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Antiferromagnetic Blume-Capel model of the disordered Fe-Mn-Al ternary system
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The magnetic properties and thermodynamical description of the Fe-Mn-Al ternary alloy are studied using
the spin 1 antiferromagnetic Blume-Capel (BC) model by the pair approximation based on the Gibbs-Feymann-
Bogoliubov inequality for the free energy. The values of the spin operator are +1 for ferromagnetic interaction
(Fe-Fe), −1 for the antiferromagnetic one (Mn-Mn, Mn-Fe), and 0 for the magnetic diluter (corresponding to
Al). The BC model with antiferromagnetic (AF) next-nearest-neighbor coupling better accurately fit the mean
hyperfine field experimental data obtained by Mössbauer spectroscopy. Considering the crystalline field, the
predicted temperature as a function of the Al concentration phase diagram, for the fcc lattice, from the numerical
solution is remarkably good and significantly improves the traditional Ising and random-site Ising models.
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I. INTRODUCTION

Fe-Mn-Al ternary alloy is a lightweight stainless steel (SS)
used to replace Fe-Cr-Ni-based SS due to its good mechan-
ical properties [1,2], good corrosion resistance (inferior to
SS) [3,4], wear-corrosion resistance, and improving oxidation
resistance at high temperatures [5]. From the technological
point of view, it has two applications: one is to use these me-
chanical properties at room temperature or high temperatures
and the other is the diversity of its magnetic behaviors [6].
From the theoretical point of view, explaining those magnetic
behaviors or phase transitions driven is by the manganese
concentration, such as ferromagnetic F → paramagnetic P,
spin-glass SG → P, AF → P, and so forth.

A phase diagram consists of phases in which a given
macroscopic system can be found when specific thermo-
dynamic parameters (temperature, pressure, concentration,
among others) vary. Phase diagrams help optimize physical
properties in alloys with specific compositions, develop new
materials, control heat treatment procedures to produce spe-
cific properties, and so on. When the macroscopic system has
three components it is called a ternary system.

This ternary alloy exhibits the α/γ phase equilibrium in
the isotherm section at 1473 K (described by Köster and Torn
[7]) and the β-manganese phase (discovered by Schmatz [8])
in the Fe-Mn-Al system with high manganese contents. In
Murray’s phase diagram, the γ phase is stable for the 20 wt
pct Al and 50 wt pct Mn range, and the vast compositional
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space is the fcc phase. Chakrabarti [9], based on a metallo-
graphic method, confirmed the presence of the β-manganese
phase and obtained the complete phase diagram using x-ray
diffraction; however, above the 20 at pct Fe range, the body
centered cubic (bcc) phase does not appear in the Mn-Al side
in their results. Other phases have been found, such as α-Fe
(bcc), β-Mn, γ -Fe (fcc), FeAl3, and others. Many works about
the experimental data of the Fe-Mn-Al system before 1983
were summarized by Rivlin [10].

The thermodynamic description in the Fe-Mn-Al system
was reported in Refs. [11–13]. For this ternary system with
magnetic ordering, the Gibbs energy is divided into two parts,
one corresponding to no magnetic ordering and the other
with magnetic ordering. The extensive regular solution model
is used for a phase and the subregular solution model for
the other phases. With the calculation of phase diagrams
method (CALPHAD) [14,15], the experimental data reported
in the literature are evaluated, obtaining a reasonable and
self-consistent set of thermodynamic parameters to describe
the system. The comparison between the calculated results
and phase diagram information is in good agreement.

The Fe-Mn-Al alloy is a disordered system that presents
a magnetic phase diagram with F , AF , P, SG, superparam-
agnetic (SP), and reentrant spin glass (RSG) phases. Pérez
Alcázar et al., with their experimental data, showed that this
ternary alloy in the bcc and fcc phases depends on stoi-
chiometry and thermal treatment [16–20]. Some competitive
exchange interactions are as follows: an iron atom has a
ferromagnetic competitive exchange interaction to their Fe
first-neighbors (JFeFe > 0), a manganese atom has an antifer-
romagnetic one both with Mn as Fe first-neighbors (JMnMn <
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0 and JMnFe < 0), and its nonmagnetic aluminum atom plays
the role of a magnetic hole or single-site dilutor, characteriz-
ing this system as diluted.

Ising-like models were used to obtain the magnetic phase
diagram as a function of temperature and concentration
[21–24], taking into account two fundamental aspects: the ran-
dom distribution of the elements and the competitivity in the
first neighbor’s interactions (ferromagnetic phase is for high
Fe concentrations and the paramagnetic one for low Fe con-
centrations). Although the Ising-like model fits the reduced
mean hyperfine field as a function of Mn, Al, and Fe con-
centration experimental data, subtle differences are evident.
Both Al and Mn atoms serve as dilutors. For the respective
magnetic phase diagram, the fittings from the ferromagnetic
phase to the paramagnetic one are well; however, the results
are not as expected when the transition is from the AF phase
to the P phase. The reason not considered in the Ising model
is that the Fe-Mn-Al system shows magnetic anisotropy.

The magnetic anisotropy present in the ternary alloy will
be considered using the AF Blume [25] and Capel model
[26] (BC), which introduces the crystal field concept in the
iron group ions whose electronic configuration is 3d . With
this BC model introduced to study the ternary Fe-Ni-Mn and
Fe-Al-Mn alloys [27,28], the reduced mean hyperfine field
is a function of Mn, Al, and Fe concentration and the phase
diagram is in much better accord with the experimental data.

In this work, we fit the experimental data of the reduced
mean hyperfine field as a function of Al concentration at
room temperature and the phase diagram of temperature as
a function of Mn concentration of this disordered magnetic
ternary alloy using the AF BC model by pair approximation
introduced by Ferreira et al. [29].

II. ANTIFERROMAGNETIC BLUME-CAPEL MODEL AND
PAIR APPROXIMATION

The AF three-state BC model [25,26] σ = 1 is given by the
following Hamiltonian:

HBC(σi,�i ) = −
∑
〈i j〉

Ji jσiσ j +
∑

i

�iσ
2
i , (1)

where the first sum runs over all first neighbor pairs of in-
teracting sites i and j for N lattice sites. Here, the negative
site-dependent bilinear exchange interaction parameter be-
tween the nearest-neighbors spins (Ji j < 0) defines the AF BC
model; σi are the spins with values −1, 0, 1; and �i = � is the
single-spin anisotropy parameter (also called the crystal field).
� describes the electrostatic interactions between a metal ion
and ligands (represented as negative charges) in the crystal.

The Hamiltonian (1) introduced by Blume [25] and Capel
[26] independently has two quantities, namely, the mean mag-
netization m and the mean quadrupole moment Q:

m = 〈σi〉; Q = 〈
σ 2

i

〉
, (2)

and it can be applied to describe various systems as mul-
ticomponent fluids [30], magnetic systems (in the context
of tricritical phenomena) [31,32], nanowire [33], as well as
ternary alloys [27,28].

As the Hamiltonian (1) has no exact solution for di-
mensions greater than 1, many schemes such as the

mean-field approximation [34,35], Monte Carlo simulations
[36,37], mean-field renormalization group (MFRG) method
[38,39], and position-space renormalization-group methods
[40] among others, were widely used.

The AF BC model has been studied widely. The transfer
matrix technique studied the magnetocaloric properties, spe-
cific heat, and ground-state phase diagram [41]. By mean-field
theory, in the presence of a uniform external magnetic field,
the phase diagram exhibits reentrant behavior and tricritical,
bicritical, and triple points [42]. Other authors performed
Monte Carlo simulations on a triangular lattice using the
Wang-Landau sampling method showing the critical lines and
their phase diagrams [43].

The exchange coupling for this disordered system is to
consider the following probability distribution P(Ji j ):

P(Ji j ) = p2δ(Ji j − J ) + x2δ(Ji j + αJ )

+ 2pxδ(Ji j + γ J ) + q(2 − q)δ(Ji j ), (3)

where p2 is the probability of having two Fe atoms with
interaction J , x2 the probability of having two Mn atoms with
interaction −αJ , 2px the probability of having a couple of
FeMn atoms with interaction −γ J , and q(2 − q) represents
all the nonmagnetic bonds with Al atoms (FeAl, MnAl, and
AlAl) given by q2 + 2qp + 2qx = q(2 − q). Here p, x, q are
the concentrations of Fe, Mn, Al, respectively (with the con-
dition p + q + x = 1), α and γ are the parameters to adjust.

We will study the spin σ = 1 Blume-Capel model given
by the Hamiltonian (1), considering insulated single spins
and linked pairs. The variational principle for the free energy
based on the Gibbs-Feymann-Bogoliubov inequality [44] is
applied following the procedure in Ref. [29]

F
(
γ i

s , �
i
s; γ

i
p, �

i
p

)
�

[
F0

(
γ i

s , �
i
s; γ

i
p, �

i
p

)]
+ [〈H − H0

(
γ i

s , �
i
s; γ

i
p, �

i
p

)〉0
]
, (4)

where F is the H Hamiltonian free energy given by (1),
F0(γ i

s , �
i
s; γ

i
p, �

i
p) is the trial H0 Hamiltonian (conveniently

parametrized), i means the sublattices a and b, 〈· · · 〉0 indicates
the thermal average on an assembly defined by H0, and [· · · ]
denotes the configurational average according to the probabil-
ity distribution (3). For this case, the H0 Hamiltonian is

H0 =
∑

is

Hi
s +

∑
ps

Hi
p, (5)

with Hs being the isolated single spin Hamiltonian, given by

Hs = −γ a
s σa − γ b

s σb − �a
s σ

2
a − �b

s σ
2
b + �

(
σ 2

a + σ 2
b

)
, (6)

and Hp the linked pairs of spins Hamiltonian given by

Hp = −Ji jσaσb − γ a
p σa − �a

pσ
2
a − γ b

p σb

−�b
pσ

2
b + �

(
σ 2

a + σ 2
b

)
. (7)

The first sum in (5) runs over the N − 2n isolated spins (is)
and the second one over the n pairs of disconnected spins (ps),
with N being the total amount of spins. The variational param-
eters γ i

s , �
i
s, γ

i
p y �i

p are determined by using the minimization
condition for the free energy [29].
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In this case, the free energy F0 is

f0 ≡ −βF0

N
= {ln[Tr(ρ0)]}

=
[

z

2
ln[Tr(ρp)] + (1 − z) ln[Tr(ρs)]

+ (1 − z)
{
γ i

s 〈σ 〉0 + �i
s〈σ 2〉0

}
+ z

{
γ i

p〈σ 〉0 + �i
p〈σ 2〉0

}]
, (8)

where Tr is the trace of the density matrix ρ, z is the lattice co-
ordination number, and ρs and ρp are the density matrices for
a single isolated spin and linked pairs of spins Hamiltonians,
respectively. These matrices are given by

ρs = exp(−βHs), (9)

ρp = exp(−βHp). (10)

Now it is assumed that the mean values m = 〈σ 〉 and q = 〈σ 2〉
are obtained from Hs and Hp, this is

m
(
γ i

s , �
i
s

) = [Tr(ρs〈σ 〉)] = [
1
2 Tr(ρp〈σ 〉)

]
, (11)

Q
(
γ i

p, �
i
p

) =[Tr(ρs〈σ 2〉)] = 1
2

[
Tr(ρp〈σ 2〉)

]
. (12)

The minimization of (8) as a function of the variational
parameters γ i

s , �
i
s, γ

i
p y �i

p, taking n = Nz/2 [39] drives us to
the following relations:

(z − 1)γ i
s = zγ i

p, (z − 1)�i
s = z�i

p. (13)

The set of Eqs. (11) to (13) presents several solutions for the
order parameter m, which must be done under the numerical
method to obtain the second-order transition lines in the phase
diagram.

III. APPLICATION TO THE FE-MN-AL TERNARY SYSTEM

The Fe-Mn-Al ternary system in its face centered cubic
(fcc)-disordered phase is AF; therefore, to study it, we have
to divide the loose-packed lattice into two sublattices a and
b, with each one having as magnetization mA and mB, re-
spectively. The expressions for these magnetizations are given
in the Appendix; see Eqs. (A3) and (A4). For our case, we
interpret the spin variables as the zero-state corresponds to
the magnetic diluter, the +1 state is for the ferromagnetic
interaction (Fe-Fe), and the −1-state for the antiferromagnetic
one (Mn-Mn, Mn-Fe).

After performing the configurational averages, two tran-
scendental equations (present in the Appendix), one for the
magnetization and the other for the quadrupole moment, must
be solved by numerical methods. Using the FINDROOT func-
tion of the MATHEMATICA software, the roots of these pairs of
equations are obtained.

Using the probability distribution (3), we note that Ji j

takes values randomly according to our model’s interpretation.
The lattice parameter increases linearly by increasing the Al
concentration q in this disordered system. Therefore, the ex-
change parameter J as a function of q is a decreased function
[45]. Thus we can assume that

J (q) = J1 − qJ0, (14)
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FIG. 1. The reduced mean hyperfine field H̄ behavior as a func-
tion of Al concentration q for a fixed Fe concentration (a) p = 0.4,
(b) p = 0.5, (c) p = 0.6, and (d) p = 0.7. The full circles represent
experimental data; the dotted and dashed lines are the theoretical
fittings from the traditional Ising and random-site Ising models. The
data are from Ref. [46]. The solid line is the solution of Eq. (14)
whose parameters are in the text.

with J1 and J0 being the adjusted parameters with values J1 =
15.3 meV and J0 = 2.81J1 meV.

IV. RESULTS

The experimental data cited by the authors of Ref. [46] of
the reduced mean hyperfine field as a function of aluminum
concentration q for various fixed iron concentrations p at room
temperature were obtained by Mössbauer spectroscopy.

The behavior for p = 0.4, 0.5, 0.6, and 0.7 for the Fe-
Mn-Al ternary system, in Figs. 1(a), 1(b), 1(c), and 1(d) are
displayed, respectively. The dotted line is the fitting using
the traditional Ising model, the dashed line corresponds to
the random-site Ising (RSI) model [46], and the solid line is
obtained using the AF BC model.

For the traditional Ising model, the role assumed by the
magnetic dilutor is to take into account that the sum of their
spins gives zero (σ+1 + σ−1 = 0); in other words, the interac-
tions among Al atoms with Fe and Mn atoms would be zero.
For the random-site Ising model from Ref. [46], the authors
assumed that Al atoms have no magnetic moment and serve
as a single-site dilutor. This fact, illustrated by the authors,
reflected the choice of the interactions among Al atoms with
Fe and Mn atoms as null (JAlFe = 0 = JAlMn). For the AF BC
model, their three states corresponded to the natural different
interactions present in the system: σ−1, σ0, and σ+1 would
be the interactions among JFeMn, JAlMn and JAlFe, and JMnMn,
respectively. The solid line passes equitably through the ex-
perimental data better than the Ising and RSI models; some
experimental data are out of the fitting line.

In Fig. 1(a), both the AF BC and RSI models fit all the
experimental data reported in Ref. [46] while in the Ising
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FIG. 2. Temperature as a function of Mn concentration (x) for a
fixed Al concentration q = 0.05. The full circles are the experimental
data from Ref. [46], the dotted line corresponds to the theoretical
fitting from the traditional Ising model, the dashed line is the fitting
using random-site Ising model from Ref. [46]. The solid line is from
the present AF BC model.

model the fit is only for the first three and the last two points,
but the behavior is far from the experimental data.

In Fig. 1(b), the three-curve fits show similar behavior to
that obtained in Fig. 1(a). The curve fitted by the AF BC model
is better than the one predicted by the RSI model. The Ising
model fits only the first and last experimental data.

In Fig. 1(c), the Ising model only fits the last point of the
experimental data, the fittings curve of the RIS model is above
the experimental data, and the AF BC model, on average, fits
the wentire behavior.

In Fig. 1(d), the Ising and RMI models do not fit all of the
behavior of the reduced hyperfine field as a function of alu-
minum concentration. The fit to the experimental data using
the present model is good.

The software used to resolve the numerical solutions was
MATHEMATICA. The value for the single-spin anisotropy pa-
rameter was 2.5 meV and equal to all concentrations fitted.

Figure 2 shows the behavior of temperature as a function
of Mn concentration x in the range 0 to 0.5 for a fixed alu-
minium concentration q = 0.05. The black dots correspond to
the experimental data [1], the dotted line is the fit using the
traditional Ising model, the dashed line for the random site
Ising model, and the solid line is the predicted curve using
the AF BC model. The expected behavior for the Ising and
RSI models is similar, however, the predicted curve is far from
the experimental data. The fit is outstanding, considering the
magnetic anisotropy and the three independent states for the
AF BC model.

V. CONCLUSION AND REMARKS

Comparing the antiferromagnetic Blume-Capel model with
the traditional Ising model and the random site Ising model,
the fits achieved are very good. The AF BC model fits much
better than those that do not consider the anisotropy parameter
or the crystal field. We observe that when p increases, the fit
of the AF BC model improves. The fits are more accurate for
iron concentration p = 0.7, as shown in Fig. 1.

The prediction of the temperature as a function of the
%Mn phase diagram from the numerical solution is remark-
ably good and significantly improved regarding the traditional
Ising and random-site Ising models. The same happened for
predicting the temperature versus the %Mn phase diagram for
the (Fe0.65Ni0.35)1−xMnx system [27].

APPENDIX

In this Appendix, we present the two transcendental equa-
tions using the expectation value of any observable O

〈Ô〉 =
∫

〈Ji j〉
P(Ji j )O dJi j, (A1)

where Ji j is the random-bond distribution (3).
In what follows we have

r = z − 1

z
, d = β�, K = βJ,

v = βγ a
s , u = βγ b

s , V = β�a
s ,

U = β�b
s , A = eU−d , B = eV −d .

The partition function for the isolated spins is

Zs = 1 + 2B cosh(v) + 2A cosh(u)

+ 4AB cosh(v) cosh(u). (A2)

The magnetization for the isolated spins is as follows:

ma
s = B sinh(v)[1 + 2A cosh(u)]

Zs
, (A3)

mb
s = A sinh(u)[1 + 2B cosh(v)]

Zs
. (A4)

The quadrupole for the isolated spins is

Qa
s = B cosh(v)[1 + 2A cosh(u)]

Zs
, (A5)

Qb
s = A cosh(u)[1 + 2B cosh(v)]

Zs
. (A6)

The partition function for the pairs of disconnected spins is

Zpp = 1 + 2erv−d cosh(r v) + 2erU−d cosh(r u) + 2er(V +U )+K−2d cosh[r(v + u)] + 2er(V +U )−K−2d cosh[r(v − u)], (A7)

Zpx = 1 + 2erV −d cosh(r v) + 2erU−d cosh(r u) + 2er(V +U )−αK−2d cosh[r(v + u)] + 2er(V +U )+αK−2d cosh[r(v − u)],

Zppx = 1 + 2erV −d cosh(r v) + 2erU−d cosh(r u) + 2er(V +U )−γ K−2d cosh[r(v + u)]

+ 2er(V +U )+γ K−2d cosh[r(v − u)], (A8)
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Zpq = 1 + 2erV −d cosh(r v) + 2er U−d cosh(r u) + 2er(V +U )−2d cosh[r(v + u)]

+ 2er(V +U )−2d cosh[r(v − u)]. (A9)

The magnetization for the pairs of disconnected spins is as follows:

ma
p = p2

Zpp
(er(V +U )+K−2d sinh[r(v + u)] + er(V +U )−K−2d sinh[r(v − u)] + er V −d sinh(r v))

+ x2

Zpx
(er(V +U )−αK−2d sinh[r(v + u)] + er(V +U )+αK−2d sinh[r(v − u)] + er V −d sinh(r v))

+ 2px

Zppx
(er(V +U )−γ K−2d sinh[r(v + u)] + er(V +U )+γ K−2d sinh[r(v − u)] + er V −d sinh(r v))

+ q(2 − q)

Zpq
(er(V +U )−2d sinh[r(v + u)] + er(V +U )−2d sinh[r(v − u)] + er V −d sinh(r v)),

mb
p = p2

Zpp
(er(V +U )+K−2d sinh[r(v + u)] − er(V +U )−K−2d sinh[r(v − u)] + er U−d sinh(r u))

+ x2

Zpx
(er(V +U )−αK−2d sinh[r(v + u)] − er(V +U )+αK−2d sinh[r(v − u)] + er U−d sinh(r u))

+ 2px

Zppx
(er(V +U )−γ K−2d sinh[r(v + u)] − er(V +U )+γ K−2d sinh[r(v − u)] + er U−d sinh(r u))

+ q(2 − q)

Zpq
(er(V +U )−2d sinh[r(v + u)] − er(V +U )−2d sinh[r(v − u)] + er U−d sinh(r u)).

The quadrupole for the pairs of disconnected spins is

Qa
p = p2

Zpp
(er(V +U )+K−2d cosh[r(v + u)] + er(V +U )−K−2d cosh[r(v − u)] + er V −d cosh(r v))

+ x2

Zpx
(er(V +U )−αK−2d cosh[r(v + u)] + er(V +U )+αK−2d cosh[r(v − u)] + er V −d cosh(r v))

+ 2px

Zppx
(er(V +U )−γ K−2d cosh[r(v + u)] + er(V +U )+γ K−2d cosh[r(v − u)] + er V −d cosh(r v))

+ q(2 − q)

Zpq
(er(V +U )−2d cosh[r(v + u)] + er(V +U )−2d cosh[r(v − u)] + er V −d cosh(r v)),

Qb
p = p2

Zpp
(er(V +U )+K−2d cosh[r(v + u)] + er(V +U )−K−2d cosh[r(v − u)] + er U−d cosh(r u))

+ x2

Zpx
(er(V +U )−αK−2d cosh[r(v + u)] + er(V +U )+αK−2d cosh[r(v − u)] + er U−d cosh(r u))

+ 2px

Zppx
(er(V +U )−γ K−2d cosh[r(v + u)] + er(V +U )+γ K−2d cosh[r(v − u)] + er U−d cosh(r u))

+ q(2 − q)

Zpq
(er(V +U )−2d cosh[r(v + u)] + er(V +U )−2d cosh[r(v − u)] + er U−d cosh(r u)).
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