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Efficiency of random search with space-dependent diffusivity
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We address the problem of random search for a target in an environment with a space-dependent diffusion
coefficient D(x). Considering a general form of the diffusion differential operator that includes Itô, Stratonovich,
and Hänggi-Klimontovich interpretations of the associated stochastic process, we obtain and analyze the first-
passage-time distribution and use it to compute the search efficiency E = 〈1/t〉. For the paradigmatic power-law
diffusion coefficient D(x) = D0|x|α , where x is the distance from the target and α < 2, we show the impact of
the different interpretations. For the Stratonovich framework, we obtain a closed-form expression for E , valid for
arbitrary diffusion coefficient D(x). This result depends only on the distribution of diffusivity values and not on
its spatial organization. Furthermore, the analytical expression predicts that a heterogeneous diffusivity profile
leads to a lower efficiency than the homogeneous one with the same average level within the space between the
target and the searcher initial position, but this efficiency can be exceeded for other interpretations.
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I. INTRODUCTION

Finding efficient strategies that minimize the time to en-
counter a target, or optimize other search criteria, is crucial in
diverse contexts and at different scales [1–3]. At the molecular
level, let us mention the search of a protein for its binding site
on DNA [4–6], and at the ecological scales, the search for
food (foraging) or viable habitats [7–11]. Other applications
include design in robotics [12] or computer algorithms to find
minima in a complex landscape [13].

Among the fundamental studies on random searches, sev-
eral diffusion processes have been investigated, for instance,
Lévy flights [13,14], fractional Brownian motion [15], run-
and-tumble motion [16], and diffusion with resetting [17,18].
However, in many complex environments, the diffusivity can-
not be considered uniform, but changes from one point to
another [19,20], and this may have important consequences in
random searches. State-dependent diffusivity has been consid-
ered in the context of infinite-ergodic theory [21], biologically
motivated problems [22–25], stock markets [26], and many
others.

In one dimension, a single trajectory x(t ) can be modeled
by the following stochastic process:

ẋ =
√

2D(x∗) η(t ), (1)

where x is the spatial coordinate (or other state variable,
such as chemical coordinate or stock prize), D(x) > 0 is
the diffusion coefficient, and η(t ) is a zero-mean white
noise with delta correlation 〈η(t + t ′)η(t )〉 = δ(t ′). However,
due to the multiplicative white noise, the integration of
Eq. (1) requires specifying the instant at which D(x∗) is
computed [27], and we consider x∗ = [(2 − A) x(t + dt ) +
A x(t )]/2 [28], where 0 � A � 2. The case A = 2 (Itô), com-
monly used in finance, has a nonanticipating property [29],
while A = 1 (Stratonovich) is an anticipating choice, which

obeys the rules of usual calculus [30]. The highly an-
ticipating case A = 0 (known as isothermal, kinetic, or
Hänggi-Klimontovich) [20,31,32] has applications related to
Fick’s law [33,34]. Other values of A have also been consid-
ered in previous literature [35]. In any case, the stochastic
Eq. (1) can be cast, for instance, in the form

ẋ = (1 − A/2)D′(x) +
√

2D(x) η(t ), (2)

which corresponds to the Itô scheme, suitable for numer-
ical integration, with noise amplitude ruled by x(t ), but
with an additional drift term which vanishes in the Itô case
(A = 2), as well as for homogeneous diffusivity, because
D′(x) = dD/dx = 0. The corresponding heterogeneous diffu-
sion equation is

∂t p(x, t ) = ∂x{D(x)1−A/2∂x[D(x)A/2 p(x, t )]}, (3)

where p(x, t ) is the probability density function (PDF). The
anticipating character, reflected in the value of A, has an im-
pact on the spreading of particles and on the tails of p(x, t ), as
well as produces diffusion anomalies and ergodicity break-
ing [19,21,36,37], and hence is expected to affect search
processes.

Fundamental aspects related to stochastic search in het-
erogeneous diffusivity media have been studied for partic-
ular forms of the diffusivity, for instance, in a confined
setting within Hänggi-Klimontovich interpretation (theoreti-
cally) [38], within Stratonovich scheme (numerically) [39],
in layered media for arbitrary interpretation [28], or with
stochastic resetting [40,41]. The step shape of the diffu-
sivity profile in a confined and d-dimensional system was
investigated in Ref. [28] for all interpretations. In all these
cases, the mean first-passage time (MFPT) was calculated,
but the average of the inverse time (efficiency) is another
relevant quantity, for instance for random search on a comb
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model [42], and especially when the mean passage time is
divergent.

Our purpose is to characterize the performance of one-
dimensional random searches in nonconfined heterogeneous
media with different forms of D(x) and interpretations of the
heterogeneous diffusion process (HDP). In particular, within
Stratonovich interpretation, we will be able to find general
results for arbitrary D(x).

A target can be introduced into the diffusion equation (3)
by means of a δ-delta sink term or by means of absorbing
boundary conditions. We will use the latter approach. More-
over, we consider that a searcher follows a HDP, exploring
all points along its trajectory [2]. To study random searches,
it is central to determine the first-passage-time distribution
(FPTD),

℘(t ) = − d

dt
Q(x0, t ), (4)

where x0 is the initial position of the walker, Q(x0, t ) =∫
�

p(x, t |x0)dx, with support � the survival probability at
time t . The FPTD represents the probability density of the
first time the walker meets the target, after which the walker
is removed from the system [1,27]. Therefore, note that the
norm of the density p(x, t |x0) is not conserved.

To quantify and compare the performance of different
search processes, a fundamental measure is the so-called
search efficiency, and various definitions can be found in
Ref. [43]. We will use a definition close to the step efficiency
(inverse of the traveled time up to reaching the target) [44],
namely,

E = 〈t−1〉 =
∫ ∞

0
t−1℘(t )dt =

∫ ∞

0
℘̃(s)ds, (5)

where ℘̃(s) is the Laplace transform of the FPTD. The mea-
sure defined by Eq. (5) is adequate for systems where the
mean arrival time diverges [44]. E is the first-order nega-
tive moment, which preferentially weights the contribution
of short arrival times, dismissing trajectories that take very
long times to reach the target. It has been used in a series
of works to characterize the performance of Lévy searches,
facing multiples targets [14], under external bias [45], comb
structures [46], asymmetric Lévy flights [47], and to describe
long relocations mingled with thorough local exploration [48].

Our results are organized as follows. In Sec. II, we start
from the backward Fokker-Planck equation, with arbitrary
A, to obtain the first-passage-time distribution and, using it,
the search efficiency when the position-dependent diffusiv-
ity has a power-law form, which has been used in different
frameworks [19,41,49]. In Sec. III, we obtain a closed ex-
pression for the efficiency, valid for arbitrary D(x) within
the Stratonovich scheme (A = 1). In all cases, examples and
comparisons of the theory with stochastic simulations are
provided. Final remarks are presented in Sec. IV.

II. RANDOM SEARCH IN MEDIA WITH POWER-LAW
DIFFUSIVITY UNDER DIFFERENT PRESCRIPTIONS

A. Survival probability

We consider independent random walkers on a one-
dimensional heterogeneous medium, initially located at posi-

tion x0, i.e., the initial density function is p(x, 0) = δ(x − x0)
and its evolution is described by Eq. (3), which for differen-
tiable D(x) can be rewritten as

∂

∂t
p(x, t |x0) = ∂2

∂x2
{D(x)p(x, t |x0)}

+ (A/2 − 1)
∂

∂x

{
dD(x)

dx
p(x, t |x0)

}
. (6)

In this format, the diffusion term is of the Itô form but a
spurious drift term appears, which vanishes for A = 2. This
representation will be useful to obtain the survival probability.

To address the random search problem, we consider, with-
out loss of generality, that a target is located at x = 0, which
corresponds to a change of coordinate. The target position
defines a bound of the search domain because we are consid-
ering a cruise search in which the walker can detect the target
during its movement, and it is removed when the target is first
detected. Without loss of generality, we assume that the initial
position of the random searcher is x0 > 0, in which case the
search domain is the positive x axis [0,∞).

Regarding the heterogeneous diffusivity, in this section we
will focus our analyses on the power-law case,

D(x) = D0 xα, (7)

where x � 0 and α < 2. This kind of profile has been used
to capture the diffusive motion of a particle on fractal ob-
jects [50] and diffusion in turbulent media [42]. It has also
been used as a paradigm of heterogeneous diffusivity to study
infinite ergodic theory [21], extreme value statistics [51], and
critical habitat size of biological populations [24]. In the
current problem, we can interpret that the target modifies
the diffusivity around it, making it increase (α > 0) or de-
crease (α < 0) with the distance from the target at the origin.
Then, it may be a good candidate profile to model animal
search in which the target emits cues (e.g., odors [52–54] or
sounds [10,55]).

In Fig. 1, we show typical trajectories, obtained by inte-
grating Eq. (2), when the diffusivity has the power-law form
D(x) = D0xα , with α = ±0.5 and an absorbing boundary at
x = 0, for three different values of A. For each interpretation,
the stochastic term is the same (and we used the same random
sequence of the noise for comparison), but the deterministic
drift term is enhanced when the process is more anticipating
(smaller A). Moreover, the drift term is either positive (if
α > 0) or negative (if α < 0); then a more anticipating rule
will make the walker reach the origin for the first time earlier
or later, respectively, as observed in each panel of Fig. 1.

The survival probability Q(x0, t ) = ∫ ∞
0 p(x, t |x0)dx repre-

sents the probability that the diffusing particle, starting at x0,
has not hit the target (x = 0) up to time t . It can be determined
through the backward Fokker-Planck equation [27], which,
for the chosen power law D(x), reads

∂

∂t
Q(x0, t ) = D0xα

0
∂2

∂x2
0

Q(x0, t )

+ (1 − A/2)D0α

x1−α
0

∂

∂x0
Q(x0, t ), (8)
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FIG. 1. Random trajectories with D(x) = D0xα and an absorbing
boundary at x = 0 (dashed line), for (a) α = −0.5 and (b) α = 0.5.
We set D0 = 1.0, x0 = 1.5, and the integration of Eq. (2) was per-
formed using the stochastic Euler algorithm with adaptive time step.
In each panel, the same random sequence was used, for comparison.

together with the boundary condition Q(0, t ) = 0, meaning
that the survival probability is null when the walker starts
at the target position x0 = 0. The initial condition is Q(x0 >

0, 0) = 1 since p(x, 0|x0) = δ(x − x0) and x0 ∈ (0,∞).
The Laplace transform, defined as f̃ (s) = ∫ ∞

0 f (t )e−st dt ,
applied on the time variable of Eq. (8), implies

sQ̃(x0, s) − 1 = D0xα
0

∂2

∂x2
0

Q̃(x0, s)

+ (1 − A/2)D0α

x1−α
0

∂

∂x0
Q̃(x0, s), (9)

which can be solved analytically, as shown in Appendix A,
obtaining

Q̃(x0, s) = 1

s
− 2

�[b] s

(
x

2−α
2

0

2 − α

√
s

D0

)b

× Kb

(
2 x

2−α
2

0

2 − α

√
s

D0

)
, (10)

where Kb(z) is the modified Bessel function and

b = 1 − α(1 − A/2)

2 − α
, (11)

with the restriction 1 − α(1 − A/2) � 0. See Eq. (A11) in
Appendix A.

FIG. 2. First-passage-time distribution (FPTD) given by Eq. (13)
(solid lines) and from 105 trajectories obtained from Eq. (2) with
absorbing boundary at x = 0 (symbols), for the HDP with D(x) =
D0xα . (a) α = −0.5, (b) α = 0.5. In all cases, x0 = 1.0 and D0 = 1.0.
In simulations, for t < 1 we used dt = 10−4, and for t � 1 we used
dt = 10−2.

B. First-passage-time distribution

From Eq. (4), the Laplace transform of the FPTD is given
by ℘̃(s) = 1 − sQ̃(x0, s); then,

℘̃(s) =
(

x
2−α

2
0

2 − α

√
s

D0

)b
2

�[b]
Kb

(
2 x

2−α
2

0

2 − α

√
s

D0

)
. (12)

To perform Laplace inversion, we use L−1{s b
2 Kb(d

√
s)} =

exp(−d2/[4t]) db/(2t )b+1 [56], which implies

℘(t ) = 1

Z (2t )b+1
e
−

x2−α
0

(2 − α)2D0 t , (13)

with

Z−1 = 2

(
2

2 − α

)2b x1−α(1−A/2)
0

(2D0)b�(b)
, (14)

recalling that from Eq. (11), it must be α(1 − A/2) < 1 for
the FPTD to be normalizable. In the particular case where
A = 2 (Itô interpretation) and α = 1, Eq. (13) gives ℘(t ) =
(x0/D0)t−2 exp[−x0/(D0t )], recovering previous results [40].

Figure 2 shows the very good correspondence between
the obtained FPTD from the analytical prediction given by
Eq. (13) and from simulations of Eq. (2) with absorbing wall
at x = 0, for different values of A. For instance, in the case
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α = −0.5 [Fig. 2(a)], notice that for a walker with larger A,
the probability of short times diminishes and tails are longer,
two features that contribute to the tendency shown in Fig. 1,
delaying the encounter of the walker with the absorbing wall.
The opposite occurs in the case α = 0.5 [Fig. 2(b)], also in
accord with Fig. 1.

Moreover, the asymptotic behavior of ℘(t ) in Eq. (13) in-
dicates that normalization is possible when α < 2 (A = 1, 2)
or α < 1 (A = 0), which also implies the existence of the
efficiency E . The mean first-passage time 〈t〉 is finite only
for A = 2 and 1 < α < 2, which is the reason it would not
be a good measure to characterize the performance of the
considered processes.

C. Search efficiency

The search efficiency, defined in Eq. (5), can be calculated
using Eq. (12), which gives

E = D0

x2−α
0

(
1 − 2 − A

2
α

)
(2 − α). (15)

This equation (15) summarizes the effects of the hetero-
geneity produced by α, under different interpretations. When
α = 0, the standard efficiency for the homogeneous case,
EH = 2D0/x2

0 [14], is recovered. In Fig. 3, we show plots of
E as a function of α, for different values of A, generated from
Eq. (15), in agreement with the results of simulations of the
stochastic Eq. (2). In Figs. 3(a) and 3(b), where x0 > 1, we
note that there is an optimal value αmax, which is shifted to
the right the less anticipatory the process is (the larger A). The
optimal efficiency E (αmax), which decays with x0 as expected,
is enhanced for larger A for large enough x0 [Fig. 3(a)], but this
tendency is inverted in the case shown in Fig. 3(b). For x0 � 1
[Fig. 3(c)], the efficiency monotonically decreases with α, for
any A, diverging for α → −∞.

As a general feature, we notice that for fixed x0 and fixed
α, the interpretation of HDP modifies the efficiency. When the
diffusivity increases with the distance to the target (α > 0),
the efficiency is higher, the less anticipating the process is (i.e.,
the larger A is), but the efficiency is reduced otherwise. Then,
a given behavior of the diffusivity around the target (ruled by
α) can be influenced by the correlations (ruled by A) in the
motion of the searcher. Processes characterized by different
values of A will have different performance. Therefore, de-
scribing a given process with an inadequate value of A may
lead to a wrong estimation of the efficiency.

III. RANDOM SEARCH WITHIN THE STRATONOVICH
SCENARIO

In this section, we address the search problem within the
Stratonovich framework, for which we will be able to obtain
results for general D(x). The Stratonovich HDP is the partic-
ular case of Eq. (3), setting A = 1, namely,

∂

∂t
p(x, t |x0) = ∂

∂x

√
D(x)

∂

∂x

√
D(x)p(x, t |x0), (16)

with p(±∞, t |x0) = 0 and p(x, 0|x0) = δ(x − x0). This equa-
tion corresponds to the stochastic process defined by Eq. (2)
with A = 1. It is interesting to note that Eq. (16) also arises in

−4 −3 −2 −1 0 0
0

0.1

0.2

0.3

0.4

α

E

(a) x0 = 4

A
0
1
2

−4 −3 −2 −1 0 0
0
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1

1.5

α
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(b) x0 = 1.7
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(c) x0 = 0.7

FIG. 3. Efficiency vs α for different interpretations of the HDP
(values of A indicated in the legend), using D(x) = D0 xα , with D0 =
1. Each panel corresponds to a different value of x0. The prediction
given by Eq. (15) is shown by solid lines, and the average over 105

realizations of Eq. (2) with absorbing boundary at x = 0 is repre-
sented by symbols. In each case, the average over is shown. The solid
horizontal line corresponds to the homogeneous value EH = 2D0/x2

0 .

the context of run-and-tumble motion with space-dependent
velocity [57].

To address the search problem, we first solve the diffusion
equation (16) without a target and use the free solution to re-
produce the boundary condition of the search problem through
the method of images.
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FIG. 4. (a) PDF vs x at t = 1 and (b) MSD vs t , for D(x) =
D0 xα , with D0, and different values of α indicated in the legend.
In (a), the area under the curves smaller than unit is due to the loss of
norm. In (b), we can observe that for short times, diffusion is normal,
but for long times, MSD ∼t

2+α
2(2−α) .

Using the change of variables [24],

y(x) =
∫ x

0

1√
D(x′)

dx′, (17)

which allows one to rewrite Eq. (16) as ∂t P̃(y, t ) = ∂2
yyP̃(y, t ),

where P̃(y(x), t ) = √
D(x) p(x, t ). Its natural solution, for y ∈

(−∞,∞), is P̃0(y, t ) = exp[−y2/(4t )]/
√

4πt . To reproduce
an absorbing wall at the origin, i.e., P̃[y(x = 0), t] = 0, we
apply the method of images to the free solution with ini-
tial condition P̃[y(x), 0] = δ(y − y0), which implies P̃(y, t ) =
P̃0(y − y0, t ) − P̃0(y + y0, t ). After that, we obtain

p(x, t |x0) = P̃(y, t )√
D(x)

=
∑

k=−1,1

k
e− [y(x)−k y(x0 )]2

4t√
4πD(x)t

. (18)

This expression works for any space-dependent diffusivity
[allowing the change y(x)].

An illustrative example of the PDF at a given time (t = 1)
is presented in Fig. 4 for the power-law diffusion coefficient
given by Eq. (7), with different values of α. Notice the loss
of norm, visibly more pronounced with decreasing α, which
favors adsorption. Besides the PDF, we show the mean square
displacement (MSD) versus time. At early times, the MSD
increases linearly with time for any α, meaning a normal
diffusion spread. However, for long times, we observe an
unusual behavior of the MSD, namely, 〈(
x)2〉 ∝ t

2+α
2(2−α) . See

the derivation in Appendix B. When α = −2, the MSD be-
comes stationary but the PDF keeps losing norm. For α < −2,
besides losing norm, the PDF narrows with time as reflected
by the negative exponent in the MSD.

The integration of Eq. (18) over x yields the survival prob-
ability

Q(x0|t ) =
∫ ∞

0

e− [y−y(x0 )]2

4t − e− [y+y(x0 )]2

4t√
4πt

dy = erf

(
y(x0)

2t
1
2

)
,

(19)

where erf is the error function.
The FPTD can be obtained directly from Eq. (19) using

Eq. (4), namely,

℘(t ) = y(x0)e− y(x0 )2

4t

2
√

πt
3
2

. (20)

When D(x) is a power law, we recover the result of Eq. (13)
for A = 1.

Using ℘(t ) in Eq. (20), we compute the efficiency defined
in Eq. (5), E = 〈t−1〉 = ∫

℘(t )t−1dt , and through the change

of variables ξ = y2
0/(4t ), we have E = 4

y2
0

∫ ∞
0

e−ξ√
π
ξ

1
2 dξ = 2

y2
0
.

Therefore,

E = 2∣∣ ∫ x0

0 [D(x′)]−
1
2 dx′∣∣2 , (21)

valid for arbitrary diffusivity profile D(x). Notice that the effi-
ciency only depends on the profile within the interval (0, x0).
Moreover, notice that since the integrand is a function of D(x)
only, the efficiency does not depend on the particular sequence
of values of the diffusivity. That is, if we fragment the profile
and shuffle the fragments [24], the value of the integral will
be the same.

Moreover, to put into evidence the variations ξ around
a reference level D0, we write D(x) = D0[1 + ξ (x)], such
that 〈ξ 〉 = 0 for x ∈ [0, x0], and ξ > −1 for the positivity of
D. Under such constraints for {ξi}, it is easy to show that∑N

i=1[1 + xi]−1/2/N � 1 [24]; then, in the continuous limit,
y0 � x0/

√
D0, which implies

E = 2

y2
0

� 2D0

x2
0

= EH . (22)

This means that the efficiency of a heterogeneous profile is
lower than that of a homogeneous profile with a level equal to
the average of the heterogeneous one.

Below we provide two concrete examples: a localized
break of homogeneity and an oscillatory profile. In addition,
we will discuss the case of a stochastic profile.

A. Localized heterogeneity

We analyze a profile that presents a local perturbation of
the diffusivity around the level D0. The average diffusivity is
conserved, as far as the perturbation is contained within the
interval [0, x0]. The local heterogeneity depicted in Fig. 5 has
width 0 � w � x0 and amplitude 0 � h � 1. For this layered
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FIG. 5. Localized heterogeneity of width w and amplitude h,
around the level D0 in dashed line. The dotted vertical line highlights
the initial position.

diffusivity, Eq. (21) straightforwardly yields

E = 2D0(
x0 − w + w

√
1+h+√

1−h
2
√

1−h2

)2 � EH . (23)

For w = 0 or h = 0, the standard value EH is recovered,
while for increasing w and |h|, the efficiency decays, as can
be visualized in Fig. 6. This means that in a heterogeneous
profile that preserves the average, within the Stratonovich
framework, the search is less efficient than in a homogeneous
environment with the average diffusivity. Let us also note
that according to Eq. (21), a rigid shift of the pulse will not
affect the efficiency, as soon as the pulse remains contained
within the integration interval [0, x0]. Also, fragmentation of
the pulse into smaller ones will produce the same E , as far
as the total length of up and down diffusivities is the same.
Moreover, notice that although Eq. (3) is the same for any
A in each region where the diffusivity is constant, as well as
the continuity condition for the density flux at the interface
D1∂x p1 = D2∂x p2, the condition for the density DA/2

1 p1 =
DA/2

2 p2 depends on A [28]. Therefore, E may depend on the
value of A.

FIG. 6. Efficiency for the landscape sketched in Fig. 5, varying
h and w. Notice that in all cases, the efficiency is lower than that for
the homogeneous case. The horizontal lines correspond to EH which
is the value for the homogeneous case with the same average.

FIG. 7. (a) Efficiency E for D(x) = D0[1 + d cos(kx)] vs k, for
different values of d . The dotted horizontal lines correspond to the
respective short-wavelength limit given by Eq. (25). We set x0 = 1
and D0 = 1. (b) E vs x0, for k = 20π , D0 = 1, and d = 0.85. Inset:
The short-wavelength limit E0 (dashed line) vs d and, for compari-
son, the efficiency of the corresponding homogeneous case EH (thin
horizontal line).

B. Oscillating diffusivity

As a paradigm of an oscillatory landscape, we analyze the
sinusoidal diffusivity kernel

D(x) = D0 [1 + d cos(kx)], (24)

where oscillations occur around the reference level D0, with
−1 � d � 1 and wave number k. We integrated numerically
the general expression for the efficiency, given by Eq. (21),
using D(x) in Eq. (24), and show the results in Fig. 7.

For a fair comparison with the homogeneous case, let us
consider oscillations whose average around D0 vanishes. This
occurs when kx0 = Nπ , with integer N , and also in the limit of
very short wavelength compared to x0 (i.e., λ = 2π/k � x0).
For integer N , we obtain

E0  EH
(1 + d )π2

4
[
κ
(

2d
1+d

)]2 � EH , (25)

where κ (z) = π
2 2F1( 1

2 , 1
2 , 1, z) is the complete elliptic integral

of the first kind. The short-wavelength limit E0, for each d ,
is plotted in Fig. 7 by dotted horizontal lines. Notice that,
in fact, it is attained for integer N or large k. This limit
value is independent of the introduction of a phase constant
in Eq. (24), as can be observed when d changes sign. More
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importantly, Eq. (25) is maximal at d = 0 where it takes
the value EH . That is, the efficiency E0 remains below that
of the homogeneous case with the same average diffusivity.
This is a noticeable result that indicates that short-wavelength
oscillations of the diffusivity spoil the efficiency of the search,
which decays with increasing d , as represented by the dashed
line in Fig. 7(b). In contrast, for small values of k, the value of
the efficiency can be higher than EH , but this simply reflects an
average diffusivity higher than D0 within the interval [0, x0].

C. Random diffusivity

As discussed in connection with Eq. (22), shuffled diffu-
sivity profiles in the interval (0, x0) yield the same efficiency
within the Stratonovich framework. This leads one to con-
sider noisy diffusivity profiles D(x) = D0(1 + ξ ), around the
level D0, taking uncorrelated random values ξ with a given
PDF f (ξ ), where ξ ∈ (−1,∞), such that the average 〈ξ 〉 =∫ ∞
−1 ξ f (ξ )dξ = 0. Following this idea, Eq. (21) can be rewrit-

ten as

E = EH( ∫ ∞
−1[1 + ξ ]−

1
2 f (ξ )dξ

)2 � EH , (26)

where the upper bound comes from the inequality [24]∫ ∞

−1
[1 + ξ ]−

1
2 f (ξ )dξ � 1. (27)

Considering that ξ (x) = D(x)/D0 − 1, where x can be
interpreted as a random variable that is uniform in the in-
terval [0, x0], through the change-of-variables method, we
can obtain f (ξ ). For instance, in the case of D(x) =
D0[1 + d cos(nπx/x0)], considered in Sec. III B, it is f (ξ ) =
[1 − ξ 2/d2]−

1
2 /(πd ), for ξ ∈ (−d, d ), which substituted into

Eq. (26) allows one to reobtain Eq. (25).

D. Comparison with other interpretations

In Sec. III, we presented analytical results for arbitrary
D(x) within the Stratonovich interpretation. Now, we will
compare these results with numerical ones obtained from
the integration of the stochastic differential equation (2) for
other interpretations. We will use the profile D(x) = D0[1 +
d cos(kx)]. Plots of the efficiency vs d are presented in Fig. 8.
We consider cases where kx0 = nπ with integer n, and hence
the average level is D0.

In Fig. 8(a), where we use profiles that are monotonic
in (0, x0), we can observe several features. For A = 1, the
efficiency is insensitive to the ordering as proved throughout
this section; then there is a symmetry of inversion around
d = 0. However, notice that this symmetry is broken for the
other interpretations, meaning that the shape of the profile is
relevant and not only the distribution of values when A �= 1.
Moreover, we observe that when the profile increases with the
distance from the target (d < 0), the efficiency increases with
larger A, while the contrary occurs for a decreasing profile
(d > 0). Actually, this is the same behavior demonstrated an-
alytically for the power-law case analyzed in Sec. II. Finally,
note that while for A = 1 the efficiency remains below that of
the homogeneous profile as theoretically predicted, this can

FIG. 8. Relative efficiency E/EH vs d , using different values
of A, for the profiles (a) D(x) = D0[1 + d cos(πx/x0)], (b) D(x) =
D0[1 + d cos(2πx/x0)], and (c) D(x) = D0[1 + d{cos(πx/x0 −
π/4) − A}/(1 + A)}], with A = √

2/π . In all cases, the prediction
given by Eq. (25) for the Stratonovich case (dashed line) and the
homogeneous value (horizontal full line), both normalized by EH , is
plotted. Symbols correspond to the average over 105 trajectories of
Eq. (2), with absorbing boundary at x = 0. The diffusivity profiles
are depicted in the insets.

be violated for the other interpretations, according to these
numerical simulations.

In Fig. 8(b), where the diffusivity profiles are not mono-
tonic but symmetric in (0, x0), the efficiency appears to also
be symmetric around d = 0. In Fig. 8(c), with less symmetries
while conserving the average in (0, x0), E > EH can occur
when A �= 1, as also observed in Fig. 8(a).

IV. FINAL REMARKS

We have derived analytical expressions for E = 〈1/t〉 as
a measure of the performance of random searches when the
medium is heterogeneous.

For general interpretations of the multiplicative fluctu-
ations, characterized by parameter A, we developed the
paradigmatic case with power-law diffusivity with exponent
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α < 2, which embraces the cases with increasing and decreas-
ing mobility with the distance from the target. We observed
that depending on the initial position of the searcher, there
can be an optimal value of α, which depends on A. But a finite
maximum does not always occur. The general feature is that
for a process with larger A, the success of the search is more
likely when the diffusivity increases with the distance from
the target (α > 0) and hinders the search otherwise. Moreover,
this is not unique to the power-law shape, but is determined by
the monotonic character of the diffusivity.

We addressed the Stratonovich framework (A = 1) that
allows one to derive a closed expression of the efficiency
for arbitrary forms of D(x). In this case, we considered a
localized perturbation and an oscillatory one, concluding that
these heterogeneities reduce the efficiency of the homoge-
neous case with a level equal to the average one within (0, x0).
It is important to note that the shape of the diffusivity profile
within that interval is not relevant but only the set of values
of the profile, which determine the integral in Eq. (21). This
is a property analogous to that found in the context of critical
patch size [24]. Therefore, a noisy profile with the same distri-
bution of values yields the same results. However, beyond the
Stratonovich interpretation, the shape of the profile (not only
the distribution of values) may be relevant.

Note that our results can be applied to the problem of the
first encounter between two walkers with trajectories x(t ) and
y(t ) in one dimension, with a coupled diffusivity depending on
their distance D(|x − y|). For x0 > y0, z(t ) = x(t ) − y(t ) > 0,
and for z(t ) = 0, the first encounter occurs. In such case, the
efficiency measures the rate of success of the first encounter.
This would allow one to extend previous results for the one-
dimensional homogeneous case [58].

As a starting point, we addressed the HDP search problem
in one dimension, but it would be interesting to extend the
current results to two or three dimensions in confined systems.
Consideration of colored instead of white noise is another
worthwhile continuation.

ACKNOWLEDGMENTS

We acknowledge partial financial support by the Coorde-
nação de Aperfeiçoamento de Pessoal de Nível Superior -
Brazil (CAPES) - Finance Code 001. C.A. also acknowledges
partial financial support received from Conselho Nacional
de Desenvolvimento Científico e Tecnológico (CNPq)-Brazil
(Grant No. 311435/2020-3) and Fundação de Amparo à
Pesquisa do Estado de Rio de Janeiro (FAPERJ)-Brazil (Grant
No. CNE E-26/201.109/2021).

APPENDIX A: SOLVING EQ. (9)

First, we introduce the new function

q̃(x0, s) = Q̃(x0, s) − 1

s
, (A1)

into Eq. (9), obtaining

∂2

∂x2
0

q̃(x0, s) +
(

1 − A

2

) α

x0

∂

∂x0
q̃(x0, s)

− s

D0xα
0

q̃(x0, s) = 0. (A2)

Using the change of variables

z = √
x0, q̃(x0, s) = zνw̃(z, s)

in Eq. (A2), we get

∂2

∂z2
w̃(z, s) + A

z

∂

∂z
w̃(z, s)

+
[
B
z2

−
(

2

√
s√

D0zα−1

)2
]
w̃(z, s) = 0, (A3)

where A = 2ν − 1 + (1 − A/2)2α and B = ν[ν − 2 +
2α(1 − A/2)]. Equation (A3) can be identified with a
Lommel-type equation [59], which admits the solution

w̃(z, s) = c1zβKb[az2−α] + c2zβIb[az2−α], (A4)

where Kb(· · · ) and Ib(· · · ) are the modified Bessel func-
tions [56],

a = 2

2 − α

√
s

D0
, (A5)

β = 1 − ν − α(1 − A/2), (A6)

b = ±[1 − α(1 − A/2)]/(2 − α), (A7)

where the ± can be ignored since Kb(z) = K−b(z). To ensure
the convergence of the solution w̃(z, s), for large z, we must
set c2 = 0 into Eq. (A4). Therefore, according to Eq. (17)
q̃(x0, s) = zνw(z, s), we obtain

q̃(x0, s) = c1 x
1
2 (1−α[1−A/2])
0 Kb

(
2 x

2−α
2

0

2 − α

√
s

D0

)
. (A8)

The probability of survival in Laplace space [see Eq. (A1)]
is given by

Q̃(x0, s) = c1 x
1
2 (1−α[1−A/2])
0 Kb

(
2 x

2−α
2

0

2 − α

√
s

D0

)
+ 1

s
,

where the coefficient c1 is obtained from the boundary condi-
tion Q̃(x0 = xa, s) = 0, where xa is the target position. Then,

Q̃(x0, s) = 1

s

⎡⎢⎢⎢⎣1 −
x

1
2 (1−α[1−A/2])
0 Kb

(
2 x

2−α
2

0
2−α

√
s

D0

)
x

1
2 (1−α[1−A/2])
a Kb

(
2 x

2−α
2

a
2−α

√
s

D0

)
⎤⎥⎥⎥⎦,

and taking the limit xa → 0 in the part of function that con-
tains the xa parameter, we obtain

I = lim
xa→0

x
1
2 (1−α[1−A/2])
a Kb

(
2 x

2−α
2

a

2 − α

√
s

D0

)

 lim
xa→0

x
1
2 (1−α[1−A/2])
a

�[b]

21−b

(
2 x

2−α
2

a

2 − α

√
s

D0

)−b

= lim
xa→0

x
2−α

2 ( 1−α[1−A/2]
2−α

−b)
a

�[b]

21−b

(
2

2 − α

√
s

D0

)−b

= �[b]

21−b

(
2

2 − α

√
s

D0

)−b

, (A9)
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which is non-null only for b = [1 − α(1 − A/2)]/(2 − α).
Therefore,

Q̃(x0, s)

= 1

s

⎡⎣1 − 2

�[b]

(
x

2−α
2

0

2 − α

√
s

D0

)b

Kb

(
2 x

2−α
2

0

2 − α

√
s

D0

)⎤⎦.

(A10)

The FPTD in Eq. (A10) is normalized only for b > 0; then,

1 − α(1 − A/2) � 0. (A11)

APPENDIX B: MEAN SQUARE DISPLACEMENT (MSD)

We calculate the second moment, which determines the
asymptotic long-time limit presented in Fig. 4. To do that, we
perform the average using Eq. (18) as

L{〈x2〉} =
∫ ∞

0
x2 p(x, t )dx

=
∫ ∞

0

x2− α
2√

4s
(e−√

s|y(x)−y(x0 )| − e−√
s|y(x)+y(x0 )|)dx

= e−√
s y(x0 )

∫ x0

0

x2− α
2√

4s
e
√

s y(x)dx

+ e
√

s y(x0 )
∫ ∞

x0

x2− α
2√

4s
e−√

s y(x)dx

− e−√
s y(x0 )

∫ ∞

0

x2− α
2√

4s
e−√

s y(x)dx

= sinh[
√

s y(x0)]√
s

∫ ∞

x0

x2− α
2 e−√

s y(x)dx,

+ e−√
s y(x0 )

√
s

∫ x0

0
x2− α

2 sinh[
√

s y(x)] dx, (B1)

where y was defined in Eq. (17). Defining z = √
s y, we get

z(x) = 2s
1
2 x1− α

2 /(2 − α), (B2)

which implies x = cα (z/
√

s)
2

2−α with cα = ( 2−α
2 )

2
2−α , and

L{〈x2〉} = c2
α

sinh[
√

s y(x0)]

s
4−α
2−α

∫ ∞
√

s y0

z
4

2−α e−zdz

+ c2
α

e−√
s y(x0 )

s
4−α
2−α

∫ √
sy0

0
z

4
2−α sinh(z) dz, (B3)

where z(x0) = √
sy(x0) ≡ √

sy0.
For large t , i.e., s ∼ 0, the first term in Eq. (B3) dominates

and we obtain

L{〈x2〉}|s∼0  c2
α y0

(
√

s)
6−α
2−α

∫ ∞

0
z

4
2−α e−zdz

 2y0c
1+ α

2
α �

[
4

2−α

]
(
√

s)
6−α
2−α

. (B4)

Therefore, we obtain the asymptotic behavior,

〈x2〉  2y0c
1+ α

2
α �

[
4

2−α

]
�

[
1
2

6−α
2−α

] t
2+α

2(2−α) ∼ t
2+α

2(2−α) . (B5)

Notice that for α = 0, normal diffusion is not obtained due
to the presence of the absorbing wall [1].
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