form

∂t p(x, t ) = ∂xA(x)D(x)∂x
p(x, t )

A(x)
(1.2)

for almost the stationary transport [32–35]. Both equations
govern the marginal 1D density p(x, t ), A(x) stands for h(x)
in 2D or the cross section area in 3D channels. D0 denotes the
intrinsic diffusion constant, which is replaced by the spatial-
dependent effective diffusion coefficient D(x) in Eq. (1.2),
calculated directly from the correction operators Ẑn(x, ∂x ).

In the 1D dichotomic ratchet, the role of the scaling param-
eter ε is played by inverse of the rate α of flipping between the
two orientations of the force [30]. The only transverse coor-
dinate here is orientation of the force. In the case of infinite
α, the flipping is so fast that the probability that the particle
is driven there or back is the same, independent of its position
x, hence we obtain the Smoluchowski equation for the net 1D
density p(x, t ). For a slower flipping, the particle has a time to
react whether it is pushed uphill or downhill before the next
flip of the force, so the local densities of particles driven in
the opposite directions start to differ from one another. This is
reflected by the mapping procedure, which generates a series
of corrections to the zeroth order Smoluchowski equation in
the same way as Ẑn in Eqs. (1.1), however, expanded now in
1/α. Also, A(x) has a different meaning; it represents here
the Botzmann weight of the 1D potential Uen(x) corrected by
a series of additional contributions γn(x), also controlled by
1/α, coming from the stochastic driving. Starting from the
order ∼α−3, these terms exhibit nonzero increments over one
period in asymmetric periodic channels; thus they visualize
the effective force driving the rectified current.

Subsequently, the mapping procedure can be extended to
the true 2D channel, where the particles are still driven by the
randomly flipping longitudinal force only [36]. The method
combines both scaling of the transverse coordinate y as well
as the flipping rate α. The infinitely fast flipping together with
infinitely fast transverse relaxation, controlled by the common
parameter ε → 0, result in the FJ equation. A finite ε gives the
particles driven there or back the time to react correspondingly
at the curved boundary y = h(x), biasing their local densities
from p(x, t )/2h(x) in a different way. The mapping involves
these changes in the corrections Ẑn and also A(x), which is
now h(x) multiplied by the exponential of the additional ef-
fective potential γ (x), appearing due to the stochastic driving.
Again, its nonzero increment over one period indicates the
ratchet effect. Its leading term for ε > 0 is now ∼1/α, so
the asymptotic of the rectified current in the real 2D channels

FIG. 1. Scheme of the ratchet driven by the transverse fluctuating
force f in a 2D channel; α is the rate of the force flipping.

considerably differs from predictions of the 1D reduced FJ
approximation.

The next extension of the mapping to the full 2D Janus
particle, rotating in an arbitrary angle in a nonhomogeneous
channel, is not quite straightforward. Except for the particle’s
orientation aiming forward or backward along the channel,
considered in previous works, the driving force f has a
nonzero transverse component there, i.e., in the direction,
which is reduced by the mapping. So we need to revise several
steps of the mapping procedure in this case, namely, how to
understand the FJ approximation, definition of the entropic
potential, and then to derive the corrections, giving rise to the
ratchet effect. To answer these nontrivial questions, we will
study here a simplified model of a particle driven now by
the fluctuating transverse force f , aiming only up or down,
see Fig. 1. Still, it could also represent real systems, e.g., the
dynamics of diffusing particles driven by the potential flipping
randomly between the opposite walls of a nonhomogeneous
channel.

Nevertheless, the aim of the presented paper is rather
methodological: to derive the effective 1D description if the
force driving the diffusing particle flips in the direction which
is reduced. In Sec. II, we formulate mathematically the prob-
lem, find the FJ equation and its corrections in 1/α for an
infinitely fast diffusion across the channel, i.e., the 1D re-
duction of the model. In Sec. III, we develop the theory
also including the finite speed of transverse relaxation. We
demonstrate the appearance of the ratchet effect on a specific
example of the periodic asymmetric channel (Fig. 1). The
backward mapping, which is the key part of the projection
method, enables us to visualize the distribution of 2D parti-
cle’s density and currents and thus to analyze the mechanism
of rectification.

Our model also brings interesting results if compared to
the closely related previous model with the force flipping
in the longitudinal direction [30,36]. A different orientation
of the flipping force (with zero mean) exhibits a considerably
different behavior of the ratchet effect in the same system.
The transverse driving spins the whirls of diffusing particles
in the opposite direction as the longitudinal one, resulting in
opposite directions of the ratchet current, too.

II. SPATIAL FICK-JACOBS APPROXIMATION

First, we formulate the model to be solved. The particles
are diffusing in a 2D channel bounded by the x axis and an
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analytic function y = h(x) > 0. The flipping force f drives
them randomly upward or downward, see Fig. 1. Regardless
of its origin, we can consider two types of the particles, pushed
up (+) or down (−), converting to one another with the rate
constant α. Their 2D probability densities ρ±(x, y, t ) obey
the Smoluchowski equations for the transverse forces ± f ,
coupled by the reaction term ∼α, describing the flipping

∂tρ±(x, y, t ) = D0

[
∂2

x + 1

ε
∂y(∂y ∓ f )

]
ρ±(x, y, t )

∓α[ρ+(x, y, t ) − ρ−(x, y, t )]. (2.1)

We will work in units where the temperature kBT = 1 and also
the diffusion constant D0 = 1. The scaling of the transverse
diffusion constant by a small auxiliary parameter ε, necessary
for the mapping method, is already included here. The no-flux
boundary conditions (BCs) at y = 0 and y = h(x) are supple-
mented for both orientations,

(∂y ∓ f )ρ±(x, y, t )|y=h(x) = εh′(x)∂xρ±(x, y, t )|y=h(x),

(∂y ∓ f )ρ±(x, y, t )|y=0 = 0; (2.2)

the prime denotes the derivative according to x.
We start with reduction of the transverse coordinate y,

following the same steps as for diffusion driven by the trans-
verse force [37], separately for each orientation. Integrating
Eqs. (2.1) over the cross section and applying BCs (2.2), we
arrive at the coupled equations

∂t p±(x, t ) = D0∂x[∂x p±(x, t ) − h′(x)ρ±(x, h(x), t )]

∓α[p+(x, t ) − p−(x, t )], (2.3)

governing the marginal densities of (+) and (−) particles:

p±(x, t ) =
∫ h(x)

0
ρ±(x, y, t )dy. (2.4)

To close the equations, we still need to express the 2D densi-
ties ρ±(x, y, t ) at the boundary y = h(x) using the 1D densities
p±(x, t ). The 2D densities ρ±0(x, y, t ) in the FJ approximation
are obtained in the limit ε → 0. Elimination of the diverging
terms ∂y(∂y ∓ f )ρ±0 = 0 of Eq. (2.1) requires

ρ±0(x, y, t ) = f e± f [y−h(x)/2]

2 sinh[ f h(x)/2]
p±(x, t ), (2.5)

also satisfying the definition (2.4) and BC (∂y ∓ f )ρ±0 = 0 at
y = 0 and h(x). These solutions express immediate transverse
equilibration of both types of particles due to infinite trans-
verse diffusion constant D0/ε. Applying them in Eq. (2.3), we
obtain the spatial FJ approximation for particular orientations:

∂t p±(x, t ) = ∂x

[
∂x − f h′(x)e± f h(x)/2

2 sinh[ f h(x)/2]

]
p±(x, t )

∓α[p+(x, t ) − p−(x, t )]. (2.6)

However, our aim is to find the equation for the total 1D
density:

p(x, t ) = p+(x, t ) + p−(x, t ). (2.7)

Summing Eq. (2.6) over both orientations, we get

∂t p(x, t ) = ∂x

[
∂x p(x, t ) − f h′(x)

2 sinh[ f h(x)/2]

× (e f h(x)/2 p+(x, t ) + e− f h(x)/2 p−(x, t ))

]
,

(2.8)

where we need again to express p±(x, t ) using p(x, t ). Similar
to mapping the dichotomic ratchet driven by the longitudi-
nal force [30], the necessary small parameter here is ∼1/α.
In the limit of high flipping rate, the densities p± become
equal, p+(x, t ) = p−(x, t ) = p(x, t )/2. If it is substituted in
Eq. (2.8), we obtain the mapped equation in the FJ form

∂t p(x, t ) = ∂x

[
∂x − f h′(x)

2
coth

f h(x)

2

]
p(x, t )

= ∂xA0(x)∂x
p(x, t )

A0(x)
, (2.9)

where

A0(x) = 2

f
sinh

f h(x)

2
. (2.10)

A0 can be multiplied by any constant; Eq. (2.10) provides
A0(x) → h(x) in the limit of zero force f . Its minus logarithm
is then the corresponding entropic potential.

Notice that in the FJ approximation, the transverse distri-
butions of (+) and (−) particles are exponential according
to Eq. (2.5), even for α → ∞. The transverse equilibration
here is always faster than the flipping, protecting the profile
to be flatten. A different approach considering the scaled α is
presented in Sec. III.

Similar to the longitudinal driving, a slower flipping leaves
the particle coming to x from the neighboring positions x ± dx
of a different width in an unbalanced (previous) orientation for
some time ∼1/α. The densities p±(x, t ) start to deflect from
p(x, t )/2, the deviations can be formally expressed using an
operator ω̂ [30]:

p±(x, t ) = A(x)

[
1

2
± ω̂(x, ∂x )

]
p(x, t )

A(x)
. (2.11)

Introducing A(x) = eγ (x)A0(x) here enables us to bring the
final mapped equation in the form of Eqs. (1.1). γ (x) is a
gauge function, which will be fixed within the recurrence
mapping procedure. Notice that the relation (2.11) keeps the
definition (2.7) consistent. If it is substituted in Eq. (2.8), we
arrive at

∂t p(x, t ) = ∂xA(x)[∂x + γ ′(x) − f h′(x)ω̂(x, ∂x )]
p(x, t )

A(x)
(2.12)

after some algebra. As we see later, the operator ω̂ can be
split into the part containing the derivatives ∂x and just a func-
tion ω(x); ω̂(x, ∂x ) = ω̃(x, ∂x )∂x + ω(x). So we can convert
Eq. (2.12) to the form (1.1) by setting

γ ′(x) = f h′(x)ω(x), Ẑ (x, ∂x ) = f h′(x)ω̃(x, ∂x ). (2.13)

The key point of the mapping is fixing of the operator ω̂.
Together with Ẑ (x, ∂x ) and the function γ (x), they represent
the corrections to the zeroth order FJ Eq. (2.9), appearing there
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due to a finite time ∼1/α between the succeeding flips of the
force. Thus, it is natural to express them as a series in 1/(2α),

F (.) =
∞∑

n=1

1

(2α)n
Fn(.), (2.14)

where F stands for ω̂(x, ∂x ), Ẑ (x, ∂x ), or γ (x). We require
the particular p±, generated by the backward mapping rela-
tion (2.11), to satisfy Eq. (2.6) for any 1D solution p(x, t ).
Having substituted there for p± and expressing the term ∼2α,
we get

2αω̂ = 1

A
∂x

[
∂x − f h′e f h/2

2 sinh( f h/2)

]
A

(
1

2
+ ω̂

)

−
(

1

2
+ ω̂

)
1

A
∂xA

(
1 − Ẑ

)
∂x, (2.15)

omitting writing the obvious arguments. The derivative ∂t

according to time commutes with all spatial operators to the
right and the remaining ∂t p(x, t ) is expressed using Eq. (1.1).
The equation acts on any p(x, t )/A(x), so it has to be satisfied
on the level of operators.

If ω̂, Ẑ , and γ are expanded in 1/(2α), Eq. (2.14),
Eq. (2.15) generates the recurrence relations for ω̂n, having
completed the commutations on the right-hand side and col-
lecting the terms of the same order. In the lowest zeroth order,
we find

ω̂1 = 1

2A0
∂2

x A0 − 1

2A0
∂xh′e f h/2 − 1

2A0
∂xA0∂x

= − f h′

4
∂x − f

4

[
h′′ + f h′2

2
coth

f h

2

]
. (2.16)

We can easily identify the parts ω̃1(x, ∂x ) and ω1(x) here.
Applying them in Eqs. (2.13), we obtain

γ ′
1 = − f 2h′

4

[
h′′ + f h′2

2
coth

f h

2

]
,

Ẑ1 = − f 2h′2

4
. (2.17)

Collecting the terms ∼1/(2α) in Eq. (2.15), we derive ω̂2,
yielding

γ ′
2 = − f 2h′

32

[
f 3h′4

(
1

sinh2( f h/2)
− 1

)
coth( f h/2)

− 2 f 2h′2h′′
(

3

sinh2( f h/2)
− 1

)

+ 4 f (2h′′2 + 3h′h(3) ) coth( f h/2) + 8h(4)

]
,

Ẑ2 = f 2h′

16

[
f 2h′3

sinh2( f h/2)
− 8 f h′h′′ coth( f h/2) − 12h(3)

− 8h′′∂x

]
, (2.18)

etc. The complexity of the formulas quickly grows with grow-
ing order; we derived them up to the fourth order by the
computer algebra systems.

As seen in Eqs. (2.18), Ẑ2 (as well as the higher coefficients
Ẑn) contain the next derivatives ∂x, which complicate us the

use of Eqs. (1.1). So, it is simplified by Eq. (1.2), replacing the
operator (1 − Ẑ ) by a function D(x), the effective diffusion
coefficient. This equation is valid in the limit of stationary
flow, i.e. when the time derivative of any quantity is negligible.
In this limit, one can also find the relation

1

D(x)
= A(x)[1 − Ẑ (x, ∂x )]−1 1

A(x)
, (2.19)

enabling us to calculate D(x) from the known coefficients Ẑn.
Its derivation [30,32,36] is also described in the Appendix.
Applying Eqs. (2.17) and (2.18) here, we find

1

D(x)
= 1 − f 2h′2

8α
+ f 2h′

64α2
[ f 2h′3 coth2( f h/2)

− 4 f h′h′′ coth( f h/2) − 12h(3)] + ... (2.20)

up to the second order. We can easily check that the leading
terms of all corrections ∼ f 2, so they disappear when the
driving is turned off. Then only the uncorrected FJ Eq. (2.9)
with A(x) = h(x) remains.

Equation (1.2) represents the 1D Smoluchowski equa-
tion with varying diffusion coefficient D(x), hence the
function −γ (x) can be interpreted as an additional effec-
tive potential, extending the entropic potential − ln A0(x) due
to the stochastic driving. As we show later, integrating the
derivatives γ ′

n(x), Eqs. (2.17), (2.18), etc., for a periodic asym-
metric h(x) = h(x + L), we can obtain a slanted washboard
function, giving nonzero increment �γ = γ (L) − γ (0) over
one period L. Then �γ/L represents the effective force driv-
ing the ratchet current J . Having the system described by
Eq. (1.2), we can calculate the stationary current using the
Stratonovich [38,39] or the Lifson-Jackson [40] formulas

J = (
1 − e−�γ

)[∫ L

0
A(x)dx

∫ L+x

x

dx′

A(x′)D(x′)

]−1

� �γ

[∫ L

0
A0(x)eγ (x)dx

∫ L

0

e−γ (x)dx

A0(x)D(x)

]−1

, (2.21)

(for small �γ ), modified by D(x); see Appendix. One particle
per period L is supposed.

We demonstrate our theory on the function

h(x) = 2 − cos x + a sin 2x, (2.22)

described in Fig. 1. The parameter a regulates asymmetry of
the channel; we used a = 0.2. Figure 2(a) describes the coeffi-
cients γ1(x) and γ2(x), calculated by numerical integration of
the corresponding formulas (2.17) and (2.18) (from x = 0; the
integration constants are irrelevant). Unlike the longitudinal
driving [30], we observe nonzero contributions �γn = γn(2π )
starting already from n = 1, so the asymptotic of the effective
force driving the ratchet �γ/L ∼ 1/α. Dependence of �γ

on α is shown in Fig. 3 for f = 1 (solid) and f = 2 (dashed
lines), taking the corrections up to the first, second, third, and
fourth orders. As seen also in Fig. 2(a), �γn grows with grow-
ing n, so the obtained values are reliable only for higher α;
roughly α > 5 for this channel. Validity of the results is also
restricted to smaller f (< 2), i.e., for small persistence length
∼ f /α. D(x) for the values f = 1, α = 5, which are at the
border of usability of the theory, are described in Fig. 2 b; the
numbers assign the highest used order in the formula (2.20).
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FIG. 2. (a) Coefficients γ1(x) (dashed) and γ2(x) (dotted) accord-
ing to Eqs. (2.17) and (2.18) for h(x) given by Eq. (2.22), f = 1,
compared with the corresponding minus entropic potential (solid
line). (b) Effective diffusion coefficient D(x) for the same channel
and driving; the flipping rate α = 5. Dotted, dashed, and solid lines
describe this function corrected up to the first, second, and third
orders, respectively.

The driving increases D(x) above unity in the style of the
Taylor dispersion [28–30], but the corrections are tiny. Their
influence to the ratchet current J , calculated according to
Eq. (2.21), is negligible, at least in comparison with errors
due to truncation of γ (x). We used the simpler Lifson-Jackson
formula to plot Fig. 4; the current is almost proportional to
�γ (� 46J for our parameters). The solid lines describing the
results taken up to nth order (n = 1, .., 4) are compared with
the numerical solution (dots) of the stationary 1D problem,
validating the mapping procedure for larger α. The dashed
line depicts the ratchet current in the same channel driven by
the longitudinal force of the same magnitude f [30,36]. Let us
recall that �γn in that case becomes nonzero for n � 3, hence
the asymptotic of Jlong ∼ 1/α3. Let us stress that the currents
flow in the opposite directions; the stochastic transverse force
pushes the particles here to the right, while the longitudinal
drives to the left.

The theory presented does not describe well the systems
with a slowly flipping force. Still, knowing the mapping
method described here, one can adapt an alternative scheme
based on formulation of the differential equations for γ (x) and
1/D(x), which avoid expansions in 1/α [30]. This calculation
exceeds the span of this paper.

FIG. 3. Increment of the effective potential �γ over one period
for Eq. (2.22), f = 1 (solid), and f = 2 (dashed lines). The num-
bers denote the highest order taken into account; the solid lines are
ordered in the same way.

III. MAPPING BEYOND FJ APPROXIMATION

We include now the finite speed of the transverse relax-
ation across the channel in the mapping of Eq. (2.1). It is
controlled by the auxiliary parameter ε, scaling the transverse
diffusion constant to D0/ε. We could continue looking for
a better expression of ρ±(x, y, t ) by p±(x, t ), necessary in
Eq. (2.3), taking a series of corrections to the FJ profile of
ρ±0, Eq. (2.5), due to a nonzero ε. Having improved Eq. (2.6),
we would reduce the orientation (±) as in Sec. II, expanding
the deviations of p±(x, t ) from p(x, t )/2 in 1/α.

FIG. 4. The ratchet current J for the trial h(x), Eq. (2.22), f =
0.1, taking γ (x) and 1/D(x) truncated after the first, second, third,
and fourth orders. The dots represent numerical solution of the
1D problem. The dashed line describes 100× of the ratchet cur-
rent driven in the same channel by the same force of longitudinal
orientation.
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Nevertheless, this strategy can be simplified by introducing
ᾱ = εα. If ᾱ is hold finite, the flipping term in Eq. (2.1)
becomes (formally) scaled in the same way as the transverse
diffusion, ∼1/ε, like the next transverse coordinate. Then the
limit ε → 0 equilibrates not only the profile in y, but also
distribution of (+) and (−) particles.

The new equilibrated transverse profiles ρ̄±0 are obtained
by solving the equations

∂y(∂y ∓ f )ρ̄±0(x, y, t ) ∓ ᾱ(ρ̄+0(x, y, t ) − ρ̄−0(x, y, t )) = 0,

(3.1)
given by the terms ∼1/ε in Eq. (2.1), dominant in
the FJ limit ε → 0. Defining the net 2D FJ density
ρ̄0(x, y, t ) = ρ̄+0(x, y, t ) + ρ̄−0(x, y, t ) and the polarization
density μ̄0(x, y, t ) = ρ̄+0(x, y, t ) − ρ̄−0(x, y, t ), we need to
solve the couple of differential equations in y:

∂y[∂yρ̄0(x, y, t ) − f μ̄0(x, y, t )] = 0,

∂2
y μ̄0(x, y, t ) − f ∂yρ̄0(x, y, t ) − 2ᾱμ̄0(x, y, t ) = 0. (3.2)

The BCs (2.1) in the limit ε → 0 are reduced to

∂yρ̄0(x, y, t ) − f μ̄0(x, y, t )|y=0,h(x) = 0,

∂yμ̄0(x, y, t ) − f ρ̄0(x, y, t )|y=0,h(x) = 0, (3.3)

at both boundaries. The new FJ approximation, represented
by these equations, describes very fast relaxation in the trans-
verse direction, as well as the orientation, but the ratio ᾱ/D0 =
ᾱ comparing their rates is kept finite, which influences the
solution. A trivial integration of the first Eq. (3.2) expresses
the transverse flux of particles, which is zero due to the first
BC (3.3). Substituting for ∂yρ̄0 in the second Eq. (3.2) and
solving the system with BC (3.3), we get

ρ̄0 =
[

1 + f 2[sinh(qy) + sinh(q[h(x) − y])]

2ᾱ sinh[qh(x)]

]
R0(x, t )

= η̂0(x, y)R0(x, y),

μ̄0 = f q[cosh(qy) − cosh(q[h(x) − y])]

2ᾱ sinh[qh(x)]
R0(x, t )

= σ̂0(x, y)R0(x, y); (3.4)

we abbreviated q =
√

f 2 + 2ᾱ. The integration constant
R0(x, t ) (in y, appearing in the last integration of ρ̄0) can be
related to the net 1D density p(x, t ), defined by Eqs. (2.4)
and (2.7). Integrating ρ̄0, Eq. (3.4), over the cross section, we
find

p(x, t ) =
[

h(x) + f 2

ᾱq
tanh

qh(x)

2

]
R0(x, t ). (3.5)

The relations (3.4) together with the normalization (3.5)
represent the zeroth order formulas, mapping the 1D density
p(x, t ) backward onto the space of 2D densities ρ±(x, y, t ) =
(ρ̄0(x, y, t ) ± μ̄0(x, y, t )/2. If applied in Eqs. (2.3) summed
over both orientations, we arrive at

∂t p(x, t ) = ∂x

[
∂x− q3h′(x)

2(ᾱqh(x) + f 2 tanh[qh(x)/2])

]
p(x, t ),

(3.6)

the new FJ equation. It can also be written in the form of ∂t p =
∂xÃ0∂x(p/Ã0), where the function

Ã0(x) = exp

[∫
q3 dh(x)

2(ᾱqh(x) + f 2 tanh[qh(x)/2])

]
(3.7)

up to an irrelevant integration constant. Here Ã0(x) cannot be
expressed by an explicit formula for an arbitrary h(x), but it
is evident that it is a function of h(x). So, it cannot exhibit
an increment over period L for any periodic function h(x) =
h(x + L); i.e., it gives no contribution to the effective potential
driving the ratchet.

Nevertheless, the new FJ (zeroth order) Eq. (3.6) involves
a series of new terms with respect to the former FJ, Eqs. (2.9)
and (2.10). If we return ᾱ = εα in the formula (3.7) and
expand it in ε, the zeroth order recovers Eq. (2.10) (having
properly set the integration constant). To handle with Ã0(x)
conveniently in our next calculations, we rewrite it using

Ā0(x) = e−γ̄0(x)Ã0(x) = h(x) + f 2

ᾱq
tanh

qh(x)

2
,

γ̄ ′
0(x) = f 2h′(x)

2ᾱĀ0(x)
tanh2 qh(x)

2
, (3.8)

reflecting the normalization relation (3.5).
The corrections to Eq. (3.6) due to slower relaxation in

the fast transverse coordinates can be derived after extend-
ing the backward mapping relations (3.4) by the series of
correction terms in ε, controlling the speed of relaxation.
Consistently with similar calculations [36,41], the 2D den-
sities ρ±(x, y, t ) = [ρ(x, y, t ) ± μ(x, y, t )]/2 are expected in
the form

ρ(x, y, t ) = eγ̄ (x)η̂(x, y, ∂x )
p(x, t )

Ā(x)
,

μ(x, y, t ) = eγ̄ (x)σ̂ (x, y, ∂x )
p(x, t )

Ā(x)
;

Ā(x) = Ā0(x)eγ̄ (x). (3.9)

The operators η̂, σ̂ , the gauge function γ̄ (x), as well as the
related quantities which will be introduced later, are expanded
in ε,

F (.) =
∞∑

n=0

εnFn(.). (3.10)

The zeroth order terms η̂0, σ̂0, and γ̄0 are already fixed;
Eqs. (3.9) have to resume the FJ relations (3.4), (3.5), and (3.8)
for ε = 0. The next orders will be derived recursively. Un-
like the zeroth order terms, the higher order η̂n and σ̂n also
have parts containing the derivatives ∂x; they can be split
to η̂n(x, y, ∂x ) = η̃n(x, y, ∂x )∂x + ηn(x, y) and σ̂n(x, y, ∂x ) =
σ̃n(x, y, ∂x )∂x + σn(x, y), where ηn and σn denote just func-
tions. If the relations (3.9) are substituted in Eqs. (2.3)
summed over the orientation, the obtained mapped equation

∂t p(x, t ) = ∂xĀ(x)

(
∂x + γ̄ ′(x) + Ā′

0(x)

Ā0(x)

− h′(x)

Ā0(x)
η̂[x, h(x), ∂x]

)
p(x, t )

Ā(x)
(3.11)
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can be transformed to the form (1.1) by the proper setting of
γ̄ (x). It has to clear all the contributions not containing ∂x in
the big brackets of Eq. (3.11); the rest gives the corrections
to the operator Ẑ (x, ∂x ). Having used η̂0 = η0 according to
Eqs. (3.4) and Ā0(x) in the zeroth order of Eq. (3.11), we can
easily verify the formula (3.8) fixing γ̄ ′

0. For the higher orders,
we have

γ̄ ′
n(x) = h′(x)

Ā0(x)
ηn[x, h(x)],

Ẑn(x, ∂x ) = h′(x)

Ā0(x)
η̃n[x, h(x), ∂x]. (3.12)

To fix the operators η̂n, σ̂n, we require that the original 2D
problem was satisfied by the ρ±(x, y, t ) obtained by the rela-
tions (3.9) of backward mapping for any 1D solution p(x, t ).
Substituting them in Eqs. (2.1), we get

∂t e
γ̄ η̂

p

A
= ∂2

x eγ̄ η̂
p

A
+ 1

ε
∂y

(
∂yeγ̄ η̂

p

A
− f eγ̄ σ̂

p

A

)
,

∂t e
γ̄ σ̂

p

A
= ∂2

x eγ̄ σ̂
p

A
+ 1

ε

[
∂y

(
∂yeγ̄ σ̂

p

A
− f eγ̄ η̂

p

A

)

− 2ᾱeγ̄ σ̂
p

A

]
(3.13)

after their summation and subtraction, respectively; we omit
writing the arguments since now. The time derivative ∂t com-
mutes here with all spatial operators to the right and ∂t p(x, t )
is replaced by the right-hand side of Eqs. (1.1). Expressing the
terms ∼1/ε from the equations, we find

1

ε
∂y(∂yη̂ − f σ̂ ) = η̂

1

A
∂xA(1 − Ẑ )∂x − e−γ̄ ∂2

x eγ̄ η̂,

1

ε
[∂y(∂yσ̂ − f η̂) − 2ᾱσ̂ ] = σ̂

1

A
∂xA(1 − Ẑ )∂x

− e−γ̄ ∂2
x eγ̄ σ̂ , (3.14)

acting on an arbitrary function p(x, t )/A(x). Expanding all the
operators and functions in these equations in ε and collecting
the terms of the same orders, we get the recurrence scheme of
the form

∂y(∂yη̂n − f σ̂n) = R̂n(x, y, ∂x ),

∂y(∂yσ̂n − f η̂n) − 2ᾱσ̂n = T̂n(x, y, ∂x ); (3.15)

the operators R̂n(x, y, ∂x ) and T̂n(x, y, ∂x ) are composed of the
lower-order coefficients of η̂, σ̂ , Ẑ , and γ . The solutions have
to satisfy the BCs

(∂yη̂ − f σ̂ )|y=0 = 0,

(∂yη̂ − f σ̂ )|y=h(x) = εh′e−γ̄ ∂xeγ̄ η̂|y=h(x),

(∂yσ̂ − f η̂)|y=0 = 0,

(∂yσ̂ − f η̂)|y=h(x) = εh′e−γ̄ ∂xeγ̄ σ̂ |y=h(x) (3.16)

in particular orders of εn, coming from Eqs. (2.2) with use
of the relations (3.9). Finally, the backward mapped ρ(x, y, t )
applied in the definitions (2.3) and (2.7) has to give an identity,
hence ∫ h(x)

0
η̂n(x, y, ∂x )dy = 0 (3.17)

for n > 0.
The terms ∼ε−1 in Eqs. (3.14) give Eqs. (3.2), determining

η̂0 and σ̂0, Eqs. (3.4). In the higher orders, the trivial integra-
tion of the first Eq. (3.15),

∂yη̂n − f σ̂n =
∫ y

0
R̂n(x, y′, ∂x )dy′ = Q̂n(x, y, ∂x ),

satisfies the first two BCs (3.16). If it is substituted in the
second Eq. (3.15), it is solved by

σ̂n =
(∫

cosh qy

q
[T̂n + f Q̂n]dy + Ŝn

)
sinh(qy)

−
(∫

sinh qy

q
[T̂n + f Q̂n]dy + Ĉn

)
cosh(qy); (3.18)

the integration constants Ŝn(x, ∂x ), Ĉn(x, ∂x ) are fixed to sat-
isfy the last two BCs (3.16). Finally, the integration constant
K̂n(x, ∂x ) in the last integral,

η̂n =
∫

[Q̂n + f σ̂n]dy + K̂n(x, ∂x ), (3.19)

is determined from the normalization condition (3.17). Hav-
ing finally derived the operator η̂n(x, y, ∂x ), we fix γ̄ ′

n(x) and
Ẑn(x, ∂x ) according to Eqs. (3.12). Notice that we do not need
to integrate γ̄ ′

n explicitly within the recurrence scheme.
The leading corrections η̂1, σ̂1 to the FJ are obtained by

collecting the terms ∼ε0 in Eqs. (3.14):

R̂1 = η̂0

(
∂x + Ā′

0

Ā0
+ γ̄ ′

0

)
∂x − (∂x + γ̄ ′

0)2
η̂0

=
[
η̂0

(
Ā′

0

Ā0
− γ̄ ′

0

)
− 2η̂′

0

]
∂x − η̂0

(
γ̄ ′′

0 + γ̂ ′2
0

) − η̂′′
0,

T̂1 =
[
σ̂0

(
Ā′

0

Ā0
− γ̄ ′

0

)
− 2σ̂ ′

0

]
∂x − σ̂0

(
γ̄ ′′

0 + γ̂ ′2
0

) − σ̂ ′′
0 .

(3.20)

As η̂0 and σ̂0, Eqs. (3.4), are just functions, and the solution
of the corresponding Eqs. (3.15) deals with only the y coordi-
nate; the resultant η̂1 and σ̂1 will also consist of the parts ∼∂x

and just functions. Despite a simple scheme (3.18)–(3.19),
the calculation is tedious and the result is rather compli-
cated even in the first order. We state here only the final
coefficients

γ̄ ′
1 = − f 2h′

24ᾱ cosh3 κ
[qh′2 sinh κ + h′′(2 cosh κ + cosh 3κ )] − f 2h′

96ᾱ2qĀ0 cosh4 κ
[qh′2(14ᾱ + 19 f 2 + [6ᾱ − 8 f 2]

× cosh 2κ + [4ᾱ + f 2] cosh 4κ ) + 6h′′(ᾱ + 2 f 2) sinh 2κ]

+ f 2h′ tanh κ

32ᾱ3q2Ā2
0 cosh4 κ

[qh′2(3ᾱ2 + 8ᾱ f 2 + 15 f 4 + [4ᾱ2 − 4ᾱ f 2 − 5 f 4] cosh 2κ + ᾱ2 cosh 4κ )
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+ h′′(2ᾱ2 + 6ᾱ f 2 + [2ᾱ2 + 2ᾱ f 2 + f 4] cosh 2κ ) sinh 2κ]

+ f 4h′ tanh2 κ

384ᾱ4q3Ā3
0 cosh4 κ

[qh′2(60ᾱ2 − 18ᾱ f 2 − 179 f 4 + 4[15ᾱ2 − 9ᾱ f 2 + 8 f 4] cosh 2κ + 3[4ᾱ2 + 2ᾱ f 2 + f 4]

× cosh 4κ ) + 8h′′(3ᾱ2 − 6ᾱ f 2 − 5 f 4 + [3ᾱ2 − 3ᾱ f 2 − f 4] cosh 2κ ) sinh 2κ]

− f 4h′3 tanh3 κ

192ᾱ5q3Ā4
0 cosh4 κ

[18ᾱ3 − 15ᾱ2 f 2 − 55ᾱ f 4 − 29 f 6 + (24ᾱ3 − 24ᾱ2 f 2 − 30ᾱ f 4 + 4 f 6) cosh 2κ

+ (6ᾱ3 − 9ᾱ2 f 2 + ᾱ f 4 + f 6] cosh 4κ],

Ẑ1 = h′2
{

1

3
− f 2 cosh 2κ

12ᾱ cosh2 κ
− f 2(ᾱ + 2 f 2) tanh κ

4ᾱ2qĀ0 cosh2 κ
− f 2

8ᾱ3q2Ā2
0

[
(2ᾱ + 3 f 2)

cosh2 κ

(
ᾱ + f 2 (1 − sinh2 κ )

cosh2 κ

)
− 4ᾱ2 − 2ᾱ f 2 − f 4

]

− f 2 tanh κ

96ᾱ4q3Ā3
0 cosh4 κ

[18ᾱ3 − 15ᾱ2 f 2 − 55ᾱ f 4 − 29 f 6 + 2(12ᾱ3 − 12ᾱ2 f 2 − 15ᾱ f 4 + 2 f 6) cosh 2κ

+ (6ᾱ3 − 9ᾱ2 f 2 + ᾱ f 4 + f 6) cosh 4κ )]

}
, (3.21)

entering the generalized FJ Eqs. (1.1); κ = qh(x)/2. The lead-
ing correction Ẑ1 is just a function, so according to Eq. (2.19),
D(x) = 1 − εẐ1(x) up to first order. Of course, ε is also hid-
den in ᾱ = εα, if we return back to the original formulation,
Eq. (2.1), where the flipping rate α is fixed. Thus the for-
mulas (3.21) represent again series of terms, correcting Ā0

and D(x) due to the flipping and finite transverse relaxation
rate. We can immediately discern Zwanzig’s leading correc-
tion h′2/3 in Ẑ1. The other terms are proportional at least
to f 2, representing the corrections due to driving, extending
Zwanzig’s factor 1/3. If α is fixed, the term with tanh in
Ā0, Eqs. (3.8), becomes dominant, diverging as 1/ε in the
limit ε → 0. The function γ̄ ′

0, Eqs. (3.8), becomes integrable
explicitly and Ā0eγ̄0 → A0, Eq. (2.10), up to an irrelevant
constant factor. Also, the formulas for εγ̄ ′

1 and εẐ1 approach
γ ′

1/(2α), and Ẑ1/(2α) according to Eqs. (2.17). Extending
the presented recurrence procedure to the higher orders is
technically demanding, so to study the basic influence of
the finite transverse relaxation to the ratchet effect, we only
replace the lowest order terms of γ ′(x) and 1/D(x) from
Sec. II by Eqs. (3.8) and (3.21). Figure 5(a) shows D(x) with
the leading correction Ẑ1, Eqs. (3.21) (solid line), compared
with Zwanzig’s term (dashed line), for the channel shaped by
Eq. (2.22), a = 0.2. Even for values f = 1 and α = 5, at the
border of usability of the truncated expansion, the corrections
due to stochastic driving only slightly increase D(x) in the
style of Taylor dispersion. Still, behavior of D(x) is deter-
mined mainly by retarding of the transverse diffusion due to
corrugation, as described by Zwanzig [33] or Reguera-Rubí’s
(RR) [34] formula if all the terms depending only on h′ are
summed [32]. In the first order, Zwanzig’s factor 1/3 standing
at h′2 is corrected, see Fig. 5(b). It is decreased roughly by
f 2/(6ᾱ), given by the second term of Ẑ1 in Eqs. (3.21) for
κ → ∞.

The complicated formula for γ̄ ′
1 results again in additional

potential −γ (x) after integration, giving a nonzero increment
�γ over one period L = 2π for asymmetric channels. Fig-
ure 6 demonstrates dependence of �γ on the flipping rate α

for our trial channel, Eq. (2.22); a = 0.2, f = 0.5, and various

ε from 0 to 1 (solid lines). The line for ε = 0 is identical to �γ

from the Sec. II obtained for γ (x) up to fourth order. For ε >

0, we replaced the term γ1(x)/(2α) by εγ̄1(x), Eqs. (3.21).
Figure 5 shows that unlike the longitudinal driving [36], con-

FIG. 5. (a) The effective diffusion coefficient D(x) for the trial
function h(x), Eq. (2.22) according to Ẑ1, Eqs. (3.21), ε = 1, f =
1 and α = 5 (solid line). It is compared with Zwanzig’s correction,
1 − h′2/3 (Zw, dashed) and the Reguera-Rubí formula D(x) = (1 +
h′2)−1/3, (RR, dotted line). b) Coefficient at h′2 in Ẑ1 for several values
of f and α, compared with Zwanzig’s value 1/3 (Zw, dashed line).
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FIG. 6. Increment of the effective potential �γ according to
Eqs. (3.21) over one period (solid lines, left scale) and the cor-
responding rectified current J (dashed, right scale) in the channel
defined by Eq. (2.22), a = 0.2, depending on the flipping rate α of
the force f = 0.5. The lines for various ε are ranged from ε = 0
(black), 0.01 (blue), 0.05 (green), 0.2 (magenta), to 1 (red).

sidering a finite transverse relaxation rate in the leading term
does not change dramatically behavior of the dependence, i.e.,
the values obtained by the FJ approximation (Sec. II) are only
slightly increased with growing ε. The ratchet current J is
determined almost thoroughly by �γ , multiplied by some
factor (∼mobility) depending on ε and mainly geometry of
the channel. The dashed lines in Fig. 6 plot J (scaled on the
right axis) of parameters corresponding to �γ of the same
color; for smaller ε < 0.1, the dashed and solid lines cannot
be discerned.

The backward mapping relations (3.9) enable us to re-
construct the 2D picture corresponding to any solution
p(x, t )/A(x) of the reduced 1D problem, Eq. (1.2). For the
stationary flow with one particle per period, we obtain the 2D
density ρ(x, y) (color scale) and the current density (stream-
lines) as described in Figs. 7; see the Appendix for details. The
fluctuating force spins a couple of counter-directional whirls
in a compartment of the channel. They are not symmetric
because of asymmetry of the channel. The resulting net flux
J leaks between them, securing periodicity of the solution.
The particles are pushed to the top of the bulges, then, after
flipping the force, they form the second maximum of the
density at the bottom flat side of the channel. The minimum
density is observed near the centerline, depicted by the dot-
ted line. If we compare Figs. 7(a) and 7(b), calculated for
ε = 0.02 and 0.1, respectively, the slower transverse diffusion
smears the difference betweenthe maximum and minimum
of the density; as probability of the next flip of the force
during the slower movement to the opposite side grows. Still,
as the transverse flux ∼1/ε, we obtain in combination with
smaller gradients of the density a similar pattern of stream-
lines (current density), also giving the net flux without marked
changes.

Although ε was introduced as an auxiliary parameter to
separate the fast transverse relaxation from the slower lon-
gitudinal processes, also the values ε < 1 are meaningful.
Scaling of the transverse diffusion constant is equivalent to
shrinking the transverse lengths by

√
ε and, correspondingly,

the force f by 1/
√

ε. Thus, the results for smaller ε describe
the transport in thinner channels with stronger driving, but
isotropic diffusion constant D0.

FIG. 7. Stationary 2D density ρ(x, y) (color scale) and the fluxes
(streamlines) in the channel with a = 0.2 for ε = 0.02 (a) and 0.1 (b).
The dotted line depicts the centerline. The rectified current flows to
the right with magnitudes J = 1.16 × 10−4 (a) and 8.5 × 10−5 (b) for
one particle per period L = 2π .

IV. CONCLUSION

The models of diffusing particles confined in a nonhomo-
geneous channel and driven by stochastic forces are often
used to study the systems of active particles. In an effec-
tive 1D picture, the force is usually considered to flip only
in the longitudinal direction. To extend the effective de-
scription to real 2D systems, one also needs to consider
flipping in the directions which are reduced by the map-
ping. So we studied here a similar model of a confined
diffusing particle in which the driving force flips across the
channel.

Primarily, our aim was to extend the mapping technique
for various orientations of the flipping force. Similar to the
longitudinal driving [30,36], mapping of diffusion driven by
the transverse force also leads to an effective 1D equation of
the generalized FJ form. Its zeroth order is based on an in-
finitely fast relaxation to a specific nonuniform transverse
distribution, determined by the transverse force and its flip-
ping [Eqs. (2.5) or (3.4)]. Finite speed of the transverse
relaxation, as well as the persistence time ∼1/α > 0 requires
us to include corrections, represented by the operator Ẑ or
the spatial-dependent effective diffusion coefficient D(x) and
the function γ (x) in Eqs. (1.1) and (1.2). They are found as
a series in an auxiliary parameter ε, scaling the transverse
diffusion constant and the flipping rate α. The limit ε → 0
describes immediate transverse relaxation, giving the basic FJ
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equation. Otherwise, ε controls the expansion of Ẑ and γ (x),
whose coefficients are derived recursively. The parameter ε 	=
1 can also be interpreted as describing the channel

√
ε-times

thinner and the force f /
√

ε with an isotropic diffusion con-
stant D0.

Our interest is then focused on the ratchet effect, which
can appear in such systems. The function −γ (x) represents
an additional effective potential, extending the obvious en-
tropic potential, appearing here due to the flipping force.
It becomes a slanted washboard function in periodic asym-
metric channels, exhibiting a nonzero increment �γ over
one period. The slope represents the effective force, giv-
ing rise to the ratchet current J , proportional roughly
to �γ .

It is interesting to compare the results for the comple-
mentary models with the longitudinal [36] and the presented
transverse driving by the force of the same magnitude in the
same channel. The changed orientation of the flipping force
results in a markedly different behavior of the ratchet current.
The asymptotic of �γ ∼ 1/α in the limit of large α in the case
of transverse driving, while it decreases much faster ∼1/α3,
if driven in the longitudinal direction, especially for small ε.
Thus the transverse driving appears to be more effective than
the longitudinal one, Fig. 4, at least for large α. The engine
spinning the couples of asymmetric whirls, visible in Fig. 7,
and moving the net current, works at the curved boundary,
where the equilibrium between (+) and (−) particles is vio-
lated because of different BCs. Unlike the transverse driving,
the longitudinal flipping force can move a part of the particles
without touching the curved boundary. Finally, comparing
Figs. 7 in Ref. [36] and the present paper, the asymmetric
whirls in a compartment of the channel rotate in opposite di-
rections for the longitudinal versus transverse driving and also
the ratchet currents flow in opposite directions in the particular
cases. Reverting the current direction caused by changing the
orientation of the flipping force may recall the current reversal
in the rocking ratchets driven by the oscillating force in higher
frequencies [42–44], but the origin of this effect is different;
there is no phase shift between the oscillating density and the
force here.

The expansions of D(x) and γ (x) used here are con-
trolled by inverse of α, either directly or using the scaling
by ε, so they work well only for larger α [>5 for our
trial shaping function (2.22)]. Knowing the structure of the
mapping, one can formulate an alternative theory, as done
for the simplest 1D model with longitudinal driving [30],
finding directly the differential equations for γ (x) and D(x)
without restrictions on α or f . On the other hand, also the
simplest formulas, like Eqs. (2.17), (2.18), or (3.21), deter-
mining the asymptotic behavior of the ratchet are meaningful.
Calculation of the leading term of the increment �γ over
one period can estimate very effectively the direction and
magnitude of the ratchet current, which is not a trivial task
using either the numerical simulations or some qualitative
analysis.
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APPENDIX: COMPUTATIONAL DETAILS

Here we give details of several calculations in the text.
Equation (2.19) relating the effective diffusion coefficient
D(x) and the operator Ẑ is found using two different formulas
for the net flux J (x, t ) flowing in the channel:

J (x, t ) = −D0A(x)[1 − Ẑ (x, ∂x )]∂x
p(x, t )

A(x)
,

J (x, t ) = −A(x)D(x)∂x
p(x, t )

A(x)
. (A1)

They come from Eqs. (1.1) and (1.2), respectively, as both
represent the 1D mass conservation, ∂x p = −∂xJ . In the sta-
tionary limit, p becomes independent of time, hence the net
flux J (x, t ) = J is constant. The derivative ∂x(p/A) has to
be the same for a given J and all parameters of the system,
if expressed from either of the equations. Comparing both
formulas for ∂x(p/A), one arrives at Eq. (2.19).

The simpler form of Eqs. (A1) enables us to write the 1D
stationary solution ps(x) as

ps(x)

A(x)
= ρ0 −

∫ x

0

J dx′

A(x′)D(x′)
. (A2)

In a periodic channel, h(x + L) = h(x), we set the integration
constant ρ0 to fix one particle per period L. To describe the sta-
tionary flow, we require periodicity of the 1D density ps(x) =
ps(x + L). If γ (x + L) − γ (x) = �γ is nonzero, A(x) [unlike
A0(x) and D(x)] is not periodic:

A(x + L) = A0(x + L)eγ (x+L) = A(x)e�γ . (A3)

Applying (A3) in the condition of periodicity, we find

(1 − e−�γ )ρ0 =
∫ L

0

J dx′

A(x′)D(x′)
,

hence after using Eq. (A3) and some algebra:

ps(x)

A(x)
= J

(e�γ − 1)

∫ L

x−L

dx′

A(x′)D(x′)
. (A4)

Normalizing
∫ L

0 ps(x)dx = 1, we obtain Eq. (2.21).
Knowing the stationary 1D density ps(x), we can re-

construct the corresponding 2D densities by the backward
mapping, Eqs. (3.9). The net 2D stationary density

ρs(x, y) = eγ̄ (x)η̂(x, y, ∂x )
ps(x)

Ā(x)
(A5)

is depicted in Fig. 7 by colors; Ā(x) replaces A(x) in Eq. (A4).
The streamlines are calculated according to the components
of the stationary net current density:

jx(x, y) = −∂xeγ̄ (x)η̂(x, y, ∂x )
ps(x)

Ā(x)
,

jy(x, y) = 1

ε
eγ̄ (x)[ f σ̂ (x, y, ∂x ) − ∂yη̂(x, y, ∂x )]

ps(x)

Ā(x)
. (A6)
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