
PHYSICAL REVIEW E 106, 044116 (2022)
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The two-dimensional XY model with Dzyaloshinskii-Moriya interaction has been studied through extensive
Monte Carlo simulations. A hybrid algorithm consisting of single-spin Metropolis and Swendsen-Wang cluster-
spin updates has been employed. Single histogram techniques have been used to obtain the thermodynamic
variables of interest and finite-size-scaling analysis has led to the phase transition behavior in the thermodynamic
limit. Fluctuating boundary conditions have been utilized in order to match the incommensurability between
the spin structures and the finite lattice sizes due to the Dzyaloshinskii-Moriya interaction. The effects of
the fluctuating boundary conditions have been analyzed in detail in both commensurate and incommensu-
rate cases. The Berezinskii-Kosterlitz-Thouless transition temperature has been obtained as a function of
the Dzyaloshinskii-Moriya interaction and the results are in excellent agreement with the exact equation for
the transition line. The spin-spin correlation function critical exponent has been computed as a function
of the Dzyaloshinskii-Moriya interaction and temperature. In the incommensurate cases, optimal sizes for the
finite lattices and the distribution of the boundary shift angle have been extracted. Analysis of the low temperature
configurations and the corresponding vortex-antivortex pairs have also been addressed in some regions of the
phase diagram.
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I. INTRODUCTION

The two-dimensional XY model with Dzyaloshinskii-
Moriya (DM) interactions has received a great deal of
attention in recent years. The XY portion of the model [1]
can be applied, e.g., to superfluid films [2] and Josephson
junction arrays [3], and in two dimensions the model un-
dergoes a Berezinskii-Kosterlitz-Thouless (BKT) transition
characterized by an exponentially divergent correlation length
and in-plane susceptibility [4–6]. On the other hand, the
DM interaction part of the model [7,8], besides the original
motivation for explaining weak ferromagnetism in some an-
tiferromagnetic materials, is also responsible for some new
special phenomena including, e.g., spin canting out of the
CuO2 plane in LaCu2O4 superconductors [9] and helical spin
order in FexCo1−xSi alloys [10].

The importance of the DM interaction has also been no-
ticed in Mn monolayers, where the adjacent spins are not
perfectly antiferromagneticly aligned, but slightly canted, re-
sulting in a spin spiral structure with chiral order [11,12]. A
nonzero average chirality has also been observed in Dy/Y
multilayer films [13], indicating that DM interactions also
exist in this material, with the chirality being ascribed to
the lack of the inversion symmetry at the interfaces of the
multilayer films.

The model with both XY exchange and additional DM
interactions has been recently treated by Monte Carlo (MC)

simulations [14]. However, it was previously shown that
this more general model is, in fact, equivalent to an XY
exchange renormalized Hamiltonian with the ground state
having shifted angle orientation amongst the nearest-neighbor
spins, with angles that are a function of the DM interaction
[15]. As a result, depending on the strength of the DM inter-
action, incommensurability arises at low temperatures for the
model. When defined on finite lattices, this leads to some spin
configuration inconsistencies when using the usual periodic
boundary conditions (PBC) to eliminate undesirable surface
effects (in this case, besides the frustration of the spin align-
ments at the borders of the finite lattice, the energy of the
system turns out to be significantly enhanced).

In order to circumvent the incommensurability problem
on finite lattices, fluctuating boundary conditions (FBC) have
been proposed [14,16]. In this way, it has been shown that
FBC can in fact provide good results for the transition be-
havior in the cases where the incommensurability prevails.
However, the role of this FBC on the system has not been
studied in detail nor has the phase diagram been obtained over
a wide range of the DM interaction strength.

In this work we have then revisited the two-dimensional
XY model including DM interactions by employing more
extensive MC simulations, making use of a hybrid algo-
rithm consisting of single-spin updates following Metropolis
algorithm and Swendsen-Wang cluster-spin updates. FBC
have also been used for all lattice sizes to permit incommen-
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surate structures to form, i.e., to avoid artificially imposing
commensurability. We have additionally employed single his-
togram techniques to obtain the thermodynamic variables just
above, at, and below the BKT transition temperature.

The organization of the paper is as follows. In the next
section, the model and the transformation we have performed
are presented. Section III is devoted to the MC simulation
background and the thermodynamic variables that have been
computed. In Sec. IV the results are presented and dis-
cussed and in the final section some concluding remarks are
addressed. In the final section, we have also stressed that, al-
though we have an exact transition temperature for the model
as function of the DM interaction, important results concern-
ing periodic and fluctuating boundary conditions, temperature
scaling relation of the correlation length critical exponent,
vortex-antivortex pair configurations, and shift angle distribu-
tion for different lattice sizes should be very useful in studying
other similar systems.

II. MODEL

The Hamiltonian for the ferromagnetic XY model with DM
interaction can be written as

H = −J
∑
〈i j〉

�Si · �S j − �D ·
∑
〈i j〉

( �Si × �S j ), (1)

where the sums are taken over nearest-neighbor pairs of sites
〈i j〉 on a square lattice, �Si is a two-component classical vector
of unit length, J > 0 is the exchange interaction, and the DM
interaction is given by the vector �D. By taking the DM inter-
action along the z axis and using the transformation proposed
in Ref. [15] we get

H = −J
√

1 + d2
∑
〈i j〉

cos(θi − θ j − φ), (2)

where φ = arcsin(d/
√

1 + d2) and we have defined d = D/J .
Here θi and θ j are the spin rotation angles of the ith and
jth sites relative to the x-axis direction, respectively. The
transformed Hamiltonian is thus another XY system with
renormalized exchange interaction J (d ) and an angle phase
shift φ(d ), both depending on the DM interaction.

Preparing for the MC simulations, we perform an addi-
tional transformation to the above Hamiltonian, namely

θi = θ0
i − π

2
(1 + σi ), (3)

where σi takes the values ±1 and θ0
i denotes a trial angle at

the site i. If σi = −1, θi just keeps the same value; if σi = 1, it
means that θi is rotated by an angle of π . Combining Eqs. (2)
and (3) we arrive at an Ising-type Hamiltonian

H = −
∑

i j

Ji jσiσ j, (4)

where

Ji j = J
√

1 + d2 cos
(
θ0

i − θ0
j − φ

)
(5)

is an effective nonuniform Ising coupling between spins. This
transformation turns out to be very useful for implementing
the Swendsen-Wang cluster-spin portion of the algorithm to
the model.

III. MONTE CARLO SIMULATIONS AND
THERMODYNAMIC VARIABLES

A. Monte Carlo simulations

We use a hybrid Monte Carlo algorithm, which com-
bines the standard single-spin Metropolis update [17] and the
Swendsen-Wang cluster-spin update [18]. In the single-spin
update, a new random orientation for the spin �Si is chosen
at each site i and, if it lowers the energy, the new state is
accepted; otherwise, it is accepted only with a probability
according to the standard Metropolis criterion.

In order to reduce the critical slowing down of this sim-
ulation, the Swendsen-Wang (SW) cluster algorithm is also
used. In an initial spin configuration of Hamiltonian (4) we
choose σi = 1 for all the sites. If Ji j > 0 in (5), we put a
bond between ith and jth sites with a probability P(Ji j ) = 1 −
exp(−2Ji j/kBT ), where kB is the Boltzmann constant and T
the temperature. If Ji j < 0, no bond is inserted. After clusters
are constructed by putting bonds between spins, every cluster
has the same possibility either to rotate by an angle of π or just
to keep the same value. In general, one SW sweep related to
Eqs. (3) and (4) followed after one Metropolis sweep related
to Eq. (2).

As reported in Ref. [14], depending on the value of d ,
incommensurability emerges between the spin orientations
and the finiteness of the lattice, preventing the normal use
of periodic boundary conditions (PBC). This can be seen by
computing the phase shift � across the boundaries (same row
or column) of a lattice size L, which can be given by

� = Lφ (a), � = 2nπ (b), L = 2nπ/φ (c), (6)

where n is a positive nonzero integer. Whenever Eq. (6b)
holds, the structure is commensurate with the lattice and the
use of periodic boundary conditions will be suitable for the
finite system. Otherwise, the structure is incommensurate with
the lattice. Nevertheless, one can look for optimal lattice sizes
by considering values of L close to the result obtained by using
Eq. (6c) for different integers n.

However, as will be discussed in the next section, the
incommensurability problem can be more efficiently circum-
vented by adopting fluctuating boundary conditions [16]. It
can be done as follows. Suppose there is a phase shift �

across the boundary at the same row and column, i.e., � =
θ1,y − θL,y and � = θx,1 − θx,L for 1 � x � L and 1 � y � L,
in such a way that Eq. (6b) is not satisfied. After a hybrid
MC sweep to update the spins while fixing �, one employs an
extra, standard Metropolis sweep to update � while fixing all
the spins. It has been shown that employing this FBC is better
than the usual PBC when the system is incommensurate [14].
In this case, one hybrid MC step is composed by combining
one Metropolis sweep, one SW sweep, and one Metropolis
sweep updating just the boundary phase shift. Although one
can use PBC whenever the phase shift and lattice size turn
out to be commensurate, a detailed comparison between both
boundary conditions are still necessary in this case.

The MC simulations have been performed on L×L square
lattices, with total sites N = L2 and L ranging from L = 8
to L = 128. Typically, 105 − 106 MC data points have been
discarded for equilibration and 108 − 3×108 MC data points
have been retained for constructing the single histograms.
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The sampling interval for collecting data has been 10 hybrid
MC sweeps for all lattice sizes, making the total length of
the simulations ten times longer than the numbers specified
above. For instance, for the largest simulated lattice L = 128
a total of more than 3×109 configurations have been generated
for the construction of the histograms.

B. Thermodynamic variables

The data that have been collected from the simulations
consisted basically of the energy, magnetization, and the phase
shifts across the boundaries. Derived quantities such as cumu-
lants and fluctuations could also be easily obtained. However,
due to the spin rotation along both the x and y directions
at low temperatures (when the strength of DM interaction is
not very small), the usual magnetization, which is the regular
order parameter in the two-dimensional XY model [19,20],
does not play the role of an order parameter in the present
system. This is because of the periodic and oscillating spin
arrangement that results when the DM interaction is included.
Nevertheless, according to the spin arrangement in the ground
state, we can define a different, and more convenient, order
parameter as follows:

m = 1

L2

√
M2

x + M2
y ,

Mx =
L2∑

i=1

cos[θi + (xi + yi )φ],

My =
L2∑

i=1

sin[θi + (xi + yi )φ], (7)

where (xi, yi) is the coordinate of the ith spin and xi, yi ∈
[1, L]. Thus m = 1 in the ground state and, for finite lattices,
should decrease as the temperature increases.

According to the finite-size-scaling theory [19,21,22] of
the BKT critical behavior, the above quantity, for all tempera-
tures T below Tc, where Tc is the BKT transition temperature,
should have a power-law scaling behavior of the type

m ∝ L−x, (8)

T � Tc, with a temperature dependent exponent x, and no
such power-law behavior for temperatures T > Tc. Exactly at
the transition temperature T = Tc the exponent x is equal to
η/2 [19], where η = 1/4 is the corresponding spin-spin corre-
lation function critical exponent. These exponents decrease as
the temperature decreases and go towards zero in the T → 0
limit. Thus we can extract information about the transition, in
the thermodynamic limit, by analyzing the behavior of m for
different lattice sizes.

Another useful quantity is the fourth-order cumulant of the
order parameter, originally suggested by Binder to analyze
the Ising model critical properties [23]. In the present case
we have considered the reduced form of the cumulant that can
be written as

U4 = 1 − 〈m4〉/3〈m2〉2, (9)

where the angle bracket denotes a thermal average. Binder has
shown that, for large enough lattices, there is a fixed point
in the U4 curves that is independent on the system size L

and the location of this fixed point gives the transition point.
So, the Binder cumulants are scale independent at the critical
point and can also be used to determine the phase transition
temperature Tc. For an XY model we expect that the fourth-
order cumulants will become equal below the BKT transition
temperature; however, corrections to finite-size scaling are
sometimes still present in the cumulant crossings for the lat-
tice sizes at hand. When these finite-size effects happen, and
when the crossings have a systematic shift with L, we can
extrapolate the transition temperature to the thermodynamic
limit by fitting the corresponding data to [6,14,22]

Tcross = Tc + B/(ln L)2, (10)

where Tcross is the temperature of the cumulant crossings and
B a nonuniversal constant. A derivation of the above equa-
tion using a renormalization group approach can be found in
Ref. [6] and more explicitly in Refs. [24,25].

IV. RESULTS

A. BKT transition temperature

The crossings of the reduced form of the cumulants (9)
have been used to compute the BKT transition temperature
Tc for several values of the DM interaction d . This is a very
convenient quantity because we do not need a priori knowl-
edge of any exponent, even when one has to use Eq. (10).
We have thus studied the pure XY model with d = 0 for
two main reasons: first, in order to compare our transition
temperature with previous estimates from the literature and,
second, because this transition temperature, as we will see in
the next subsection, is needed to get the exact transition line
as a function of the DM interaction.

The top panel in Fig. 1 shows the magnetization fourth-
order cumulant U4 as a function of the temperature T , for
different values of the lattice size L. Note that here, and also
in what follows, all temperatures are given in units of J/kB.
The lines in Fig. 1 have been obtained from single histogram
reweighting of data taken at different temperatures T0 for
each lattice, with T0 within the interval 0.91 < T0 < 0.94. We
note that the larger the lattice size the more MCS had to be
discarded (consequently, even more MCS had to be taken
for the averages) in order to get reliable estimates of U4.
In doing so, for the larger lattices we have always tested the
energy probability distribution at the crossing points (which
were different from the temperature where the histograms
were taken) to ensure that its wings do not suffer from large
statistical uncertainties. It is apparent from the top panel of
Fig. 1 that the cumulant crossings are still quite dependent on
the lattice sizes. However, taking as reference the minimum
size Lmin = 8, there is a clear systematic decrease in the tem-
perature crossing Tcross as the other sizes increase from L > 8,
making the use of Eq. (10) quite suitable in this case. Although
it cannot be clearly seen in Fig. 1, the same qualitative cross-
ings happen when the minimum lattice sizes Lmin = 16 and
Lmin = 24.

In fact, we would expect the cumulants to all be the same
for temperatures lower than the crossing points, since the
transition should always be present for any T < TBKT. For
instance, in the bottom panel of Fig. 1 we have the magnetiza-
tion cumulants for the larger lattices and lower temperatures.
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FIG. 1. Binder cumulant U4 of the order parameter vs temper-
ature T for different lattice sizes for the XY model, d = 0, using
PBC. The data points, with corresponding error bars, have been
omitted for clarity. In the bottom panel only the larger lattices have
been considered with new data taken at T = 0.9 (dashed line) and
analyzed with single histograms.

While the cumulants still cross for L = 64 and L = 96 (as
we will see below, this crossing value is actually compati-
ble with the extrapolated evaluation of the BKT transition
temperature), the cumulants for L = 96 and L = 128 seem to
be almost parallel in this region of temperature, a fact that
can signal a possible BKT transition. For this reason, we can
consider the crossing temperatures as an indication of the
BKT transition Tc.

The temperatures of the cumulant crossings Tcross(L, Lmin)
are obtained from the data of the top panel of Fig. 1, taken as
reference the cumulants for Lmin = 8, Lmin = 16, and Lmin =
24. The results are shown in Fig. 2 as a function of (ln L)−2.
The error bars of the crossings have been estimated as de-
scribed in the Appendix. It is interesting to note, in all cases,
the strong size dependence of the data, with the scaling
regime, as predicted by Eq. (10), being only achieved for
the lattice sizes greater than L � Ls, with the smallest size
Ls = 64.

FIG. 2. Temperature of the crossings of the Binder cumulant of
the order parameter Tcross(L, Lmin ) as a function of different reference
lattice sizes Lmin when d = 0 (XY model) using PBC. The upper,
middle, and lower sets of data points correspond to crossings with
Lmin = 8, Lmin = 16, and Lmin = 24, respectively. The dashed lines
are just guides to the eye, while the solid lines are linear fits using
Eq. (10) for lattice sizes L � 64. The extrapolated transition temper-
atures in the L → ∞ limit, Tc(∞, Lmin ), are indicated by the arrows.

In addition, we can see that the L → ∞ limit from each
linear fit, Tc(∞, Lmin), still depends on the reference lat-
tice size Lmin. For this reason, we can further assume that
Tcross(∞, Lmin) should follow the same scaling behavior given
by Eq. (10). The result is shown in Fig. 3, from which,
with an additional fit, leads to Tc(∞,∞) = Tc = 0.894(1),
a value that compares very well to Tc = 0.8935(1) and

FIG. 3. Temperature of the extrapolated crossings of the Binder
cumulant of the order parameter Tcross(∞, Lmin ) as a function of
different reference lattice sizes Lmin (shown on top of the figure)
when d = 0 (XY model) using PBC. The vertical dashed lines locate
the reference lattice sizes Lmin and the solid line is a linear fit using
Eq. (10). Ls is the smallest lattice size considered in the fits of Fig. 2.
The extrapolated transition temperature is indicated by the arrow.
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TABLE I. BKT transition temperature Tc(d ) and the ratio
Tc(d )/

√
1 + d2 for some values of the DM interaction d . In the last

column we have some results from the literature. The last line gives

the average of Tc(d )/
√

1 + d2 ≡ T (0) for all values of d (including
d → ∞).

d Tc(d ) Tc(d )/
√

1 + d2 Tc(d ) (literature)

0 0.894(1) 0.894(1) 0.8935(1) [26]
0.8935(5) [27]

0.05 0.902(1) 0.901(1)
0.25 0.930(2) 0.902(2)
0.5 0.997(3) 0.892(3) 1.013(4) [14]
0.75 1.120(1) 0.896(1)

1 1.268(2) 0.897(1) 1.292(6) [14]
1.25 1.4491(2) 0.9053(1)
1.5 1.6203(4) 0.8988(2)

d → ∞ 0.897(1)
T (0) 0.898(4)

Tc = 0.8935(5) obtained in Refs. [26] and [27], respectively.
These values are also listed in Table I where Tc ≡ Tc(0).

Following the same procedure as above we can compute
the transition temperature for other values of the DM inter-
action. As an example, Figs. 4 show the results for d = 0.5
using FBC and d = 1 using PBC. Since for d = 1 we have
φ = π/4, according to Eq. (6 c), the finite lattices must
be multiples of 8 in order to keep the commensurability
with the spin configurations, hence allowing use of PBC. As
for the case of the pure XY model, d = 0, we can see that the
scaling regime in these two examples has been only reached
for the largest lattices. In fact, this is the general trend for all
values d > 0.

The results of Tc(∞, Lmin) from Fig. 4, as a function of
(ln Lmin)−2, are shown in Fig. 5. The additional extrapolation
can still improve the estimate of the BKT temperature Tc

slightly.
Table I gives the BKT transition temperature Tc(d ) so

obtained for some additional values of the DM interaction

FIG. 4. Same as Fig. 2 for d = 0.5 using FBC (upper panel)
and d = 1 using PBC (lower panel). The extrapolated transition
temperatures are also indicated in the figures for the three reference
lattice sizes.

FIG. 5. Same as Fig. 3 for d = 0.5 using FBC (upper panel)
and d = 1 using PBC (lower panel). Ls is the smallest lattice size
considered in the fits. The extrapolated transition temperatures are
also indicated for the three reference lattice sizes.

d together with some available values previously obtained
from the literature [14,26,27]. Note that the transition temper-
atures for d = 0.5 and d = 1 are comparable to the previous
estimates from Ref. [14]. However, the present ones are
expected to be more accurate due to the greater statistics
obtained from the simulations. We also note that the BKT
transition temperatures from Ref. [14] are higher than the
present ones. This is a consequence of the results in [14] being
obtained using all lattice sizes and, accordingly, resulting in a
smaller slope for the data extrapolation.

In Table I we also find the transition temperature for a
smaller value of d namely d = 0.05, in order to seek whether
the transition temperature starts first decreasing as d increases
from zero before having a positive slope for higher values of
d , as has been reported in Refs. [28,29] for the square and
triangular lattices, respectively. We can see that the present
result for d = 0.05 indeed increases and Tc(d ) has a mono-
tonic behavior for larger values of the DM interaction. The
decreased value of Tc for small d obtained in Refs. [28,29]
could be related to the use of PBC instead of FBC, as in our
approach. The expected behavior of the transition temperature
as d increases will be better elucidated in the following sub-
section.

B. Transition temperature as a function of the DM interaction

The corresponding phase diagram of the model in the DM
interaction d versus the BKT transition temperature Tc(d )
plane, using the values from Table I, is shown in the upper in-
set of Fig. 6. Note that as d → ∞ the shift angle goes to φ →
π/2 and the transition frontier becomes a straight line. Thus,
taking Eq. (2) and considering φ = π/2, we can perform an
extra simulation to obtain an effective transition temperature
Teff = Tc(d )/d . This result gives, in fact, the asymptotic slope
of the transition line as d → ∞. Interestingly enough, the
result is, within the error bars, the same as the transition
temperature of the pure XY model (see Table I).

To better understand this behavior, and motivated by the
definition of the order parameter in Eq. (7), we consider the
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FIG. 6. Main curve. Phase diagram in the DM interaction d ver-
sus the reduced transition temperature Tc(d )/Tc(0) plane. The circles
are the results from Table I with Tc(0) = 0.898(4). The solid line is
the function

√
1 + d2 and the dashed line a fit with

√
r + d2 with r

given in the text (both lines are almost coincident to each other in the
scale of the figure). Upper inset. Tc(d ) versus d where the solid line
comes from Eq. (13) with Tc(0) = 0.894(1) and the dashed line is
the hyperbola using Eq. (14) with the parameters in the text. Bottom
inset. Values of Tc(d )/

√
1 + d2 from the third column in Table I as a

function of d . The solid line locates the mean value and the dashed
lines the error bars.

following Hamiltonian:

H = −J (d )
∑
〈i j〉

cos[θ̃i(d ) − θ̃ j (d )], (11)

where

θ̃i(d ) = θi − (xi + yi )φ(d ),

θ̃ j (d ) = θ j − (x j + y j )φ(d ). (12)

Since j is a nearest neighbor of i, one has always (xi + yi ) −
(x j + y j ) = 1 and θ̃i(d ) − θ̃ j (d ) = θi − θ j − φ(d ). This
means that Hamiltonian (11) above is equivalent to
Hamiltonian (2). From (11) the transition temperature is
thus given by

Tc(d ) = Tc(0)
√

1 + d2. (13)

The above equation gives the exact transition line of the XY
model with DM interaction. It is the equation of a hyperbola,
which is symmetric regarding d , as it should be. This is
the same result previously obtained for the one-dimensional
version of the model [15].

From the above equation, it is also clear that the ratio
Tc(d )/

√
1 + d2 is a constant, equivalent to the BKT transition

of the pure model. The third column on Table I and the cor-
responding data in the bottom inset in Fig. 6 show this trend.
The mean value T (0) = 0.898(4) is also quite comparable to
the Tc(0) obtained in the previous subsection and from values
in the literature.

On the other hand, the ratio Tc(d )/Tc(0) = √
1 + d2 is

the equation of a rectangular hyperbola with equal semiaxis.
Figure 6 also shows Tc(d )/Tc(0), with Tc(0) = T (0) =
0.898(4), plotted together with the function

√
1 + d2 (solid

line) and a fit with
√

r + d2, where r is a fitting parameter
(dashed line). In both cases one gets a quite nice agreement
with the simulations and the value r = 1.000(2) very close to
the expected value r = 1.

The solid line in the upper inset of Fig. 6 is obtained from
Eq. (13) with Tc(0) = 0.894(1) and the dashed line is a fit of
the simulation results with the hyperbole function

Tc(d ) = T ∗√r + d2, (14)

where T ∗ and r are the fitting parameters. Again, in both
cases, a good agreement has been achieved with the simu-
lation results, and the fitting parameters T ∗ = 0.906(4) and
r = 0.99(1) are also comparable to the expected ones.

C. BKT transition and critical exponent η for T < Tc

We expect the transition, for any value of d , to remain
of BKT type for temperatures T < Tc, since the transformed
Hamiltonian (2) is, in essence, just another XY model with
renormalized exchange interaction (although, as we shall
see below in Sec. IV D, the low temperature spin config-
urations seem to have lower symmetry than that of the
two-dimensional XY model and, as a consequence, mis-
leadingly suggest a conventional phase transition). For the
particular example of the pure model shown in the top panel
of Fig. 1, one can see that the lattice sizes are still a little
too small to fully reflect this behavior, because the cumulants
are not all the same for temperatures lower than the crossing
points. This is shown more clearly in the bottom panel of
Fig. 1. This same tendency is also seen for other values of
the DM interaction. For this reason, in order to confirm the
BKT transition at lower temperatures we have studied the
order parameter m, defined in Eq. (7), in conjunction with
its scaling behavior (8). As an example, we have chosen the
value d = 0.5 with FBC, and the results of the log-log plot
of m, as a function of the lattice size L, are shown in Fig. 7
for different temperatures, slightly above and below Tc. For
lower temperatures, in this case for T � 1.0, all the data are
along straight lines whose slopes decrease as T decreases. For
higher temperatures, the behavior of m starts to deviate from
straight lines signifying that the scaling regime of Eq. (8) is
no longer valid and the system has been driven above the
BKT transition. The wider dashed line in Fig. 7 represents
the threshold of the transition exponent η = 1/4.

From the slopes of the data in Fig. 7 (and some additional
ones not shown in that figure for still lower temperatures), we
can compute the corresponding spin-spin correlation function
critical exponent η. The results, so obtained, are shown in
Fig. 8 as a function of the temperature T . It is clear from this
figure that the transition is indeed of BKT type and the ex-
ponent η → 0 as the temperature T → 0, as expected. Some
selected values of the exponents of Fig. 8 are displayed in
Table II. Although there are some oscillations in the η values
as the temperature is changed close to T ≈ 1, we can roughly
estimate the BKT transition temperature as Tc = 1.009(9), a
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FIG. 7. Log-log plot of the order parameter m as a function of the
lattice size L for different values of the temperature T for d = 0.5.
From the lower temperature 0.87 to the higher temperature 1.04, all
the steps are 0.01. The results come from histogram reweighting of
data taken at temperatures T = 0.9, 0.97, and 1. The wider dashed
straight line corresponds to the slope that gives η = 1/4. The lines
for T � 1 are linear fits to the data, while for T > 1 they are just
guides to the eyes.

value which is quite consistent with the transition temperature
Tc = 0.997(3) given in Table I. The results are similar for
other values of the DM interaction d .

FIG. 8. Spin-spin correlation function critical exponent η as a
function of the temperature T for d = 0.5. The vertical dotted lines
locate the temperature at which the data were taken for constructing
the histograms and the horizontal dotted line is the threshold of the
critical exponent ηc = 1/4. The full line is a fit according to Eq. (15)
with the parameters given in the text. The dashed line is a fit with
only the two first terms of Eq. (15) and considering only data for
T > 0.97.

TABLE II. Spin-spin correlation function critical exponent η for
some values of temperature T for d = 0.5.

T η T η

1.012 0.2516(9) 0.88 0.1724(2)
1.011 0.2502(9) 0.87 0.1692(2)
1.01 0.2486(9) 0.83 0.1570(2)
1.009 0.2498(9) 0.82 0.1542(2)
1 0.2318(4) 0.81 0.1514(2)
0.99 0.2238(4) 0.8 0.1488(2)
0.98 0.2168(4) 0.79 0.1460(2)
0.97 0.2102(2) 0.78 0.1434(2)
0.96 0.2046(2) 0.77 0.1408(2)
0.95 0.1996(2) 0.63 0.1068(2)
0.94 0.1952(4) 0.62 0.1058(2)
0.93 0.1902(2) 0.61 0.1038(2)
0.92 0.1866(2) 0.6 0.1016(2)
0.91 0.1828(2) 0.59 0.0996(2)
0.9 0.1792(2) 0.58 0.0976(2)
0.89 0.1756(4) 0.57 0.0956(2)

The data in Fig. 8 can be further analyzed by considering a
temperature dependence of η as

η(T ) = 1

4
− C

(
1 − T

Tc

)1/2

+ C′
(

1 − T

Tc

)

+C′′
(

1 − T

Tc

)3/2

, (15)

where C, C′, and C′′ are fitting parameters and we use Tc =
1.011. The first two terms in (15) come from Refs. [30,31],
where close to the transition temperature Tc the leading be-
havior is expected to have a square-root singularity. A fit with
only those two terms, close to the transition point [fitting the
data for T > 0.97 with C = 0.189(3) and extrapolating to
T < 0.97], is shown by the dashed line in Fig. 8. Although a
good agreement has been obtained close to Tc, the fitted curve
is far from the simulation results in an extended region of
lower temperatures. On the other hand, by considering higher
order contributions, as explicitly given in Eq. (15), one can
see a quite good agreement, in the entire temperature range,
with fit parameters C = 0.179(3), C′ = −0.12(1), and C′′ =
0.06(1) (shown by the solid line in Fig. 8). In addition, with
these parameters we have η(0) = 0.01(1) and the slope at T =
0 dη(T )/dT |T →0 = 0.12(2), which should be compared to
the exact η(0) = 0 and dη(T )/dT |T →0 = 1/2π = 0.169 . . .

from the spin-wave phase [30,31].

D. Low temperature phase configurations

It is interesting to see the topology of the spin arrangements
as the present BKT transition is passed through. As discussed
above, at zero temperature the system orders with neighbor-
ing spins having shift angles φ. However, as the temperature
increases, there are fluctuations in these neighboring orienta-
tions. Figure 9 depicts the corresponding spin configuration
for d = 0.5 with FBC and lattice size L = 48 at three dif-
ferent values of temperature. In the top panels we show the
spin configurations and in the bottom panels respective color
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FIG. 9. Typical spin configurations given by the arrows (top panels) and color gradient of the spin orientation angle in radians (bottom
panels) for d = 0.5 and lattice size L = 48 with FBC. Low temperature in the two left panels, just below the BKT transition temperature in
the two middle panels, and high temperature in the two right panels.

gradients for the spin angle in radians. The striped ordering of
the spins is, perhaps, better seen in the color gradient structure
of the bottom panels: at low temperatures (left panels) the or-
der is well defined; just below the BKT transition temperature
(middle panels) the order still persists with larger fluctuations;
and, eventually, the disordered state is achieved for higher
temperatures (as depicted in the right panels).

The strip arrangement, due to the DM interaction, in some
sense seems to cover up the topological structure of vortices
in these systems and one might falsely expect that the incom-
mensurate chiral order leads to a phase transition to a lower
symmetry phase than that of the two-dimensional XY model
and hence to a conventional phase transition. However, this is
indeed not the case, because we can invert the spins by the
angle φ and obtain similar configurations of the pure XY
model. As an example, Fig. 10 shows the spin configurations,
together with the location of the vortex-antivortex pairs, for
d = 0.5. The top panels correspond to a temperature just
below the transition temperature and the bottom panels to a
temperature above the transition. The left panels show the ac-
tual configurations and the right panels the configurations with
reverted spins. The dots and stars locate the vortex-antivortex
cores. We can see that the vortex-antivortex pairs are still
present even in the actual configuration of the spins due to
the DM interaction.

E. FBC versus PBC and incommensurate
shift angle distribution

For DM interactions where the lattice sizes become incom-
mensurate with the spin orientations, the FBC have provided
more reliable results than the usual PBC. Although in the
previous results for d = 0.5 the FBC have been implemented
in the same finite lattices used with PBC for commensurate

values of d , one can as well investigate the behavior for the
optimal sizes using Eq. (6c). For instance, for d = 0.5 we
have φ = 0.4636 . . . rad and L = 13.5516 . . . , meaning that
one can choose L = 14, 28, 42, . . . instead of multiples of

FIG. 10. Spin configurations for d = 0.5, just below the tran-
sition temperature in the top panels and just above the transition
temperature in the bottom panels. The left panels show the actual
configurations and the right panels the configurations with reverted
spins. The dots and stars locate the vortex-antivortex pairs.
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FIG. 11. Log-log plot of the order parameter m as a function of
the lattice size L for d = 0.5 and T = 0.9. The squares correspond
to lattice sizes that are multiples of 8 with n � 16, while the circles
are optimal sizes which are multiples of 14 with n � 9. The triangles
are data obtained by considering all lattices with PBC. The solid line
is a fit to the scaling function given by Eq. (8) using only the results
obtained from FBC. The dashed line is just a guide to the eyes.

L = 8 as before. Figure 11 depicts the log-log plot of the
order parameter m as a function of lattice sizes L considering
both choices. With the data obtained from FBC, the critical
exponent is given by η = 0.08954(4) and is comparable to
the value η = 0.0896(1) obtained by using only lattice sizes
that are multiples of 8. It is then clear that, as soon as one uses
FBC, the sizes of lattices are not so important for getting the
transition properties of the model.

Figure 11 also shows the results for all considered lattices
using PBC. We can clearly see that most of the values fall
either far below or above the fit obtained using FBC. It is
also interesting that even for the “optimal” lattice sizes, with
PBC, the results are still rather far from the fit obtained by
using FBC.

It should be stressed here that, as in the Ising model [32],
different types of boundary conditions influence the universal
value of the fourth-order cumulant U ∗

4 in the thermodynamic
limit (although the transition temperature is not affected by
them). In this case, for d = 0, we estimate U ∗

4 = 0.6599(3)
with PBC and U ∗

4 = 0.6468(1) with FBC.
The use of optimal lattice sizes with FBC in the incom-

mensurate case has an important effect on the probability
distribution of the shift angle � that results from the
simulation.

The behavior of such probability distributions (which,
to our knowledge, has not been previously reported in the
literature) should be quite useful when treating other incom-
mensurate systems. Figure 12 show the shift angle probability
distribution P∗(�) = P(�)/P(〈�〉) for several values of tem-
perature T for d = 0.5 and two different lattice sizes, namely
L = 48 and L = 41. In order to have a better visualization,
in each case the actual probability P(�) has been divided
by the computed probability P(〈�〉) at the mean value 〈�〉,

FIG. 12. Shift angle distribution P∗(�) as a function of � for
d = 0.5 and several values of temperature. The lattice size is L = 48
in the upper panel and L = 41 in the bottom panel. The lines are
Gaussian fits according to Eq. (16). The arrows indicate the mean
value of the shift angle in degrees.

so one always has P∗(〈�〉) = 1. In general, all the P∗(�)
distributions are Gaussian and have been fitted using

P∗(�) = P0 + A e− (�−〈�〉)2

2w2 , (16)

where P0 and A are constants and w is the width of the
distribution. We can see that the width w decreases as T de-
creases. On the other hand, as the temperature increases above
the BKT temperature, the distribution flattens and reaches a
constant value, meaning that in this region the phase shift is
not so important due to the strong thermal fluctuations. We
can clearly see that the only difference between the optimal
size [here L = 41 obtained from Eq. (6c) with n = 3] and any
other size will be just the mean value of the shift angle �,
which for optimal lattice sizes will be closer to zero. It should
also be stressed that if we consider FBC for commensurate lat-
tices we obtain the same qualitative behavior above described
with 〈�〉 ≈ 0.
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V. CONCLUDING REMARKS

The two-dimensional XY model with Dzyaloshinskii-
Moriya (DM) interaction has been studied through extensive
Monte Carlo simulations by employing a hybrid algorithm
consisting of single-spin Metropolis updates and Swendsen-
Wang cluster-spin updates. Single histogram reweighting
techniques have been introduced to obtain the thermodynamic
variables close to the Berezinskii-Kosterlitz-Thouless (BKT)
transition and finite-size scaling has been used to analyze the
phase transition behavior in the thermodynamic limit. Fluctu-
ating boundary conditions (FBC) have been utilized in order
to match the incommensurability between the spin structure
and the finite lattice sizes due to the DM interaction. The
effects of the FBC have been analyzed in detail and the BKT
transition temperature, as well as the corresponding spin-spin
correlation function critical exponent, has been obtained as a
function of the DM interaction and temperature.

It is clear that the transition is indeed of BKT type for
any value of the DM interaction, and the critical exponent η

decreases from 1/4 towards zero as the temperature decreases.
The ground state is composed of strips of aligned spins that
lose their conformation as the temperature approaches the
BKT transition temperature.

In incommensurate cases, optimal sizes for the finite lat-
tices, or any other lattice sizes, furnish coherent results as soon
as FBC are considered. The distribution of the boundary shift
angle, however, has mean values closer to zero for optimal
lattices and quite different values for other sizes.

Another important result in the present work is the analytic
equation for the transition temperature of the model as a
function of the DM interaction, which has been verified by
simulation. Besides the fact that this relation could be used
in the study of quantum versions of the XY system with DM
interaction, there are some important features of the present
simulations that helped lead to a better understanding of the
physical behavior of the model. In addition, some of these
features should certainly be quite useful in studying models
with other types of anisotropies, for instance, as follows.

(i) The importance of considering fluctuating boundary
conditions, even to compute the exponent η, as depicted in
Fig. 11.

(ii) The scaling behavior of the exponent η as a function
of temperature, given by Eq. (15), which extends to the entire
temperature range.

(iii) Looking at the spin configurations of Fig. 9, it is not at
all obvious that the model still exhibits vortex and antivortex
pairs and a BKT transition. It looks, indeed, at first sight like
a conventional transition. However, we have shown that the
vortices and antivortices are still present and the transition is
really of BKT type.

(iv) The Gaussian distribution of the shift angle in Figs. 12
is expected to be the same for other models.
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APPENDIX

This Appendix briefly describes the method used to com-
pute the crossing temperatures from the cumulants as well as
the estimate of the corresponding errors.

Figure 13 sketches typical results for the cumulants UL1 and
UL2 of two different lattice sizes L1 and L2 as a function of
temperature. If dmin is the minimum value of the magnitude
of the difference of the cumulants |UL2 − UL1 | occurring at
Tmin, we can determine its two neighboring temperatures T1

and T2, as shown in Fig. 13. From these points we construct
the equations of straight lines ŨL1 (T ) and ŨL2 (T ), which meet
at Tcross where ŨL1 (Tcross) = ŨL2 (Tcross), leading to

Tcross = T2 − �UT2

�UT2 − �UT1

�T12, (A1)

where

�T12 = T2 − T1,

�UT1 = UL2 (T1) − UL1 (T1),

�UT2 = UL2 (T2) − UL1 (T2). (A2)

Since T1, T2, and �T12 are fixed in a particular data set,
the error in crossing temperature δTcross comes basically from
the simulations and the histogram reweighting on the other
quantities appearing in Eqs. (A1) and (A2), in this case the
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corresponding cumulants at different temperatures. Accord-
ingly, one has [33]

δTcross =
√√√√ 2∑

i=1

2∑
j=1

[
∂Tcross

∂ULi (Tj )

]2

[δULi (Tj )]2, (A3)

where the partial derivatives are taken from Eqs. (A1) and
(A2) and δULi (Tj ) is the uncertainty coming from the simu-
lation data.

A more compact form of the above expression can be
given by

δTcross = 2C�T, (A4)

where �T is the chosen resolution of the temperature interval
where the histograms are taken (in our case �T = 0.001) and

C specifies the contributions from the cumulants and their
uncertainties for the lattice sizes L1 and L2 at temperatures
T1 and T2. More explicitly, one has

C =
√

C1 + C2(
�UT2 − �UT1

)2 , (A5)

with

C1 = {[
δUL1 (T1)

]2 + [
δUL2 (T1)

]2}
(�UT2 )2,

C1 = {[
δUL1 (T2)

]2 + [
δUL2 (T2)

]2}
(�UT1 )2. (A6)

Estimates of the error of the cumulants at different tem-
peratures are obtained by dividing the data into bins and
computing the cumulants for each bin using the respective
histograms. It is then possible to estimate the mean value and
the error of the cumulants at any temperature.
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