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Inducing oscillations of trapped particles in a near-critical Gaussian field

Davide Venturelli and Andrea Gambassi
SISSA—International School for Advanced Studies and INFN, via Bonomea 265, 34136 Trieste, Italy

(Received 14 June 2022; accepted 9 September 2022; published 11 October 2022)

We study the nonequilibrium dynamics of two particles confined in two spatially separated harmonic potentials
and linearly coupled to the same thermally fluctuating scalar field, a cartoon for optically trapped colloids in
contact with a medium close to a continuous phase transition. When an external periodic driving is applied to
one of these particles, a nonequilibrium periodic state is eventually reached in which their motion synchronizes
thanks to the field-mediated effective interaction, a phenomenon already observed in experiments. We fully
characterize the nonlinear response of the second particle as a function of the driving frequency, in particular
far from the adiabatic regime in which the field can be assumed to relax instantaneously. We compare the
perturbative, analytic solution to its adiabatic approximation, thus determining the limits of validity of the latter,
and we qualitatively test our predictions against numerical simulations.
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I. INTRODUCTION

Objects immersed in a fluctuating medium experience in-
duced interactions due to the constraints they impose on its
fluctuating modes. Among these interactions [1–7] are the
critical Casimir forces [8–12] observed in classical systems
close to the critical point of a second-order phase transi-
tion: they are the thermal and classical counterpart of the
well-known Casimir effect in quantum electrodynamics [1].
Even when fluctuations are negligible, particles deforming
a correlated elastic medium still experience field-mediated
interactions [13,14]. The static properties of these forces in
equilibrium are by now widely understood in terms of the free
energy of the system [3,8,10], but this framework is gener-
ally unable to describe the forces arising in nonequilibrium
conditions, such as those determined by a moving object. To
circumvent the difficulties which arise when imposing bound-
ary conditions on moving surfaces, one can alternatively
introduce in the total Hamiltonian some suitable interaction
potentials between the field and the included objects: actual
boundary conditions might be eventually recovered in the
formal limit in which the interaction strength becomes infinite
[15–17]. This approach is particularly suited for studying the
effects of boundary conditions imposed on randomly fluctuat-
ing surfaces, such as those of Brownian particles interacting
with a correlated medium [14,18].

Parallel to this, studying the motion of colloidal particles
in contact with thermally fluctuating environments provides
a tool to probe the properties of soft-matter materials, a
paradigm which is well established in the field of microrhe-
ology [19,20]. While past studies have mostly focused on the
behavior of tracer particles passively carried by a fluctuating
medium, in recent years increasing attention has been paid to
instances in which the particle and the medium affect each
other dynamically [21–28].

Particularly interesting is the case in which the medium
under consideration is a fluid near a critical point, which

displays long-range spatial correlations and long relaxation
times. While static field-mediated effects have long since been
explored [3], the dynamical behavior of such systems has
rarely been addressed in the literature [21–34]. We wish to
start filling this gap by analyzing a simple setup and pre-
dicting the value of dynamical observables which are easily
accessible in experiments. In particular, we have in mind the
case of colloidal particles trapped by optical tweezers in a
near-critical fluid such as a binary liquid mixture, in which
one measures the average and correlation functions of their
positions obtained via, e.g., digital microscopy.

In this work we study the dynamics of two probe parti-
cles, trapped and kept at a certain distance by two confining
harmonic potentials, and in contact with a fluctuating medium
close to the bulk critical point of a continuous phase transition.
The medium is characterized by a scalar order parameter φ(x)
subject to a dissipative or conserved relaxational dynamics
(the so-called models A and B [35]) within the Gaussian ap-
proximation, while we neglect hydrodynamic effects. The two
overdamped Brownian particles are then made to interact with
the scalar field via a translationally invariant linear coupling.
Since this coupling figures in the system Hamiltonian, the par-
ticles and the field affect each other dynamically along their
stochastic evolution, in such a way that detailed balance holds
at all times. Simple as it may look, this model already features
nonlinear and non-Markovian effects in the resulting effective
dynamics of the colloids, which make analytical predictions
challenging beyond perturbation theory.

A series of works [23–26] focused on the dynamics of an
unconfined particle stochastically diffusing in contact with a
scalar Gaussian field, studying the resulting effective diffusion
constant. Two recent works [36,37], instead, considered a har-
monically trapped particle immersed in a field, and explored
how its dynamics is affected by the presence of the latter.
In particular, they focused on the average particle position
during its relaxation to equilibrium, and on the autocorrelation
function of the particle as it diffuses in the trap, both of which
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can be determined within the weak-coupling approximation.
Particularly interesting was the emergence at long times of
algebraic tails superimposed to the usual exponential decay of
both the average position and the autocorrelation function, the
exponents of which depend only on the spatial dimensionality
of the system and on the critical properties of the field, and
therefore are characterized by a certain degree of universality.
In fact, these exponents do not depend on the details of the
chosen interaction potential, as long as the coupling between
the field and the particle is linear and translationally invariant.
A similar setup was analyzed in Ref. [38], where the steady-
state and effective dynamics of a colloidal particle in contact
with a critical Gaussian field were computed in the presence
of spatial confinement for the field. There it was shown that
the steady-state distribution of the colloid position is modified
by the presence of other tracer particles interacting with the
same medium.

A recent experiment [39] reported the observation of a
temperature-controlled synchronization of the motion of two
Brownian particles immersed in a binary liquid mixture close
to the critical point of its demixing transition. In particular,
the two colloids were trapped by two optical tweezers and
their distance was periodically modulated by spatially moving
one of the two traps: the synchronization then occurred upon
approaching the critical temperature of the fluid. Since the
electrostatic and viscous forces acting on the system turned
out to be insensitive to its critical state, they could not be
responsible for the observed synchronization. These results
were then explained in terms of the instantaneous action of the
static critical Casimir force arising between the two colloids
at equilibrium (i.e., the one computed within the Derjaguin
approximation from the equilibrium force [40,41]).

Motivated by this experimental study, we aim here at in-
vestigating the possible emergence of this behavior in our
minimal model, and how it is affected by the possible retar-
dation in the “propagation” of the force [18]. In particular, we
analyze the simple setup in which the center of one of the two
harmonic traps is driven periodically with a tunable frequency
�, so that the system eventually reaches a nonequilibrium
periodic state. Working within a weak-coupling expansion,
we first derive a master equation which fully describes the
motion of the colloid in the spatially fixed trap. We then
obtain, in the adiabatic limit, an effective Langevin equation
for its motion by integrating out the field degrees of freedom.
Upon approaching criticality, it is well known [35,42] that
the relaxation timescale of the field grows increasingly large,
thus undermining the assumption of fast relaxation which the
previous adiabatic approximation scheme hinges on. Accord-
ingly, we first analyze the dynamics in the weak-coupling
approximation and then compare it to the adiabatic solution,
thus determining the limits of validity of the latter and charac-
terizing the dynamical properties of the former.

The rest of the presentation is organized as follows. In
Sec. II we introduce the model and the notation. In Sec. III we
study, within a weak-coupling expansion, the induced motion
of one of the trapped colloids when the other colloid is forced
periodically, while in Sec. IV we study the same quantity but
within the adiabatic approximation. In Sec. V we characterize
the weak-coupling solution and compare it with the adiabatic
approximation; a comparison with numerical simulations is

FIG. 1. Two particles of radius R (blue and red spheres) are
trapped in two distinct harmonic potentials spaced apart by a distance
� � R. The particles are immersed in a medium (gray background)
represented here by a scalar Gaussian field [see Hamiltonian in
Eq. (1)], and they interact with it. The center of the trap containing
the colloid Z is driven periodically in time according to Eq. (17),
with a driving amplitude A � �.

presented in Sec. VI. In Sec. VII we extend our framework to
the case in which more than two particles are immersed in the
field. We finally summarize our results in Sec. VIII.

II. THE MODEL

The system composed by the two particles and the field is
described by the Hamiltonian [36,37]

H = Hφ + Uz + Uy − λHint, (1)

and it is schematically represented in Fig. 1. First, the medium
is modeled by a scalar Gaussian field φ(x, t ) in d spatial
dimensions, with Hamiltonian

Hφ[φ] =
∫

dd x

[
1

2
(∇φ)2 + 1

2
rφ2

]
. (2)

The parameter r � 0 measures the deviation from criticality
and determines the correlation length ξ = r−1/2 of the field
fluctuations. In this simple model we neglect hydrodynamics
effects and other slow variables, beyond the order parameter
φ, which should however be taken into account when describ-
ing the dynamics of actual fluids or binary liquid mixtures.

The terms

Uy(Y) = ky

2
Y2 and Uz(Z) = kz

2
[Z − ZF (t )]2 (3)

in Eq. (1) represent two confining harmonic potentials with
elastic constants ky and kz for the two particles. The d-
dimensional vectors Y and Z denote the position of the centers
of the particles; we will sometimes refer to them collectively
as Xa, with a = y, z. The position of the center of the second
trap is externally controlled and is given by ZF (t ).

Finally, the interaction term in Eq. (1) is given by

Hint[φ, Y, Z] =
∫

dd x φ(x)[V (z)(x − Z) + V (y)(x − Y)],

(4)
and it provides a linear and translationally invariant coupling
between the particles and the field. This may physically rep-
resent, for example, the case of colloidal particles displaying
preferential adsorption toward one of the two components of a
binary mixture. The two interaction potentials V (a)(x) model
the “shape” of the particles: interaction with the field occurs
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within the support of V (a)(x). For example, V (x) = δ(x) cor-
responds to a pointlike particle, while the Gaussian potential

VG(x) = (
√

2πR)−d exp(−|x|2/2R2) (5)

which we will mostly consider below represents a particle
of radius R; a pointlike particle is recovered in the formal
limit R → 0. Note that V (x) is normalized so that its integral
over the entire space is equal to one: this way the strength
of the interaction is set only by the coupling constant λ. If
the product λV (a)(x) in Eq. (1) is chosen to be positive, then
configurations are favored in which the field φ is enhanced
and assumes preferentially positive values in the vicinity of
and within the colloidal particles.

The field is assumed to evolve according to a relaxational
dynamics [35] involving the Hamiltonian in Eq. (1):

∂tφ(x, t ) = −D(i∇)α
δH

δφ(x, t )
+ ζ (x, t )

= −D(i∇)α
[
(r−∇2)φ−λ

∑
a

V (a)(x−Xa(t ))

]
+ζ .

(6)

The parameter D is the field mobility, while α takes the value
α = 0 for a nonconserved field dynamics, or α = 2 if the field
is locally conserved along its evolution. Indeed, in the latter
case one can rewrite ∂tφ(x, t ) = −∇ · J(x, t ) for a suitably
chosen current J(x, t ). These two choices correspond, respec-
tively, to model A and model B dynamics in the classification
of Ref. [35], here considered within the Gaussian approxima-
tion. The field ζ (x, t ) is a white Gaussian random noise with
zero mean and variance

〈ζ (x, t )ζ (x′, t ′)〉 = 2DT (i∇)αδd (x − x′)δ(t − t ′), (7)

where T denotes the temperature of the bath, so that the
Einstein relation is satisfied. The Langevin equation for the
field reads in Fourier space [43]

φ̇q = −αqφq + λDqα
∑

a

V (a)
q e−iq·Xa + ζq, (8)

where we introduced αq ≡ Dqα (q2 + r) and where the noise
satisfies

〈ζq(t )ζq′ (t ′)〉 = 2DT qαδd (q + q′)δ(t − t ′). (9)

The two particles evolve according to the overdamped
Langevin equations

Ẏ(t ) = −νy∇YH + ξ(y)(t ) = −γyY + λνyfy + ξ(y), (10)

where we introduced γy ≡ νyky, and

Ż(t ) = −νz∇ZH + ξ(z)(t ) = −γz[Z − ZF (t )] + λνzfz + ξ(z).

(11)
The constants νa denote the mobilities of the two particles,
while the force fa on each particle is given by the gradient of
the interaction potential

fa(Xa, φ; t ) ≡ ∇Xa

∫
dd x φ(x)Va(x − Xa(t ))

=
∫

dd q

(2π )d
iqV (a)

−q φq(t )eiq·Xa (t ). (12)

Both particles are assumed to be in contact with a thermal
bath at the same temperature T as the field, so that ξ(a)(t )
are also Gaussian uncorrelated white noises satisfying the
Einstein relation〈

ξ
(a)
i (t )ξ (b)

j (t ′)
〉 = 2νaT δabδi jδ(t − t ′). (13)

Note that, if the noise variances are chosen as in Eqs. (7) and
(13), then one expects the system to relax to a Gibbs state with
the total Hamiltonian given in Eq. (1), i.e.,

Peq[φ, Y, Z] ∝ e−βH[φ,Y,Z]. (14)

By setting λ = 0, we obtain three noninteracting stochastic
processes whose evolution is summarized in Appendix A.
They are characterized by the three relaxation timescales,

τ−1
a = νaka ≡ γa, with a ∈ {y, z}, (15)

τ−1
φ (q) = αq = Dqα (q2 + r), (16)

where q is the wave vector. In particular, the relaxation time
τφ (q) for the long-wavelength modes of the field can become
arbitrarily large for model A dynamics at criticality (r = 0).
The same happens in model B dynamics for generic values of
r, i.e., even far from criticality (r = 0).

In the following, we will be interested in the nonequilib-
rium periodic state attained at long times by the system when
we apply an external periodic forcing to the center ZF (t ) of
the harmonic trap of the second colloid:

ZF (t ) = � + A sin(�t ). (17)

Here � represents the average separation between the two
traps, as depicted in Fig. 1. When not specifically interested
in the motion of the center Z(t ) of the driven colloid, we
will often adopt the deterministic limit kz → ∞ in which the
colloid follows the motion of the trap with no delay and no
fluctuations, i.e., with Z(t ) = ZF (t ) (see also Appendix A 1).

III. WEAK-COUPLING APPROXIMATION

The coupled nonlinear equations (6), (10), and (11) for
the field and the two particles do not lend themselves to an
analytic solution. We will then resort to a perturbative ex-
pansion of the equations of motion in powers of the coupling
constant λ and calculate the relevant observables at the lowest
nontrivial order in this parameter. One way to proceed (which
has been successfully pursued in Refs. [36,37] in the case of a
single particle) is to formally expand the field and the particle
coordinates as

φ(x, t ) =
∑
n�0

λnφ(n)(x, t ) and Xa(t ) =
∑
n�0

λnX(n)
a (t ).

(18)
One then substitutes these expansions into the equations of
motion for the field and the particles and computes the desired
observables order by order in λ; we follow this approach in
Appendix B and derive the average position 〈Y(t )〉 for the
sake of illustration. However, since we are mainly interested
in the nonequilibrium periodic state attained by the system
at long times when the colloid denoted by Z is subject to
a periodic external driving, it will be convenient to work,
instead, at the level of a master equation: this will make it

044112-3



DAVIDE VENTURELLI AND ANDREA GAMBASSI PHYSICAL REVIEW E 106, 044112 (2022)

easier to identify transient terms which play no role in the
periodic state, and calculations will simplify significantly.
Moreover, if one is able to derive an evolution equation for
the one-point probability distribution P1(y, t ), then the expec-
tation value of any one-time observable (e.g., the variance)
can be computed straightforwardly and without requiring the
calculation of the corresponding perturbative series. While
one generically expects the effective dynamics of the particle
to be non-Markovian, and therefore not necessarily captured
by a master equation for P1(y, t ), we will see below that
this description is however viable within the weak-coupling
approximation.

A. Master equation

Here we derive a master equation for the probability den-
sity function of the position Y(t ) which is valid up to O(λ2).
To this aim, we start from the Langevin equation (8) for the
field. Using the response propagator of the free field,

Gq(s2 − s1) = e−αq (s2−s1 )�(s2 − s1) (19)

derived in Appendix A 2 (where �(s) is the Heaviside theta
function), we can solve for φq(t ) in Eq. (8) as

φq(t ) =
∫ t

t0

ds Gq(t − s)

[
λDqα

∑
a

V (a)
q e−iq·Xa (s) + ζq(s)

]
,

(20)

where we set the initial condition φq(t = t0) = 0 for sim-
plicity, as we are interested in the long-time properties of
the system. Substituting Eq. (20) into Eq. (10), we obtain
an effective Langevin equation for the position Y(t ) of the
particle moving in the fixed harmonic trap. A master equation
for the associated probability distribution P1(y, t ) can then be
derived from its very definition

P1(y, t ) = 〈δ(y − Y(t ))〉, (21)

where the average is understood over all possible realizations
of the stochastic noises ζq(t ) and ξy,z(t ). The equation is
formally obtained by using

∂t P1(y, t ) = −∇y · 〈δ(y − Y(t ))Ẏ(t )〉, (22)

and by substituting Ẏ(t ) from the effective Langevin
equation (10) in which φ(x, t ) has been replaced by Eq. (20).
We provide the details of the calculation in Appendix C 1 and
we report here only the final result:

∂t P1(y, t ) =L0P1(y, t ) + λ2Lz(t )P1(y, t )

+ λ2
∫ t

t0

ds
∫

dxL(y−x; t, s)P2(y, t ; x, s)+O(λ4).

(23)

Here

L0 ≡ ∇y · (γyy + νyT ∇y) (24)

is the Fokker-Planck operator for an Ornstein-Uhlenbeck par-
ticle [44], while

Lz(t ) ≡ ∇y · νy

∫
dd q

(2π )d
iqV (y)

q V (z)
−q e−iq·yF (z)

q (t ), (25)

with

F (z)
q (t ) ≡

∫ t

t0

ds χq(t − s)〈eiq·Z(s)〉0, (26)

where we denoted by

χq(s2 − s1) = DqαGq(s2 − s1) (27)

the free-field susceptibility (see Appendix A 2). The quantity
F (z)

q (t ) represents an additional, nonlinear drift force due to
the presence of the second colloid in position Z. The average
〈. . .〉0 in Eq. (26) is intended over the independent (λ = 0)
process and is computed in Appendix A 1 b. Finally, we note
that Eq. (23) involves a convolution of the two-time probabil-
ity distribution P2(y, t ; x, s) with a memory kernel L(r; t, s).
This is typical in non-Markovian problems, where one usually
obtains a hierarchy of master equations linking the n-point
distribution Pn(xn, tn; xn−1, tn−1; . . . ; x1, t1) with Pn+1 (see for
instance Refs. [45,46]). This kernel reads (summation over the
repeated indices j and k is implied)

L(r; t, s) ≡ νy∇k
∫

dd q

(2π )d
iqk|V (y)

q |2e−iq·r

× [
χq(t − s) − iνyCq(s, t ; t0)e−γy (t−s)q j∇ j

]
, (28)

where Cq(s1, s2; t0) is the field correlator for λ = 0, i.e.,

Cq(s1, s2) = �φ (q)

2αq

[
e−αq|s2−s1| − e−αq (s1+s2−2t0 )

]
, (29)

and �φ (q) ≡ 2DT qα (see Appendix A 2). At long times, by
taking the formal limit t0 → −∞, the latter renders the equi-
librium form

Cq(τ ) = T

q2 + r
e−αq|τ |, (30)

with τ = s2 − s1, and the memory kernel L becomes time-
translational invariant, i.e., L(r; t, s) = L(r, t − s). Finally, in
Eq. (28) the notation ∇ j is shorthand for ∂/∂r j .

As expected, Eq. (23) can be expressed as ∂t P1(y, t ) =
−∇y · J(y, t ) for a suitably chosen current J(y, t ), so that
probability conservation is guaranteed. Moreover, looking at
Eq. (25) one immediately observes that:

(i) The contribution of the second colloid in position Z
to the evolution equation of the first is only mildly non-
Markovian: indeed, while Lz(t ) depends on the complete past
history of Z(t ), it is however independent of the past history
of Y(t ). In the limit kz → ∞ in which the motion of Z(t )
becomes deterministic, the history Z(t ) = ZF (t ) is known and
the drift term in Eq. (25) becomes Markovian.

(ii) The contribution of the second (and possibly of any
other additional) colloid enters linearly in the master equation
for P1(y, t ).

These observations may appear surprising, but in fact
they apply only to the effective dynamics up to O(λ2).
Indeed, as discussed in Appendix C 1, P2(y, t ; x, s) at the
next perturbative order in λ satisfies a master equation
completely analogous to Eq. (23) involving both Z(t ) and
P3(y, t ; x, s; x′, s′).

044112-4



INDUCING OSCILLATIONS OF TRAPPED PARTICLES IN … PHYSICAL REVIEW E 106, 044112 (2022)

B. Nonequilibrium periodic state

We are interested in the nonequilibrium periodic state
reached at long times by the system when a periodic forcing
is applied to the colloid with position Z(t ), as in Eq. (17).
The task is significantly simplified when one realizes that
the term containing the memory kernel L(t, s) in the master
equation (23) can be discarded in the periodic state: we prove
this fact in Appendix C 2. We are thus left with the (Marko-
vian) master equation

∂t P1(y, t ) = L0P1(y, t ) + λ2Lz(t )P1(y, t ) + O(λ4), (31)

with Lz(t ) defined in Eq. (25) and

F (z)
q (t ) ≡

∫ ∞

0
du χq(u)〈eiq·Z(t−u)〉0. (32)

The latter coincides with Eq. (26) after taking the limit for
t0 → −∞. A perturbative solution of Eq. (31) can now be
found by expanding in powers of the coupling constant

P1(y, t ) = P(0)
1 (y, t ) + λ2P(2)

1 (y, t ) + O(λ4). (33)

This is done in Appendix C 3, where we derive an expression
for P(2)

1 (y, t ) which can be used to compute expectation values
of quantities such as the average colloid displacement from
the trap center, i.e.,

〈Y(t )〉 = −νyλ
2
∫

dd q

(2π )d
iqv(q)e−T q2/(2ky )

×
∫ t

−∞
dt ′ F (z)

q (t ′)e−γy (t−t ′ ) + O(λ4), (34)

where we introduced for brevity

v(q) ≡ V (y)
q V (z)

−q . (35)

When a periodic external forcing is applied to the particle in
Z(t ), we expect the induced response of the particle in Y(t )
to be in general nonlinear [as it is clear from Eq. (32)] and
therefore anharmonic, but still periodic. This suggests to look
for an expression of 〈Y(t )〉 in the form of a Fourier series: this
is done in Appendix C 3, where we compute, up to O(λ2), the
cumulant generating function of the particle position

log〈e−ip·Y(t )〉 = −T p2

2ky
− νyλ

2
∑
n∈Z

[∫
dd q

(2π )d

× e− T q2

2ky v(q)an(q)An(p · q)

]
ein�t , (36)

where an(q) is the nth Fourier coefficient of the function
F (z)

q (t ) defined in Eq. (32), while An(p · q) reads

An(p · q)

≡ (p · q)
∫ ∞

0
dτ exp

[
−in�τ − γyτ − T

ky
(p · q)e−γyτ

]
.

(37)

When a pure sinusoidal forcing is applied to the system as in
Eq. (17), the expectation value which appears in Eq. (26) takes
the simple form (see Appendix A 1)

〈eiq·Z(t )〉0 = exp

{
−T q2

2kz
+ iq · [� + A sin(�t − θz )]

}
.

(38)

For convenience we have introduced the phase shift

θa = arctan(�/γa), (39)

here with a ≡ z, which is a measure of the delay accumulated
by the colloid at point Z while following the motion of the
center ZF (t ) of its harmonic trap of finite strength kz. We
can then use the cumulant generating function in Eq. (36) to
compute the expectation value of the position and the variance
of the particle Y, which read

〈Y(t )〉 = λ2
∑
n∈Z

−iνyD

γy + in�

[∫
dd q

(2π )d

qqαv(q)Jn(q · A)

αq + in�
e−T q2/(2kp)+iq·�

]
ein(�t−θz ) + O(λ4), (40)

〈
Y 2

j (t )
〉
c = T

ky

{
1 − λ2

∑
n∈Z

νyD

2γy + in�

[∫
dd q

(2π )d

q2
j q

αv(q)Jn(q · A)

αq + in�
e−T q2/(2kp)+iq·�

]
ein(�t−θz )

}
+ O(λ4), (41)

where Jn is the modified Bessel function of the first kind.
In the expressions above we introduced kp such that 1/kp =
1/kz + 1/ky; in the deterministic limit kz → ∞, one has kp →
ky and θz → 0 [see Eq. (39)]. One can also check that, since
the integrand functions in Eqs. (40) and (41) have a definite
parity in q, then the resulting expressions are real-valued.

C. Effective field interpretation

The form of the master equation (23), obtained in the
limit of small coupling λ, lends itself to a simple physical
interpretation. The original problem consisted of two colloidal
particles whose reciprocal interactions are mediated by the

field φ, and the strength of such interactions is controlled by
the coupling λ. Applying a periodic driving of O(λ0) on the
colloid Z induces a displacement of O(λ2) on the colloid Y, as
shown by Eqs. (40) and (41). By the same token, any feedback
reaction of Z due to Y will be at least of O(λ4) and, as such,
it will not contribute to the expressions discussed here, which
are valid up to and including O(λ2). We also noticed above
that the motion of the colloid Z does not affect the memory
kernel in the master equation (23), whose presence is thus only
to be ascribed to the self-interaction of the colloid Y, again
mediated by the field φ. Once this contribution has faded out
and the long-time periodic state is reached (see the discussion
in Appendix C 2), the colloid Y is essentially moving within

044112-5



DAVIDE VENTURELLI AND ANDREA GAMBASSI PHYSICAL REVIEW E 106, 044112 (2022)

the mean effective field 〈φeff〉 obtained by treating the colloid
Z as a source term, i.e.,

〈
φeff

q (t )
〉 = λ

∫ t

−∞
ds χq(t − s)V (z)

q 〈e−iq·Z(s)〉, (42)

where again χq(u) is the linear susceptibility of the field
reported in Eq. (27). Indeed, we show in Appendix D how
Eqs. (40) and (41) for the average displacement and variance
of the colloid Y can be retrieved by studying the dynamics
of Y as if it were immersed into the mean effective field in
Eq. (42), but in the absence of the second colloid Z.

We can build an analogy with Casimir force calculations
[3], in which the Casimir energy in the presence of two sur-
faces can be computed by taking into account the multiple
scatterings of the freely propagating field between the two
surfaces—i.e., by first considering its free propagator, which
propagates fluctuations from one surface to the other, and then
summing over all possible numbers of round-trip reflections
[47]. Our perturbative calculation up to O(λ2) corresponds to
restricting this sum to the first scattering.

By extension, one can convince oneself that, within this
weak-coupling expansion where multiple scatterings are ne-
glected, the effect of the presence of any other particle within
the same medium would simply add up to that of the particle
Z in generating the effective field in Eq. (42). This is in
contrast with other types of fluctuation-induced interactions
such as Casimir forces [3], which have a nonadditive nature.
Although we have drawn here this conclusion on the basis of
a weak-coupling expansion, we will in fact verify in Sec. VII
that this pairwise additivity persists beyond the perturbative
regime.

D. A physical bound on the value of λ

The coupling constant λ around which we constructed
a perturbative expansion is not dimensionless: dimensional
analysis of Hφ in Eq. (2) gives [φ] = d/2 − 1 and accordingly
[λ] = 1 − d/2 for the dimensions [φ] and [λ] of the field and
the coupling, respectively, in units of inverse length. It is thus
useful to clarify what we mean by weak coupling. Hereafter,
let us choose for definiteness a Gaussian interaction potential
V (a)(x) as in Eq. (5) for both particles; assume that they have
the same radius R, so that v(q) = exp(−q2R2) [see Eq. (35)].
In fact, the specific choice of the interaction potential is in
general largely irrelevant [36,37] and what really matters is
its characteristic lengthscale R, which sets a UV cutoff on the
field fluctuations (see also Appendix F).

To obtain an upper bound on the value of the coupling con-
stant λ for which the perturbative expansion leads to reliable
predictions, we may inspect the variance derived in Eq. (41)
which, by definition, cannot become negative. A simple calcu-
lation (see Appendix E) shows that this requirement is always
fulfilled if one chooses

λ2 � 2dky(2
√

π R̃)d , (43)

where we introduced the effective colloid radius

R̃2 ≡ T

2kp
+ R2. (44)

Note that, in fact, this effective radius appears in Eq. (40)
rather than R or T separately. This implies that the only effect
of temperature on the average particle position 〈Y(t )〉 is that
of renormalizing the radius R of the particle by the average
mean square displacement of the particle in the trap alone,
which follows from equipartition theorem as 〈Y 2

j 〉0 ∼ T/kp.

IV. ADIABATIC APPROXIMATION

Any adiabatic elimination scheme [37,44] of the field de-
grees of freedom φq(t ) from the coupled equations of motion
(6), (10), and (11) relies on the assumption that the motion of
the two colloids is much slower than the relaxation timescales
of the field. Note that, due to critical slowing down, this is ex-
pected to happen only sufficiently far from criticality (we will
make this statement more precise later). When this is the case,
the field effectively equilibrates around the instantaneous po-
sitions of the two colloids, hence distributing according to

Pst[φ|Y, Z] = 1

Zst(Y, Z)
e−β(Hφ−λHint ), (45)

where Hφ and Hint were given in Eqs. (2) and (4), respec-
tively, and where we introduced the partition function

Zst(Y, Z) ≡
∫

Dφ e−β(Hφ−λHint ). (46)

An effective Hamiltonian Heff(Y, Z) describing the dis-
tribution of the particles alone can thus be obtained by
marginalizing the equilibrium Boltzmann distribution in
Eq. (14) over the field degrees of freedom, i.e.,

Peq(Y, Z) ∝ e−βHeff (Y,Z) ≡
∫

Dφ e−βH[φ,Y,Z]

= e−β(Uy+Uz )
∫

Dφ e−β(Hφ−λHint ), (47)

where the last integral is nothing but Zst(Y, Z) in Eq. (46).
From this partition function one can naturally derive the ef-
fective interaction potential Vc(x) as

Zst(Y, Z) ∝ e−βλ2Vc (Z−Y), (48)

and therefore from Eq. (47) it follows that

Heff(Y, Z) = Uy(Y) + Uz(Z) + λ2Vc(Z − Y). (49)

The coupling to the field in the exponential of Eq. (46) is
linear, so the Gaussian integral can be performed easily (see
Appendix F), resulting in

Vc(x) = −
∫

dd q

(2π )d

v(q)

q2 + r
eiq·x. (50)

In this expression we have already subtracted the self-energy
contributions, i.e., the energy needed to bring each of the two
particles (separately) from an infinite distance into the field: as
a result, Vc(x → ∞) = 0. An analysis of the latter is presented
in Appendix F for the case of particles with rotationally in-
variant interaction with the field. The effective potential Vc(x)
is plotted in Fig. 2, together with the corresponding induced
force Fc(x) = −λ2∇xVc(x), in one spatial dimension and for
the choice of identical Gaussian interaction potentials V (a)(x)
between the field and the colloids. A similar qualitative behav-
ior is observed in higher spatial dimensions and for different

044112-6



INDUCING OSCILLATIONS OF TRAPPED PARTICLES IN … PHYSICAL REVIEW E 106, 044112 (2022)

FIG. 2. Field-induced effective potential Vc(x) and force Fc(x)
within the adiabatic approximation (in spatial dimension d = 1), as
a function of the “center-to-center” distance x between the particles.
They are plotted in units of the field correlation length ξ = r−1/2

and rescaled by the R-dependent part of their asymptotic amplitude
computed in Eq. (F18). Here R corresponds to the linear size of
the colloids which characterizes the interaction potentials V (a)(x),
chosen to be Gaussian as in Eq. (5). The force shows a maximum
at a distance xmax implicitly defined by the condition in Eq. (F21),
while it approaches zero for both small and large values of x/ξ . The
parameters used in the plot are R = 0.5 and r = 1.

interaction potentials characterized by the same cutoff scale
R. The induced force Fc(x) features a maximum at a distance
xmax implicitly defined by the condition in Eq. (F21), while
it decays to zero both for small and large values of x = |x|.
Both Vc(x) and Fc(x) decay as exp(−x/ξ ) when x is large
compared to the correlation length ξ = r−1/2 [see Eq. (F18)].
One expects in general Vc(x) and Fc(x) to exhibit an algebraic
decay for r = 0 (see Appendix F), but we will not explore this
issue further since we will assume that the medium has a finite
(although possibly very small) correlation length ξ .

The colloid dynamics at the lowest order in the adiabatic
approximation is then obtained by averaging the equations of
motion (10) and (11) for Y(t ) and Z(t ) over the stationary
distribution Pst[φ; Y, Z] of the field φ for fixed Y and Z,
given in Eq. (45). The resulting effective adiabatic Langevin
equation for the colloid Y subject to the fixed trap, derived in
Appendix G, is

Ẏ(t ) = −νykyY − νyλ
2∇yVc(Z − Y) + ξ(y)

= −νy∇y[Uy(Y) + λ2Vc(Z − Y)] + ξ(y), (51)

which (as expected) we recognize as an overdamped Langevin
dynamics computed as if the two particles interact via the ef-
fective, field-independent Hamiltonian computed in Eq. (49).
We will denote as Yad(t ) the solution of the Langevin
equation (51), which reads, for small λ (see the details in
Appendix G),

〈Yad(t )〉 = −λ2νy

∫
dd q

(2π )d

iqv(q)

q2 + r
e−T q2/(2ky )

×
∫ ∞

0
du e−γyu〈eiq·Z(t−u)〉0 + O(λ4). (52)

FIG. 3. Equilibrium position of the particle Y in the fixed-traps
limit (solid line), and temporal mean value of the average position
〈Y (t )〉 of the particle in the fixed trap (dashed line, indicated by
b0 and c0 in cf. Sec. IV C 1). The two curves refer to one spatial
dimension, and show the behavior as a function of r/r� = (�/ξ )2

[see Eq. (55)]. The position of the particle Y when it is only subject
to the equilibrium attraction to the particle Z is described by Eq. (53).
The temporal mean value 〈Y (t )〉 is the same in the adiabatic (b0) and
in the dynamical response (c0), as predicted by Eq. (62), and it is
�-independent. The parameters used in the plot are γy = 1, D = 10,
R̃ = 0.7, � = 3, and A = 1.

This expression should be compared to the actual solution of
the dynamics in Eq. (40). In Appendix G 2 we show how we
may recover this result starting from the dynamical expression
in Eq. (34) and taking the formal limit D → ∞ of extremely
fast field relaxation, which however is only meaningful if we
assume qα (q2 + r) = 0 [see Eq. (16)]. Clearly this last condi-
tion is not fulfilled in the presence of slow modes: recalling
the discussion about timescales in Sec. II, these modes appear
in model A at criticality, but also off-criticality in model B.

A. Fixed traps

In the absence of a time-dependent external forcing, both
the dynamical expression in Eq. (34) and the adiabatic ex-
pression in Eq. (52) describe the simple equilibrium attraction
between the two particles, mediated by the field. This can be
seen explicitly by fixing the position of the particle in Z(t ) to
a constant value Z ≡ �: in both equations, the time integral
can be simply computed and we get

〈Y(t )〉, 〈Yad(t )〉 −−→
Z≡�

λ2

ky

∫
dd q

(2π )d

q e−R̃2q2

q2 + r
sin(q · �), (53)

for both models A and B. This expression can be alternatively
obtained [up to O(λ2)] by requiring that the total force Ftot

acting on the colloid at position Y vanishes, i.e.,

Ftot = −kyY − λ2∇yVc(Z − Y) ≡ 0, (54)

which corresponds to the condition of mechanical equilib-
rium reached when the force derived from the field-induced
potential Vc given in Eq. (50) counterbalances the restoring
attraction of the harmonic trap of strength ky. In Fig. 3 we
plot the resulting equilibrium position of the particle Y as a
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function of r/r� = (�/ξ )2, having defined

r� ≡ �−2. (55)

The plot shows that the attraction is maximum at criticality
and it decays monotonically as we increase the parameter r.

B. Periodic driving

Let us specialize Eq. (52) to the case in which a sinusoidal
forcing is applied to one of the colloids (Z) as in Eq. (17). As
for the dynamical case, we expect the response of the other
colloid (Y, in the static trap) to be periodic, but not harmonic.
We can then expand 〈Yad(t )〉 in Fourier series as

〈Yad(t )〉 =
∞∑

n=−∞
bnein�t = b0 + 2

∞∑
n=1

|bn| cos(n�t + θn),

(56)

where |bn| and θn indicate the complex modulus and the
phase, respectively, of the Fourier coefficients

bn ≡ �

2π

∫ 2π
�

0
dt e−in�t 〈Yad(t )〉, (57)

with the property b−n = b∗
n. These coefficients can be easily

computed by means of Eqs. (38) and (C47), yielding

bn = −iλ2e−inθz

ky(1 + in�/γy)

∫
dd q

(2π )d

qJn(q · A)

q2 + r
e−q2R̃2+iq·�, (58)

where R̃ is the effective colloid radius defined in Eq. (44).
They are to be compared with the analogous coefficients cn of
the expansion of the dynamical response 〈Y(t )〉 which we can
read from Eq. (40), i.e.,

cn = −iλ2De−inθz

ky(1 + in�/γy)

∫
dd q

(2π )d

qqαJn(q · A)

αq + in�
e−q2R̃2+iq·�.

(59)
We discuss this comparison in Sec. V, while we focus below
on the adiabatic response. In the following, we will often
indicate by bn, cn their vector norm bn ≡ ‖bn‖, bn ≡ ‖cn‖;
however, one can check that their only nonzero component is
the one along the direction of A and �.

C. Analysis of the adiabatic response

We are interested here in studying the behavior of the
adiabatic response in Eq. (52) as we vary the external driving
frequency �. To this end, it is useful to rewrite the correspond-
ing Fourier coefficients bn in Eq. (58) as

bn(�) = bn(� = 0)

1 + in�/γy
, (60)

where bn(� = 0) = −iλ2e−inθzIn/ky, having defined

In ≡
∫

dd q

(2π )d
q

e−q2R̃2

q2 + r
Jn(q · A)eiq·�. (61)

1. Mean value

The temporal mean value b0 ≡ b0(�) = b0(� = 0)
around which the oscillations occur is the same in the adia-
batic and dynamical response, i.e., c0 = b0: from Eqs. (59)

and (60), it amounts to

b0 = c0 = λ2

ky

∫
dd q

(2π )d
q

e−q2R̃2

q2 + r
J0(q · A) sin(q · �). (62)

This quantity is plotted in Fig. 3 as a function of the correla-
tion length ξ of the field: the average is maximum at criticality,
r = 0, and it decays monotonically as ∼r−1 as one moves
away from the critical point.

We note that the temporal mean value b0 of the (anhar-
monic) oscillations is �-independent, but it does not coincide
with the position of mechanical equilibrium in Eq. (53) as
long as the driving amplitude A does not vanish. This is
expected, since the field-induced attraction is nonlinear [see
cf. Eq. (F14) in Appendix F and Fig. 2]. Indeed, let us analyze
a single oscillation in one spatial dimension, and consider the
second derivative of the induced force h ≡ ∂2

x Fc(x)|x=xeq = 0
computed in correspondence of the equilibrium interparticle
distance x = xeq [see Eq. (54)]. When the two particles ap-
proach each other, if h < 0 (h > 0), they experience a stronger
(weaker) attraction which is not completely counterbalanced
by a proportionally weaker (stronger) attraction felt while they
are further away from each other. The net result is that they
spend more (less) time close to one another than they would
if the attraction were the same during the two phases of the
oscillation (as it happens in a linear force gradient, for which
h = 0).

In Appendix H we derive again, using linear response
theory, the value of the temporal average of the oscillations for
small driving amplitudes A: its expression is given in Eq. (H2)
but it does not coincide with the value of b0 in Eq. (62) if not
for A = 0. Indeed, linear response theory cannot capture the
effect of the dynamical perturbation on the mean value of the
oscillations, which is quadratic in A [being J0(x) � 1 − x2/4
for small x in Eq. (62)].

2. Amplitude

The amplitude of the nth harmonic of 〈Yad〉 is found by
inspecting Eq. (60), and it reads

|bn(�)| = |bn(� = 0)|√
1 + (n�/γy)2

. (63)

It is interesting first to compare the relative magnitude of
|bn(� = 0)| for various n: they are plotted in Fig. 4 as a
function of the ratio r/r� = (�/ξ )2 [see Eq. (55)]. For r � r�

the amplitude of the first harmonic attains a maximum: this
corresponds to the correlation length ξ of the field being of
the same order as the average separation � between the two
traps, i.e., ξ ∼ �.

In general, it appears from Fig. 4 that the adiabatic response
is essentially and generically determined by its dominant first
harmonic. Although higher harmonics become more relevant
when the amplitude A of the driving is much larger than the
effective colloid radius R̃, they still remain small compared to
the first harmonic as long as A and R̃ � �. As an exception,
however, Fig. 4 shows that the first harmonic is significantly
reduced at a small value of r which we denote by r1. Expand-
ing for small forcing amplitudes A the equation |(b1)i| ≡ 0
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FIG. 4. Amplitude of the first three Fourier harmonics (indexed
by n) of the adiabatic response in Eq. (58), in spatial dimension
d = 1 and for � = 0. This provides an indication on the ratio of their
magnitudes also for � = 0, see Eq. (63). They are plotted as a func-
tion of r/r� = (�/ξ )2 [see Eq. (55)]. The adiabatic response is in
general dominated by the first harmonic, but the latter is suppressed
in correspondence of a specific value r1 of r (see the main text). The
parameters used in the plot are γy = 1, R̃ = 0.7, � = 3, and A = 0.5.

which defines r1, one finds

Aj
∫

dd q

(2π )d

e−q2R̃2

q2 + r1
qiq je

iq·� ≡ 0. (64)

This equation turns out to be the same as the condition in
Eq. (F8), which defines the distance xmax at which the field-
induced interparticle force Fc(x) is maximum (see Fig. 2),
as it is clear by identifying x ≡ � and v(q) ≡ exp(−q2R̃2).
The physical interpretation is the following: for r = r1 and
small A, the average interparticle distance � actually coin-
cides with the distance x = xmax at which the field-induced
force Fc(x) is maximum. Expanding Fc(x) at the leading
order around x = xmax gives a force gradient which is at least
quadratic in |x − xmax|, so that the response loses its linear
component (i.e., the first harmonic in its Fourier expansion—
for example, feeding sin(�t ) into a quadratic force gradient
would render sin2(�t ), whose frequency is doubled). No-
tice that the identification between Eqs. (64) and (F8) is
not accidentally due to the choice of a Gaussian interaction
potential Vq = exp(−q2R2/2): the generalization to another
interaction potential V ′

q is straightforwardly obtained by re-
placing exp(−q2R̃2) → |V ′

q |2 exp(−q2T/2κp) in Eq. (64) [see
Eqs. (35) and (44)]. In both cases, we see that the only effect
of the temperature T is to renormalize the parameter R (which
characterizes Vq) by the mean-square displacement of the col-
loid in the trap; in the case in which Vq is Gaussian, R gets
simply replaced by R̃ defined in Eq. (44).

In Appendix G 3 we determine the value r1 of r at
which this frequency doubling occurs for the case d = 1
[see Eq. (G10)]. However, from the above discussion it
emerges that a similar qualitative behavior holds also for d >

1, as we check within linear response theory in Appendix H.
Indeed, the occurrence of frequency doubling relies only on

FIG. 5. Amplitude |b1| and relative phase δθ of the first Fourier
harmonic in the adiabatic response, see Eq. (58). The amplitude
is normalized by |b1(� = 0)|, see Eq. (63), and δθ is the phase
difference with respect to the mean position of the driven colloid
〈Z(t )〉0, see Eq. (67). The curves in this plot are then independent of
all the other parameters.

the existence of a local maximum in the induced force (see
Fig. 2), a feature which goes possibly beyond our particu-
lar choice of a Gaussian interaction potential V (x) (see, for
instance, the analysis of the theta potential in Appendix F
and that of the critical Casimir force in Ref. [48]). We an-
ticipate here that frequency doubling is actually a feature
of the adiabatic response which is observed in the full dy-
namical response only when the adiabatic approximation is
applicable—this will be shown below in Sec. V A.

Finally, for any given value of r, Eq. (63) shows that the
amplitude |bn| is maximum at low driving frequencies �,
while it decays as ∼�−1 upon increasing � beyond values
which are larger than τ−1

y ≡ γy: this is shown in Fig. 5, where
the amplitude |b1| of the first harmonic is plotted as a function
of �/γy. We recall that τy is the timescale which characterizes
the relaxation of the particle Y in its harmonic trap.

3. Phase

When r > r1 the adiabatic response is dominated by its first
harmonic, which is completely characterized by its amplitude
|b1| studied above and by its phase θ1 [see Eq. (56)], which we
analyze here. This phase can be extracted from the complex
Fourier coefficient b1 in Eq. (60) as

θ1 = −(θy + θz + π/2) + π × sign(I1), (65)

where θa is given in Eq. (39) and sign(I1) = ±1, depending
on the sign of I1 given in Eq. (61). In d = 1 and for r > r1,
the integral I1 is negative: this can be checked via a numerical
evaluation of Eq. (61) within a range of parameters compatible
with our physical setting in Fig. 1, i.e., � � A, R̃. We recall
that the average motion of the driven colloid is given, at lowest
order in λ, by (see Appendix A 1)

〈Z(t )〉0 = � + A cos(�t − θz − π/2), (66)

where the average is computed over the independent (λ = 0)
process. By comparing Eqs. (65) and (66) with Eq. (56), we
can extract the actual phase difference δθ between 〈Y(t )〉 and
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〈Z(t )〉0, i.e.,

δθ ≡ θ1 − (−θz − π/2) = −θy − π. (67)

In the slow-forcing limit � � γy it is θy → 0, and from
Eq. (67) we deduce that the particle Y(t ) moves in counter-
phase with respect to Z(t ). This is physically expected, as the
particle Y feels a stronger attraction when the particle Z is
closer to it than when it is further apart. In the fast-forcing
limit � � γy, where θy → π/2, we get instead δθ = −3π/2:
the particle Y(t ) develops a π/2 phase shift with respect to the
driven colloid Z(t ). The situation is depicted in Fig. 5 (inset),
where we plot the phase difference δθ and we show that it
varies smoothly by π/2 over a scale determined by γy.

We mention that a richer phenomenology is expected in
spatial dimension d > 1, where the direction of the driving A
could in principle be chosen to be orthogonal to that of the
average separation � between the two traps. In this setup,
one can check that the sign of the integral I1 in Eq. (61) is
positive, so that Eq. (67) reads δθ = −θy. In the slow-forcing
limit in which θy → 0, the two particles would then move in
phase (δθ = 0), as physically expected by arguing again that
their attraction is stronger when they are spatially close to one
another, than when they are further apart.

V. ANALYSIS OF THE DYNAMICAL RESPONSE

In this section we analyze the dynamical response 〈Y(t )〉
of the particle in the fixed well, within the weak-coupling
approximation given in Eq. (40). All the figures we present
and discuss below refer for simplicity to the case d = 1, but
the main qualitative features of the response persist in higher
spatial dimensions.

We start by focusing on the Fourier coefficients of the
dynamical response given in Eq. (59) and by comparing them
to those of the adiabatic response given in Eq. (58). First
and not surprisingly, they coincide for a vanishing driving
frequency, i.e., cn(� = 0) = bn(� = 0): their difference is
only manifest in the dynamics. Secondly, a common factor
(1 + in�/γy)−1 multiplies both sets of coefficients, and this is
the only place where the relaxation timescale τ−1

y = γy of the
fixed trap appears. We have seen in Sec. IV C how it is this
factor alone which determines the properties of the adiabatic
response as a function of �, see Eq. (60); its qualitative fea-
tures (amplitude, phase) are analogous to those of a low-pass
filter in circuit electronics. Even though the dependence on �

is more complicated in Eq. (59), this “filter” remains and it
characterizes the dynamical response for frequencies � � γy.

We noticed in Sec. IV C 2 that, in general, the first Fourier
harmonic dominates the adiabatic response (see Fig. 4). One
can check that this is also the case for the dynamical response,
both at low � (which is not surprising, since for � = 0
the two sets of Fourier coefficients bn and cn coincide) and
for higher driving frequencies because, for large �, one has
|cn| ∼ (n�)−2 from Eq. (59). In the following, we will then
focus mostly on the analysis of the first harmonic, bearing in
mind that the zeroth harmonic, i.e., the average value around
which the colloid Y oscillates, is the same as that of the
adiabatic approximation [see Eq. (62)], whose features have
been described in Sec. IV C 1.

FIG. 6. Amplitude |b1| and |c1| of the first (and most rele-
vant) Fourier components in the adiabatic and dynamical response
for model A and B, plotted as a function of r/r� = (�/ξ )2

[see Eq. (55)]. The amplitudes of the oscillations in the two cases
are particularly different upon decreasing r for r < r�, where the
adiabatic response reaches its maximum before decreasing toward
zero (see also Fig. 4 and the discussion in Sec. V A). Here the am-
plitude is plotted for a driving frequency � < �peak (see discussion
in Sec. V B 1). The parameters used in the plot are γy = 1, D = 10,
R̃ = 0.7, � = 3, A = 1, and � = 0.35.

A. Adiabatic limit

Let us first compare the dynamical response to the adia-
batic one. Looking at Fig. 6, which shows the amplitude of the
first harmonic as a function of r = ξ−2, it appears that for any
fixed value of the driving frequency � there exists a threshold
value rA or rB (depending on the model considered) such
that for r � rA,B(�) the system dynamics becomes effectively
adiabatic. When this happens, the amplitude of the dynamical
response in model A/B is very well approximated by that of
the adiabatic response, and the corresponding curves in Fig. 6
coincide.

This can be understood in terms of the competition be-
tween the relaxation timescale τφ of the field, which is given in
Eq. (16), and the one set by the external periodic driving, i.e.,
τ� ∼ �−1. Typical field fluctuations are those with wave vec-
tor q ∼ ξ−1, where ξ ∼ r−1/2 is the field correlation length.
We expect the adiabatic approximation to be accurate when
the timescale τ

typ
φ of these typical fluctuations is much shorter

than τ�, i.e., τ
typ
φ ≡ τφ (q ∼ ξ−1) � τ�: a simple calculation

indicates that the threshold values rA,B are given by

rA ∼ �/D, rB ∼
√

�/D. (68)

This is verified in Fig. 7, where we plot rA and rB as a
function of the driving frequency �. The symbols correspond
to numerical estimates of rA,B obtained by inspecting plots
analogous to that of Fig. 6, while the solid lines correspond
to Eq. (68).

Note that the timescale τy ∼ γ −1
y , which characterizes

the relaxation of the colloid Y in its harmonic trap, does
not affect this interplay between τ� and τφ . As antici-
pated above, it merely contributes a common scaling factor
[1 + (�/γy)2]−1/2 to the amplitude of the first harmonic and
results into a phase shift θy given by Eq. (39). This is in fact
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FIG. 7. Values rA,B of the parameter r such that, for a given value
of the driving frequency �, the amplitude of the dynamical response
in model A, B matches that of the adiabatic approximation (see the
main text for further explanations). By scaling arguments, we expect
rA ∼ � and rB ∼ √

� [see Eq. (68)]. The parameters used in the
graph are γy = 1, D = 100, R̃ = 0.7, � = 3, and A = 1.

consistent with the effective field interpretation we gave in
Sec. III C: the colloid Y moves under the effect of the exci-
tations generated on the field φ by the motion of the colloid
Z. Any feedback of the colloid Y on the field is neglected,
because we are considering only the lowest nontrivial order
in a perturbative expansion in the coupling λ. Accordingly,
adiabaticity depends on how faithfully the field φ (which
relaxes on a finite timescale) is able to transmit the excita-
tion generated by the motion of the colloid Z: the smaller
the driving frequency �, the more accurate this transmission
becomes. What happens to the colloid Y after the “message”
is received will only eventually depend on its characteristic
timescale τy.

Outside the adiabatic regime, the adiabatic and dynamical
responses are qualitatively different especially for r < r� =
�−2, the latter being the value of r around which the adiabatic
response reaches its maximum (see Fig. 6 and the discus-
sion in Sec. IV C 2). This also marks the point at which the
correlation length of the field becomes of the same order of
magnitude as the average separation between the two traps,
i.e., ξ ∼ �. In Sec. IV C 2 we described the phenomenon of
frequency doubling in the adiabatic response: the amplitude
of its first harmonic decreases upon decreasing r below r�,
and vanishes at r = r1 (see Fig. 5). We can conclude that, in
general, frequency doubling is not observed in the dynamical
response, unless the adiabatic approximation is accurate (i.e.,
at small driving frequency � and large field mobility D, ac-
cording to the discussion above).

B. Frequency dependence of the dynamical response

The behavior of the actual dynamical response in Eq. (40)
as a function of the driving frequency � is richer than that
of the adiabatic response. The limiting cases of slow and
fast driving are analytically accessible, while for intermediate
values of the driving frequency � we can evaluate numerically
the integrals which appear in Eq. (40). We can then use the

FIG. 8. Amplitudes |b1| and |c1| of the first Fourier harmonic in
the adiabatic and dynamical responses, respectively, shown as func-
tions of the driving frequency � in d = 1, for both models A and B.
For large �, the amplitude decays as �−1 for the adiabatic response
and as �−2 in the dynamical case (see the inset in log-log scale,
where we indicated the asymptotic behaviors with dotted lines). For
small values of �, the dynamical response is typically larger than the
one predicted by the adiabatic approximation, and it is peaked around
�peak given in Eq. (70). Close to � ∼ 0, both responses must collapse
on their static amplitude given in Eq. (69); all the curves in this plot
are normalized by this value. The parameters used in the graphs are
νy = 1, ky = 1, D = 1, R̃ = 0.7, � = 3, A = 1, and r = 10−4.

insight we gained in Sec. IV C to rationalize the qualitative
behavior observed in the plots.

To simplify the discussion by enforcing a separation of
timescales, we consider in this section a large value of the
inverse timescale γy = τ−1

y . Indeed, as anticipated above, the
amplitude of 〈Y(t )〉 is significantly reduced at frequencies
� � γy and this would make the features of the dynamical
response hardly appreciable. Let us also set the parameter
r � r� [see Eq. (55)], a choice which we will motivate further
below.

1. Amplitude

The main qualitative features of the dynamical response
are displayed in Fig. 8, where we plot the amplitude |c1| of
the first Fourier harmonic [see Eq. (59)] as a function of �

for models A and B, and we compare it to the amplitude of
the adiabatic response. For vanishing � both responses must
collapse on a common quasistatic curve, which follows from
Eqs. (56) and (58)–(61) as

2|b1(� = 0)| = 2|c1(� = 0)| = 2λ2I1/κy. (69)

For small but nonzero �, however, the dynamical response
is typically larger than the one predicted within the adiabatic
approximation. The former appears to be peaked around a fre-
quency �peak which can be identified as the inverse relaxation
timescale of the field φ over a distance comparable with the
average separation � between the two traps. This can be ob-
tained from Eq. (16) by setting q � 1/�: for r � r� = �−2,
we find

�peak ∼ τ−1
φ (q � 1/�) � D/�z, (70)
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where z = 2 + α is the dynamical critical exponent of the field
φ (we recall that α = 0 and 2 for model A and B, respectively
[49]). Accordingly, �peak is different for model A and model
B dynamics.

Finally, for large �, the amplitude of the dynamical re-
sponse decays as �−2, at odds with the adiabatic response
which decays as �−1, so that the former becomes eventually
smaller than the latter. This is shown in the inset of Fig. 8,
where the amplitude is plotted as a function of � in log-log
scale, together with the asymptotic decays mentioned above.

Let us now motivate the choice r � r�. The argument we
gave in Sec. V A when discussing the adiabatic limit can be
reversed: for every fixed value of the parameter r, there will be
a driving frequency �A,B(r) such that when � � �A,B(r) the
dynamics of the system is well approximated by the adiabatic
one. Their value can be found by inverting Eq. (68), i.e.,

�A ∼ Dr, �B ∼ Dr2. (71)

Since the characteristic frequency scale of the dynamical
response is given by �peak (see Fig. 8), to appreciate the
difference with respect to the adiabatic response we must re-
quire �A,B(r) � �peak. By choosing r � r� this requirement
is automatically satisfied, as it can be checked by using the
definition of �peak in Eq. (70). If, on the contrary, one chooses
r � r�, then intermediate cases occur in which the peak shifts
toward larger values of �, while still remaining far from the
adiabatic limit.

Similarly, in plotting the amplitude of the dynamical re-
sponse as a function of r in Fig. 6 we chose � � �peak.
In fact, had we chosen instead � � �peak, the dynamical
amplitude would have been smaller than the adiabatic ampli-
tude, and it would have approached the latter from below in
correspondence of rA,B(�).

2. Phase

In analogy with what we did for the adiabatic response
discussed in Sec. IV C 3, from the Fourier coefficient c1 in
Eq. (59) one can determine the phase of the dynamical re-
sponse which we indicate by ϕ1, so as to distinguish it from
the phase θ1 of the adiabatic response. In particular, one finds

ϕ1 = −(θy + θz + π/2) + arg(I1), (72)

where arg(I1) indicates the argument of the complex integral

I1 ≡
∫

dd q

(2π )d

q||qαJ1(q · A)

αq + i�
e−q2R̃2+iq·�. (73)

In the expression above q|| indicates the component of q along
A and �. For � → 0, we notice that I1 � I1/D [see Eq. (61)]
and we recover the adiabatic limit with ϕ1 � θ1. For � → ∞,
instead, one finds

I1 � 1

i�

∫
dd q

(2π )d
q||qαJ1(q · A)e−q2R̃2+iq·�. (74)

In analogy with Sec. IV C 3, we focus on the phase difference
δϕ with respect to the motion of the driven colloid 〈Z(t )〉0,
i.e.,

δϕ ≡ ϕ1 − (−θz − π/2) = −θy + arg(I1). (75)

FIG. 9. Phase of the adiabatic and dynamic responses, shown as
a function of the driving frequency � in d = 1. In both cases the
relative phases δθ and δϕ, respectively, are measured with respect to
the motion of the driven colloid 〈Z(t )〉0 [see Eqs. (67) and (75)].
For large values of �, the response in model A is in phase with
the motion of the driven colloid (i.e., δϕ → 0), while in model B
it is in counterphase (i.e., δϕ → −π ). They are both in contrast with
the adiabatic approximation, which predicts a π/2 phase shift δθ .
For sufficiently small �, the three responses must coincide and we
recover the physically familiar picture in which the motion is in coun-
terphase with respect to 〈Z(t )〉0 with δϕ = δθ = π . For intermediate
values of �, the phase in the dynamical response varies rapidly and
non-monotonically, if R̃ � �, before reaching its asymptotic value.
The parameters used in the plot are γy = 1, D = 10−3, R̃ = 0.4,
� = 3, A = 0.1, and r = 10−3.

Recalling that θy → π/2 for large �, it follows from Eq. (74)
that δϕ � π/2 ± π/2, where the sign of the last term can be
determined by performing the integration over q in Eq. (74)
and it is in general different for model A or B (see Ap-
pendix I—in d = 1, the plus sign corresponds to model A,
and the minus sign to model B). The motion of Y for large �

is thus either in phase or in counterphase with the motion of
the driven colloid, depending on the model: in both cases, this
is in sharp contrast with the adiabatic approximation, which
predicts a π/2 phase shift (see Fig. 5 in the same limit).
However, the approximation we used to derive Eq. (74) can
only be accurate if � is larger than all the physical frequencies
involved in the problem. If we assume that the system is
sufficiently close to criticality so that ξ � R̃, then the effective
colloid radius R̃ plays the role of a cutoff and the fastest
timescale is represented by τφ (q ∼ 1/R̃). Accordingly, we
expect the dynamical phase to reach its asymptotic value for

� � �cutoff ≡ τ−1
φ (q ∼ 1/R̃) ∼ D/R̃z. (76)

Recall that the amplitude |c1| of the dynamical response starts
decreasing for � � �peak [see Sec. V B 1 and Eq. (70)], and
within our setup of Fig. 1 with R̃ � � it is �cutoff � �peak.
As a result, the asymptotic value of ϕ1 will not be reached in
practice if not for vanishing values of the amplitude |c1|, and
one observes instead a phase which is rapidly changing as a
function of �, different in general from the adiabatic phase
θ1 (if not by coincidence). This can be seen in Fig. 9, where
the relative phase δϕ of the dynamical response is plotted as
a function of the driving frequency � and is compared to the
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FIG. 10. Phase ϕ1 of the dynamical response, shown as a func-
tion of the distance � between the two traps, for small values of
the driving frequency � (see the main text). The behavior of ϕ1 as
a function of � is asymptotically linear, with a slope κ which is
independent of the spatial dimensionality d; for the case of model
A, it is predicted by Eq. (77). The parameters used in the graph are
γy = 1, D = 0.1, R̃ = 1, A = 0.1, and r = 10−3.

relative phase δθ of the adiabatic response. Moreover, since R̃
[which enters in the integral I1 defined in Eq. (73)] depends
on the temperature T via Eq. (44), an interesting outcome of
the analysis presented above is that the phase ϕ1 itself is T -
dependent in our model. This was not the case for the phase
θ1 within the adiabatic approximation, see Eq. (65).

Finally, in Fig. 10 we plot the phase ϕ1 as a function of the
average separation � between the traps and for small values
of the driving frequency �: the dependence of ϕ1 on � turns
out to be linear for sufficiently large �. The corresponding
slope κ is independent of the spatial dimensionality d , and it
can be extracted explicitly in the case of model A by using
the method of steepest descent: this is done in Appendix I 2,
where we show that

κ ≡ −∂ϕ1

∂�
= [r2 + (�/D)2]1/4 sin

(
1

2
arctan

(
�

Dr

))
. (77)

This fact suggests an interesting interpretation within the
effective field picture presented in Sec. III C. Indeed, the
response of the colloid Y to a small sinusoidal perturbation
generated by the colloid Z at a distance � apart effectively
reads

〈Y(t )〉 � R(�) cos(�t − κ� + ϕκ ), (78)

where the phase shift ϕκ and R(�) � |c1| [see Eq. (59)]
depend in general on the various parameters of the problem.
Equation (78) describes a wave propagating out of the source
Z(t ), and in this analogy the parameter κ plays the role of
an effective wave number. This simplified picture does not
apply when � becomes large compared to the other charac-
teristic frequencies of the system, because then we have seen
that ϕ1 must saturate to a constant limiting value (which is,
in particular, independent of �). Moreover, albeit small, the
contribution of higher harmonics will still modify the first
harmonic contribution described by Eq. (78).

VI. NUMERICAL SIMULATION

In this section we investigate the validity of our analytical
predictions, derived within the weak-coupling expansion, by
direct integration of the coupled Langevin equations of motion
of the field in Eq. (6), and of the two particles in Eqs. (10)
and (11). To this end, we discretize the field φ over a lattice
of side L in d = 1 or d = 2 spatial dimensions, as described
in Appendix J, and we assume periodic boundary conditions.
We consider, for simplicity, the limit kz → ∞ for the driven
colloid Z(t ), which thus evolves deterministically according
to Eq. (17), while the second colloid Y(t ) undergoes Brownian
diffusion under the effects of its fixed trap.

We first simulate the system in d = 1 in the presence of
noise. Figure 11(a) compares the average over many realiza-
tions of the simulated trajectories of the particles with the
analytical predictions in Eq. (40), showing a good agreement
for both model A and model B. For this simulation we chose
a set of parameters which poses model A close to the adi-
abatic regime, while model B is actually far from it. As a
result, the curve corresponding to model A is (almost) in
counterphase with respect to the external driving ∼A sin(�t ),
while the curve corresponding to model B has a generic phase.
We chose a large value of the driving amplitude A so as to
emphasize also the contribution of higher Fourier harmonics,
although the first harmonic still dominates the response, as
expected.

A further conclusion we can draw from this agreement
between theoretical predictions and numerical simulations is
the following. As we emphasized in Sec. III D, the prediction
for 〈Y(t )〉 in Eq. (40) does not distinguish the separate effects
of having a larger particle radius R from those of a higher
temperature T , as they are tangled into the effective radius
R̃ defined in Eq. (44). This observation actually simplifies
the task of performing numerical simulations in higher spatial
dimension d , where they become longer and more resource-
demanding: we simply set T = 0 and simulate the noiseless
(i.e., deterministic) equations of motion, correcting R̃ accord-
ingly. Figure 11(b) exemplifies this in d = 2, for the same
set of parameters as those used in Fig. 11(a). The curves we
observe are qualitatively similar to those in d = 1, and again
they are in good agreement with the analytical prediction.
In this second plot it appears even more evidently that the
oscillations of the probe particle are not harmonic, as a result
of the nonlinear interaction.

VII. EXTENSION TO MANY PARTICLES

In Sec. III we noted that the contribution of any additional
particle enters linearly in the master equation (23) which
describes the one-point probability P1(y, t ) of the position
Y(t ) of the particle. In Sec. III C we further commented
that the effective field in which the particle Y evolves can
be obtained by simply summing the contributions of all
the other particles, which are acting as source terms for
the field φ. It would thus appear that multi-body effects
are absent in our model, and that the induced interactions
are indeed pairwise-additive, at odds with other types of
fluctuation-induced interactions such as Casimir forces. Simi-
lar conclusions have been recently reached in Ref. [13], where
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(a) (b)

FIG. 11. Average position 〈Y (t )〉 of the colloid in the fixed trap, (a) in d = 1, and (b) in d = 2. The results of the numerical simulations
(colored lines) are reported together with the analytical prediction in Eq. (40) (symbols), showing excellent agreement. The parameters used
in both graphs are νy = 1, D = 1, ky = 0.1, r = 0.1, λ = 0.5, � = 20, A = 5, � = 2π × 10−3, lattice side L = 128, and integration time step
δt = 0.01. In panel (a) we set R = 1.5, T = 0.01, and we averaged over N = 105 realizations of the thermal noise appearing in Eqs. (6) and
(10). In panel (b) the noise is absent (corresponding to T = 0), and we take a single realization of the dynamics with the effective particle
radius R̃ = 1.5165 (see the main text), corresponding to the values of R and T considered in panel (a) and as obtained from Eq. (44).

it was shown that field-mediated forces between pointlike
particles linearly coupled to a Gaussian field in equilibrium
are indeed pairwise-additive, independently of the strength
of the linear coupling. However, this is in principle not the
case for nonequilibrium settings, such as the one considered
in this work. Since our analysis was based on a perturbative
description valid for a small coupling λ, it is then natural at
this point to ask whether pairwise-additivity holds beyond the
perturbative regime. To answer this question, we now assume
that N particles {X1, X2, . . . , XN } are in contact with the field
φ as in Sec. II, so that

H = Hφ +
N∑

a=1

Ua(Xa) − λHint, (79)

where Ua are generic confining potentials, and

Hint =
N∑

a=1

∫
dd x φ(x)V (a)(x − Xa) (80)

generalizes Eq. (4) to many particles. The field φ still evolves
according to Eq. (6), while the particles follow

Ẋa(t ) = Fa(Xa, t ) + λνafa(Xa, φ) + ξ(a)(t ), (81)

where we denoted by νa the mobility coefficients, ξ(a)(t ) are
independent white Gaussian noises with the same variance as
in Eq. (13), and fa is defined as in Eq. (12). To make contact
with Eq. (10) we can choose Fa(Xa, t ) ≡ −νa∇XaUa(Xa(t )),
so as to describe the equilibrium fluctuations of the particles in
their confining potentials Ua(Xa) and in contact with the field.
However, Fa(Xa, t ) can also be explicitly time-dependent
[e.g., as in Eq. (11)], so that the problem is in general out
of equilibrium (and similar to the one discussed above).

To study the dynamics induced by the set of Langevin
equations Eqs. (6) and (81), it is convenient to consider
the corresponding Martin-Siggia-Rose [25,50–52] dynamical
functional S[φ, φ̃, {Xa, X̃a}], as detailed in Appendix K. Here
we indicated by φ̃(x, t ) and X̃a(t ) the variables dynamically
conjugate to φ(x, t ) and Xa(t ), respectively. Integrating out
the fields φ and φ̃ from the dynamical functional S formally

yields an effective functional Seff[{Xa, X̃a}]: any expectation
value over the realization of the noises of quantities such as
O[{Xa}], involving the particles but not the field, can then be
expressed as

〈O[{Xa}]〉 =
∫ (

N∏
a=1

DXa DX̃a

)
O[{Xa}]e−Seff[{Xa,X̃a}],

(82)

where DXa indicates a path integral over the realizations of
Xa (and similarly for DX̃a).

The integration over the fields φ and φ̃ in the dynamical
functional S given in Eq. (K3) is possible for any value of
λ, because the field Hamiltonian Hφ in Eq. (2) is Gaussian
and the field-particles coupling is linear. This results in the
effective functional

Seff[{Xa, X̃a}] = S0[{Xa, X̃a}] − λ2Sλ[{Xa, X̃a}], (83)

where the free part S0 can be expressed as a sum of single-
particle contributions [see Eq. (K1)],

S0[{Xa, X̃a}] =
N∑

a=1

Sa[Xa, X̃a], (84)

while the interacting part Sλ contains a sum over two-particle
contributions [see Eq. (K13)],

Sλ[{Xa, X̃a}] =
N∑

a,b=1

Sab[Xa, X̃a, Xb, X̃b], (85)

where the explicit form of Sab is provided in Eq. (K13). The
dynamical action in Eq. (83) is markedly pairwise additive,
as it is only written in terms of one- and two-body terms.
Moreover, it is exact for any value of the coupling λ. We can
thus conclude that higher-order corrections which we have not
included in our perturbative calculation will have the effect
of renormalizing the (pairwise) interaction potential, but they
will not introduce any additional multi-body interaction. In
this respect, the conclusions of Ref. [13] readily extend also
out of equilibrium.
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VIII. SUMMARY AND CONCLUSIONS

In this work we considered two Brownian particles inter-
acting with the same fluctuating field, which are therefore
subject to field-mediated forces: these might be used to induce
synchronization when one of the two particles is externally
driven. In equilibrium, these forces can be obtained by in-
tegrating out the field degrees of freedom from the system
composed by the particles and the field: in this adiabatic
approximation, the effective Langevin dynamics of the par-
ticles remains Markovian. The same holds if the medium is
not instantaneously in equilibrium, but still characterized by a
relaxation timescale which is short compared to that charac-
terizing the motion of the particles. However, if the relaxation
time of the medium becomes longer, then the adiabatic ap-
proximation fails and different techniques are needed to study
the (nonequilibrium) dynamics of the tracer particles.

We exemplified these facts by studying a simple model
in which a scalar Gaussian field is linearly coupled to two
overdamped Brownian particles kept spatially separated by
two confining harmonic traps (Fig. 1). One of the two traps
is driven periodically with a tunable frequency �, which al-
lows us to probe the dynamical response of the other particle
over a range of frequencies which spans across the various
timescales of the system. As the field approaches its critical
point r = 0, its relaxation timescale diverges and one observes
a gradual departure from the condition of adiabatic response
presented above.

Within a weak-coupling expansion, we derived the master
equation (31) which describes the dynamics of the nondriven
particle in the nonequilibrium periodic state attained by the
system at long times. This can be used to determine the cu-
mulant generating function of the particle position reported in
Eq. (36), from which one can deduce, inter alia, the average
and variance of the actual dynamical response of the particle
given in Eqs. (40) and (41), respectively.

The latter has to be compared to the adiabatic response
in Eq. (52), which we derived in Sec. IV under the assump-
tion of fast field relaxation. Its behavior as a function of the
driving frequency � is analogous to that of a low-pass filter
in circuit electronics (Fig. 5), and therefore we focus on its
dependence on the field correlation length ξ = r−1/2 (Fig. 4):
the amplitude of the oscillations induced on the particle in
the fixed trap presents a peak when ξ ∼ �, where � is the
average separation between the two traps, while it decays to
zero for both larger and smaller values of ξ . Observing the
response of such a particle then becomes a way to probe the
effective potential Vc(x) induced between the two particles by
the presence of the field, see Eq. (50) and Fig. 2. Since Vc(x) is
nonlinear, interesting phenomena such as frequency doubling
can occur under periodic driving (see Sec. IV C 2).

Conversely, the behavior of the actual dynamical response
as a function of � is significantly richer and it is determined
by the interplay between the various timescales characterizing
the system. In particular, these are the relaxation time of
the colloid in its trap [see Eq. (15)], the timescale set by
the external driving �, and the relaxation times of the field
[see Eq. (16)] across the typical length scales of the sys-
tem: the field correlation length ξ , the average separation �

between the two traps, the radius R and the mean square

displacement of the colloid in the trap [see Eq. (44)]. In Sec. V
we study in detail the amplitude (Figs. 6 and 8) and the phase
(Figs. 9 and 10) of this dynamical response. In particular, the
amplitude of the oscillations displays a peak when the driving
frequency � matches the relaxation timescale of the field over
a length scale of the order of � (see Fig. 8). Moreover, for
sufficiently slow driving, the phase ϕ1 is shown to display
a linear dependence on � [see Fig. 10 and Eq. (77)]. Both
these features are not captured by the adiabatic response,
whose amplitude decays monotonically upon increasing �,
and whose phase θ1 is �-independent. Finally, a clear effect
of retardation is visible in the behavior of the phase ϕ1 in the
limit of fast driving �, where the dynamical response predicts
a π/2 phase shift with respect to the adiabatic approximation
(see Fig. 9).

In passing, we interpret these results in terms of the
effective field (see Sec. III C): within the weak-coupling ap-
proximation, one can study the dynamics of a tracer particle
as if it were immersed in the effective field generated by the
motion of all the other particles coupled to the same field,
which can be treated as source terms. In fact, it turns out that
the excitations generated by each of these moving particles
contribute additively to the average effective field given in
Eq. (42). This feature persists beyond the perturbative regime,
as we verified in Sec. VII by computing the dynamical func-
tional which describes the many-particle dynamics for any
value of the coupling constant λ, and checking that it does
not give rise to genuine many-body effects.

We finally checked the accuracy of the perturbative ap-
proach by comparing its analytical predictions with the results
of the numerical integration of the coupled equations of mo-
tion, finding in general a good agreement (see Fig. 11).

We conclude by noting that not only the kind of systems
investigated here are well within the reach of current ex-
periments [53], but a similar setup has in fact already been
studied in Ref. [39], where the motion of silica particles im-
mersed in a near-critical binary liquid mixture was observed
by video-microscopy, and synchronization of their motion
under external driving was reported upon approaching the
critical point.

The simplified model considered here does not account for
hydrodynamic effects, which are expected to be relevant in
actual fluid media, and moreover one should go beyond the
Gaussian approximation to describe the dynamics of a binary
liquid mixture in the vicinity of a critical point. Future works
will then address these issues and possibly include also the ef-
fects of activity [13,54,55] or anisotropies which the particles
may additionally display. Addressing the case of a quadratic
instead of a linear field-particle coupling is also relevant [24],
since it is closer to the effect of imposing Dirichlet boundary
conditions on the field fluctuations, which is another typical
setting for critical Casimir forces [3,11].
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APPENDIX A: INDEPENDENT PROCESSES

We revise here the well-known solutions of the inde-
pendent processes which we obtain by setting the coupling
constant λ = 0. These are also the O(λ0) expressions in our
perturbative calculation. Averages over the independent pro-
cesses are denoted as 〈. . .〉0 in the main text.

1. Brownian motion in a harmonic potential

The motion of a Brownian particle in a (possibly moving)
harmonic potential is ruled by the Ornstein-Uhlenbeck pro-
cess. Its Langevin equation reads

Ẋ(t ) = −νk[X − XF (t )] + ξ(t ), (A1)

where ξ(t ) is a Gaussian variable with zero mean and

〈ξi(t )ξ j (t
′)〉 = 2νT δi jδ(t − t ′). (A2)

Each component Xj of the particle position X is ruled by an in-
dependent Gaussian and Markovian process. The propagator
P1|1(X, t |X0, t0) is thus Gaussian, with

P1|1(X, t |X0, t0) =
[

1√
2πσ (t )

]d

exp

[
−|X − m(t )|2

2σ 2(t )

]
,

(A3)

where the symbol (. . . | . . . ) indicates a conditional average.
This expression contains the expectation value m(t ) of the
particle position

m(t ) ≡ 〈X(t )|X(t0) = X0〉

= X0e−γ (t−t0 ) + γ

∫ t

t0

ds e−γ (t−s)XF (s), (A4)

and its variance which is, due to the isotropy of the problem,
the same for each component Xj :

σ 2(t ) ≡ 〈
X 2

j (t )
∣∣Xj (t0) = (X0) j

〉− m2
j (t ) = T

k

[
1− e−2γ (t−t0 )

]
.

(A5)

Above we called for brevity γ ≡ νk and assumed the particle
to start at time t = t0 at position X(t = t0) = X0.

Note that, in general,

P1|1(X, t |X0, t0) = P1|1(X, t − t0|X0, 0), (A6)

because of the explicit time dependence in XF (t ), which
breaks the time-translational invariance of the problem.

Let us also compute here, by means of the Langevin
equation (A1), the connected two-time correlation function

C(t1, t2) ≡ 〈
X (0)

j (t1)X (0)
j (t2)

〉
c

= 〈[
X (0)

j (t1) − 〈
X (0)

j (t1)
〉][

X (0)
j (t2) − 〈

X (0)
j (t2)

〉]〉
= T

k

[
e−γ |t2−t1| − e−γ (t1+t2−2t0 )

]
. (A7)

a. Periodic forcing

Consider now the motion of X(t ) �→ Z(t ) when it is forced
sinusoidally as in Eq. (17). Setting X0 = 0, it is straightfor-

ward to obtain

m(t ) = 〈Z(t )〉0 = �
[
1 − e−γz (t−t0 )

]
+ A

[
sin(�t − θz ) − sin(�t0 − θz )e−γz (t−t0 )]

−−−−→
t0→−∞ � + A sin(�t − θz ), (A8)

where we defined the phase shift θz as in Eq. (39). In the
deterministic limit where kz → ∞, the particle simply follows
the external forcing with no delay (θz → 0) and we recover
〈Z(t )〉0 = ZF (t ).

b. n-time correlation functions

The knowledge of the one- and two-time correlation func-
tions is sufficient to write down the generating functional
Z[ j] for any Gaussian process: for each scalar component
Xi(t ) �→ x(t ), it reads

Z[ j] = 〈e
∫

ds j(s)x(s)〉

=
∫

Dx(s)e−SOM[x(τ )]+∫
ds j(s)x(s)

= e
1
2

∫
ds1ds2 j(s1 )C(s1,s2 ) j(s2 )+∫

ds j(s)m(s), (A9)

where we averaged the source term j(x) over the Onsager-
Machlup dynamical functional [57]

SOM[x(τ )]

≡ 1

2

∫
ds1ds2[x(s1) − m(s1)]C−1(s1, s2)[x(s2) − m(s2)]

(A10)

and where we normalized the integration measure Dx(s) so
that Z[ j = 0] = 1. We can use the generating functional to
compute a generic n-time expectation value over the indepen-
dent process and, in particular,

〈eiq·X(t )〉0 =
d∏

j=1

〈eiq j Xj (t )〉0, (A11)

which enters the master equation (23). Indeed, each factor can
be computed as

〈eiq j Xj (t )〉0 = Z[ j(s) = iq jδ(s − t )] = e− q2
j

2 C(t,t )eiq j mj (t ),

(A12)
and thus we find

〈eiq·X(t )〉0 = e− q2

2 C(t,t )eiq·m(t ). (A13)

Similarly, the average

Qq(s1, s2) ≡ 〈eiq·[X(0) (s2 )−X(0) (s1 )]〉 =
d∏

n=1

〈eiqn[Xn(s2 )−Xn(s1 )]〉0,

(A14)

which intervenes in the derivation of 〈Y(t )〉 in Appendix B,
can be dealt with as

〈eiqn[Xn(s2 )−Xn(s1 )]〉0 = Z[ j = j∗], (A15)

where we introduced

j∗(s) ≡ iqn[δ(s − s2) − δ(s − s1)], (A16)

044112-16



INDUCING OSCILLATIONS OF TRAPPED PARTICLES IN … PHYSICAL REVIEW E 106, 044112 (2022)

and a straightforward calculation gives

Qq(s1, s2) = eiq·[m(s2 )−m(s1 )]

× e− q2

2 [C(s1,s1 )+C(s2,s2 )−2C(s1,s2 )]. (A17)

Here the expectation value of the position m(t ) is given in
Eq. (A4), while we may write explicitly, in terms of the
correlation function C(s1, s2) defined in Eq. (A7),

e− q2

2 [C(s1,s1 )+C(s2,s2 )−2C(s1,s2 )]

−−−−→
t0→−∞ exp

[
−T q2

k

(
1 − e−γ |s2−s1|)]. (A18)

2. Dynamics of the free-field

The Langevin equation (8) for the field reads, at O(λ0) and
in Fourier space,

φ̇q = −αqφq + ζq, (A19)

where αq is defined in Eq. (16) and noise correlations are
given in Eq. (9). The problem is formally identical to that of
the Ornstein-Uhlenbeck particle, so that by setting for sim-
plicity φq(t0) ≡ 0 (a choice which is inconsequential in the
long-time periodic state on which we will focus below) one
can easily derive

〈φq(s1)φp(s2)〉0 = δd (p + q)Cq(s1, s2), (A20)

where Cq(s1, s2) is the free-field correlator defined in Eq. (29).
By construction, Cq(s1, s2) = Cq(s2, s1); by formally taking
the limit t0 → −∞ in Eq. (29), one obtains the equilibrium
correlator Cq(τ ) given in Eq. (30), which is a function of the
time difference τ = s2 − s1 only.

It is also customary [49] to define the response function
Gq(t ) and linear susceptibility χq(t ) of the free-field as in
Eqs. (19) and (27), respectively; their time-translational in-
variance derives from that of the equation of motion. They
are linked to the equilibrium correlator in Eq. (30) by the
fluctuation-dissipation theorem

T χq(τ ) = −�(τ )
∂

∂τ
Cq(τ ), (A21)

where we indicated by �(s) the Heaviside theta function. It is
finally straightforward to derive the relation

Cq(s1, s2) = �φ (q)
∫ min(s1,s2 )

t0

du Gq(s1 − u)G−q(s2 − u),

(A22)
where we named the noise amplitude in Eq. (9)

�φ (q) ≡ 2DT qα, (A23)

and which becomes, in equilibrium and in Fourier space,

Cq(ω) = �φ (q)Gq(ω)G−q(−ω). (A24)

APPENDIX B: WEAK-COUPLING EXPANSION

In this Appendix we illustrate how the coupled dynamics
of the field and the particles can be studied by expanding
their coordinates in powers of the coupling constant λ, as in
Eq. (18), and similarly to what was done in Refs. [36,37].

Plugging these expansions into the equations of motion of the
particles, Eqs. (10) and (11), one finds

Ẋ(0)
a (t ) = −νkX(0)

a (t ) + ξ(t ), (B1)

Ẋ(n)
a (t ) = −νkX(n)

a (t ) + νf (n−1)
a (t ), (B2)

with a = y, z, and where we defined

f (n)
a (t ) ≡ 1

n!

dn

dλn

∣∣∣∣
λ=0

fa(t ). (B3)

Equation (B1) is solved by the Ornstein-Uhlenbeck process,
as discussed in Appendix A, while the higher-order correc-
tions can be formally expressed as

X(n)
a (t ) = ν

∫ t

t0

ds e−γ (t−s)f (n−1)
a (s). (B4)

Similarly, the Langevin equation (8) for the field in Fourier
space becomes, order by order in λ,

∂tφ
(0)
q (t ) = − αqφ

(0)
q (t ) + ζq(t ), (B5)

∂tφ
(n)
q (t ) = −αqφ

(n)
q (t )+ Dqα

(n− 1)!

∑
a=y,z

V (a)
q

dn−1

dλn−1

∣∣∣∣
λ=0

e−iq·Xa .

(B6)

The dynamics of the decoupled field φ(0)
q (t ) has been dis-

cussed in Appendix A, while the equation of motion for
φ(1)

q (t ) can be formally solved as

φ(1)
q (s) = Dqα

∑
a=y,z

V (a)
q

∫ s

t0

dτ e−αq (s−τ )e−iq·X(0)
a (τ ). (B7)

Let us derive, as an example, the average particle position
〈Y(t )〉, which is given by

〈Y(t )〉 = 〈Y(0)(t )〉 + λ〈Y(1)(t )〉 + λ2〈Y(2)(t )〉 + O(λ3).
(B8)

In the setting described in Sec. II we have 〈Y(0)(t )〉 = 0, and
one can argue by symmetry under

{λ ↔ −λ, φ ↔ −φ} (B9)

that 〈Y(1)(t )〉 = 0 [36]. The leading order contribution then
reads

〈Y(2)(t )〉 = S1 + S2 + S3, (B10)

with

S1 = iνy

∫
dd q

(2π )d
qV (y)

q V (y)
−q

∫ t

t0

ds2e−γy (t−s2 )

×
∫ s2

t0

ds1χq(s2 − s1)Q(y)
q (s1, s2), (B11)

S2 = iν2
y

∫
dd q

(2π )d
qq2V (y)

q V (y)
−q

∫ t

t0

ds2

×
∫ s2

t0

ds1e−γy (t−s1 )Cq(s1, s2)Q(y)
q (s1, s2), (B12)

S3 = iνy

∫
dd q

(2π )d
qV (z)

q V (y)
−q

∫ t

t0

ds2e−γy (t−s2 )

×
∫ s2

t0

ds1χq(s2 − s1)ϕ(z)
−q(s1)ϕ(y)

q (s2). (B13)
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The only subtle point in this calculation is the observation that,
as we take the expectation values over the stochastic noises,〈

φ(0)
q (s2)φ(0)

q (s1)eiq·[Y(0) (s2 )−Y(0) (s1 )]
〉

= 〈φq(s2)φq(s1)〉0〈eiq·[Y(s2 )−Y(s1 )]〉0, (B14)

because at O(λ0) the various processes are independent.
Hence, we defined

Q(y)
q (s1, s2) ≡ 〈eiq·[Y(s2 )−Y(s1 )]〉0, (B15)

ϕ(y)
q (t ) = 〈eiq·Y(t )〉0, (B16)

which have been computed in Appendix A 1 b, while the func-
tions χq(s1, s2) and Cq(s1, s2) are the dynamical susceptibility
of the free-field and its correlator introduced in Eqs. (27) and
(29), respectively.

We now observe that in the absence of a second colloid Z
one expects 〈Y(t → ∞)〉 = 0 at equilibrium. Indeed, it was
proved in Ref. [37] (and we will discuss this further below in
Appendix C 2) that the equilibrium distribution of a single par-
ticle is not affected by the presence of the field and it remains
the canonical one, given by Peq(Y) = exp(−βkyY 2/2). But in
fact the quantities S1 and S2 in Eqs. (B11) and (B12) do not
depend on Z(t ), so they are the same whether we add a second
particle to the problem or not. Accordingly, we conclude that

S1, S2 −−−−→
t→+∞ 0. (B17)

The average position in the periodic state attained at long
times is then described by the third contribution only, i.e.,
〈Y(2)(t )〉 = S3, which coincides with the expression we de-
rived in Sec. III B, see Eq. (34).

APPENDIX C: MASTER EQUATION

In this Appendix we provide details on the derivation
and solution of the master equation for P1(y, t ) discussed in
Sec. III.

1. Derivation of the master equation

The master equation (23) can be derived from Eq. (22) by
evaluating each of the terms which appear on its right-hand
side (r.h.s.). The first one reads simply

〈δ(y − Y(t ))Y(t )〉 = yP1(y, t ), (C1)

where the average is intended over all possible realizations of
the stochastic noises ζq(t ) and ξy,z(t ), and similarly

〈δ(y − Y(t ))eiq·Y(t )〉 = eiq·yP1(y, t ). (C2)

To obtain the first nontrivial correction of O(λ2), it is suffi-
cient to compute up to O(λ0) the term

〈δ(y − Y(t ))eiq·Z(s)〉0 = 〈eiq·Z(s)〉0P1(y, t ), (C3)

where we used the fact that the processes for Y and Z with
λ = 0 are independent, and the remaining average on the r.h.s.
of Eq. (C3) is meant over the noise ξ(z)(t ) only. Expectation
values involving the noises ξ(y)(t ) and ζ (t ) can be handled by

taking path-integrals over the stochastic actions [49]

Sξ [ξ] = 1

2�y

d∑
i=1

∫
dτ ξ 2

i (τ ), (C4)

Sζ [ζ ] = 1

2

∫
dd q

(2π )d

∫
dτ

ζq(τ )ζ−q(τ )

�φ (q)
, (C5)

where �y ≡ 2νyT and �φ (q) is given in Eq. (A23). For in-
stance, calling for brevity ξ(y) ≡ ξ,

〈δ(y − Y(t ))ξi(t )〉 =
∫

Dξ δ(y − Y(t ))ξi(t )e−Sξ [ξ]

= −�y

∫
Dξ δ(y − Y(t ))

δ

δξi(t )
e−Sξ [ξ]

= �y

〈
δ

δξi(t )
δ(y − Y(t ))

〉
= −�y∇y ·

〈
δ(y − Y(t ))

δY(t )

δξi(t )

〉
. (C6)

Using the equation of motion (10) for Y(t ), it is then easy to
derive

δYj (t )

δξi(t )
=
∫ t

t0

ds e−γy (t−s)δi jδ(t − s) = 1

2
δi j, (C7)

whence

〈δ(y − Y(t ))ξ(t )〉 = −�y

2
∇yP1(y, t ). (C8)

We have adopted the Stratonovich convention in Eq. (C7),
but this does not affect the resulting Fokker-Planck equa-
tion because the noise ξ enters additively in the Langevin
equation (10) for the particle Y [44]. Similarly,

〈δ(y − Y(t ))ζq(s)〉

= −�φ (q)
∫

Dζ δ(y − Y(t ))
δ

δζ−q(s)
e−Sζ [ζ]

= −�φ (q)∇y · 〈δ(y − Y(t ))
δY(t )

δζ−q(s)
〉, (C9)

and using the effective Langevin equation for Y(t ) one obtains

δY(t )

δζ−q(s)
= iνyλ

∫ t

t0

ds2e−γy (t−s2 )
∫

dd p

(2π )d
pV (y)

−p

× δ

δζ−q(s)

[
φp(s2)eip·Y(s2 )

]
. (C10)

From Eqs. (10) and (20) it follows that

δ

δζ−q(s)

[
φp(s2)eip·Y(s2 )]

= eip·Y(s2 ) δφp(s2)

δζ−q(s)
+ O(λ)

= eip·Y(s2 )
∫ s2

t0

ds1Gp(s2 − s1)δd (p + q)δ(s1 − s) + O(λ)

= eip·Y(s2 )Gp(s2 − s)δd (p + q) + O(λ), (C11)
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so we can express

〈δ(y − Y(t ))ζq(s)〉 = iνyλ�φ (q)V (y)
q q

∫ t

t0

ds2e−γy (t−s2 )

× Gq(s2 − s)∇y〈δ(y − Y(t ))e−iq·Y(s2 )〉 + O(λ2). (C12)

Note that in the calculation above there has been no need
to specify the Itô or Stratonovich interpretation, because the
noise ζq(s) gets integrated over the past times in the effective
Langevin equation for Y derived as explained in Sec. III A: the
non-Markovianity renders such a specification unnecessary
[58,59]. Finally, we interpret

〈δ(y − Y(t ))eiq·Y(s)〉 =
∫

Y(t )=y
DY(τ ) eiq·Y(s)

=
∫

dx eiq·xP2(y, t ; x, s), (C13)

where the path integral is intended over all possible real-
izations of the process Y(τ ), conditioned to the constraint
Y(t ) = y. Putting together the various terms, e.g., Eqs. (C1) to
(C3), (C8), (C12), and (C13) and using Eq. (A22), we finally
arrive at the master equation in Eq. (23). Note that a term of
O(λ3) in the marginal distribution P(y, t ) is forbidden by the
symmetry in Eq. (B9), so that the next perturbative correction
is at least of O(λ4).

A hierarchy of master equations linking the n-time corre-
lation function Pn with Pn+1 can be obtained starting from the
definition [46]

Pn(xn, tn; . . . ; x1, t1) = 〈δ(xn − Y(tn)) . . . δ(x1 − Y(t1))〉
(C14)

and acting as

∂t j Pn(xn, tn; . . . ; y, t j ; . . . ; x1, t1)

= −∇y · 〈δ(xn − Y(tn)) . . . δ(x1 − Y(t1))Ẏ(t j )〉. (C15)

The result of this procedure is completely analogous to
Eq. (23) upon replacing P1 → Pn and P2 → Pn+1.

To check the accuracy of the master equation (23), we can
use it to predict the expectation value of the position 〈Y(t )〉
when Y(t = t0) = 0 and the second particle Z is decoupled
from the system (i.e., with V (z)

q = 0). This quantity was re-
cently derived in Ref. [37] via a weak-coupling expansion
such as the one in Appendix B. One starts by replacing the
two-point function P2(y, t ; x, s) in Eq. (23) by its O(λ0) ap-
proximation,

P2(y, t ; x, s) = P1|1(y, t |x, s)P1(x, s) + O(λ2), (C16)

where we used the fact that the independent (λ = 0) process is
Markovian, P1|1 is the Ornstein-Uhlenbeck propagator given
in Eqs. (A3)–(A5), and P1(x, s) is chosen to be the thermal
equilibrium distribution of the particle Y in its harmonic trap
[see cf. Eq. (C25)]. By using equation (C16), the master equa-
tion (23) becomes a Fokker-Planck equation which can be
used to compute 〈Y(t )〉: a straightforward calculation renders
the same result as in Eq. (24) of Ref. [37], as expected.

2. Irrelevance of the memory kernel in the periodic
state up to O(λ2 )

Here we prove that the non-Markovian term in the master
equation (23) containing the memory kernel L(t − s) can be
discarded in the periodic state. To do this, we need to use a
result derived in Refs. [36,37], which we briefly report here.

Consider a single particle coupled to a fluctuating scalar
field via a translationally invariant coupling (for instance,
consider the setup studied in this work, but with the second
particle Z decoupled from the field). Suppose that the joint
Hamiltonian has the form

H[φ, X] = Hφ[φ] + U (X) − λHint[φ, X], (C17)

where Hφ[φ] describes the field in the bulk (not necessarily
Gaussian), and U (X) is a confining particle potential, for
example U (X) = kX 2/2 in the case considered here. Finally,
Hint describes the interaction between the field and the particle
via a possibly nonlinear coupling

Hint[φ, X] =
∫

dd x F [φ(x)]V (x − X), (C18)

where F [φ(x)] is a quasilocal functional of φ. Importantly,
Hint is translationally invariant, in the sense that

Hint[φ(x), X] = Hint[φ(x − a), X + a]. (C19)

Note that the interacting Hamiltonian in Eq. (4) satisfies these
requirements.

Under these hypotheses, one can show [36,37] that the
marginal equilibrium distribution of the particle alone reads
simply

Peq(X) ∝ exp[−βU (X)], (C20)

i.e., that the interaction with the field does not affect the
equilibrium distribution of the particle. This argument does
not apply if the system is not translationally invariant, as it
happens, for instance, in the presence of boundaries or con-
finement [38,60]. However, this result does not rely on the
linearity of the field-particle coupling, nor on the fact that the
field is Gaussian, and not even on the particular choice of a
quadratic particle potential U (X).

Turning back to the master equation for Y(t ) in Eq. (23),
let us now set initially V (z)

q ≡ 0, so that the second particle is
decoupled from the problem. The master equation then reads
at long times

∂t P1(y, t ) =L0P1(y, t ) + λ2
∫ ∞

0
du

∫
dxL(y − x, u)

× P2(y, t ; x, t − u) + O(λ4), (C21)

where we called u ≡ t − s and sent t0 → −∞, and where
the operators L0 and L were given in Eqs. (24) and (28),
respectively. In the absence of any external forcing, the system
will reach a state of thermal equilibrium with a stationary
probability distribution P1,eq satisfying ∂t P1,eq(y) ≡ 0: this has
to be the case order by order in the coupling constant λ. In
particular, we read at O(λ2)

0 ≡ L0P(2)
1,eq(y)+

∫ ∞

0
du

∫
dxL(y − x, u)P(0)

2,eq(y, t ; x, t − u),

(C22)
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where the superscript indicates the order in the expansion
in powers of λ. However, we know a priori (see discussion
above) that the stationary distribution of a single particle in
thermal equilibrium with a fluctuating field reads simply

P1,eq(Y) ∝
∫

Dφ e−βH[φ,Y] ∝ e−βkyY 2/2. (C23)

Here we deduce in particular that P(2)
1,eq(y) = 0, and thus we

can conclude that∫ ∞

0
du

∫
dxL(y − x, u)P(0)

2,eq(y, t ; x, t − u) ≡ 0. (C24)

Switching on the coupling V (z)
q , so as to include the sec-

ond particle into the problem, has actually no effect on
P2,eq(y, t ; x, t − u) at O(λ0)—this can be deduced by looking
at its master equation, see Appendix C 1. Accordingly, we
conclude that Eq. (C24) must still hold true in the periodic
state, up to O(λ2).

3. Solution of the master equation in the periodic state

In this Appendix we look for a perturbative solution of the
master equation (31) in powers of the coupling constant λ.
To lighten the notation, we will drop the subscript y from the
constants ν and k, and simply add the subscript z when we are
referring to the second colloid Z. Notice first that Eq. (31) is
solved at the lowest order by the stationary distribution of the
Ornstein-Uhlenbeck process (see Appendix A 1):

P(0)
1 (y) = (2πT/k)−d/2 exp(−ky2/2T ). (C25)

The effect of the external perturbation only appears at the next
perturbative order as

∂t P
(2)
1 (y, t ) = L0P(2)

1 (y, t ) + Lz(t )P(0)
1 (y, t ), (C26)

with L0 and Lz given in Eqs. (24) and (25), respectively.
The Green function of the operator LOU ≡ ∂t − L0 is simply
the Ornstein-Uhlenbeck propagator in Eq. (A3), henceforth
denoted as P(0)

1|1 , so that the solution of Eq. (C26) after an initial
transient will read

P(2)
1 (y, t ) =

∫
dx

∫ t

−∞
dt ′P(0)

1|1 (y, t |x, t ′) fs(x, t ′), (C27)

where we introduced the source term

fs(y, t ) ≡ Lz(t )P(0)
1 (y, t ). (C28)

Using the definition of Lz(t ) given in Eq. (25) and integrating
by parts, it is straightforward to check that∫

dy P(2)
1 (y, t ) = 0, (C29)

which shows that the normalization condition
∫

dyP1(y, t ) =
1 is still satisfied.

Since the operator LOU is time-translational invariant, then
so will be its propagator P(0)

1|1 (y, t |x, t ′) = P(0)
1|1 (y, τ |x, 0), with

τ ≡ t − t ′. As a result, Eq. (C27) takes the form of a convo-
lution over the time domain. The integration over the spatial

degrees of freedom can be readily performed by noting that∫
dx P(0)

1|1 (y, τ |x, 0)∇x
[
e−iq·xP(0)

1 (x)
]

= −
∫

dx e−iq·xP(0)
1 (x)∇xP(0)

1|1 (y, τ |x, 0)

= e−γ τ∇y

∫
dx e−iq·xP(0)

1 (x)P(0)
1|1 (y, τ |x, 0)

= e−γ τ∇yP(0)
1 (y) exp[−iq · ye−γ τ − q2σ 2(τ )/2], (C30)

where σ (τ ) is given in Eq. (A5) and where we used Gaussian
integration in the last line. We thus find

P(2)
1 (y, t ) = ∇y ·

[
νP(0)

1 (y)
∫

dd q

(2π )d
iqv(q)

×
∫ t

−∞
dt ′F (z)

q (t ′)e−γ τ e−iq·ye−γ τ −q2σ 2(τ )/2

]
,

(C31)

with F (z)
q (t ) and v(q) defined in Eqs. (32) and (35), respec-

tively.
As usual, knowing P1(y, t ) allows one to compute expecta-

tion values of one-time observables O(Y) as

〈O(Y)(t )〉 =
∫

dy O(y)
[
P(0)

1 (y) + λ2P(2)
1 (y, t )

] + O(λ3).

(C32)
Instead of applying ∇y to the r.h.s. of Eq. (C31), we notice
that we can simply integrate by parts in dy and trade it for
∇yO(y) in Eq. (C32), which is generally simpler. For instance,
the expectation value of the position O(y) = y will be given
by

〈Y(t )〉 = −νλ2
∫

dd q

(2π )d
iqv(q)e− T q2

2k

×
∫ t

−∞
dt ′F (z)

q (t ′)e−γ (t−t ′ ), (C33)

and its variance O(y) = y2
j by

〈Y 2
j (t )〉 = T

k

[
1 − 2νλ2

∫
dd q

(2π )d
q2

jv(q)e− T q2

2k

×
∫ t

−∞
dt ′F (z)

q (t ′)e−2γ (t−t ′ )
]
. (C34)

This shows how the preliminary result in Eq. (C31) can be
used in practical calculations for a generic choice of F (z)

q (t ).
Below we will focus instead on the particular case of periodic
driving.

a. Periodic driving

We have already observed that the time integral in
Eq. (C31) is a convolution between F (z)

q (t ) and a nonperiodic
function which we will denote as

H (τ ) ≡ �(τ )h(τ ) ≡ �(τ )e−γ τ e−iq·ye−γ τ −q2σ 2(τ )/2, (C35)

the Fourier transform of which reads

H̃ (ω) ≡
∫ ∞

−∞
dτ e−iωτ h(τ )�(τ ) =

∫ ∞

0
dτ e−iωτ h(τ ).

(C36)
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Now let us choose F (z)
q (t ) to be periodic with period T =

2π/�, so that we can expand it in Fourier series as

F (z)
q (t ) =

∑
n∈Z

an(q)ein�t , (C37)

where the values of the coefficients an(q) depend on the spe-
cific form of the external forcing applied to the particle Z(t )
in Eq. (32) (further below we will focus on the specific case
of monochromatic forcing). The Fourier transform of F (z)

q (t )
will then read

F (ω) =
∑
n∈Z

an(q)δ(ω − n�), (C38)

and we can transform the convolution in Eq. (C31) into a
product in Fourier space. This gives

P(2)
1 (y, t ) = ∇y ·

[
νP(0)

1 (y)
∫

dd q

(2π )d
iqv(q)

×
∫ ∞

−∞
dt ′F (z)

q (t ′)H (t − t ′)
]

= ∇y ·
[
νP(0)

1 (y)
∫

dd q

(2π )d
iqv(q)

×
∫

dω

2π

∑
n

an(q)δ(ω − n�)H̃ (ω)eiωt

]

=
∑
n∈Z

[
∇y · νP(0)

1 (y)

×
∫

dd q

(2π )d
iqv(q)an(q)H̃ (n�)

]
ein�t ,

(C39)

where in H̃ (ω) we understand a further dependence on q
and y. One can also obtain an expression for the moment
generating function by using Gaussian integration,

〈e−ip·Y(t )〉 = e− T p2

2k

[
1 − νλ2

∑
n

Cn(p)ein�t

]
+ O(λ4),

(C40)
where we introduced

Cn(p) ≡
∫

dd q

(2π )d
e− T q2

2k v(q)an(q)An(p · q), (C41)

and where the function An(p · q) was given in Eq. (37). We
can use the moment generating function to compute the mean
displacement of the colloid,

〈Y(t )〉 = i∇p〈e−ip·Y(t )〉
∣∣∣∣
p=0

� −νλ2
∑
n∈Z

[∫
dd q

(2π )d
iqe− T q2

2k v(q)
an(q)

γ + in�

]
ein�t .

(C42)

Connected correlations can be obtained from the cumulant
generating function, which reads, up to the first nontrivial
order in λ,

ln〈e−ip·Y(t )〉 � −T p2

2k
− νλ2

∑
n∈Z

Cn(p)ein�t . (C43)

For instance, the variance can then be retrieved as

〈Y 2
j (t )〉c = − ∂2

∂ p2
j

ln〈e−ip·Y(t )〉|p=0

� T

k

{
1 − νλ2

∑
n∈Z

[∫
dd q

(2π )d
q2

j e
− T q2

2k
v(q)an(q)

2γ + in�

]
ein�t

}
.

(C44)

b. Monochromatic forcing

Motivated by the setting described in Sec. II, we consider
here a sinusoidal forcing term ZF (t ) as in Eq. (17). To cal-
culate explicitly the various quantities discussed above, we
need to determine the coefficients of the Fourier series of the
function F (z)

q (t ), i.e.,

an(q) ≡ (
ein�t , F (z)

q (t )
)
, (C45)

where we introduced the scalar product

( f (t ), g(t )) = �

2π

∫ 2π/�

0
dt f ∗(t )g(t ). (C46)

Recall the definition of F (z)
q (t ) in Eq. (32), where the expecta-

tion value of 〈exp[iq · Z(t )]〉0 was computed in Appendix A 1
and is given in Eq. (38) for the case of a sinusoidal forcing.
Using the properties of the Bessel functions of the first kind
Jn(z) [61], one can prove the relation(

ein�t , eiz sin[�(t−u)]
) = e−in�uJn(z), (C47)

so that the Fourier coefficients in Eq. (C45) take the form

an(q) = Dqα Jn(q · A)

αq + in�
eiq·� exp

(
−T q2

2kz
− inθz

)
. (C48)

For n = 0 the coefficient does not depend on the dynamics
of the field (α = 0 or α = 2), and one recovers the adiabatic
mean value in Eq. (62). Notice also that, in the deterministic
limit kz → ∞, one has exp[−T q2/(2kz ) − inθz] → 1.

APPENDIX D: EFFECTIVE FIELD PICTURE

In this Appendix we analyze the dynamics of the colloid Y
as if it were immersed into the effective field

φeff
q (t ) =

∫ t

−∞
ds Gq(t − s)

[
λDqαV (z)

q e−iq·Z(s) + ζq(s)
]
.

(D1)
In this expression the second colloid Z(t ) is treated as a
source, on the same footing as the noise ζq(t ). We take for
simplicity the deterministic limit kz → ∞ for the motion of
the second colloid, so that it appears clearly that the field in
Eq. (D1) is Gaussian with mean value〈

φeff
q (t )

〉 = λV (z)
q

∫ ∞

0
du χq(u)e−iq·ZF (t−u)

= λV (z)
q F (z)

−q (t ), (D2)

and (connected) correlations which are analogous to those of
the free-field (see Appendix A 2). The function F (z)

−q (t ) was
defined in Eq. (32). Plugging this expression for the average
field 〈φeff

q (t )〉 into the Langevin equation (10) for the colloid
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Y, we get

Ẏ(t ) = − γyY(t ) + ξ(y)(t )

+ νyλ

∫
dd q

(2π )d
iqV (y)

−q 〈φeff
q (t )〉eiq·Y(t ). (D3)

Notice that we are treating the field φeff as if it were indepen-
dent of the variable Y(t ), and that by using 〈φeff

q (t )〉 in place of
φeff

q (t ) we are practically ignoring its thermal fluctuations. It
is however rather straightforward (see, e.g., Ref. [44]) to show
that Eq. (D3) is equivalent to the Fokker-Planck equation (31)
satisfied by the colloid up to O(λ2) in the periodic state.
That the thermal fluctuations of the field do not enter at all
the Fokker-Planck equation (up to and including O(λ2)) may
look surprising at first sight. However, this is actually con-
sistent with the fact that such fluctuations do not modify the
equilibrium distribution of the colloid in the absence of any
external forcing (see discussion in Appendix C 2). Indeed, the
field does not know that the particle Y is not in equilibrium,
because its displacement is already of O(λ2): any feedback
effect would only appear at higher perturbative orders in the
coupling constant.

APPENDIX E: UPPER BOUND ON THE VALUE OF λ

In Sec. III B we derived an expression for the variance of
the particle position, Eq. (41), which takes the form

〈Y 2
j (t )〉c = T

ky
(1 − λ2A) (E1)

upon calling

A ≡
∑
n∈Z

νD

2γy + in�
ein(�t−θz )

×
[∫

dd q

(2π )d

q2
j q

αv(q)Jn(q · A)

αq + in�
e− T q2

2kp
+iq·�

]
. (E2)

Up to this order in λ, a necessary condition for the
variance to be positive is λ2A � 1. Calling g(q) ≡
q2

jv(q) exp[−T q2/(2kp)], it is simple to derive an upper
bound for

|A| �
∑
n∈Z

∫
dd q

(2π )d

Dqαg(q)Jn(q · A)√
α2

q + (n�)2
√

(2γy)2 + (n�)2

�
∫

dd q

(2π )d

Dqαg(q)

2γyαq

∑
n∈Z

Jn(q · A) = 1

2γy

∫
dd q

(2π )d

g(q)

q2 + r
,

(E3)

where in the second line we set � = 0, and in the third we
used the identity [61]

∞∑
n=−∞

Jn(x) = 1. (E4)

The last integral in Eq. (E3) is a decreasing function of the
parameter r and it can be computed in closed form for some
elementary functional forms of the interaction potentials V (a)

q
contained in v(q) [see Eq. (35)]. Choosing, for instance, Gaus-
sian interacting potentials as in Eq. (5) and setting r = 0 (for

which the integral is maximum), we get the upper bound
reported in Eq. (43). For λ smaller than this upper bound
it is guaranteed that the variance in Eq. (E1) is positive, a
necessary condition for the perturbative expansion to provide
meaningful results.

APPENDIX F: EQUILIBRIUM EFFECTIVE POTENTIAL

In this Appendix we study the effective induced interaction
between the two particles due to the presence of the field.

1. Derivation of the potential

Let us start by considering the joint probability distribution
of the two colloids, which at equilibrium is the canonical one
given in Eq. (47). Under the functional integral we recognize,
up to a normalization factor, the stationary distribution of the
field at fixed colloids positions

Pst[φ|Y, Z] = 1

Zst(Y, Z)
e−β(Hφ−λHint )

= 1

Zst
e
−β

∫ dd q
(2π )d

{ 1
2 (q2+r)φqφ−q−λφq[V (y)

−q eiq·Y+V (z)
−q eiq·Z]}

.

(F1)

The coupling to the field is linear, so the Gaussian functional
integral over Pst[φ|Y, Z] in Eq. (47) can be calculated exactly.
To this end, we first bring it in the form∫

Dφ e−β(Hφ−λHint ) =
∫

Dφ e− β

2 (φ,Âφ)+βλ(h(y)+h(z), φ)

∝ e− βλ2

2 (h(y)+h(z), Â−1(h(y)+h(z) )), (F2)

where we introduced the vectors h(a)(x) ≡ V (a)(x − Xa) and
the scalar product

( f , g) =
∫

dd x f (x)g(x). (F3)

The operator Â is defined by its kernel

A(x, y) = (−∇2 + r)δ(x − y), (F4)

Âφ(x) =
∫

dd y A(x, y)φ(y). (F5)

In Fourier space, these become h̃(a)(q) = V (a)
q exp[−iq ·

Xa(t )] and

Ã(q, p) = (q2 + r)δ(q + p) → Ã−1(q, p) = δ(q + p)

q2 + r
.

(F6)
Integrating over the dummy variables (momenta) as

( f , Âg) =
∫

dd qdd p

(2π )2d
f̃ (−q)Ã(q,−p)g̃(p), (F7)

we finally get the effective Hamiltonian Heff(Y, Z) given
in Eq. (49), featuring the field-induced interaction potential
Vc(Y − Z) of Eq. (50) (up to a constant that we fix by re-
quiring Vc(x → ∞) = 0). We notice that Vc(x) is translational
invariant, as expected, so that the induced force is given by
Fc(x) = −λ2∇xVc(x). The latter is in general a nonmonotonic
function of x, and the location of its extremal points x = x∗
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along the various spatial directions is found by inspecting the
Hessian matrix

0 ≡ ∂2Vc(x)

∂xi∂x j

∣∣∣∣
x=x∗

=
∫

dd q

(2π )d

v(q)

q2 + r
qiq je

iq·x∗ . (F8)

2. Analysis of the induced potential for the isotropic case

If the interaction potentials of the two colloids are equal,
i.e., V (y)

q = V (z)
q ≡ Vq, then v(q) ≡ |Vq|2 [see Eq. (35)]. More-

over, if V (x) is isotropic (which is a sensible requirement if
the colloids are assumed to be spherically symmetric parti-
cles), then v(q) = v(q) and we can rewrite Eq. (50) in polar
coordinates as

Vc(x) = −
∫ ∞

0
dq

qd−1

q2 + r
v(q)

∫
d�d

(2π )d
eiq·x. (F9)

Using the property of the Bessel functions [61], one can prove
that ∫

d�d

(2π )d
eiq·x = Jd/2−1(qx)

(2π )d/2(qx)d/2−1
, (F10)

and introducing the dimensionless variable z ≡ qx we find

Vc(x) = − x2−d

(2π )d/2

∫ ∞

0
dz

zd/2

z2 + rx2
v(z/x)Jd/2−1(z). (F11)

If we assume for Vq a Gaussian form as in Eq. (5), then this
expression becomes

Vc(x) = R2−d f (x/ξ, x/R), (F12)

where the scaling function

f (�,�) ≡ − �2−d

(2π )d/2

∫ ∞

0
dz

zd/2e−(z/�)2

z2 + �2
Jd/2−1(z) (F13)

depends on the dimensionless parameters � = x
√

r = x/ξ
and � = x/R (in accordance with the scaling form in Eq. (1)
of Ref. [48]). Note that � and � actually play the role of an
IR and a UV cutoff, respectively.

Similarly, the resulting induced force is

Fc(x) = −λ2∇xVc(x) = −x̂λ2R1−d f ′
(

x

ξ
,

x

R

)
, (F14)

with

f ′(�,�) ≡ �1−d

(2π )d/2

∫ ∞

0
dz

zd/2+1e−(z/�)2

z2 + �2
Jd/2(z). (F15)

We now look for the asymptotic behavior for large x of the
induced potential in Eq. (50) with the Gaussian interaction
potential v(q) = exp(−q2R2). This can be obtained by first
using the identity [62]

1

q2 + r
=
∫ ∞

0
dμ e−μ(q2+r), (F16)

and then performing the Gaussian integration in dd q. Chang-
ing variables to s ≡ (μ + R2)/x gives [63]

Vc(x) = − x1−d/2

(4π )d/2
eR2r

∫ ∞

R2/x

ds

sd/2
e−x[rs+1/(4s)]. (F17)

Finally, the integral over s can be estimated for large x by
using the Laplace method, leading to

Vc(x) ∼ − (2πx)(1−d )/2

2r (3−d )/4
eR2r−x

√
r, (F18)

which presents the familiar exponential tails ∼ exp(−x/ξ ),
ξ = r−1/2 being the field correlation length. One can check
that a similar asymptotic behavior is shared by the induced
force, since for large x one finds Fc(x) ∼ x̂λ2√rVc(x).

In d = 1, the expressions above become

Vc(x) = − x

π

∫ ∞

0
dz

cos(z)e−z2(R/x)2

z2 + rx2
, (F19)

Fc(x) = −λ2

π

∫ ∞

0
dz

z sin(z)e−z2(R/x)2

z2 + rx2
, (F20)

which are plotted in Fig. 2 [rescaled by the R-dependent part
of their asymptotic amplitude found in Eq. (F18)]. It appears
that the induced force is small for both small and large x, while
it presents a maximum defined by the condition

∂xFc(x)|xmax ∝
∫ ∞

−∞
dq

q2e−q2R2

q2 + r
eiqxmax ≡ 0. (F21)

Notice that the induced potential in Eq. (F19) diverges for
r = 0, but the force in Eq. (F20) does not. Equivalently, the
induced potential in Eq. (F19) is regularized by subtracting its
value in x = 0,

Vc(x = 0) = − 1

π

∫ ∞

0
dq

v(q)

q2 + r
, (F22)

which is just a constant shift in energy. However, the induced
force Fc(x) in d = 1 and for r = 0 is still somewhat patholog-
ical, in that it saturates to a constant value at large distance x
instead of decaying to zero. To understand why, we note that
at large distances x the cutoff R in the induced potential Vc(x)
is expected to play no role (apart from taming possible UV
divergences which can arise for sufficiently large d). If we set
R � 0 in Eq. (50), we obtain

Vc(x) � −
∫

dd q

(2π )d

1

q2 + r
eiq·x = −〈φ(x)φ(0)〉, (F23)

where we recognized the two-point correlation function of
a scalar Gaussian field in d spatial dimensions [62]. At the
critical point r = 0, this behaves generically as

〈φ(x)φ(0)〉 ∼ |x|2−d , (F24)

and in particular in d = 1 it grows linearly with x. This ex-
plains why the force Fc(x) ∝ ∂xVc(x) saturates to a constant
value for large x. However, we will simply interpret this phe-
nomenon as a pathology of the model for d = 1 and r = 0,
which does not affect our results since we always assume the
field to have a (possibly small but) finite correlation length
ξ = r−1/2.

Different choices of the interaction potential V (x) lead
to qualitatively similar results. For instance, a more realistic
representation of a spherical colloid requires

V (x) = 1

Vd
�(R − |x|), (F25)
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where Vd is the volume of a d-dimensional sphere and �(z) is
the Heaviside distribution. Its Fourier transform reads

Vq =
(

2

qR

)d/2

�

(
d

2
+ 1

)
Jd/2(qR). (F26)

This leads to the same scaling forms as in Eqs. (F12) and (F14)
for the induced potential and force, with different scaling
functions

f2(�,�) ≡ −�2cd

∫ ∞

0
dz

z−d/2Jd/2−1(z)

z2 + �2

[
Jd/2

(
z

�

)]2

,

f ′
2(�,�) ≡ �cd

∫ ∞

0
dz

z1−d/2Jd/2(z)

z2 + �2

[
Jd/2

(
z

�

)]2

,

cd ≡ (2/π )d/2[�(d/2 + 1)]2, (F27)

which are qualitatively similar to the Gaussian case shown in
Fig. 2. In particular, the induced force still presents a maxi-
mum as a function of the distance x, which can give rise to the
phenomenon of frequency doubling in the adiabatic response
(see Secs. IV C 2 and Appendix G 3).

APPENDIX G: PARTICLE DYNAMICS
WITHIN THE ADIABATIC APPROXIMATION

In this Appendix we derive the colloid dynamics at lowest
order within the adiabatic approximation. This is achieved by
averaging the equations of motion (10) and (11) of Y(t ) and
Z(t ), respectively, over the stationary distribution Pst[φ|Y, Z]
of the field φ at fixed colloids positions given in Eq. (45).
This is analogous to the Born-Oppenheimer approximation
in condensed matter physics, where the wave function of the
electrons orbiting around a nucleus is obtained by exploiting
the separation of their dynamical timescales.

1. Derivation of the Langevin equation
within the adiabatic approximation

Let us focus on the motion of Y(t ), the colloid in the
fixed trap, which is ruled by Eq. (10). We average each of the
terms which appear in Eq. (10) over the stationary distribution
in Eq. (45). The terms proportional to Y(t ) and Ẏ(t ) yield
trivially

〈Y(t )〉st =
∫

Dφ Y(t )Pst[φ|Y, Z] = Y(t ), (G1)

and similarly for Ẏ(t ), while

〈λfy〉st = λ〈∇yHint〉st

= λ

Zst

∫
Dφ ∇yHinte

−β(Hφ−λHint )

= 1

β
∇y logZst = λ2∇yVc(Y, Z), (G2)

where in the last passage we used Eq. (48). This leads to the
effective Langevin equation (51).

Now we look for a perturbative solution of Eq. (51) which
is valid up to O(λ2), and which we will denote as Yad(t ). To
this end, we average each of its terms over the noises ξ(y)(t )

and ξ(z)(t ) by bearing in mind that

〈eiq·[Z(t )−Y(t )]〉 = 〈eiq·[Z(t )−Y(t )]〉0 + O(λ)

= 〈eiq·Z(t )〉0〈e−iq·Y(t )〉0 + O(λ), (G3)

where we used the fact that the two independent processes for
Y(t ) and Z(t ) factorize. Specializing Eq. (A13) to the present
case gives

〈e−iq·Y(t )〉0 = exp[−T q2/(2ky)], (G4)

which leads to

∂t 〈Yad〉 = − νyky〈Yad〉

− νyλ
2
∫

dd q

(2π )d

iqv(q)

q2 + r
e− T q2

2ky 〈eiq·Z〉0. (G5)

Solving this differential equation with the initial condition
〈Yad(t = t0)〉 = 0, we finally obtain Eq. (52).

2. Adiabatic limit from the master equation

Consider the free-field susceptibility χq(t − s) in Eq. (27)
and assume αq = 0 [see Eq. (16)]. One can take the formal
limit D → ∞, finding

χq(t − s) −−−→
D→∞

δ(t − s)

q2 + r
, (G6)

and inserting this expression into Eq. (34) for the average dis-
placement of the colloid, we immediately recover its adiabatic
approximation in Eq. (52).

Conversely (and more generally), it is straightforward to
check [44] that the Fokker-Planck equation corresponding to
the adiabatic Langevin equation (51) is exactly the master
equation (31). To see this, one can use the adiabatic limit in
Eq. (G6) in the expression (32) for the function Fq(t ), which
appears in the operator Lz(t ) of the master equation. The key
observation is then that

F (z)
q (t ) −−−→

D→∞
〈eiq·Z(t )〉0

q2 + r
. (G7)

3. Frequency doubling in the adiabatic response

Looking at the Fourier coefficients of the adiabatic re-
sponse in Eq. (60), it appears that |b1| = 0 in correspondence
of a certain value r1 of the parameter r. This value can be
approximately found, in d = 1, by writing

q

q2 + r
= 1

q

(
1 − r

q2 + r

)
(G8)

in the condition |b1| = 0, which gives∫
dq e−q2R̃2 J1(qA)

q
cos(q�)

= r1

∫
dq e−q2R̃2 J1(qA)

q(q2 + r1)
cos(q�)

=
∫

dy exp(−y2R̃2r1)
J1(yA

√
r1)

y(y2 + 1)
cos(y�

√
r1), (G9)

where we changed variable as q = y
√

r1 in the last line. As-
suming r1 to be small, which can be verified a posteriori, one
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can expand for small r1, finding

r1 =
[

4

πA

∫ ∞

0
dq e−q2R̃2 J1(qA)

q
cos(q�)

]2

+ O
(
r3/2

1

)
.

(G10)
One can check numerically that r1 determined above is an
increasing function of the forcing amplitude A. A further
expansion for small A gives

r1 � e−�2/(2R̃2 )

π R̃2
+ O

(
r3/2

1

)
, (G11)

which is finite even for A = 0, in agreement with the physical
interpretation we proposed in Sec. IV C.

APPENDIX H: LINEAR RESPONSE

Here we compute the response of the particle in the fixed
trap to a perturbation of amplitude A of the position of the
other particle, within the linear response regime. The resulting
expressions can be easily analyzed even in spatial dimension-
ality d > 1.

1. Adiabatic response

The linear response approximation for the average position
in the adiabatic case is formally recovered from Eq. (52) as

〈Yad(t )〉LR ≡ 〈Yad(t )〉|A=0 + (A · ∇A)〈Yad(t )〉|A=0

≡ Ystat + A · χ̂eq(t ), (H1)

and it is made of a static plus an oscillating part. In particular,

Ystat ≡ λ2

ky

∫
dd q

(2π )d
q

e−R̃2q2

q2 + r
sin(q · �), (H2)

while

χ
eq
i j (t ) = λ2

ky
(Ĩ0)i j

sin(�t − θz − θy)√
1 + (�/γy)2

, (H3)

(Ĩ0)i j ≡
∫

dd q

(2π )d

qiq je−R̃2q2

q2 + r
cos(q · �), (H4)

and all the higher harmonics are suppressed, since they con-
tain higher powers of A. Note that Ystat coincides with the
equilibrium position we obtained in Eq. (53) in the static
limit. If the particle Z oscillates in a direction parallel to the
separation � between the two colloids, then one can focus on
the component 〈Yj (t )〉 of the particle displacement parallel to
A and �. This is controlled in linear response by

(Ĩ0) j j =
∫ ∞

0
dq

qd+1e−R̃2q2

q2 + r
F (q�),

F (z) = z−d/2

(2π )d/2
[zJd/2−1(z) + (1 − d )Jd/2(z)], (H5)

and this integral can be evaluated numerically. In d = 1
and for sufficiently large r, the integration over momenta in
Eq. (H5) returns a negative number, while it changes sign
for very small r. This property carries over to the nonlin-
ear case, thus producing the frequency doubling described in
Sec. IV C and Appendix G 3. In d = 2 and d = 3 one observes

a qualitatively similar behavior, with (I0) j j changing sign for
some small value of r depending on the choices of � and
R̃ = R̃(R, T ).

2. Dynamical response

Starting from the expression of the average position in
Eq. (40) describing the actual dynamics and using Eq. (H1),
we can derive a linear response expression

〈Y(t )〉LR = Ystat + A · χ̂(t ), (H6)

which again consists of a static part Ystat [which turns out to
be the same as in the static case, see Eq. (H2)], and of an
oscillating part. It is easier in this case to start from the Fourier
expansion in Eq. (59) and write

χi j (t ) =
∑

n=±1

−iλ2νyD

γy + in�
(Ĩn)i je

in(�t−θz ), (H7)

(Ĩn)i j ≡
∫

dd q

(2π )d

qiq jqαe−R̃2q2

αq + in�
cos(q · �). (H8)

For � = 0, we easily get∣∣χ (�=0)
i j

∣∣ = λ2

ky

∫
dd q

(2π )d

qiq je−R̃2q2

q2 + r
cos(q · �), (H9)

which coincides with the one obtained from the linear re-
sponse of the adiabatic case, see Eq. (H3), in the limit of
� → 0, and which makes contact with the amplitude of the
quasistatic response in Eq. (69).

APPENDIX I: PHASE OF THE DYNAMICAL RESPONSE

Here we derive some of the results concerning the phase of
the dynamical response anticipated in Sec. V B 2.

1. Large-� behavior

Let us focus first on the limit in which the frequency � of
the external driving is large: then the Fourier coefficients in
Eq. (59) become

cneinθz ∼ i
λ2νyD

(n�)2

∫
dd q

(2π )d
qqαJn(q · A)e−q2R̃2+iq·�, (I1)

where we factored out the phase θz of the driven colloid.
As explained in the main text, this approximation works if
the condition in Eq. (76) is met. Notice that the quantity
on the r.h.s. of Eq. (I1) is purely imaginary, which means
that for large � the dynamical response of Y is either in
phase or in counterphase with the motion of the colloid Z(t )
[see Eq. (66)]. To determine its sign, one has to evaluate
the integral in Eq. (I1). In d = 1 and focusing on the first
harmonic n = 1, we can rescale z ≡ q� and write

c1eiθz ∝ i

�2

∫ ∞

0
dzzα+1 cos(z)J1(zβ1)e−(zβ2 )2

, (I2)

where we called β1 ≡ R̃/� and β2 ≡ A/� the small param-
eters of our problem (see setup in Fig. 1). Figure 12 shows
that, for β1 and β2 � 1, this integral is positive for model B
(α = 2) and negative for model A (α = 0). This corresponds
to the behavior of the phase observed in Fig. 9. Although the
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FIG. 12. Plot of the integral in Eq. (I2) in the case of model A
(orange, below, rescaled for graphical convenience) and model B
(blue, above), compared with the plane z = 0 (green, center) to check
the zero crossings.

sign may change in d > 1, one would in any case observe
a π/2 phase shift with respect to the adiabatic prediction at
large � (see Fig. 5).

2. Dependence of the phase ϕ1 on �

Let us now study the dependence of the phase ϕ1 of the
dynamical response defined in Eq. (72) on the average separa-
tion � between the two traps. To this end, we will consider the
case of model A (α = 0) and examine the behavior for large
� of the integral I1 which appears in Eq. (73). Focusing on the
component j parallel to A and � we notice that Eq. (73) can
be rewritten, up to first order in the driving amplitude A, as

I1 = − A

2DRd+4

∂2

∂x2

∫
dd y

(2π )d

e−y2+iy j x

y2 + R2r + i�/�0
, (I3)

where we used J1(x) � x/2 and we rescaled momenta as q =
y/R. One can check a posteriori that including higher orders in
A will not change our conclusions as long as A � �. We also
defined the quantities x ≡ �/R and �0 ≡ D/R2, which we
recognize from Eq. (16) as the inverse timescale of relaxation
of the field φ over a length scale ∼R. The integral in I1 finally
contains a further dependence on R2r = (R/ξ )2. Using again
Eq. (F16) and computing the Gaussian integral we find

I1 = − A

2DRd+4

∂2

∂x2

∫ ∞

0
dμ

e−μc−x2/4(1+μ)

[4π (1 + μ)]d/2
, (I4)

where we defined c ≡ R2r + i�/�0. To avoid the trivial
saddle-point μ = ∞, we change variables as μ = sx, leading
to

I1 = − A

2DRd+4

∂2

∂x2

[
x1−d/2

(4π )d/2
Q(x)

]
, (I5)

Q(x) =
∫ ∞

0
ds g(s)e−x f (s), (I6)

FIG. 13. Integration contour for the function in Eq. (I6) analyti-
cally continued to the complex plane s. The black dots indicate the
stationary points s± of f (s), and we plotted in solid blue the contour
lines of v(s) = �[ f (s)] passing through s+. We deform the original
integration contour, i.e., the positive real axis, to a portion of the
curve above indicated by the red-dashed line. Indeed, the integrand
in Eq. (I6) vanishes for large |s| in the region {�(s) > 0, �(s) < 0},
so the integration contour can be closed at infinity and the Cauchy
theorem applies. In this plot we set all the parameters in f (s) to unity,
for the sake of illustration.

with

f (s) ≡ sc − 1

4s
, (I7)

g(s) ≡ (s + 1/x)−d/2 exp

[
x

4s(sx + 1)

]
. (I8)

Since the function g(s) is regular and x-independent for large
x, the integral in Eq. (I6) can be estimated using the method
of steepest descent [56]. To this end, one considers the an-
alytic continuation in the complex plane s = a + ib of the
function f (s) = u(a, b) + iv(a, b), and then deforms the orig-
inal integration path (i.e., the positive real axis) to a level
curve of v(a, b) passing through a stationary point of u(a, b).
By the Cauchy-Riemann conditions, these stationary points
coincide with the extrema of the function f (s), given by
s± = ±1/(2

√
c). The relevant integration contour is shown in

Fig. 13, and it passes through the saddle-point s+. By standard
methods, one then finds

Q(x) �
√

2π

x| f ′′(s+)|g(s+)e−x f (s+ )−i3θ/2, (I9)

where f (s+) = √
c ≡ ρ exp(iθ ) and we introduced

ρ = R[r2 + (�/D)2]1/4, (I10)

θ = 1

2
arctan

(
�

Dr

)
. (I11)

We also see that | f ′′(s+)| = 1/(2ρ6), while

g(s+) = (s + 1/x)−d/2 exp

[
x

4s(sx + 1)

]
. (I12)

Notice that g(s+) still contains x, and this may have affected
the position of the saddle-point. We must then make sure a
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posteriori that x is sufficiently large so that g(s) has satu-
rated to its asymptotic value, g(s) → s−d/2 exp[1/(4s2)], at
the saddle-point s = s+. From Eq. (I12), this amounts at re-
quiring x � 2|√c|, or equivalently � � 2Rρ(�). When r is
negligible, this condition becomes � � �0(�/R)2: this sets
a limit to the values of � for which the saddle-point estimate
is valid.

We finally plug Eq. (I9) back into Eq. (I5) to get

I1 ∝ e−ix�[ f (s+ )] = e−ixρ sin θ , (I13)

where we omitted a complex prefactor and extracted the �-
dependent part of the phase. This justifies the result reported
in Eq. (77).

APPENDIX J: NUMERICAL SIMULATION

Numerical simulations are performed by direct integration
of the coupled Langevin equations of motion (6), (10), and
(11) in real space. Field variables are discretized as {φi(t )}N

i=1
with φi(t ) ≡ φ(xi, t )∈R, and they sit on the N = Ld sites
of a d-dimensional hypercubic lattice with side L. Space is
measured in units of the lattice spacing a, which we retain for
clarity in the following formulas, but which will be eventually
set to unity. On the contrary, we will take the particle coordi-
nates Y(t ), Z(t )∈Rd to be real-valued, i.e., not constrained to
move on the lattice sites only. Upon integration by parts, we
may rewrite the equation of motion for Y(t ) as

Ẏ(t ) = −νkY + νλ

∫
dd x V (x − Y)∇φ(x) + ξ(t )

� −νkY + νλ

N∑
i=1

V (xi − Y)∇̃φi + ξ(t ), (J1)

where we introduced the discrete gradient

∇̃ jφi = φ(xi + μ̂ j ) − φ(xi − μ̂ j )

2a
, (J2)

with μ̂ j locating the position of the 2 neighboring sites of
each xi along direction j. The second particle, Z(t ), is moved
deterministically as in the infinite trap strength limit kz → ∞.
The discretized equation of motion for the field in model A
reads

∂tφi(t ) = − D[(r − �̃)φi(t ) − λV (xi − Y(t ))

− λV (xi − Z(t ))] + ζi(t ), (J3)

where ζi(t ) is a Gaussian random variable with variance
〈ζi(t )ζ j (t ′)〉 = 2DTa−1δi jδ(t − t ′). We also defined the dis-
crete Laplacian

�̃φi = 1

a2

∑
〈k,i〉

(φk − φi ), (J4)

where the sum runs over the 2d neighboring sites of xi. Simi-
larly, the discretized equation of motion for the field in model
B reads

∂tφi(t ) = D�̃[(r − �̃)φi(t ) − λV (xi − Y(t ))

− λV (xi − Z(t ))] + ∇̃ · ηi(t ), (J5)

where ηi(t ) is a vectorial noise with zero mean and vari-
ance 〈η(α)

i (t )η(β )
j (t ′)〉 = 2DTa−1δi jδαβδ(t − t ′), and we take

its discrete divergence ∇̃αη
(α)
i (t ). We chose in both cases

a Gaussian interaction potential VG(x) as in Eq. (5), which
yields a smooth expression for its Laplacian

∇2VG(x) = |x|2 − R2d

R4
VG(x). (J6)

Equations (J1) and (J3) or (J5) represent a set of (N + d )
stochastic differential equations which can now be integrated
by standard methods in real space. We choose a simple Euler-
Maruyama scheme (order �t1/2 [64]) for the evolution of the
field variables and a more refined method, Stochastic Runge-
Kutta (order �t3/2, see Ref. [65]), for the particle coordinate.
We expect this to improve the stability of the particle dy-
namics in spite of the lower-order algorithm adopted for the
field, because the latter only contributes at O(λ � 1) to the
evolution of the particle.

Once we start the simulation, we have to wait until the
system has reached its long-time periodic state, which can be
recognized by the fact that the mean value of the oscillations
of Y(t ) stops growing, and from its independence of the field
dynamics (model A or B). This process takes longer as we
approach criticality, r = 0, but it is never infinite because the
system size L is finite. We may estimate the relaxation time by
using Eq. (16) and inserting q � 2π/L. Once the nonequilib-
rium periodic state is reached, we record the trajectory of Y(t )
and use its periodicity to average the relevant observables over
each period T = 2π/�. This allows to improve the statistics
without the need to repeat the initial relaxation for each run.

APPENDIX K: DYNAMICAL FUNCTIONAL
FOR THE MANY-PARTICLE PROBLEM

In this Appendix we derive the Martin-Siggia-Rose dy-
namical functional [50–52] which describes the many-particle
problem introduced in Sec. VII. The dynamical functionals
corresponding to Eqs. (81) and (6) can be obtained by standard
methods [49], leading in the free case λ = 0 to

Sa[Xa, X̃a]

=
∫

dt

{
X̃a(t )

[
Ẋa(t ) − Fa(Xa(t ), t )

] − �a

2
|X̃a(t )|2

}
,

(K1)

Sφ[φ, φ̃]

=
∫

dd q

(2π )d

∫
dt

[
φ̃−q(t )(∂t + αq)φq(t ) − �φ (q)

2
φ̃2

q (t )

]
.

(K2)

Above we have introduced �a ≡ 2νaT , while �φ (q) was
given in Eq. (A23), and X̃a, φ̃ are the auxiliary variables
(response fields [49]) conjugate to Xa and φ, respectively.
Choosing λ = 0 leads to the total action

S[φ, φ̃, {Xa, X̃a}] =
N∑

a=1

Sa[Xa, X̃a] + Sφ[φ, φ̃]

− λSint[φ, φ̃, {Xa, X̃a}], (K3)
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where the interaction terms proportional to the coupling λ

gave rise to

Sint[φ, φ̃, {Xa, X̃a}] =
N∑

a=1

∫
dt

∫
dd q

(2π )d
[Dqαφ̃q(t )

+ iνaφq(t ) q · X̃a(t )]V (a)
−q eiq·Xa (t ).

(K4)

It is useful at this point to introduce the vector notation


 = 
q(t ) ≡
(

φq(t )

φ̃q(t )

)
, 
T ≡ (

φ−q(t ) φ̃−q(t )
)
, (K5)

so as to rewrite in a compact form

Sφ[φ, φ̃] = 1
2
T Â
, (K6)

Sint[φ, φ̃, {Xa, X̃a}] = 1

λ
bT 
, (K7)

where we introduced the matrix

Âq,p(t, t ′) =
(

0 −∂t + αq

∂t + αq −�(q)

)
δd (q + p)δ(t − t ′),

(K8)
and the vector

bq(t ) ≡
N∑

a=1

(−iνaq · X̃a(t )

Dqα

)
V (a)

q e−iq·Xa (t ). (K9)

The effective action Seff[{Xa, X̃a}] which describes the parti-
cles alone will have the form of Eq. (83), where the free part
S0[{Xa, X̃a}] is simply the sum of the single-particle actions
Sa[Xa, X̃a] given in Eq. (K1). To obtain the interacting part
Sλ[{Xa, X̃a}], we marginalize over the field φ and its conju-
gate variable φ̃ as

e−Sλ[{Xa,X̃a}] ≡
∫

Dφ Dφ̃ e−Sφ+λSint

=
∫

Dφ Dφ̃ e− 1
2 
T Â
+bT 
 ∝ e

1
2 bT Â−1b. (K10)

The result of the Gaussian integration involves the inverse
matrix [49]

Â−1
q,p(t, t ′) =

(
Cq(t, t ′) Gq(t − t ′)

Gq(t ′ − t ) 0

)
δd (q + p), (K11)

where Cq(t, t ′) and Gq(t ) are the correlator and the linear
response function of the field given in Eqs. (27) and (19),
respectively. Equation (K10) is only formal, but it can be made
explicit by integrating over the dummy variables (times and
momenta) as

bT Â−1b ≡
∫

dd qdd p

(2π )2d

∫
dtdt ′b−q(t )Â−1

q,−p(t, t ′)bp(t ′).

(K12)
The resulting Sλ[{Xa, X̃a}] can then be expressed as in
Eq. (85), with

Sab[Xa, X̃a, Xb, X̃b] = νa

∫
dd q

(2π )d
V (b)

q V (a)
−q

∫
dt

∫
dt ′[q · X̃a(t )] eiq·[Xa (t )−Xb(t ′ )]

{
iχq(t − t ′) + νb

2
Cq(t, t ′)[q · X̃b(t ′)]

}
, (K13)

and where χq(t ) is the linear susceptibility of the field given
in Eq. (27). We note that the terms with a = b in Eq. (85)
describe the self-interaction of the particle Xa mediated by
the field φ, while the terms with a = b describe the field-
induced interaction between pairs of particles. Finally, we

recognize in Eq. (K13) a drift term [i.e., the one containing
χq(t − t ′)] which is nonlocal in time, and a colored noise
term [i.e., the one containing Cq(t, t ′)]: they both result from
having integrated out the field degrees of freedom from the
dynamics.
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