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Long-term relaxation of one-dimensional self-gravitating systems
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We investigate the long-term relaxation of one-dimensional (1D) self-gravitating systems, using both kinetic
theory and N-body simulations. We consider thermal and Plummer equilibria, with and without collective effects.
All combinations are found to be in clear agreement with respect to the Balescu–Lenard and Landau predictions
for the diffusion coefficients. Interestingly, collective effects reduce the diffusion by a factor ∼10. The predicted
flux for Plummer equilibrium matches the measured one, which is a remarkable validation of kinetic theory. We
also report on a situation of quasikinetic blocking for the same equilibrium.
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I. INTRODUCTION

As a result of violent relaxation [1], a self-gravitating
system reaches, in a few dynamical times, a quasistation-
ary state (QSS) where the mean-field dynamics is frozen on
a stationary solution of the Vlasov-Poisson equations. Yet,
this mean-field state is generically not the system’s thermo-
dynamical equilibrium. Even when isolated, QSSs slowly
evolve under the effects of perturbations through Poisson shot
noise, i.e., the slight difference between the smooth mean-
field distribution and the discrete one realised from a finite
number of particles. Linear response theory describes the
short-term evolution of these fluctuations, driven both by the
mean-field potential and the self-induced potential fluctua-
tions. This last contribution constitutes a feedback loop, which
we refer to as collective effects. These are the gravitational
counterpart of Debye shielding in plasma physics. Its analysis
gives valuable insights on the system’s linear stability [2]. On
longer timescales, these time-correlated fluctuations govern
the reshuffling of the system’s mean-field distribution of or-
bits, hence driving the system toward different QSSs. This
long-term evolution ultimately ends at thermodynamical equi-
librium described by the Boltzmann distribution, when such
maximal entropy states exist.

The master equation describing the nonlinear long-term
evolution of isolated discrete self-gravitating systems is
the so-called inhomogeneous Balescu–Lenard (BL) equa-
tion [3,4]. While particularly valuable, this kinetic framework
derived a decade ago relies on specific sets of asymp-
totic assumptions, e.g., small perturbations, associated kinetic
truncations, timescale separation between fluctuations and
mean-field evolution, which may not be strictly fulfilled in
practice. Quantitative validation is therefore of interest. Such
assessments have been attempted both for razor thin discs
and spherical isotropic clusters [see, e.g., [5,6]]. However, the
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large dimension of phase space in these 2D and 3D systems
made comparisons to the corresponding N-body simulations
challenging. These works offered some qualitative agreement
between the kinetic predictions and simulations. Yet, the
quantitative accuracy of the match remained limited, in partic-
ular because predictions require repeated costly integrals over
phase space, while preserving long-term numerical precision
in the simulations is challenging.

This is the motivation for the present work, which aims at
performing such a thorough comparison for one-dimensional
self-gravitating systems, whose reduced phase-space dimen-
sion allows for finer precision. Both violent [see, e.g.,
[7–9]] and long-term [see, e.g., [10–13]] relaxations of
1D self-gravitating systems have extensively been explored
through numerical simulations. Here, we predict and analyze
the long-term relaxation of such systems in the light of recent
theoretical developments in kinetic theory.

Interestingly, such a 1D model corresponds to a proxy
for more realistic astrophysical systems, such as the vertical
diffusion of stars [see, e.g., [14,15]], or the onset of large scale
structure formation in the early universe [see, e.g., [16,17]].
Building upon [18], which considered the long-term evolution
of the Hamiltonian mean field (HMF) in its inhomogeneous
phase, the present investigation is also interesting in what
it shares or not with self-gravitating systems of higher
dimension.

Here, we aim at achieving a better understanding of the
mechanisms governing the long-term evolution of discrete
self-gravitating systems, while accounting for collective ef-
fects (BL) or neglecting them (Landau). This double analysis
provides key informations on the influence of collective ef-
fects on a system’s evolution. The paper is organized as
follows. Section II presents the model and the explored
quasiequilibria. Section III computes their long-term resonant
relaxation. Section IV explains the role of collective effects
and profile shapes in the system’s long-term evolution, while
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Sec. V sums up the lessons learned from this study case. All
technical details are given in the Appendices.

II. MODELS

A. 1D self-gravitating systems

We consider a population of N particles of individual mass
m = Mtot/N , with Mtot the system’s total mass, fixed through-
out the paper. Particles are confined to an infinite line and
coupled to one another via the specific pairwise interaction
potential,

U (x, x′) = G |x − x′|, (1)

with G the gravitational constant, and (x, x′) the respective
positions of the two interacting particles. As such, the po-
tential generated at position x by a mass m at position x′
is m U (x, x′). This interaction corresponds to infinite parallel
planes of uniform surface mass density attracting one another
through the classical 3D Newtonian interaction. The potential,
ψ (x), and density, ρ(x), are linked via Poisson’s equation,

�ψ = 2Gρ, (2)

making the force between two particles independent of their
separation. The 1D gravitational potential differs from its 3D
counterpart in two respects: (i) it is unbounded at large sep-
aration, hence all particles are trapped (i.e., no escapers are
possible); (ii) it is finite at zero separation allowing particles
to cross one another.

Following an initial violent relaxation [1], the system’s
mean state can be described by its ensemble-averaged dis-
tribution function (DF), F = F (x, v, t ), with v the velocity,
and normalized so that

∫
dxdvF = Mtot. As all 1D equi-

libria are integrable, such a QSS can most efficiently be
described via the angle-action coordinates (θ, J ), with J
the action, and θ the associated 2π -periodic angle (see
Appendix A 1 for details). In the absence of perturba-
tions, the angle evolves linearly in time with the orbital
frequency �(J ) = ∂H/∂J where H = v2/2 + ψ (x) is the
specific energy and ψ (x) = ∫

dx′dv′F (x′, v′)U (x, x′) the
system’s mean-field potential. In the following, we use equiv-
alently J or the specific (unperturbed) energy E to label orbits.

As a result of potential fluctuations induced by the finite
number of particles, this QSS, F = F (J, t ), undergoes a slow
and irreversible long-term relaxation, captured by the inhomo-
geneous BL equation [3,4]. Testing this prediction is the focus
of this work.

B. Thermodynamic and quasistationary equilibria

We consider two explicit quasistationary distributions: (i)
the global thermodynamical equilibrium; and (ii) a more
peaked QSS, analog of the 3D Plummer sphere, as we now
detail.

Unlike their 3D analogs (unless confined in a box with
repulsive walls) [19–21], 1D self-gravitating systems have a
well-defined maximum entropy equilibrium state. Under the
constraints of fixed total mass and energy, its density fol-
lows [10,22–24]

ρ(x) = Mtot

2	
sech2(x/	), (3)

FIG. 1. Top: Density profiles of the thermal and Plummer
equilibria. The Plummer equilibrium has a sharper core. Bottom:
Corresponding frequency profiles. The range of available frequencies
is wider for the Plummer equilibrium.

with 	 the system’s characteristic length (see Appendix A 6
for the associated potential), while its DF reads

F (E ) = 2Mtot√
πσ	

exp (−2E/E0), (4)

with σ = √
GMtot	, and E0 = GMtot	 the characteristic ve-

locity and specific energy. We emphasize that the DF from
Eq. (4) cannot further relax by design. Naturally, this does
not prevent individual particles from undergoing themselves a
diffusion.

We also investigate an equilibrium stemming from poly-
tropes [25–27]. More precisely, by analogy with the 3D
Plummer sphere, we consider the 1D density

ρ(x) = Mtot

2α
[1 + (x/α)2]−3/2, (5)

where α = 2	/π ensures that this distribution has the same
energy as Eq. (3). The associated DF follows the power-law
distribution (see Appendix A 6),

F (E ) = 15 G3 M4
tot α

2

32
√

2
E−7/2. (6)

In Fig. 1, we illustrate the density and frequency profiles
of these two states. While the thermodynamical equilib-
rium has a strong core and few particles in the tails (only
∼ 10−9Mtot outside [−10	, 10	]), the Plummer distribution
has a sharper core and much wider tails (∼ 10−3Mtot outside
[−10	, 10	]). In the second panel of Fig. 1, we present
the frequency profile of both equilibria. The Plummer denser
core widens its frequency profile, allowing in turn for more
resonances. At high energies, both frequency profiles decrease
like 1/

√
E .
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III. LONG-TERM EVOLUTION

The long-term relaxation of self-gravitating systems driven by finite-N fluctuations is generically governed by the inhomoge-
neous BL equation [3,4],

∂F (J, t )

∂t
= −2π2 m

∂

∂J

{∑
k,k′

k
∫

dJ ′|ψd
kk′ [J, J ′, k �(J )]|2δD[k �(J ) − k′ �(J ′)]

(
k′ ∂

∂J ′ − k
∂

∂J

)
F (J ) F (J ′)

}
. (7)

This nonlinear equation describes the long-term evolution
of the mean orbital distribution, F (J, t ), driven by resonant
couplings between gravitationally dressed Poisson fluctu-
ations (m ∝ 1/N). The sum,

∑
k,k′ , and integral,

∫
dJ ′,

in Eq. (7) correspond to a scan over the discrete reso-
nances and orbital space. Any time the resonance condition,
k �(J ) − k′ �(J ′) = 0, is met, the diffusion is sourced.
The system’s propensity to amplify fluctuations is captured
in the dressed susceptibility coefficients, |ψd

kk′ (J, J ′, k �)|2.
Those are the (squared norm of the) Fourier transform (FT)
of the pairwise interaction potential dressed by the sys-
tem’s gravitational susceptibility (see Appendix A 3). When
neglecting collective effects, these dressed coefficients are
replaced by the bare ones ψd

kk′ (J, J ′, ω) → ψkk′ (J, J ′) (see
Appendix A 4), giving the inhomogeneous Landau equa-
tion [28]. In the following, we investigate both cases where
the gravitational dressing is (BL) and is not (Landau) taken
into account.

A. Orbital diffusion

The BL Eq. (7) can be rewritten as a more compact conti-
nuity equation in action space

∂F

∂t
= −∂F

∂J
(8a)

= − ∂

∂J

[
A(J )F (J ) − 1

2
D(J )

∂F

∂J

]
, (8b)

with the total flux F (J, t ), and the diffusion coefficient

D(J ) = (2π )2m
∑
k,k′

k2
∫

dJ ′ ∣∣ψd
kk′

[
J, J ′, k �(J )

]∣∣2

× δD[k �(J ) − k′ �(J ′)] F (J ′). (9)

In Eq. (8b), the friction by polarization, A(J ), is obtained
from Eq. (9) via the substitutions (2π )2 → 2π2, k2 → k k′
and F → ∂F/∂J ′. As discussed in Sec. 7.4.2 of Ref. [2], the
diffusion coefficient also has the simple interpretation

D(J ) = lim
T →+∞

〈�J2(T )〉
T

, (10)

with �J (T ) = J (t = T ) − J (t = 0) the change in action of
a given particle, and 〈·〉 the ensemble average over realisa-
tions. Equations (9) and (10) provide us with two independent
means of measuring and predicting D(J ). In the following, we
will focus our interest on the diffusion coefficients in energy,
which naturally read DEE = �2D.

The Landau diffusion corresponds to the case where the
diffusion is driven by initial Poisson fluctuations that flow
along unperturbed mean-field orbits. The associated simula-
tion procedure is presented in Appendix B 1.

B. Diffusion coefficients

In the top panel of Fig. 2, we present the diffusion coeffi-
cients at thermal equilibrium computed with the BL and the
Landau formalism, together with the corresponding estimates
from numerical simulations. We refer to Appendix A for
the details of the kinetic estimation, and Appendix B for the
N-body measurements. In both Landau and BL cases, we
recover a very good match between the kinetic theory and
the numerical measurements. This confirms that, indeed, long-
range resonant couplings are responsible for the long-term
relaxation of these systems. We stress that the BL diffusion
coefficients are ∼10 times smaller than the Landau ones,
an effect already noted in the HMF model for highly mag-
netized thermal equilibria [see Fig. 9 in [18]]. This is at
variance with the low magnetization HMF result, or the case

FIG. 2. Top: Diffusion coefficients at thermal equilibrium as a
function of energy in both Landau (i.e., without collective effects)
and BL (i.e., with collective effects) cases. Bottom: Same as the top
panel but for the Plummer equilibrium. The kinetic theory shows a
very satisfactory match to the numerical measurements. Note that
both measurements have their own vertical scales as collective effects
slow down diffusion by a factor ∼10. See Appendix B 2 for the
numerical details.
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FIG. 3. Initial flux in the Plummer equilibrium as a function of
energy predicted by kinetic theory (line) and measured in N-body
simulations (points). Both capture the maximum near E/E0 
 1.25,
and the change of sign at E/E0 
 2.5. We stress that the amplitude
of NF (E ) has been rescaled by 105. See Appendix B 3 for the
numerical details.

of self-gravitating stellar disks [5] where collective effects
considerably accelerate the relaxation.

In the bottom panel of Fig. 2, we present the same measure-
ments for the Plummer distribution. Satisfactorily, this other
equilibrium shows the same level of fine agreement. Similarly,
we also find that collective effects slow down the diffusion by
a factor ∼10. This will be discussed in Sec. IV.

C. Fluxes

We now turn our interest to the initial diffusion flux,
F (J, t = 0), as given by Eq. (8). Of course, this flux vanishes
for the thermodynamical equilibrium. In Fig. 3, we illustrate
the initial diffusion flux for a fully self-gravitating Plummer
equilibrium. Once again, the kinetic theory and numerical
simulations are found to be in a good agreement, and both
recover the (slow) relaxation of the Plummer distribution to-
ward the thermal one. Using appropriate dimensionless units,
the diffusion flux is typically ∼ 105 times smaller than the
diffusion coefficients, i.e., the efficiency of the relaxation is
drastically hampered by a partial “kinetic blocking.” This is
further discussed in Sec. IV A.

D. Correlation of the perturbations

Following Ref. [29], we present in Fig. 4 the correlation
C(t ) of the potential fluctuations in the N-body simulations,
as a function t/tdyn, with tdyn = 	/σ , the dynamical time.
This correlation sources orbital diffusion [30]. We refer to
Appendix B 4 for a precise definition of C(t ). The grav-
itational dressing has two main effects: (i) it weakens the
overall amplitude of the potential fluctuations; (ii) it reduces
the coherence time of these perturbations. Indeed, while the
Landau correlations decrease like 1/t2, the BL correlations are
found to decay like 1/t5 (see Fig. 12 in Appendix B 4). Natu-
rally, this drives a slower orbital diffusion in the BL situation
compared to the Landau one, as presented in Sec. III A.

FIG. 4. Time correlation, C(t ), of the potential fluctuations in
N-body simulations for the thermal equilibrium with and without
collective effects. See Appendix B 4 for precise definitions. In the
presence of collective effects, both the amplitude and coherence time
of the correlation function are reduced.

This is fully consistent with Fig. 5 where we equiva-
lently illustrate the diffusion of individual test particles in
the presence/absence of collective effects. In that figure, we
also recover that the energy diffusion is naturally modulated
at the frequency ∼2π/tdyn, i.e., the typical frequency of the
background thermal equilibrium.

IV. DISCUSSION

We now discuss our two main findings: nonthermal equi-
libria present very inefficient relaxation; and collective effects
reduce the efficiency of diffusion.

A. Quasi kinetic blocking

In Fig. 3, we noted that, within appropriate dimensionless
units, the diffusion flux in the Plummer equilibrium is ∼105

FIG. 5. Typical diffusion of test particles embedded within N-
body realizations of the thermal equilibrium with collective effects
(BL) or without (Landau). The massless test particles are all placed at
the same initial phase-space location in their respective realizations.
Collective effects slow down the orbital diffusion.
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FIG. 6. Individual contributions of the various resonances (k, k′)
to the initial Landau flux, F (E , t = 0), for the Plummer equilibrium
at E = ψ (2α). By symmetry, we only consider k, k′ � 0 resonances.
Note the logarithmic color coding. The flux is dominated by low
order resonances and suffers from many annihilating conspiracies
(see main text).

times smaller than the associated diffusion coefficients (see
Fig. 2). This is the imprint of a quasikinetic blocking, high-
lighting the system’s difficulty to populate resonances driving
an efficient diffusion.

As put forward in Eq. (7), the system’s long-term diffu-
sion is sourced by resonant interactions. For a given resonant
pair (k, k′), one has to ensure that the resonance condition,
k�(J ) − k′�(J ′) = 0, is met, while the overall efficiency of
this coupling is governed by the susceptibility coefficients,
ψd

kk′ (J, J ′, ω), for that pair. In practice, a couple of impor-
tant “conspiracies,” responsible for the small flux observed in
Fig. 3, operate:

(1) The Plummer frequency profile is monotonic (see
Fig. 1). Any resonance k = k′ systematically imposes J = J ′,
leading to an exactly vanishing flux in Eq. (7).

(2) Symmetry imposes ψd
kk′ = 0, for all k, k′ of different

parity (see Appendix A 4). As a consequence, one must have
|k − k′| � 2 for a resonance to contribute to the flux. Simi-
larly, k, k′ must also have the same sign.

(3) Despite its denser core, the overall frequency range of
the Plummer profile is still finite (see Fig. 1). For a given
orbit J , this imposes k/k′ � �(J = 0)/�(J ) for the resonance
condition from Eq. (7) to be met.

(4) For k large enough, the bare susceptibility coeffi-
cients asymptotically scale like ψkk (J, J ) ∝ 1/k2 (see Ap-
pendix A 4). The higher order the resonance, the less efficient
the coupling, and hence the (drastically) smaller the contribu-
tion to the flux.

We highlight these different effects in Fig. 6, where we
isolate the contributions, Fkk′ , of the different resonances
(k, k′) to the Landau flux F = ∑

k,k′>0 Fkk′ . We emphasize
in particular the rapid decay of the flux contributions as k, k′
increase and as one moves away from the diagonal k = k′
(which only contributes to the diffusion coefficient and not

the flux). These different effects are jointly responsible for the
small flux reported in Fig. 3.

Figure 6 is essentially left unchanged when taking into ac-
count collective effects. The only significant difference in the
BL case is the reduced contribution from the resonances with
k = 1 for which gravitational dressing weakens the amplitude
of the orbital coupling as detailed in Secs. IV B and IV C. Tak-
ing collective effects into account therefore further reduces the
flux as they notably damp contributions from the resonance
(k, k′) = (1, 3), the main contributor to the Landau flux (see
Fig. 6).

Despite this relative inefficiency, we stress that the Plum-
mer equilibrium still relaxes through 1/N two-body resonant
effects. This is in stark contrast with homogeneous 1D sys-
tems which are generically kinetically blocked at order 1/N
[see, e.g., [4]] and require the derivation of appropriate kinetic
equations at order 1/N2 sourced by three-body effects [31].

B. Linear response

We now discuss the influence of collective effects. The
efficiency of the gravitational dressing of perturbations is
generically captured by the response matrix, M(ω) [see, e.g.,
Eq. (5.94) in [2]] which reads here

Mpq(ω) = 2π
∑
k∈Z

∫
dJ

k ∂F/∂J

ω − k �(J )
ψ

(p)∗
k (J ) ψ

(q)
k (J ), (11)

with ψ
(p)
k (J ) the FT of the biorthogonal basis elements. As

detailed in Appendix A 2, we construct natural basis elements
by periodizing the interaction potential on a ad hoc length
L. This choice impacts the system only on large separations
(i.e., small frequencies), which we alleviate by picking L
sufficiently large given the system’s density. We refer to Ap-
pendix A 5 for details on the computation of the response
matrix, in particular regarding the resonant denominator from
Eq. (11).

In Fig. 7, we illustrate the determinant of the suscepti-
bility matrix [I − M(ω)]−1 for the thermal equilibrium, as
a function of ω/�0, with �0 = √

GMtot/	 the (maximum)
orbital frequency in the system’s center (�0 = √

GMtot/α

for the Plummer equilibrium). Because the system possesses
a finite maximum frequency, �0, its linear response shows
clear signatures at every (resonant) multiple of this frequency.
Nonetheless, we find that the collective amplification remains
limited, while the same result also holds for the Plummer
equilibrium. Conversely, collective effects significantly damp
the contribution of the odd resonances k� ∼ �0, i.e., the
lowest order resonances in the most populated regions. These
resonances being dominant contributors to the diffusion (see
Sec. IV C), it explains the relative inefficiency of the BL
diffusion unveiled in Fig. 2.

C. Impact of collective effects

The influence of the gravitational dressing strongly de-
pends on the resonance frequency, ω = k�. It is therefore of
interest to pinpoint the individual contributions of resonances
to the diffusion coefficient, D = ∑

k,k′>0 Dkk′ .
As for the flux, the allowed resonances must satisfy a parity

criterium as well as k/k′ � �(J = 0)/�(J ), but, however,
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FIG. 7. Determinant of the susceptibility matrix, [I − M(ω)]−1,
as a function of the real frequency ω/�0 for the even (cosine)
and odd (sine) basis elements (see Appendix A 2). Here, �0 is the
maximum frequency in the system’s center, while �L 
 0.35 �0

is the smallest frequency captured by the L-periodized potential
(L = 10 	). Collective effects become negligible at small separation
(high frequencies). Conversely, they induce a striking damping for
frequencies ω ∼ �0, which explains the particular inefficiency of the
BL diffusion compared to the Landau one.

k = k′ resonances contribute to the diffusion. Given that the
coupling efficiency rapidly drops with the order of the reso-
nance, in Fig. 8, we focus on the contributions of low-order
resonances. The top panel of this figure illustrates the pre-
dominant role of the resonance (k, k′) = (1, 1) in the Landau
orbital diffusion (in yellow), while the bottom panel shows
the extinguishing role of collective effects for any k = 1
resonances. This is ultimately responsible for the relative
inefficiency of the BL diffusion w.r.t. the Landau one. The de-
terminant of the susceptibility matrix plotted in Fig. 7 allows
us to reach the same conclusions. Indeed, the gravitational
susceptibility suffers from a drought for any odd resonant
couplings with ω ∼ �0. And, the slight amplification of the
resonance (2, 2) observed in Fig. 8 is equivalently found in
Fig. 7 since 2�(2α) ∼ 1.4�0. This amplification still remains
too limited to compensate for the strong collective damping of
the dominating (1, 1) resonance.

V. CONCLUSIONS

The long-term relaxation of discrete self-gravitating sys-
tems is driven by the subtle combined effects of finite-N
Poisson fluctuations and long-range orbital resonances, pos-
sibly boosted or damped by gravitational polarization. This
diffusion of the orbital structure is captured by the inhomoge-
neous BL equation [3,4]. In this work, we compared its kinetic
predictions with N-body simulations of 1D self-gravitating
systems.

We focused on the thermal and Plummer equilibria, while
accounting and not accounting for collective effects. We reach
clear agreement for both models on the rate of diffusion. The
BL diffusion coefficients were found to be ∼10 times smaller
than the Landau ones, i.e., collective effects surprisingly
mitigate diffusion, and we provided an explanation for it. This
conclusion is particularly interesting as it is also present in the

FIG. 8. Top: Individual contributions of the various resonances
(k, k′) to the Landau diffusion coefficients for the Plummer equi-
librium and E = ψ (2α). Bottom: Relative contributions when
collective are or not taken into account, for the same setup. The main
contributor to the Landau diffusion, resonance (1, 1), is severely
damped by collective effects, while the amplification of other res-
onances remains limited.

HMF model in highly magnetized equilibria [18] while it is
absent in weakly magnetized ones or in the periodic stellar
cube [32]. This may or may not be the case in higher dimen-
sions [see, e.g., [5,6,33]] possibly depending on the position
and geometry of the wake and on these systems’ reservoirs of
free energy via rotation or anisotropy.

Similarly, the predicted flux closely matches the measured
one for the Plummer equilibrium. This is a remarkable val-
idation of kinetic theory, which was not granted a priori,
since the BL theory makes strong assumptions about the
amplitude of the fluctuations and timescale decoupling be-
tween the linear and long-term processes. We discussed how
diffusion is mostly driven by low order resonances which can
be significantly altered by collective effects. We explained
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how the vanishing contribution of k = k′ resonances to the
flux leads to a quasikinetic blocking, drastically slowing down
the relaxation of nonthermal equilibria.

Beyond this work, one should aim at better understand-
ing the precise origin of the ability of collective effects to
accelerate/slow down relaxation. For example, one could in-
vestigate sets of equilibria closer to marginal stability, e.g.,
with bumps on tail, and identify the possible importance of
their damped modes [see, e.g., [34]]. In the spirit of the low
magnetization HMF model [18], one may expect that col-
lective modes would ultimately boost the BL flux over the
Landau one.

Given the accuracy achieved for the initial flux, it would
clearly be useful to integrate Eq. (7) self-consistently in time.
This is no easy undertaking, as it involves tracking both the
nonlinear dependence in F and the joint evolution of the mean
potential and the associated angle-action coordinates [see,
e.g., [35]]. This same 1D model may also prove useful to un-
derstand the relaxation of thickened galaxies [see, e.g., [36]].
More generally, it bodes well for future implementations in
higher dimensions, as in globular clusters, or dark matter
halos.
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APPENDIX A: 1D KINETIC THEORY

1. Angle-action coordinates

Following Eq. (3.195) of Ref. [2], the action of an orbit is
the circulation of v for one full radial oscillation. For an even
mean-field potential ψ (r = |x|), it simply reads

J = 1

π

∫ ra

−ra

dx v = 2
√

2

π

∫ ra

0
dr

√
ψ (ra) − ψ (r), (A1)

with ra the orbit’s apocenter, i.e., the maximum radius reached
during the particle’s libration which satisfies E = ψ (ra). In
the following sections, we equivalently use ra, E , and J to
label orbits. The orbital frequency, � = ∂H/∂J , and the asso-
ciated angle θ , satisfying θ̇ = �, read

1

�
=

√
2

π

∫ ra

0

dx√
ψ (ra) − ψ (x)

, (A2a)

θ (x, ra) = �(ra)√
2

∫
C

dx′
√

ψ (ra) − ψ (x′)
, (A2b)

with C the contour going from x = −ra up to the current
position x = x(θ ) along the radial oscillation. Therefore, the
angle mapping is such that

x(θ = 0) = −ra, x( π
2 ) = 0, x(π ) = ra, x

(
3π
2

) = 0.

(A3)

To cure the divergence of the integrand of Eq. (A2) for
x → ±ra, we perform the change of variables x = ra f (u)
toward an effective anomaly −1 � u � 1 satisfying f (±1) =
±1 and f ′(±1) = 0. This change of variable must be: (i)
explicit (no inversion needed), (ii) stable (to sample numer-
ous nearby points), (iii) generic (must work for any analytic
potential). In practice, we use the polynomial anomaly
f (u) = u( 3

2 − 1
2 u2) [39].

To address the arising 0/0 limit in the integrand

I (u, ra) = ra f ′(u)√
ψ (ra) − ψ[ra f (u)]

, (A4)

we use a second-order Taylor expansion in u → ±1 and
ra/	 → 0+, as soon as |1 ± u| � 10−3 or ra/	 � 10−3. Ben-
efiting from this numerically stable approach, the integrals
from Eqs. (A1) and (A2) are computed using Simpson’s 1/3-
rule, with 100 uniform intervals in u ∈ [0, 1].

2. Biorthogonal basis

Following Ref. [40], the biorthogonal basis elements
satisfy

ψ (p)(x) =
∫

dx′ ρ (p)(x′)U (x, x′), (A5a)∫
dx ρ (p)(x) ψ (q)∗(x) = −δpq. (A5b)

With them, the pairwise interaction potential becomes

U (x, x′) = −
∑

p

ψ (p)(x) ψ (p)∗(x′). (A6)

To construct basis elements, we periodize U (x, x′) on a period
2L, so that it becomes Uper (x, x′) = U (x, x′) for |x − x′| � L,
and Uper (x + 2kL, x′) = Uper (x, x′) for k ∈ Z. Dropping the
constant term, the periodized potential, Uper, is decomposed
in Fourier series via

Uper (x, x′) = − 4GL

π2

∑
p odd
p>0

1

p2

[
cos

(
p
π

L
x

)
cos

(
p
π

L
x′

)

+ sin

(
p
π

L
x

)
sin

(
p
π

L
x′

)]
. (A7)

Following Eq. (A6), the natural basis elements are then

ψ (p)
even(x) = 2

√
GL

pπ
cos

[
p
π

L
x

]
, (A8)

with p > 0 odd, and their odd counterpart ψ
(p)
odd via cos → sin.

Following Eq. (2), the associated densities are

ρ (p)
even(x) = −π2 p2

2GL2
ψ (p)

even(x), (A9)

and equivalently for the odd ones. It is straightforward to
check that Eqs. (A8) and (A9) comply with Eq. (A5) for
the periodized potential, Uper, when restricting the integration
range to −L � x � L.

In practice, the basis elements are computed from coupled
recurrence relations [see Eq. (5.4.6) in [41]]. In the main
text, we use a periodization length L = 10	 (respectively,
L = 100	) and 256 (respectively, 1024) basis elements for
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thermal (respectively, Plummer) computations. Indeed, since
the Plummer equilibrium density has wide tails (see Fig. 1),
a large L is required which, in turn, requires more basis ele-
ments to reach a sufficient resolution.

3. Fourier transform in angles

Once a suitable biorthogonal basis has been constructed,
one has to compute the FT of the basis element, ψ

(p)
k (J ),

involved in both the response matrix from Eq. (11) and the
dressed coupling coefficient

ψd
kk′ (J, J ′, ω) = −

∑
p,q

ψ
(p)
k (J ) [I − M(ω)]−1

pq (ω) ψ
(q)∗
k′ (J ′),

(A10)
with I the identity matrix, and M(ω) the system’s response
matrix defined in Eq. (11). Given the convention from
Eq. (A3), the FT of the basis elements reads

ψ
(p)
k (J ) = 1

π

∫ π

0
dθ ψ (p)(x[θ, J]) cos(kθ ). (A11)

To compute this integral, we naturally perform the same
change of variables as in Appendix A 1. One is left with two
integrals that must be performed simultaneously

ψ
(p)
k (J ) = 1

π

∫ 1

−1
du

dθ

du
ψ (p)(x[u]) cos(k θ [u]), (A12a)

θ [u] =
∫ u

−1
du′ dθ

du′ , (A12b)

where dθ/du = �(ra)I (u, ra)/
√

2 with I (u, ra) defined in
Eq. (A4). Although the integrals from Eqs. (A12) seem nested,
they can be evaluated via the single integral of a 2-vector [42].
In practice, we use a fourth-order Runge-Kutta (RK4) scheme
with 103 steps for u ∈ [−1, 1].

4. Bare coupling coefficients

In the Landau case, collective effects can be ne-
glected. As such, in Eq. (A10), one makes the replacement
[I − M(ω)]−1 → I, and the dressed coupling coefficients,
ψd

kk′ (J, J ′, ω) become the bare ones, ψkk′ (J, J ′). Importantly,
these coefficients can be computed without any basis ex-
pansion, as they are the Fourier transform of the pairwise
interaction w.r.t. the angle θ [28]. Using the effective anomaly
u from Appendix A 1, the frequency-independent bare cou-
pling coefficients become

ψkk′ (J, J ′) = 1

π2

∫ 1

−1
du du′ g(x) g′(x′) U (x, x′), (A13)

with g(x) = cos(kθ ) dθ/du (and similarly for g′). Symmetry
imposes ψkk′ (J, J ′) = 0 for any k, k′ of different parity. The
same result also holds for the dressed susceptibility coeffi-
cients, ψd

kk′ (J, J ′, ω), from Eq. (A10).
To compute Eq. (A13), each anomaly, u, u′, is sampled

with K nodes at the location ui = −1 + 2(i − 1
2 )/K with

1 � i � K . Equation (A13) becomes

ψkk′ (J, J ′) = 4G

π2K2

K∑
i, j=1

gi g′
j |xi − x′

j |, (A14)

where the gi = g(xi ) = g(x(ui )) (and g′
j) are precomputed in

a single pass using a direct integration of dθ/du, following
Eq. (A12), requiring O(K ) operations.

The quasiseparable form of the pairwise interaction poten-
tial allows us to rewrite Eq. (A14) as

ψkk′ (J, J ′) = 4G

π2K2

K∑
j=1

g′
j (Pj + Qj ), (A15)

with the cumulative sums

Pj =
w j∑
i=1

gi (x′
j − xi ), Qj =

K∑
i=w j+1

gi (xi − x′
j ), (A16)

and w j = Card{i ∈ �1, K� | xi � x′
j}. Importantly, Pj and Qj

can both be computed in a single pass, requiring overall
O(K ) operations to estimate ψkk′ (J, J ′). In practice, we used
K = 103 nodes, and an RK4 scheme to compute gi, g′

j . We
note that for k 
 1, ψkk (J, J ) ∝ 1/k2, which explains the
minor role played by high order resonances, as in Fig. 6.

5. Computing the response matrix

The response matrix from Eq. (11) involves a sum over the
resonances k, and an integral over the action J with a resonant
denominator. This asks for a careful treatment.

Benefiting from the rapid decay of the coupling coeffi-
cients, we can safely truncate the sum over k to |k| � kmax.
In practice, kmax = 10 proves highly sufficient.

To deal with the resonant integral from Eq. (11), we follow
the approach from Ref. [43]:

(1) The truncated action domain [J0, JL] [with
J0 = J (ra = 0) and JL = J (ra = L)] is remapped to [−1, 1]
via y = Sign(k)[�(J ) − ��]/�� with �� = 1

2 (�0 + �L ),
�� = 1

2 (�0 − �L ), �0 = �(J0), and �L = �(JL ).
Equation (11) then becomes

M pq
k (ω) =

∫ 1

−1
dy

Gpq
k (y)

y − �k
, (A17)

with

Gpq
k (y) = 2π Sign(k)

dJ

d�

∂F

∂J
ψ

(p)∗
k (J ) ψ

(q)
k (J ), (A18a)

�k = ω

|k|��

− Sign(k)
��

��

, (A18b)

where J depends implicitly on y.
(2) The numerator Gpq

k (y) in Eq. (A18a) is projected
onto Legendre polynomials via Gpq

k (y) = ∑�max
�=0 apq

k�
P�(y), us-

ing a Gauss-Legendre (GL) quadrature truncated to �max
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FIG. 9. Typical mean-field (closed) orbits in phase space, for
apocenters ra/	 = (1, 3, 5). Because the Plummer equilibrium is
more peaked than the thermal one, its orbits reach a larger maximal
velocity in the system’s center.

(= 100 in practice). Equation (A17) then becomes M pq
k (ω) =∑�max

�=0 apq
k�

Dk�(ω) with

Dk�(ω) =
∫ 1

−1
dy

P�(y)

y − �k
. (A19)

(3) We apply Landau’s prescription [see, e.g., Sec. 5.2.4
in [2]] to compute Dk0 and Dk1, while Dk� for � � 2 are
computed via direct recurrences [see Appendix D in [43]].

6. Quasistationary states

The equilibrium DFs presented in Sec. II B are ob-
tained by Eddington inversion [see, e.g., Sec. 4.3.1
in [2]]. For a symmetric density profile, the density
ρ(r = |x|) = 2

∫ +∞
0 dv F (E ), can be expressed as

ρ(ψ ) =
√

2
∫ +∞

ψ

dE
F (E )√
E − ψ

, (A20)

with ψ = ψ (r). Following Eq. (B.72) of Ref. [2], this Abel
integral equation is inverted as

F (E ) =
√

2

π

∫ +∞

E
dψ

√
ψ − E

d2ρ

dψ2
. (A21)

Finally, using the relation ψ (x) = ∫
dx′ρ(x′)U (x, x′), one

readily finds the potential of the thermal equilibrium

ψ (x) = GMtot	 log [2 cosh (x/	)], (A22)

as well for the Plummer quasistationary equilibrium

ψ (x) = GMtotα
√

1 + (x/α)2. (A23)

The DF from Eq. (4) is the usual Boltzmann distribution
F (E ) ∝ e−mE/kBT of statistical mechanics with the specific
energy E , and a thermodynamical temperature kBT = mE0/2.
Using the virial theorem, one can relate the total energy Etot to
the temperature T , characteristic velocity σ , and characteristic
length 	 by Etot = 3

2 NkBT = 3
4 Mtotσ

2 = 3
4 GM2

tot	.
Figure 9 illustrates typical mean-field orbit in the thermal

and Plummer equilibria. Both display similar phase-space

diagrams, although Plummer’s orbits reach larger central ve-
locity owing to their denser core (Fig. 1).

APPENDIX B: N-BODY INTEGRATION

1. Method

The system’s total Hamiltonian is

Htot =
N∑

i=1

1
2 miv

2
i +

∑
i< j

mimj U (xi, x j ), (B1)

so that the equations of motion for particle i read

ẋi = vi; v̇i = G
(
Mr

i − M l
i

)
, (B2)

with Mr
i (respectively, M l

i ) the total mass on the right (re-
spectively, on the left) of particle i. Importantly, by sorting
the set {xi}, one can compute these cumulative masses in a
single pass. Determining the (exact) instantaneous forces on
all particles requires therefore O[N ln(N )] operations.

The present 1D system can be integrated exactly using
a collision-driven scheme [44]. However, this approach re-
quires O[N2 ln(N )] operations per dynamical time, making
long-time integrations of large-N systems too challenging. As
such, we rather settle on using an approximate time integra-
tor (with exact forces). Because Eq. (B1) is separable, one
can use standard splitting methods [see, e.g., [45]] to devise
integration schemes. The main source of error comes from
the abrupt force changes every time particles cross, making
it wiser to limit oneself to low-order schemes. We use the
standard leapfrog scheme [see, e.g., Sec. 3.4.1 in [2]] which
requires a single (costly) force evaluation per timestep, δt , and
an overall O[N ln(N ) tdyn/δt] operations per dynamical time.

In Fig. 10, we check the sanity of our algorithm, by illus-
trating the conservation of the total energy, Etot , as one varies
the timestep δt , the number of particles, N , and the overall
number of integration timesteps, t/δt . Because the pairwise
interaction, U (x, x′), does not have a continuous derivative,
the leapfrog scheme is only first-order accurate, i.e., its error
scales like O(δt ) after a fixed finite-time (top panel). As one
increases N , these discontinuities weaken, so that the error at
finite time scales like O(1/N ) (center panel). Finally, for the
present explicit scheme, we empirically find that the error in
Etot grows like

√
t as a function of time (bottom panel).

To prevent the N-body realizations from drift-
ing away, we systematically perform the operation
vi ← vi − ∑N

i=1 mivi/Mtot at the simulation’s onset, hence
setting the system’s total momentum to zero. Such a
recentring slightly blurs the effective DF in velocity space
(and therefore in energy) by an amount proportional to 1/

√
N .

To mitigate this effect, we always chose values of N large
enough, e.g., N = 105 as in Fig. 2.

In the Landau simulations, we introduce two types of parti-
cles: (i) massive background particles that follow the smooth
mean potential, and (ii) massless test particles driven by the
instantaneous (noisy) potential generated by the background
particles. While the background particles follow the unper-
turbed mean-field orbits, the orbits of test particles are slightly
altered by the bare potential fluctuations in which they are
embedded. The orbital diffusion undergone by these test par-
ticles corresponds to the (undressed) Landau diffusion. Such
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FIG. 10. Relative error in the system’s total energy, Etot , as
a function of (i) the timestep δt (with N = 104, T/tdyn = 100),
(ii) the number of particles N (with δt/tdyn = 10−3, T/tdyn = 100),
(iii) the total number of integration steps t/δt (with N = 104,
δt/tdyn = 10−3).

simulations only keep track of the Landau diffusion. They do
not mimick the Landau flux as massless test particles do not
undergo any friction [46].

2. Diffusion measurements

To estimate diffusion coefficients in N-body simulations,
we follow Eq. (10). First, for the sake of convenience,
we measure diffusion in energy, E = v2/2 + ψ (x), com-
puted with ψ (x) the system’s initial unperturbed potential.
For a given realization, particles are initially binned in 25
bins of width δEbin = 0.1 E0 starting at the minimal energy
ψ (0). For every bin and every time dump, we compute
〈�E2(t )〉 = 〈[E (t ) − E (t = 0)]2〉, averaged over all the par-
ticles initially in the bin and all the available realizations. In
practice, the associated time series, t → 〈�E2(t )〉 is truncated
at a time Tmax chosen so that 〈�E2(Tmax)〉 � δE2

bin. This en-
sures that particles have not diffused so much as to explore too
different energies.

Because the system’s fluctuations are correlated, the series
of 〈�E2〉 are not always linear function of time, but exhibit
initially a quadratic dependence w.r.t. time. This occurs during
the ballistic time, Tbal, which, fortunately is independent of N
(see Fig. 4). It is important not to perform any measurement
within this early phase. A final caveat stems from the fact
that at large time, the BL time series become sub-linear, a
phenomenon already noted in the HMF model [see Fig. 8

FIG. 11. Typical time series of energy dispersion averaged over
a given energy bin and 1 280 realizations for Landau (top panel) and
BL measurements (bottom), together with the associated linear fit.
Here, 〈�E 2〉 first evolves quadratically in time (ballistic regime) and
then linearly (diffusive regime). For the BL experiments, the time
series ultimately becomes sublinear, as already noted in the HMF
model [18].

in [18]]. This is accounted for by appropriately reducing the
series’ maximal time, Tmax, so as not to enter this regime.

Once the domain Tbal � t � Tmax determined, we rely on
Eq. (10) and estimate the diffusion coefficient with a linear fit
(least squares) on that timespan. This is illustrated in Fig. 11
for both Landau and BL measurements.

For the BL measurements in Fig. 2, we ran 10 indepen-
dent groups of 1280 realizations with N = 105 particles, with
δt = 10−3 tdyn up to T = 500 tdyn, reaching a typical relative
error in Etot of order 10−6, and dumping �E2 values every
tdyn. As illustrated in Fig. 11, we performed the linear fit
within the domain [Tbal, Tmax] = [50 tdyn, 300 tdyn]. In Fig. 2,
we report the mean value and standard deviation of the 10
independent batches of realizations.

For the Landau experiments, we use the exact same param-
eters, except that the N = 105 massive background particles
follow the smooth mean potential, and we injected 2 × 104

massless test particles sampled initially according to F (E ).
Because Landau simulations exhibit longer correlation times
(see Fig. 4), we use Tbal = 100 tdyn and adjusted Tmax for every
bin so that 〈�E2(Tmax)〉 � δE2

bin, as illustrated in Fig. 11.

3. Flux measurements

To estimate the diffusion flux from Eq. (8), we rely on the
easy to measure cumulative density of state (DoS),

G(E ) =
∫ E

−∞
dE ′ P(E ′), (B3)

with P(E ) = 2πF (E )/�(E ) the DoS in energy, normalized
so that

∫
dE P(E ) = 1. Following Eq. (8a), we naturally have

dG/dt = −2πF (E ). Consequently, to measure the flux, we
simply count the number of particles with an (unperturbed)
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FIG. 12. Fit of the decay rate of the correlation C(t ) from Fig. 4
for the Landau (top) and BL cases (bottom) using 12 800 realizations.

energy smaller than a given energy threshold E , and keep
track of this quantity as a function of time. Once averaged over
realizations, the flux, F (E ), is directly estimated via linear
fits. These measurements are more challenging than that of the
diffusion coefficients because the Plummer flux is particularly
small (Fig. 3).

In practice, we ran 10 independent groups of 1280 re-
alizations with N = 104 particles, with δt = 10−3 tdyn up to
T = 104 tdyn, reaching a typical relative error on Etot of order
10−5, and dumping values of interest every 10 tdyn. In Fig. 3,
we report the mean value and standard deviations over these
10 independent batches.

4. Correlation measurements

As emphasized in Ref. [30], orbital diffusion is generically
sourced by the time correlation of the potential fluctuations,
which here stem from Poisson shot noise. The instanta-
neous density ρd(x, t ) = ∑

i mδD[x − xi(t )] can easily be
projected onto the biorthogonal basis (Appendix A 2) to write
ρd(x, t ) = ∑

p Ap(t )ρ (p)(x) with

Ap(t ) = −
∑

i

m ψ (p)[xi(t )]. (B4)

We use these coefficients to probe the time evolution of the
system’s finite-N fluctuations. More precisely, we consider
δAp(t ) = Ap(t ) − 〈Ap〉t , with 〈Ap〉t the time-average over the
simulated duration. In Fig. 4, we illustrate the correlation

C(t ) =
∫ T −t

0

dτ

T − t
〈δAp(τ ) δAp(τ + t )〉, (B5)

where 〈·〉 stands for the average over realizations, for the odd
basis element ψ

(3)
odd, following Eq. (A8). In practice, we ran

12 800 realizations of the thermal equilibrium with N = 105

particles, with δt = 10−3 tdyn up to T = 103 tdyn, reaching a
typical relative error on Etot of order 10−6, and dumping
values of Ap every 0.05 tdyn. For the BL experiment, we also
let the system “warm up” during 200 dynamical times before
any measurement, so as to let the initial Poisson shot noise
thermalize and get dressed by collective effects [see, e.g.,
Appendix F in [29]].

Decay rates are estimated through linear regressions of
the local extrema in log - log scale as illustrated in Fig. 12.
The ballistic time is shorter for the BL experiments, as (i)
the typical amplitude of the BL correlation is lower than the
Landau ones and (ii) correlations decay faster in the presence
of collective effects.
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