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Composite subdiffusion equation that describes transient subdiffusion
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A composite subdiffusion equation with fractional Caputo time derivative with respect to another function g is
used to describe a process of a continuous transition from subdiffusion with parameters α and Dα to subdiffusion
with parameters β and Dβ . The parameters are defined by the time evolution of the mean square displacement
of diffusing particle σ 2(t ) = 2Dit i/�(1 + i), i = α, β. The function g controls the process at intermediate
times. The composite subdiffusion equation is more general than the ordinary fractional subdiffusion equa-
tion with constant parameters; it has potentially wide application in modeling diffusion processes with changing
parameters.
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I. INTRODUCTION

Subdiffusion occurs in media, such as gels and bacterial
biofilm, where the movement of molecules is very hindered
due to a complex structure of a medium [1–14]. Within the
continuous time random walk (CTRW) model, subdiffusion
is defined as a process in which a time distribution between
particle jumps ψ has a heavy tail which makes the average
time infinite, ψ (t ) ∼ 1/t1+α when t → ∞, 0 < α < 1, and
the jump length distribution has finite moments [2–5,15–19];
the citation list on the above issues can be significantly ex-
tended. This model shows that subdiffusion with a constant
subdiffusion parameter (exponent) α in a one-dimensional
homogeneous system can be described by an ordinary subdif-
fusion equation with a fractional time derivative of the order
α ∈ (0, 1),

C∂αC(x, t )

∂tα
= Dα

∂2C(x, t )

∂x2
, (1)

where the Caputo fractional derivative is defined here as

Cdα f (t )

dtα
= 1

�(1 − α)

∫ t

0
(t − u)−α f ′(u)du, (2)

where Dα is a generalized diffusion coefficient measured in
the units of m2/sα , C is a concentration of diffusing parti-
cles, and f ′ denotes the first-order derivative of function f .
Equation (1) can be transformed to its equivalent form with
the fractional Riemann-Liouville time derivative of the order
1 − α; see, for example, Ref. [2].

Subdiffusion parameters are often defined by a time evo-
lution of the mean square displacement σ 2 of a diffusing
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particle,

σ 2(t ) = 2Dαtα

�(1 + α)
. (3)

Equation (1) describes the subdiffusion process with constant
parameters α and Dα . Such a process can occur in a homo-
geneous system in which the structure does not change with
time. However, the structure of a medium may evolve over
time, continuously changing the parameters. An example is
antibiotic subdiffusion in a bacterial biofilm [12,13]. Bacteria
have different defense mechanisms against the action of the
antibiotic, which can slow down or even significantly accel-
erate the antibiotic transport [20,21]. Different models have
been used to describe subdiffusion with variable parameters
[22–24]. The examples are subdiffusion equations with pa-
rameters α and Dα dependent on the spatial variable [25,26],
transitions from anomalous to Gaussian diffusion [27,28], and
subdiffusion equations with linear combination of fractional
time derivatives with different parameters α [29–31]. The
CTRW model describing anomalous diffusion with changing
subdiffusion parameters [32] and the ordinary CTRW model
with a waiting time distribution that is a linear combination
of two exponential distributions with different timescales [27]
have been used to model anomalous diffusion with evolving
parameters. Modification of a timescale in a diffusion model
can lead to changes in diffusion parameters as well as in the
type of diffusion [33,34]. A timescale changing can be made
by means of a subordinated method [4,35–38]. Within this
method, retarding and accelerating anomalous diffusions have
been obtained [39,40]. Examples of processes that lead to a
rescaling of diffusion are diffusing diffusivities where the dif-
fusion coefficient evolves over time [37], passages through the
layered media [41], and anomalous diffusion in an expanding
medium [42]. We mention that a distributed order of fractional
derivative in a subdiffusion equation can lead to delayed or
accelerated subdiffusion [43–47].
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We consider subdiffusion in a one-dimensional homoge-
neous system. Diffusive properties of a medium may change
over time. At the initial moment the subdiffusion parameters
are α and Dα , and after a long time (formally t → ∞) the pa-
rameters are β and Dβ . In these cases subdiffusion is described
by the ordinary subdiffusion equation. In the intermediate
time interval there is a continuous transient subdiffusion pro-
cess in which the subdiffusion parameters are not defined by
Eq. (3). We call the process transient subdiffusion, and it is
symbolically written as (α, Dα ) → (β, Dβ ).

II. COMPOSITE SUBDIFFUSION EQUATION

Recently, the composite subdiffusion process characterized
by parameters α, Dα , and by the function g has been consid-
ered in [34,48,49] (the process has been called g subdiffusion
in the above cited papers). This process is related to ordinary
subdiffusion with the same parameters in which the time vari-
able has been rescaled by a deterministic function g which
fulfils the conditions g(0) = 0, g(∞) = ∞, and g′(t ) > 0 for
t > 0, and the values of the function g are given in a time
unit. Composite subdiffusion is described by the following
equation:

C∂α
g C(x, t )

∂tα
= Dα

∂2C(x, t )

∂x2
, (4)

where

Cdα
g f (t )

dtα
= 1

�(1 − α)

∫ t

0
(g(t ) − g(u))−α f ′(u)du (5)

is the g-Caputo fractional derivative of the order α ∈ (0, 1)
with respect to the function g [50]. When g(t ) ≡ t , the g-
Caputo fractional derivative takes the form of the ordinary
Caputo derivative. We will show that transient subdiffusion
can be treated as a special case of composite subdiffusion. We
mention that equations with fractional time derivatives with
respect to other functions have already been used to describe
other diffusion processes [51,52].

The composite subdiffusion equation can be solved by
means of the g-Laplace transform method. The g-Laplace
transform is defined as [53]

Lg[ f (t )](s) =
∫ ∞

0
e−sg(t ) f (t )g′(t )dt . (6)

The g-Laplace transform is related to the ordinary Laplace
transform L[ f (t )](s) = ∫ ∞

0 e−st f (t )dt as follows:

Lg[ f (t )](s) = L[ f (g−1(t ))](s). (7)

Equation (7) provides the rule

Lg[ f (t )](s) = L[h(t )](s) ⇔ f (t ) = h(g(t )). (8)

The above formula is helpful in calculating the inverse g-
Laplace transform if the inverse ordinary Laplace transform
is known. The examples of inverse g-Laplace transforms
are [48]

L−1
g

[
1

s1+ν

]
(t ) = gν (t )

�(1 + ν)
, ν > −1, (9)

L−1
g [sνe−asμ

](t ) ≡ fν,μ(g(t ); a)

= 1

g1+ν (t )

∞∑
k=0

1

k!�(−ν − μk)

(
− a

gμ(t )

)k

,

(10)

a, μ > 0. The function fν,μ is a special case of the Wright
function and the H-Fox function.

The calculations for solving Eq. (4) by means of the g-
Laplace transform method are similar to those for solving
Eq. (1) using the ordinary Laplace transform. Due to the
relation [53]

Lg

[Cdα
g f (t )

dtα

]
(s) = sαLg[ f (t )](s) − sα−1 f (0), (11)

where 0 < α � 1, the g-Laplace transform of Eq. (4), reads

sαLg[C(x, t )](s) − sα−1C(x, 0)

= Dα

∂2Lg[C(x, t )](s)

∂x2
. (12)

The Green’s function P(x, t |x0) is interpreted as a proba-
bility density of finding a diffusing particle, located initially at
x0, at point x at time t . The g-Laplace transform of the Green’s
function is the following solution to Eq. (12) for the initial
condition P(x, 0|x0) = δ(x − x0), where δ denotes the δ-Dirac
function, and the boundary conditions Lg[P(±∞, t |x0)](s) =
0,

Lg[P(x, t |x0)](s) = 1

2
√

Dαs1−α/2
e− |x−x0 |√

Dα
sα/2

. (13)

From Eqs. (10) and (13) we obtain

P(x, t |x0) = 1

2
√

Dα

f−1+α/2,α/2

(
g(t );

|x − x0|√
Dα

)
. (14)

Equations (9) and (13) provide

σ 2(t ) = 2Dα

�(1 + α)
gα (t ). (15)

Putting g(t ) ≡ t in Eq. (14), we get the Green’s function for
the ordinary subdiffusion equation

P(x, t |x0) = 1

2
√

Dα

f−1+α/2,α/2

(
t ;

|x − x0|√
Dα

)
. (16)

We mention that f−1+α/2,α/2 is called the Mainardi function
[54].

III. TRANSIENT SUBDIFFUSION

We assume that at the initial moment the subdiffusion
parameters are α and Dα , and in the long time limit they are β

and Dβ , α 
= β. Then

σ 2(t ) =
{ 2Dα

�(1+α) t
α, t → 0,

2Dβ

�(1+β ) t
β, t → ∞.

(17)

Equation (17) coincides with Eq. (15) if

g(t ) =
{

t, t → 0,

Atβ/α, t → ∞,
(18)
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where

A =
(

Dβ�(1 + α)

Dα�(1 + β )

) 1
α

. (19)

Guided by Eq. (18), we propose

g(t ) = a(t )t + [1 − a(t )]Atβ/α, (20)

where a non-negative function a controls the process in inter-
mediate times, fulfils the conditions a(0) = 1, a(∞) = 0, and
a generates an increasing function g in the time domain. Since
g(t ) → Atβ/α when t → ∞, Eq. (20) provides the additional
condition

t → ∞, a(t )t → 0. (21)

The function a can be assumed as

a(t ) = 1

1 + ξ (t )
, (22)

where ξ fulfils the conditions ξ (0) = 0 and ξ (∞) = ∞. In the
following we consider the process in which

ξ (t ) = Btν, (23)

where B is a parameter measured in the units of 1/s1/ν . The
conditions g(t ), g′(t ) > 0 for t > 0 are met for any α and β,
α, β ∈ (0, 1), when ν > 1. From Eqs. (20), (22), and (23) we
get

g(t ) = t + ABt
β

α
+ν

1 + Btν
, (24)

ν > 1. In this case the Green’s function reads

P(x, t |x0)

= 1

2
√

Dα

f−1+α/2,α/2

(
t + ABt

β

α
+ν

1 + Btν
;
|x − x0|√

Dα

)
, (25)

with ν > 1 and A given by Eq. (19).
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FIG. 1. The Green’s functions of the composite subdiffusion
equation Eq. (25) that describes the transition (0.6, 10) → (0.9, 20)
(half-full symbols) for ν = 1.2. The Green’s functions of ordinary
subdiffusion equation Eq. (16) are calculated for α = 0.6 and Dα =
10 (empty symbols) and for β = 0.9 and Dβ = 20 (full symbols).
Time values are given in the legend, and all quantities are given in
arbitrarily chosen units.
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FIG. 2. The description is similar to that for Fig. 1 but for ν = 3.0.

The plots of the Green’s functions Eq. (25) describing the
process (α, Dα ) → (β, Dβ ) are compared with the Green’s
functions for ordinary subdiffusion with parameters (α, Dα )
and (β, Dβ ) in Figs. 1–4. We consider accelerated subd-
iffusion (0.6, 10) → (0.9, 20) (then A = 2.81) and delayed
subdiffusion (0.9, 20) → (0.6, 10) (A = 0.50), both for B =
0.1 and x0 = 0, and all quantities are given in arbitrarily
chosen units. The plots show that for larger ν composite subd-
iffusion goes to the final process faster. The convergence to the
final process seems to be faster for the (0.6, 10) → (0.9, 20)
process than for the (0.9, 20) → (0.6, 10) one.

IV. PROPOSALS FOR A DIFFERENT USE OF THE
COMPOSITE SUBDIFFUSION EQUATION

In Sec. III we have considered the subdiffusion process
explicitly defined at some initial and final time intervals.
We define the process in intermediate times by choosing the
function a and using Eq. (20). However, the composite subd-
iffusion equation can be used to describe a process for which
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FIG. 3. The Green’s functions for the process (0.9, 20) →
(0.6, 10). The description is similar to that of Fig. 1 for ν = 1.2.
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FIG. 4. The description is similar to that for Fig. 3 but for ν = 3.0.

MSD is known in the entire time domain. Let us assume that

σ 2(t ) = η(t ), (26)

where η fulfils the conditions η(0) = 0, η(∞) = ∞, and
η′(t ) > 0 for t > 0. We limit our considerations to subdif-
fusion which is defined here as follows: a diffusion process
is subdiffusion if there exist numbers E > 0 and γ ∈ (0, 1)
such that η(t ) < Etγ for t > 0. For ordinary subdiffusion
η is a power function, and for slow subdiffusion (ultraslow
diffusion) the function contains a combination of logarithm
functions. The overviews of the functions η for different dif-
fusion processes are presented in Refs. [55,56]. Comparing
Eq. (26) with Eq. (15), we find that the composite subdiffusion
equation, Eq. (4), with

g(t ) =
[
�(1 + α)η(t )

2Dα

]1/α

, (27)

α ∈ (0, 1), describes the process which generates Eq. (26).
Similar to the model considered in Sec. III, it can be assumed
that parameters α and Dα , occurring in the composite subdif-
fusion equation, characterize the subdiffusion process in some
initial time interval.

It is interesting to use the composite subdiffusion equa-
tion to describe a subdiffusion process with a time-varying
subdiffusion parameter α̃(t ) ∈ (0, 1). This process can be de-
scribed by the following equation [57,58]:

C∂α̃(t )C(x, t )

∂t α̃(t )
= Dα

∂2C(x, t )

∂x2
, (28)

with the Caputo-type fractional derivative C∂α̃(t ) f (t )/∂t α̃(t ) =
[1/�(1 − α̃(t ))]

∫ t
0 f ′(τ )(t − τ )−α̃(t )dτ . However, Eq. (28) is

difficult to solve; in practice it can be solved numerically [59].
For the process described by Eq. (28) there is [57]

σ 2(t ) = 2Dαt α̃(t )

�(1 + α̃(t ))
. (29)

Assuming α̃(0) = α, from Eqs. (26), (27), and (29) we get

g(t ) =
(

�(1 + α)

�(1 + α̃(t ))

)1/α

t α̃(t )/α. (30)

The composite subdiffusion equation with the function g
Eq. (30) describes the subdiffusion process generating the
relation (29). Then the Green’s function is Eq. (14) with g
Eq. (30). The application of the composite subdiffusion equa-
tion to modeling processes with a time-varying subdiffusion
parameter will be considered in more detail elsewhere.

V. FINAL REMARKS

The aim of this paper is to present the composite sub-
diffusion equation and its application to describe transient
subdiffusion from subdiffusion with parameters α and Dα to
subdiffusion with parameters β and Dβ . In intermediate times
the subdiffusive parameters, defined by Eq. (3), can remain
unknown. However, by choosing the function a and using
Eq. (20), we define the process in intermediate times. The
model uses the composite subdiffusion equation with a Ca-
puto fractional time derivative with respect to another function
g, Eq. (4). We have considered a special case of the function
g, Eq. (24), which describes accelerating subdiffusion when
α < β and slowing subdiffusion when α > β.

We have also shown that the process for which the time
evolution of MSD σ 2(t ) is defined in the entire time domain
can be described by the composite subdiffusion equation with
the function given by Eq. (27). This equation is solvable by
means of the g-Laplace transform method and can be used
to model diffusion processes, e.g., in a membrane system,
assuming appropriate boundary conditions at the membrane.
Of course, σ 2(t ) do not always define the diffusion process
unambiguously. An example of this is the combination of
ordinary subdiffusion and superdiffusion, which leads to the
relation σ 2(t ) ∼ t characteristic of normal diffusion [60]. In
this paper we consider subdiffusion processes, the parameters
of which may change over time; normal diffusion is treated
here as a special case of subdiffusion for α = 1. When the
initial process is ordinary subdiffusion, the stochastic inter-
pretation of this process can be found using the modified
continuous time random walk model, see Ref. [48]. However,
for other processes described by the composite subdiffusion
equation, there is no stochastic model so far.
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