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Glass transition as a topological phase transition
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The glass transition is described as a phase transition in the system of topologically protected excitations in
matter structure. The critical behavior of the system is considered in both static and dynamic cases. It is shown
that the proposed model reproduces most of the characteristic thermodynamic and kinetic properties of glass
transition: the Vogel-Fulcher-Tammann law, the behavior of susceptibility and nonlinear susceptibilities, and
heat capacity behavior as well as the appearance of a boson peak in the frequency dependence of the dynamic
structure factor near the glass transition temperature.
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I. INTRODUCTION

Currently, glasses are commonly used in everyday life and
technological applications. The glass state is also the subject
of active studies in many areas of condensed matter physics.
However, the microscopic mechanisms underlying this state
of matter are still the subject of discussion.

There are many various approaches for solving the problem
of description of glass transition by itself. A variety of ideas
spread between two extreme points of view. On the one hand,
assume that the glass transition is a purely kinetic effect, the
result of dynamical locking of liquid disordering structure
in the process of rapid quenching [1]. According to this ap-
proach, glass transition is a pronounced relaxation process
which obeys kinetic laws. When approaching the liquid-to-
glass transition, molecular rearrangements in glass-forming
melts become so slow that the changes in structure do not
have time to follow the decrease in temperature. The ratio of
the structural relaxation time to the melt cooling rate plays a
decisive role in this case [2], and the characteristic feature of
the relaxation kinetics of glass-forming melts is the dynamic
heterogeneity of the structure [3,4]. The significant progress
of the kinetic theories is associated with the approaches based
on the mode-coupling theory [5–7], in which dynamics is
determined by static equilibrium averages. They start with
Newton’s equations of motion and end up with certain exper-
imental predictions [8]. The mode-coupling theory predicts
a critical temperature below which there is no presence of
ergodic phase. The theory is believed to correctly explain the
onset of viscous behavior upon cooling but is not so good
at low temperatures [9]. The opposing hypothesis is that the
critical slowing down is a consequence of an underlying or
narrowly avoided phase transition [10,11], and the glass phase
the result of a genuine thermodynamic phase transition to a
disordered solid state [12,13]. These theoretical approaches
also include one of the current most popular random first-
order transition theories [14,15].

This article will provide arguments in favor of the second
statement. Although at the liquid-glass transition the system

has no any observable order parameter that changes during
this transition, nevertheless one can claim it as one of the
forms of thermodynamic phase transitions. In particular, in
this paper, it will be shown that the transition to the glass phase
can be described as a topological phase transition.

A topological phase transition is a phase transition between
phases whose properties are not explained by standard argu-
ments without involving the topological properties of systems.
In our case, it will be considered the phase transition in a
system of interacting topological defects (vortices), which
leads to the appearance of a quasi-long order corresponding
to a vortex system with an infinite correlation radius. This
is a transition between two states of a system of topological
defects: a state in which these defects are mobile, and a state
in which they are frozen.

The basic idea behind this approach is not new. It is
founded on the known fact that any liquid shows solid
properties when probed on a sufficiently short timescale, its
instantaneous local structure is similar to the order in solids,
and its short-time elastic properties are characterized by the
instantaneous elastic module. That is the basis of the wide
class of elastic models which involve assumptions and rea-
soning also having a long history in the field of point defects
in crystals [16]. The main point of one of the classes of these
models was suggested beginning in a number of works in the
late 1970s [17–20]. The physical properties of glasses are gov-
erned by an extended constituent, the odd line or disclination,
which is the only structural element surviving the absence of
generative homogeneity and the triviality of the space group
[21]. The theoretical description of the glass phase as a frozen
system of topologically stable defects was actively developed,
for example, in [21–23]. The most attractive feature of this
approach was universality, allowing one to describe glass tran-
sitions in various systems in terms of a common formalism.
The idea that the transition to the glass state is a topological
phase transition was suggested at around the same time [24].

In this paper, a further development of this approach is
proposed. It is shown that a system of topological defects
in a medium with a nonzero microscopic (or instantaneous)
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shear modulus undergoes a phase transition, the theoretical
description of which is reduced to a fairly simple statistical
model. This phase transition is analogous in nature to the
Berezinskii-Kosterlitz-Thouless transition in two-dimensional
systems and is one of the forms of topological phase tran-
sitions. The presented analysis shows that most universal
characteristic properties of glass transitions, including critical
dynamics, can be described by this model.

The article is organized as follows: First, the theoretical
model which considers the topologically protected perturba-
tions as the main system’s structural elements is formulated.
These perturbations correspond to disclinations violating local
symmetry concerning an axial rotation; Then the theoretical
analysis of the critical behavior at the phase transition in the
disclination subsystem is carried out. In the presented paper,
we consider both the static and dynamic case. In the first
case, the thermodynamic properties of the phase transition
described by the model are calculated. In the second one, the
frequency dependence of the dynamic structure factor of the
system under consideration is determined.

II. MODEL

We consider a liquid in terms proposed by Frenkel [25].
This approach is based on the postulation of some similarity
between crystals and liquids, and assumes the behavior of
liquid particles at moderate temperatures is in a manner sim-
ilar to ones in a crystal. However, while in crystals particles
oscillate around their nodes, in liquids, after several periods,
they change their positions.

This approaches validity by the fact that the liquid elastic
properties clearly manifest on small space and timescales.
In particular, at high frequencies in liquids, a finite value of
the shear module and a solid-like oscillation spectrum are
observed [26–33]. Since transverse phonons can exist in the
liquid only at frequencies exceeding the value of the inverse
relaxation time, which decreases with the temperature increas-
ing, then the main criterion distinguishing a quasi-gas (soft)
fluid from a solid-like one (Frenkel liquid) is one can count
the zero value of the shear modulus in the entire possible
frequency spectrum. On the phase diagram, the region of the
crossover from one liquid type to another one is called a
Frenkel line [34,35]. Accordingly, the system can be consid-
ered as a solid one if the shear modulus differs from zero on
the entire scale of the measured frequencies.

Thus, at low temperatures according to the Frenkel ap-
proach, we consider a liquid as an elastic media containing
both elastic and plastic deformations. The plastic deformation
presence provides fluidity, and the elastic deformation defines
the system’s free energy.

The free energy density of a deformed elastic system is
written as follows:

F = λ

2
u2

ll + μû2, (1)

where λ is the bulk modulus, μ is the instantaneous shear
modulus, and û = ui j = du j/dxi = ∇iu j is the distortion ten-
sor (u is the strain vector). It should be noted that μ is the
microscopic parameter, which corresponds to a macroscopic
shear modulus in the case that the relaxation time of sys-

tem structural surpasses by far the observation time. Since
the shear modulus usually depends on the temperature and
increases at the temperature decreasing, one can assume that
in some temperature interval near glass transition this depen-
dence constitutes a linear function: μ = ε(Tμ − T ), where
Tμ is some effective temperature parameter. Then it is the
temperature at which the shear elasticity appears in the liquid,
and which corresponds to the Frenkel line [34,35] on the
phase diagram. The condition of the zero value of the average
(measured) static shear modulus of the system in the liquid
state is satisfied at the accounting of the presence of movable
plastic distortions in this system.

Thus, we consider liquid as elastic media, which is fluid
because of the presence of many mobile plastic deforma-
tions corresponding to dislocations and disclinations. In the
static consideration, the system is in mechanical equilibrium,
and the u field is a free one. However, the elastic energy
of this system is not zero since its nonordering structure is
geometrically frustrated and contains stressful regions caused
by the topologically protected distortions. The topologically
protected rotation distortion corresponds to disclination (or
vortex line), and for simplicity below we will consider only
this distortion type. We also note since the disclination is
caused by a violation of axial symmetry, then, according to
topological laws, they are linear objects, and the field describ-
ing the interaction between them is Abelian.

Let the system contain a disclination in the point rn. It
breaks the simple connectivity of the space and leads to
appearing in the distortion tensor an irreducible part corre-
sponding to the rotation at movement around this disclination:∮

ûdl =
∫

∇ × û d2r = �δ(2)
r=rn

, (2)

where the space integration is the integration over dimension-
less variable r: V −1

∫
dV = ∫

|r|<1 d3r, and � is the Frank
vector. It is well to bear in mind that it is a pseudovector.

If the system contains N disclinations, then the partition
function can be represented in the form of the functional
integral:

W =
∫

Dû exp

(
−β

∫
d3rF

) N∏
n=1

δ
(
l · ∇ × ûrn − �Jrn

)
,

where β = 1/kbT , δ(. . .) is the functional delta function, l is
the unit vector corresponding to the disclination Jr direction,
and Jr = ±1 or 0. Using the integral representation of the
delta function, one can represent the partition function of the
system as follows:

W =
∫∫

DûDA exp

(
−β

∫
d3rH

)
,

where A is an ancillary field, which forms the condition (2),
and the effective Hamiltonian density of the system has the
following form:

H = 1

2
μû2 + iβ−1A ·

(
l · ∇ × û − �

N∑
n=1

Jδ(2)
r=rn

)
, (3)

where N is the quantity of the disclination elements, and rn

(n = 1, 2, . . . , N) are their coordinates. Note that the first term
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of the free energy (1) is absent here, since the rotation tensor
is nondiagonal.

After integration over the û field, the system effective
Hamiltonian density takes the following form:

H = β−2

2μ
(∇ × A)2 − iβ−1�A

N∑
n=1

Jδ(2)
r=rn

, (4)

which corresponds to the system of vortices that interact by
the A field. If one takes only two vortices and carries out
integration over the A field, then one can be convinced that
this interaction is the Coulomb one.

We consider the case of arbitrary vortices number. There-
fore, we have to carry out averaging over the grand canonical
ensemble of the vortices (see Appendix A). After this aver-
aging, the system effective Hamiltonian density assumes the
following form:

H = β−2

2μ
(∇ × A)2 − gβ−1 cos (�A), (5)

where g is the density of the vortex system. It is nothing
else than the Hamiltonian density of the sine-Gordon the-
ory [36,37].

Let us expand the cosine into the power series. The quan-
tum field theory teaches us that in d-dimensional systems
close to the critical point only the terms of the Taylor series
expansion with powers of A less than 2d/(d − 2) = 6 are
relevant [38]. It means that in the 3D case only the first two
terms of this expansion are relevant, and the third one is
marginal. Thus, the fluctuation corrections are relevant only
for these first two terms, and the system effective Hamiltonian
(5) density can be represented as follows:

H = β−2

2μ
(∇ × A)2 + gβ−1(�A)2

(
1

2
− (�A)2

4!
+ (�A)4

6!

)
.

Let us separate the A field on fast, Ã, and the slow, A, parts:
A → A + Ã, and average the model over Ã. Since 〈Ã〉 = 0,
the above expression is rewritten as follows:

H = β−2

2μ
(∇ × A)2 + gβ−1 �2

2
A2

(
1 − �2

2
〈ÃÃ〉0

)

− gβ−1 �4

4!
A4

(
1 − �2

2
〈ÃÃ〉0

)
+ gβ−1 �6

6!
A6, (6)

where

〈ÃÃ〉0 = λD

∫ λ−3
D

0

d3q
(2π )3

μβ

q2
=

∫ 1

0

d3p
(2π )3

μβ

p2
= μβ

2π2
, (7)

λD is the Debye length, and p is the dimensionless momen-
tum, p = λDq. It leads to the following effective Hamiltonian
density presentation:

H = β−2

2μ
(∇ × A)2 + M2

(
1

2
(�A)2 − 1

4!
(�A)4

)

+ gβ−1 �6

6!
A6, (8)

where M2 = g�4ε(T − T0)/(2π )2 is the square of the effec-
tive A field “mass,” and

T0 = Tμ

1 + kb
ε

(
2π
�

)2 (9)

is the phase transition temperature in the disclination sub-
system. It is important that from the above derivation T0 is
proportional to the shear modulus of the glass state in T0,
T0 = μ(T0)(�/2π )2/kb, that is known experimental fact [39].
It is means that T0 is the well-determined thermodynamic
value of the condensed system, which directly relates with its
elastic properties. From (8) one can see that T0 is the tricritical
point in the A-field subsystem [40], since the factors of the
quadratic and quartic powers of the A field simultaneously
zeroing at T = T0.

To understand what is the gist of this phase transition,
one needs to revisit the (4) expression, from which one can
see that the A field is the interaction field between the J
particles. One can see this field is analogous to the vector
potential of the electromagnetic field of a current, with the
only difference that it is massive. As a result, the interaction
between vortices is short range, and the vortex subsystem
is a fluid of weakly coupled particles. The phase transition
occurs at T = T0, when the A field becomes massless, and
the corresponding interaction becomes long range. The netlike
phase of strong-coupled disclinations forms. One can see that
this is a topological phase transition. By definition, a topo-
logical phase transition is a phase transition between phases
whose properties are not explained by standard arguments
without involving the topological properties of systems. In
our case, this is a phase transition in a system of interacting
topological defects (vortices), which leads to the appearance
at a finite temperature of a quasi-long order corresponding to
a vortex system with an infinite correlation radius. That is, it
is a transition between two states of a system of topological
defects: a state in which these defects are mobile, and a state
in which they are frozen.

The A field corresponds to the gauge field of the vortex-
vortex interaction in [20–24,36]. This field is arbitrary.
Therefore, one can choose it in Coulomb gauge, ∇ · A = 0.
Then the correlation function of the A field corresponding to
the above Hamiltonian is

〈AA〉p = β

μ−1p2 + β2M2
.

It is not difficult to check that the static shear modulus μst ∼
p2〈AA〉p|p→0 = 0 when T > T0, and μst = μ(T0) �= 0 in T =
T0. Thus, from the definition of difference between liquid and
glass states, it means that T0 can be interpreted as the liquid-
to-glass transition temperature.

One should recall that the above description of the system
is correct only in the temperature region Tμ < T � T0, where
the disclination system can be described in the framework of
equilibrium statistical mechanics.
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III. CRITICAL BEHAVIOR OF THE VORTEX
SYSTEM NEAR T0

In momentum space the pair correlation function of the
vortices is

〈JJ〉p ∝ exp

(
�2β

μ−1p2 + β2M2

)

(see Appendix B). This function allows estimates of the cor-
relation length of the vortices with opposite charges. We
suppose that the vortex subsystem above T0 presents a vortex
liquid. Therefore, for the estimation we use the simplest form
of a correlation function, which in liquids is exponentially
decreasing with distance |〈JJ〉|r ∝ exp(−|r|/Lc) [40], where
Lc is the correlation length. Thus,

Lc ∝ |〈JJ〉|1/3
p=0 = exp

[
kb

3gε

(
2π

�

)2 T

T − T0

]

(see Appendix C).
At first glance, it may seem strange that the vortex cor-

relation length increases according to the faster law than the
A-field correlation length. However, it is not difficult to un-
derstand this, if we remember that the A field describes the
interaction between vortices. Therefore, the correlation length
of the A field is the radius of interaction between vortices,
which is not the correlation length of the vortices but is
associated with it by more complex nonlinear relations. An
increase of this radius leads to an increase in the effective
number of nearest neighbors of each vortex, which reduces
the percolation threshold and dramatically increases the size
of the percolation region, which is much greater than this
radius. Thus, the vortex correlation length grows faster than
the interaction radius.

Unfortunately, the vortex correlation length as well as 〈JJ〉
and 〈AA〉 correlation functions cannot be directly observed in
an experiment. However, there are other quantities connected
with them which can be directly measured. Foremost, from the
critical dynamics, it follows that the vortex correlation length
connected with the relaxation time of the system, τ ∝ Lz

c,
where z is the dynamical exponent. Therefore,

τ ∝ exp

[
zkb

3gε

(
2π

�

)2 T

T − T0

]
, (10)

which is nothing other than the Vogel-Fulcher-Tammann
(VFT) law for the temperature dependence of the relaxation
time near the glass transition point, and T0 corresponds to the
Vogel-Fulcher temperature being determined in experiment.
At first sight, this seems to be surprising, since the VFT law
is characteristic of frustrated systems near the glass transi-
tion. However, this is quite natural since the vortex-vortex
interaction, described by the A field, like the Coulomb one is
long-range, and the systems with a long-range interaction are
frustrated [41,42]. Thus, the description of the interaction in
terms of the gauge field A allows using the methods of equilib-
rium statistical mechanics for the description of systems with
long-range interaction.

FIG. 1. Graphical illustration of the susceptibility change at the
glass transition in the presented theoretical description (with a loga-
rithmic M2 axis).

A. Susceptibility

To derive the expression for linear and nonlinear suscepti-
bilities of the system near T0, let us follow the standard way
and add to our system an external force; thus the Hamiltonian
of the system is rewritten as follows:

H = μ

2
û2 + iβ−1A ·

(
l · ∇ × û − �

N∑
n=1

Jδ(2)
r=rn

)
+ σ̂ · û,

(11)

where σ̂ is the externally induced stress tensor per unit vol-
ume, which after the calculation is supposed to be zero. The
linear susceptibility can be derived by the differentiation χ =
∂f 〈u〉, where f = ∇ · σ̂ is an external force. One can ascertain
it is proportional to the 〈uu〉p=0 = p−2〈ûû〉p|p=0 correlation
function. Since û is the antisymmetric tensor corresponding to
the local rotation of the media on some angle ω, ωi = εi jku jk ,
using the manipulations presented in Appendix D, one finds
that

〈uu〉p = 1

p2

[(
1

βμ

)2

p2〈AA〉p + 1

βμ

]

= 1

βμ

(
μ−1

μ−1p2 + β2M2
+ 1

p2

)
.

As a result, one can write the expression for the dislocation
contribution to susceptibility as follows:

χ =
∫ 1

0
d3r〈uu〉r = 4π

βμ

∫ 1

0
dr r[exp(−r

√
μβM ) + 1]

= 4π

βμ

(
1

2
+ 1 − (1 + √

μβM ) exp(−√
μβM )

μβ2M2

)
.

One can see that near T0, when M → 0, this value does not
divergent (see Fig. 1). This is in agreement with experimental
observations and highlights that the glass transition is not a
second-order phase transition.

B. Nonlinear susceptibilities

In the glasses, the particularly interesting ones are third-
and fifth-order susceptibilities. It is supposed that their diver-
gence at the glass transition temperature is evidence that the
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FIG. 2. (a) The four bold lines in the graph correspond to the
correlation functions 〈AA〉p, which cross in the vertex, M2, corre-
sponding to the A4 term of the effective Hamiltonian. (b) Six bold
lines corresponding to the correlation functions graphs cross in the
vertex, gβ−1, corresponding to the A6 term.

glass transition is a phase transition and points to the growth
of thermodynamic amorphous order in glass formers.

The third-order nonlinear susceptibility χ3 is proportional
to the quadruple correlator of the u field: χ3 = ∂3

f 〈u〉p=0 ∝
〈u4〉p=0, which can be represented in the following form (see
Appendix D):

〈u4〉p=0 = p−4〈û〉p|p=0 =
(

1

βμ

)4

〈A4〉p=0 + 3〈uu〉2
p=0.

Using the above susceptibility calculation, one can see that
the second term in this expression gives finite contributions in
contrast to the first term, which diverges at T → T0

+. Indeed,
the irreducible part of the quadruple correlator 〈A4〉, which
graphically is represented in Fig. 2, is written as follows:

〈A4〉p=0 ∝
(

1

M2

)4

M2.

As a result, χ3 ∝ 〈A4〉p=0 ∝ (T − T0)−3. Similarly, the fifth-
order susceptibility is presented as follows:

χ5 ∝ 〈A6〉p=0 ∝
(

1

M2

)6

∝ 1

(T − T0)6
.

This result is consistent with χ5 ∝ χ2
3 and supports a picture

of amorphous compact domains mostly independent of differ-
ences at the molecular level [12,13].

C. Heat capacity

As noted above, the critical point in the A-field subsystem
is the tricritical point. The form of the corresponding ther-
modynamic potential (see Fig. 3) evidences the differences
in the critical behavior of the system above and below the

FIG. 3. Schematic drawing of the thermodynamic potential of
the system with Hamiltonian (8) at the temperatures near T0 (a) at
the temperatures T < T0, (b) at the temperatures T > T0, and (c) at
T = T0.

FIG. 4. Schematic drawing of the specific heat near the glass
transition by cooling from the liquid phase (blue line) and subse-
quently reheating (red line) [16]. On cooling near the glass transition
temperature Tg the specific heat fast decreases. On reheating, the spe-
cific heat follows a different path. It has a sharp increase, resembling
the specific heat peak happening at the second-order phase transition.

glass transition temperature T0. These differences are well
known [40]. From Fig. 3 one can see that at the approach
to T0 from above, the system’s criticality corresponds to a
weak first-order phase transition, while at the approach to
T0 from below, the transition demonstrates the characteristic
properties of the second-order phase transition. Thus, one can
expect that the temperature dependence of the heat capacity
of the considered system will demonstrate a sharp peak at
T → T0

−, analogous to one at a second-order phase transition,
but at T → T0

+ it will be a finite jump [40]. The behavior
of this subsystem indeed qualitatively describes experimental
observation of the heat capacity near a glass transition.

Knowing the partition function W one can estimate the
vortex subsystem contribution to the heat capacity. At the
approach to T0 from below, it is written as follows (see Ap-
pendix E):

C−
p = 1

β

∂2(T ln W )

∂T 2
∝ 1

|T0 − T |1/2
.

One can see it diverges as well as when at a second-order
phase transition.

At the approach to T0 from above, the heat capacity be-
havior is different from the above. This case corresponds
to the first-order phase transition in the A-field subsystem,
which can happen in the temperature interval from T = Tcr ,
when the energy of symmetrical and antisymmetrical states of
the A-field subsystem are equal (binodal), to T = T0 when
the energy barrier between these states vanishes (spinodal)
(see Fig. 3). Pursuant to the theory of tricritical point [40]
in this case the heat capacity has no singularity but at some
temperature undergoes a jump down:

C+
p = Cp(liquid) − Cp(glass) ≈ 15

2

g(�4ε)2

kb(2π )4
. (12)

The described above behavior agrees with experimental
observations, which can be illustrated by the picture presented
in Fig. 4. The pulling of the liquid-glass transition tempera-
ture to the lower temperature region, which is present in the
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experiments and in the figure, can be explained by the well-
known phenomenon of the dependence of the temperature
of the liquid-glass transition on the quenching rate. One can
show this is the result of the anomaly slowing of the relaxation
processes near T0 (see, for example, [43]). A detailed study
of this problem is possible within dynamic theory, which will
be considered below.

The derived expression for heat capacity (12) allows
expressing the configuration entropy dependence in the tem-
perature interval from Tcr to T0 in the familiar way:

Sc =
∫ T

T0

dT
Cp(T )

T
≈ C+

p ln
T

T0
≈ C+

p

T − T0

T0
.

From this one can see that T0 is close to the Kauzmann tem-
perature, TK , at which an “ideal glass transition” would occur
[44].

IV. DYNAMICS

In contrast to usual thermodynamic phase transitions, a
glass transition has pronounced dynamical features displaying
the slow non-Debye relaxation (α relaxation), the dependence
of the glass transition temperature on quenching velocity,
the boson peak presence in the dynamic structure factor of
supercooled liquids, etc. Naturally, it forces us to think about
the pure dynamical nature of the glass transition. However, the
above topological approach allows much to unite the thermo-
dynamic and dynamic concepts. To demonstrate this, we will
consider the dynamic properties of a glass-forming system
within the framework of the proposed approach.

On one hand, this dynamics is in many ways similar to
the critical dynamics characteristic of systems undergoing
a second-order phase transition. Foremost, these transitions
have in common a critical slowdown of dynamics near the
transition temperature. Above, we have already made an es-
timate of the relaxation time of our system and shown that
it indeed experiences a critical growth, satisfying the well-
known VFT ratio.

On the other hand, the topological phase transition we are
considering is a more complex phenomenon compared to the
second-order phase transition. From (3) it can be seen that the
system is described by the three fields. Each of these fields has
its own characteristic timescale (as well as spatial scale). As a
result, several relaxation modes can reveal themselves in our
system at different timescales.

According to (3) in momentum-frequency space, the
expression for the renormalized strain vector correlation func-
tion can be represented in the following form:

〈uu〉 = 〈ũũ〉 + �2〈ũû〉p〈ÃÃ〉〈JJ〉〈ÃÃ〉p〈ûũ〉
= 〈ũũ〉 + �2μ2β2〈ũũ〉〈JJ〉〈ũũ〉,

where ũ and Ã are fast (nonrenormalized) parts of the u and
A fields, respectively. Limited to the first terms of the above
expansion, and using the correlation function of the fast part
of the A field, in the time space representation it is rewritten
as follows:

〈uu〉t ≈ 〈ũũ〉t + �2μ2β2

τ

∫ t

0
〈ũũ〉t ′ 〈JJ〉t−t ′ dt ′.

The qualitative view of this function is presented in Fig. 5.

FIG. 5. Schematic drawing of 〈uu〉 as a function of ln(t ): (a) is
the contribution 〈ũũ〉, which is the Debye relaxation; (b) is the
contribution of the second term which is the cross-correlation of the
〈ũũ〉t and 〈JJ〉t functions, which is given by the cooperative effects;
(c) is the sum of the first and second terms.

From the figure one can see at the small timescales,
t < τel , where τel ∼ μ is the elastic relaxation time, the
system demonstrates elastic properties which are character-
ized by the instant shear modulus. The system evolution on
these timescales has the exponential form: 〈uu〉t ∼ 〈ũũ〉t ∝
exp(−t/τel ).

At the timescales comparable to the characteristic relax-
ation time of the vortex subsystem, τel � t ∼ τ , the system
kinetic properties are determined by the slow dynamics of
vortices, 〈JJ〉t ∝ exp(−t/τ ), corresponding to collective and
strongly cooperative motion of many atoms or molecules,
correlated on long-range scales. With time, the vortex subsys-
tem evolves to an equilibrium state. This phenomenon proves
itself as the final nonexponential decaying of the correlation
function and is called the “α relaxation” [45]. Usually, the cor-
responding time dependence is approximated by the so-called
Kohlrausch-Williams-Watts function, which has the following
form: 〈uu〉t ∝ exp[−(t/τ )b], where b < 1 (see Fig. 6).

At the medium timescales, τel < t � τ , at which the vor-
tex subsystem have no time to relax, 〈JJ〉t ∼ const �= 0, the
correlation function has a plateau which physical meaning is

FIG. 6. Schematic drawing of ln(− ln〈uu〉) as a function of ln(t ),
in which the straight line with b tilt corresponds to the exp[−(t/τ )b]
function. One can see in the α-relaxation regime the relaxation is
nonexponential, at b < 1 (the red tangent line). The regime with b ≈
0 at the medium timescales corresponds to the β relaxation.

044124-6



GLASS TRANSITION AS A TOPOLOGICAL PHASE … PHYSICAL REVIEW E 106, 044124 (2022)

given by the so-called “cage effect” [45]. In our interpretation,
the size of this cage corresponds to the vortex correlation
length. It means that for a short time interval the vortex system
does not change, therefore the cooperative motion of atoms or
molecules is blocked on macroscopic scales. Thus, the system
is dynamically correlated and in the glasslike state existing
during the short time t < τ . On these timescales, the system
demonstrates the characteristic for glasses’ logarithmic relax-
ation (β relaxation).

A. Boson peak

One more dynamical property to examine is the so-called
boson peak [46,47]. Usually, the boson peak is observed in the
dynamic structure factor of supercooled liquids at tempera-
tures below T ≈ 1.2 Tg (Tg is the glass transition temperature).
Its appearance is also related to the collective (dynamically
correlated) motion of atoms and the formation of clusters
with locally favored structures in the normal (quasi-gas) liquid
medium. Recently, for example, the close link of the boson
peak with the α relaxation was discussed using a system-
bath coupling of the Zwanzig-Caldeira-Leggett type [48]. In
our model, the vortex formation implies the presence of a
locally ordered structure in which the vortex arises. Therefore,
the size of the correlated clusters of this favored structure
is defined by the vortex correlation length and A-field in-
teraction radius. Thus, one can suppose that features of the
low-frequency part of the absorption spectrum are related to
the A-field mass renormalization.

For accurate analysis, we make use of the Keldysh-
Schwinger technique. Before we turn to this technique, one
should keep in mind that above during averaging over û field,
the system was supposed to be thermalized. Therefore, the
subsequent consideration is correct in supposing that the A
field is much slower than the û field, which seems natural.

In the same way as above let us separate the û and A fields
on the fast, ũ, Ã, and the slow, û, A, parts: û → û + ũ, A →
A + Ã. Let us suppose the fast parts of the fields are in thermal
equilibrium, and average the model over ũ and Ã like in (8).
Then, since 〈Ã〉 = 0, we can present the Hamiltonian of our
system as follows:

H = 1

2
μû2 + iA · (∇ × û) + 1

2μ
(∇ × A)2

+ M2

(
1

2
(�A)2 − 1

4!
(�A)4

)
+ g

�6

6!
A6. (13)

If we go over to the dynamic, in terms of the Keldysh-
Schwinger technique [49–52] one can write the system’s
action functional in the following form:

S = 1

2
ū̂−1

0 ū + 1

2
ĀĜ−1

0 Ā + iA · [∇ × û′] + iA′ · [∇ × û]

− γ −1M2 2�4

4!
A3A′ + g

2�6

6!
A5A′, (14)

where û and û′ are the “quantum” and “classical” fields after
the Keldysh rotation [50,51], ū is the vector ū = (û, û′), and
̂0 is the prime Green function matrix which in momentum-
frequency space the expression for the renormalized strain
vector correlation function can be represented in the following

FIG. 7. The graphical presentation of the vertices A3A′ (a) and
A5A′ (b), [p × û′]A (j), [p × û]A′ (i), and the prime Green functions
GA

0 (c), GR
0 (d), GK

0 (e), A
0 (f), R

0 (g), and K
0 (h).

form:

̂0 =
[
K

0 p, ω
R

0 p, ω

A
0 p, ω

0

]
=

[ 2γ kbT
μ2+γ 2ω2

γ

μ−iγω
γ

μ+iγω
0

]
,

(15)

where γ is the kinetic coefficient, and R
0 , A

0 , K
0 are re-

spectively its retarded, advanced, and Keldysh components of
̂0. Similarly, A and A′ are the “quantum” and “classical”
fields after Keldysh rotation, Ā is the vector (A, A′), and
Ĝ0 is the prime Green function matrix which in momentum-
frequency space has the following form:

Ĝ0 =
[

GK
0 p, ω

GR
0 p, ω

GA
0 p, ω

0

]

=
[ 2γ kbT

(γ 2μ−1p2+M2 )2+γ 2ω2
γ

γ 2μ−1p2+M2−iγω
γ

γ 2μ−1p2+M2+iγω
0

]
, (16)

where GR
0 , GA

0 , GK
0 are respectively its retarded, advanced,

and Keldysh components (see Fig. 7). Near the glass transi-
tion the A-field full correlation function matrix, Ĝp, ω, differs
from the prime one by the addition of the self-energy term,
�p, ω, to the A-field mass: M2 → M2

Rp, ω = M2 − γ�p, ω.
Using the perturbation theory, one can find the dominant near
T0 contribution to self-energy is given by the logarithmically
divergent term

�p, ω ≈ M4�4

8γ 2

∫∫
d3p′dω′

(2π )4

d3p′′dω′′

(2π )4

× GK
p′, ω′GK

p′′, ω′′GA(R)
p′+p′′+p, ω′+ω′′+ω,

which is graphically presented in Fig. 8. In the assumption of
small M2 in the p → 0 limit (see Appendix F)

�p≈0, ω ≈ M4 μ3

β2γ 7

�4

8(2π )2
log ω.

FIG. 8. This term gives a logarithmically divergent contribution
to the M2 renormalization.
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FIG. 9. Graphical presentation of the retarded component of the
û-field Green function, which is a geometrical progression.

To determine the expression for the dynamic structure
factor, S(ω), one should determine the Keldysh part of
the time-dependent full correlation function matrix K

ω =
〈ûû〉ω ∝ S(ω). In momentum-frequency space, the retarded
component of this matrix is written as follows (see Fig. 9):

R
p, ω = A∗

p, ω = 〈ûû′〉p, ω = γ

μ − iγω

∞∑
n=0

(
p2γ GR

p, ω

μ − iγω

)n

= γ

μ − p2GR
p, ω − iγω

,

where GR is the retarded component of the full A-field Green
functions matrix. Therefore, the Keldysh part of the time-
dependent full correlation function matrix is

S(ω) ∝ K
p, ω = 2γ β−1∣∣μ − p2GR

p, ω − iγω
∣∣2 . (17)

Substituting the renumbered correlation function of the field
A, GR

p, ω, into this expression (see Appendix G) allows us to
obtain the frequency dependence of the dynamic structure
factor shown in Fig. 10. In the figure, one can see that the ob-
tained function qualitatively exactly reproduces the character
of the experimental frequency dependencies of the dynamic
structure factor. The frequency peak corresponds to the in-
termolecular mode band. Its amplitude increases dramatically
with increasing temperature, and the maximum shifts to low
frequencies as expected for a collision-induced band. As can

FIG. 10. The qualitative form of the frequency dependence of the
dynamic structure factor, S(ω), derived with the (17) expression, with
a logarithmic frequency axis (T1 ≈ T0 < T2 < T3). With temperature
growth, the peak maximum position shifts to low frequencies, and
its height and width grow. At T → T0 the central peak vanishes.
This picture qualitatively agrees well with experimental data (see,
for example, [53]).

be expected, the vortex–vortex mutual scattering, being de-
scribed by the �p, ω term, corresponds to the collective or
cooperative motion effect in which the intermolecular oscil-
lation modes dominate. Exactly this contribution defines the
Boson peak presence in the dynamic structure factor.

B. Motion equation of the �K correlation function

In the conclusion of this section, we will discuss the con-
nection of our theory with mode-coupling theory, which is the
most developed theory for the evolution of glassy dynamics
in liquids. For this, following [36,54] we write the Dyson
equations for the correlation functions R and A:

R(A) = 
R(A)
0 − p2

R(A)
0 ∗ GR(A) ∗ R(A),

where the asterisk denotes the operation of convolution by t .
Next, let us act on the R and A respectively by the opera-
tors ̂−R

0 = ∂t + μ/γ and ̂−A
0 = −∂t + μ/γ . Summing the

results of these actions, one obtains the following expression
(see Appendix H):

̂−R
0 R

p, t + ̂−A
0 A

p, t = −2p2

τ

∫ t

0
dt ′GR

p, t−t ′
R
p, t ′ .

From this expression using the fluctuation-dissipation the-
orem, R − A = γ β∂t

K , we obtain the following equa-
tion (see Appendix H):

γ ∂2
t K

p,t + μ∂t
K
p,t + p2

τ

∫ t

0
dt ′GR

p,t−t ′∂t
K
p,t ′ = 0,

which is the equation of motion for K
t in the Zwanzig-Mori

representation of the mode-coupling theory [6]. One can see
that the kernel function (memory function) of this equation is
the A-field correlation function, which just corresponds to the
cooperative motion.

V. DISCUSSION

Various theoretical models and techniques are essen-
tially different languages for describing some physical
phenomenon. This description can have different sounds, but
the content of the matter is the same. In the case of the glass
transition, the common problem is the mathematical descrip-
tion of cooperative motion in disordered matter, accompanied
by frustration and nonergodicity emergence. The theoretical
approach presented in this paper considers this motion as
the motion of topological vortices (disclinations) in a locally
ordered elastic medium.

Comparing the topological approach presented here with
mostly known ones, one should point out that it is closest ide-
ologically to the theory of frustration limited domains [11,55–
58] and is a development of the disclination model of glass
[17–24] mentioned in introduction. Their general idea is the
conception of geometrical frustration of glass structure, which
arises at quenching and leads to the nonergodicity of the end
state.

The presented picture well agrees with most modern theo-
ries, experimental data, and computer simulation results. For
example, this topological picture naturally involves the dy-
namic heterogeneity widely discussed recently [59]. The point
is that at the movement of the vortex, the most mobile atoms
are close to its core. Thus, the moving vortices create around
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themselves the areas of mobile atoms, which alternate with
correlated slow areas. In our case, the spatial scale of this dy-
namic heterogeneity is comparable to the A-field correlation
length.

Similar heterogeneity is also supposed in the popular ran-
dom first-order transition theory, in which the supercooled
liquid phase is thought to be composed of glassy clusters sep-
arated from each other. One supposes that these statistically
similar incongruent global glassy metastable states appear at
some temperature T = TA [14]. In our approach, the hetero-
geneity emergencies at the temperature T = Tμ, when the
vortices begin forming. The vortex subsystem is degenerate in
energy because of numerous vortex configurations with equal
energy, and the long-range Coulomb interaction between vor-
tices leads to the system frustration [41,42]. Thus, one can see
that Tμ and TA are equivalent in nature.

By continuing to draw a parallel between our topological
approach and the random first-order transition theory, atten-
tion must be paid to the similar results in the correlation
length estimations. In the last one it is coherence length of
the glass clusters, ξ [14], which can be obtained from com-
puter simulation as a correlation of static shear deformations
[60]. In our case, this correlation also can be determined
as 〈uu〉. From (17) one can see that in the static case, the
correlation lengths of the u and A fields have equal asymp-
totic divergences at T → Tc. In both cases ξ ∝ (T − T0)−ν .
In the random first-order transition theory ν = 2/d ≈ 0.67, in
our case with fluctuation corrections this value varies from
ν ≈ 0.67 (3D XY model) to ν ≈ 0.71 (3D Heisenberg model
[61]) depending on system symmetry. The computer modeling
gives ν ≈ 0.7 [60]. One can see that these estimations are very
close. At the same time, one should note that ξ is essentially
different from the vortex correlation length estimated earlier,
which grows much faster. The point is the last one is the
percolation length in the system of arbitrary situated vortices
where ξ is the length of local bonds between ones, and the
percolation length grows faster than the bond length.

It is natural that both spatial and timescales have a dynamic
heterogeneity effect on the system kinetics. Therefore, it is not
surprising we found a direct connection between the A-field
correlation function and memory function in the motion equa-
tion of the mode-coupling theory (MCT) [6]. One can hope
that taking account of the system microscopic and topological
properties in the framework of our approach will help to find
the memory functions of MCT equations for a more precise
description of the vitrification dynamics of real glass-forming
systems.

VI. CONCLUSIONS

In conclusion, we summarize the main thesis of this work:
the glass transition can be regarded as a topological phase
transition. The key condition for the possibility of such a
phase transition is the existence in liquid of nontrivial topo-
logically protected structural excitations playing the role of
quasiparticles, and the glass transition represents the conden-
sation in the subsystem of quasiparticles.

The presented results of the theoretical analysis of the
critical behavior of the proposed model allow us to assert
that it gives an adequate description of most of the universal

properties inherent in glass transitions in various systems. It
describes the topological phase transition between disordered
states of elastic condensed matter, which is characterized by
the changing of the static shear modulus from μst = 0, cor-
responding to high temperatures, to μst �= 0, corresponding
to low ones. With this, the modulus scales with the glass
transition temperature μst = μ(T0) ∝ T0, which corresponds
to the experimentally observed properties of glass transition.

It is shown that the distinctive feature of this phase tran-
sition, as the Berezinskii-Kosterlitz-Thouless transition in the
two-dimensional XY model, is the absence of an order pa-
rameter. The long-range translational order does not occur
during this transition, and the phase transition manifests itself
in an infinite increase in the correlation radius and relaxation
time as the system approaches the critical point. However, the
divergence of the nonlinear susceptibility and a sharp peak
in the temperature dependence of the heat capacity (in the
case of an increase in temperature), derived in the framework
of the model, as well as their experimentally observation,
are confirmed by our conclusion that the glass transition is
a special type of thermodynamic phase transition.

Since the interaction between quasi-particles (disclina-
tions) is long-range, the properties of the systems consisting of
them are largely determined by cooperative effects, which are
especially strong on the kinetics of the system near the critical
point. We can observe this both in the anomalous divergence
of the relaxation time of the system according to VFT law and
in the appearance of a boson peak in the low-frequency region
of a dynamic structural factor. In turn, an abnormal relaxation
slowdown leads to such experimentally observed effects as the
dependence of the glass transition temperature on the cooling
rate.

Thus, the proposed model can well describe both ther-
modynamic and kinetic properties of glass-forming systems.
Considering the above, it can be argued that the model pre-
sented in the paper and its analysis prove the topological
nature of glass transition.
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APPENDIX A

The system effective Hamiltonian has the following form:

H = β−2

2μ
(∇ × A)2 − iβ−1�A

N∑
n=1

Jδ(2)
r=rn

.

To take account of all possible vortices configurations, we
carry out the averaging over a grand canonical ensemble of
the “particles” endowed with the two possible dimensionless
charges: Jn = ±1. Then the path integral is

W =
∫

DA

{
exp

[
−β

∫
d3r

β−2

2μ
(∇ × A)2

]

×
∞∑

N=1

(e−βEc )N

N!

N∏
n=1

∫
d3rn

∑
Jn=±1

exp [iJn�A(rn)]

}
.
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After summation, the system effective Hamiltonian density
assumes the form

H = β−2

2μ
(∇ × A)2 − gβ−1 cos (�A),

where g = e−βEc is the density of the vortex system. It is
nothing other than the Hamiltonian density of the sine-Gordon
theory.

APPENDIX B

Let us consider the correlation of the Jp vortices with some
moment p, when

Jp =
∫

dd r δ(2)(r − rn)Jneipr ≈ Jneiprn .

In this case, the pair correlation function of the vortices is (see
Fig. 11)

〈JpJ−p〉 = 〈JpJ−p exp[−i�(J−pAp + JpA−p)]〉A

= JpJ−p∫
DA exp[−βH]

∫
DA exp

× [−βH + i�(J−pAp + JpA−p)]

= JpJ−p exp[−�2Jp〈AA〉pJ−p]

∝ exp

(
− �2Eβ

μ−1p2 + M2

)
.

Another way to express the vortex correlator is the standard
method by using an auxiliary field. In this case, the Hamilto-
nian (4) is rewritten as follows:

H = β−2

2μ
(∇ × A)2 − iβ−1(�A + X )

N∑
n=1

Jδ(2)
r=rn

,

and the correlator is expressed as

〈JJ〉r−r′ = − 1

W

δ2W

δXrδXr′

∣∣∣∣
X=0

.

After averaging over the grand canonical ensemble of vor-
tices, the Hamiltonian is

H = β−2

2μ
(∇ × A)2 − gβ−1 cos (�A + X ).

FIG. 11. Every dot corresponds to the JA vortex; every circle cor-
responds to the free vertices’ correlation without interaction 〈JJ〉0 =
δ(r) [〈J (p)J (−p)〉0 = 1].

Therefore,

〈JJ〉r−r′ = −g2〈sin(�Ar ) sin(�Ar′ )〉

= −g2

2
〈cos[�(Ar − Ar′ )] − cos[�(Ar + Ar′ )]〉

= g2

2
exp

[
− �2

2
〈(Ar + Ar′ )2〉

]

− g2

2
exp

[
− �2

2
〈(Ar − Ar′ )2〉

]

= g2 exp

(
− �2

2
〈A2〉 − �2

2
〈A2〉

)

× sinh(−�2〈AA〉r−r′ )

≈ −g2

2
exp(−�2〈A2〉) exp(�2〈AA〉r−r′ ).

In momentum-frequency space, this correlator is written as
follows:

〈JJ〉p=0 =
∫

d3r〈JJ〉r ∝
∫

d3r exp(�2〈AA〉r )

=
∫

d3r
(

1 + �2〈AA〉r + �4

2
〈AA〉2

r + · · ·
)

= 1 + �2〈AA〉p=0 + �4

2

∫
d3p′

(2π )3
〈AA〉2

p′ + · · ·

≈ exp(�2〈AA〉p=0).

APPENDIX C

We suppose that the vortex system presents a vortex
liquid, therefore the spatial correlation of the vortices’ den-
sity can be presented as the exponential function |〈JJ〉|r ∝
exp(−|r|/Lc) [40], where Lc is the correlation length.
Thus,

∫
d3r|〈JJ〉|r ∝

∫
d3r exp(−|r|/Lc)

= 4π

∫
drr2 exp(−r/Lc)

= 4πL3
c

∫
dxx2 exp(−x) ∝ L3

c .

Then again,

∫
d3r|〈JJ〉|r =

∫
d3r

∫ 1

0

d3p
(2π )3

|〈JJ〉|peipr

=
∫ 1

0
d3p|〈JJ〉|pδ(3)(p) = |〈JJ〉|p=0.

Therefore, Lc ∝ |〈JJ〉|1/3
p=0.
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APPENDIX D

After functional integration of the model with the Hamil-
tonian (11) over the û field, the system effective Hamiltonian
takes the following form:

H = β−2

2μ
(∇ × A − iβσ̂ )2 − iβ−1�A

N∑
n=1

Jδ(2)
r=rn

.

The sought-for correlation functions are found by the differ-
entiation of the partition function over σ̂ field.
The pair correlation function is derived by the double differ-
entiation:

〈uu〉p = − 1

p2

β−2

W

δ2W

δσ̂pδσ̂−p

∣∣∣∣
σ̂=0

= 1

βμ

(
1

βμ
〈AA〉p + 1

p2

)
,

and the quadratic correlation function is determined as

〈u4〉p = − 1

p4

β−4

W

δ4W

δσ̂pδσ̂pδσ̂pδσ̂p

∣∣∣∣
σ̂=0

=
(

1

βμ

)2[(
1

βμ

)2

〈A4〉p + 3

(
1

βμ

)2

〈AA〉2
p

+ 6
1

p2

1

βμ
〈AA〉p + 3

1

p4

]

=
(

1

βμ

)4

〈A4〉p=0 + 3

[
1

βμ

(
1

βμ
〈AA〉p + 1

p2

)]2

=
(

1

βμ

)4

〈A4〉p + 3〈uu〉2
p.

APPENDIX E

According to the heat capacity definition, the contribution
to this value of the vortex subsystem is

Cp = 1

β

∂2(T ln W )

∂T 2

= 1

β

[
2

W

∂W

∂T
− T

(
1

W

∂W

∂T

)2

+ T

(
1

W

∂2W

∂T 2

)]
.

By substituting the partition function W in this expression,
one can estimate the heat capacity near T0. At the approach to
T0 from below, the heat capacity is written as follows:

Cp ≈ kbT 2

W

∂2W

∂T 2
= T

2

∂2

∂T 2

∫
d3p

(2π )3
μ〈ûû〉p

= T

2

∂2

∂T 2

∫
d3p

(2π )3

(
p2(βμ)−1

μ−1p2 + β2M2
+ β−1

)

≈ T

2βμ

∂2

∂T 2

∫
d3p

(2π )3

−M2

μ−1p2 + β2M2
∝ 1

|T0 − T |1/2
.

APPENDIX F

To calculate the following integral:

IA(t ) =
∫∫

d3p′dω′

(2π )4

d3p′′dω′′

(2π )4

× GK
p′, ω′GK

p′′, ω′′GA
p′+p′′+p, ω′+ω′′+ω,

it is convenient to consider it in the (k, t ) presentation:

IA(t ) = β−2
∫∫

d3k
(2π )3

d3k′

(2π )3
θ [t (μ−1(k + k′)2 + M2)]

× exp[−2γμ−1(k2 − k′k + k′2)t − 3M2tγ −1]

(γ 2μ−1k2 + M2)(γ 2μ−1k′2 + M2)
.

It can be integrated as follows:

IA(t ) = β−2

(
μ

γ 2

)3 (2π )2

(2π )6

∫ 1

0
dX

∫∫ ∞

−∞
dz dz′θ [t (z2 − 2z′zX + z′2 + M2)]

z2z′2 exp[−2γ −1(z2 − z′zX + z′2)t − 3M2tγ −1]

(z + iM )(z − iM )(z′ + iM )(z′ − iM )

= β−2

(
μ

γ 2

)3 (2π )2

(2π )6

∫ 1

0
dX

∫ ∞

−∞
dz θ [t (z2 − 2iMzX )]

−2π iM2z2 exp[−2(z2 − iMzX − M2)tγ −1 − 3M2tγ −1]

2iM(z + iM )(z − iM )

= β−2

(
μ

γ 2

)3 (2π )2

(2π )6

∫ 1

0
dXπ2M2θ [t (2X − 1)] exp[−2(M2X − M2)tγ −1 − M2tγ −1]

= β−2

(
μ

γ 2

)3
π2M2

(2π )4

∫ 1

0
dX θ [t (2X − 1)] exp[−(2M2X − M2)tγ −1]

= β−2

(
μ

γ 2

)3 1

(2π )2

γ

8t
[θ (−t ) exp(M2tγ −1) − θ (t ) exp(−M2tγ −1)].

We take into account that M2 � 1 and γ > t , thus

IA(t ) ≈ −θ (t )β−2

(
μ

γ 2

)3
γ

8(2π )2

1

t
.

After Fourier transformation

IA(ω) ≈ β−2

(
μ

γ 2

)3
γ

8(2π )2
(log ω + C),
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where C is Euler’s constant, which can be neglected at
small ω.

APPENDIX G

Near the glass transition, the A-field full correlation func-
tion matrix, Ĝp, ω, differs from the prime one by the addition
of the self-energy term,

�p≈0, ω ≈ M4 μ3

β2γ 7

�4

8(2π )2
log ω,

to the A-field mass, M2 → M2
Rp, ω = M2 − γ�p, ω:

GR
p, ω = GA∗

p, ω = γ

γ 2μ−1p2 + M2 − γ�p, ω − iγω

= γ
(
γ 2μ−1p2 + M2

Rp, ω

)
(
γ 2μ−1p2 + M2

Rp, ω

)2 + γ 2ω2

+ iγ 2ω(
γ 2μ−1p2 + M2

Rp, ω

)2 + γ 2ω2
,

GK
p, ω = 2γ β−1(

γ 2μ−1p2 + M2
Rp, ω

)2 + γ 2ω2
.

As a result, the u-field full correlation functions have the
following form:

R
p, ω = A∗

p, ω = 〈ûû′〉p, ω = γ

μ − iγω

∞∑
n=0

(
p2γ GR

p, ω

μ − iγω

)n

= γ

μ − p2γ GR
p, ω − iγω

,

K
p, ω = 2kbT

γω
�(

R
p, ω

) = 2γ kbT

[
ω2γ 2

(
1 + p2 βγ

2
GK

p, ω

)2

+
(

μ − p2
(
γ 2μ−1p2 + M2

Rp, ω

)βγ

2
GK

p, ω

)2]−1

.

APPENDIX H

Let us act using the operator ̂−R
0 = ∂t + μ/γ on R

p, t :

̂−R
0 R

p, t = ̂−R
0 R

0 p, t − p2̂−R
0 R

0 p, t ∗ GR
p, t ∗ R

p, t

= δt − p2GR
p, t ∗ R

p, t ,

and the operator ̂−A
0 = −∂t + μ/γ on A

p, t :

̂−A
0 A

p, t = ̂−A
0 A

0 p, t − p2̂−A
0 A

0 p, t ∗ GA
p, t ∗ A

p, t

= δt − p2GA
p, t ∗ A

p, t .

Let us sum up the results of these actions, consid-
ering that GR

t = GA
−t = θ (t )e−t (M2−γ�), and R

t = A
−t =

θ (t )e−tμ̃, where μ̃ ≈ μ + p2GR
p, 0 is the renormalized μ pa-

rameter. As a result, at t > 0 we obtain the following
expression:

̂−R
0 R

p, t + ̂−A
0 A

p, t = ∂t
(
R

p, t − A
p, t

) + μ

γ

(
R

p, t + A
p, t

)
= −p2

(
GR

p, t ∗ R
p, t + GA

p, t ∗ A
p, t

)
= −p2

τ

∫ t

0
dt ′GR

p, t−t ′
R
p, t ′

− p2

τ

∫ 0

−t
dt ′GA

p, t−t ′
A
p, t ′

= −2p2

τ

∫ t

0
dt ′GR

p, t−t ′
R
p, t ′ .

Using the fluctuation-dissipation theorem, R − A =
γ β∂t

K , and bearing in mind that GA
t = A

t = 0 at t > 0,
one obtains the following equation:

γ ∂2
t K

p,t + μ∂t
K
p,t + p2

τ

∫ t

0
dt ′GR

p,t−t ′∂t
K
p,t ′ = 0,

which is the equation of motion in the Zwanzig-Mori repre-
sentation of the mode-coupling theory.
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Rev. Lett. 104, 205704 (2010).

[61] J. C. Le Guillou and J. Zinn-Justin, J. Phys. Lett. 46, 137 (1985).

044124-13

https://doi.org/10.1103/PhysRevLett.62.2616
https://doi.org/10.1103/PhysRevLett.102.107402
https://doi.org/10.1103/PhysRevA.34.602
https://doi.org/10.1103/PhysRevLett.102.105502
https://doi.org/10.1103/PhysRevB.84.052201
https://doi.org/10.1103/RevModPhys.77.881
https://doi.org/10.1103/PhysRevE.71.011501
https://doi.org/10.1088/0953-8984/18/37/R01
https://doi.org/10.3367/UFNe.0182.201211a.1137
https://doi.org/10.1103/PhysRevE.85.031203
https://doi.org/10.1016/j.physa.2019.04.065
https://doi.org/10.1103/RevModPhys.59.1001
https://doi.org/10.1063/1.2193060
https://doi.org/10.1063/1.477166
https://doi.org/10.1209/epl/i2005-10367-8
https://doi.org/10.1088/1742-5468/2011/05/P05009
https://doi.org/10.1063/1.454295
https://doi.org/10.1103/PhysRevB.12.2432
https://doi.org/10.1103/PhysRevB.34.5665
https://doi.org/10.1103/PhysRevE.95.022603
https://doi.org/10.1063/1.1703727
https://doi.org/10.1088/1742-5468/2005/05/P05013
https://doi.org/10.1016/0378-4371(95)00374-6
https://doi.org/10.1080/13642819808204950
https://doi.org/10.1103/PhysRevLett.101.155701
https://doi.org/10.1103/PhysRevB.33.6395
https://doi.org/10.1103/PhysRevLett.104.205704
https://doi.org/10.1051/jphyslet:01985004604013700

