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Isothermal and adiabatic elastic constants from virial fluctuations
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We derive expressions for classical isothermal and adiabatic elastic constants for periodic systems with
the boundary contributions included explicitly. The potential-dependent part of these expressions is written
in terms of potential energies of atomic groups that make up the total potential energy. It is shown that in
the thermodynamic limit, the Born term, which depends on the second derivatives of potential energy, can be
expressed exactly in terms of equilibrium averages that involve two types of atomic-group virials. As a result,
the new form of the Born term involves only first derivatives of either atomic-group or total potential energies.
The derived elastic constant expressions involving the two forms of the Born terms are tested and compared
using molecular-dynamics simulations of crystalline argon and silicon. For both materials, the elastic constants
obtained using the two forms of the Born term are in good agreement. In particular, the new form of the Born
term converges to the same value as the original Born term but at a slower rate. The results for silicon also agree
well with the results from the previous molecular-dynamics studies.
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I. INTRODUCTION

Second-order elastic constants describe the response of
solid material stress tensor to imposed strain, and as such
they are important for characterizing material properties under
elastic deformation. The microscopic theory of elastic con-
stants was first developed by Born (see Ref. [1] and references
therein) for the case of T = 0. The theory was later extended
to finite temperatures [2–6].

The computational approaches for calculating elastic con-
stants can be grouped into two categories: equilibrium
fluctuation methods and the direct method.

The equilibrium fluctuation methods can be further sub-
divided into the strain-fluctuation and the stress-fluctuation
approaches. In the strain-fluctuation approach, the compli-
ance tensor is calculated from the strain fluctuations in the
isothermal-isostress ensemble [3–6]. The compliance tensor
is then inverted to obtain elastic constants. The main disad-
vantage of this method is that it shows slow convergence and,
as a result, requires very long simulation trajectories.

In the stress-fluctuation method [2,6–9], the elastic con-
stants are calculated from the canonical or microcanonical
ensemble averages and require evaluation of the so-called
Born, kinetic, and stress fluctuations terms. The disadvantage
of the strain-fluctuation approach is the necessity to calculate
the Born term, which involves the second derivatives of po-
tential energy and can be quite complicated. The complexity
of the Born term calculation for arbitrary potentials makes
it difficult to implemented the strain-fluctuation approach in
standard software packages without great effort and a risk
of introducing undetectable errors. Recently, the capability to
numerically calculate the original form of the Born term for
all potentials was added to the LAMMPS simulation package
[10] based on the approach of Zhen and Chu [11].
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Numerical tests comparing the stress- and strain-
fluctuation methods show that the stress-fluctuation approach
provides faster convergence of the elastic constants compared
to the strain-fluctuation approach [12,13].

Because of the disadvantages of the stress- and strain-
fluctuation methods just discussed, the elastic constants are
often calculated using the so-called direct method, in which
finite strains are applied to the system, and the resulting
changes in stress tensor are computed [14]. This approach is
fairly straightforward to implement but it is computationally
demanding, especially for low-symmetry crystals.

Note that the formal elastic constant expressions in the
case of the stress-fluctuation method are derived for infinite
systems. Numerical simulations are performed with finite sys-
tems, typically under periodic boundary conditions. The effect
of periodic boundaries and how such boundaries are treated in
simulations are rarely discussed explicitly [2,9].

In this work, we revisit elastic constant equations for the
stress-fluctuation approach. Our goal is twofold. First, we
rederive expressions for isothermal and adiabatic elastic con-
stants in the form that explicitly includes the effect of periodic
boundary conditions. Second, we show that the Born term
can be written in a form that involves only first derivatives
of the potential energy. Apart from fundamental theoretical
interest, the new expression for the Born term can be used as
the foundation of a new method of numerical calculation of
isothermal and adiabatic elastic constants.

II. ISOTHERMAL AND ADIABATIC ELASTIC CONSTANTS
UNDER PERIODIC BOUNDARY CONDITIONS

A. The Hamiltonian of a periodic system

A conventional way to treat periodic boundary conditions
is to assume that the system of interest, which is placed in the
central parallelepiped (or triclinic) box, is surrounded by an
infinite number of translated identical image boxes that fill up
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the space [15–18]. It is convenient to specify these boxes with
vector n given by

n = ξaa + ξbb + ξcc, (1)

where a, b, and c are the vectors specifying the three edges
of the central box, and ξa, ξb, and ξc can take any integer
values. The central box corresponds to n = 0. Then, the clas-
sical Hamiltonian of a system of N atoms subject to periodic
boundary conditions can be written as

H = H0 + U ({xni}). (2)

Here

H0 =
N∑
i

∑
α

p2
iα

2mi
(3)

is the kinetic energy, in which piα is the αth component of
the momentum of atom i with mass mi, and U ({xni}) is the
system potential energy, which depends on the set of atomic
coordinates {xni} both for the central box and the image boxes.
These coordinates are given by

xin = xi + n, (4)

where xi is the coordinate vector of atom i in the central box.
For example, in the case of pair interactions, the potential
energy can be written as [15,18]

U ({xni}) =
∑

n

N∑
i=1
j>i

u(|xi − x jn|). (5)

Here the sum over n extends over all image boxes. However,
for potentials with a cutoff and under the minimum image
convention, only the central box and its 26 nearest-neighbor
image boxes contribute to the sum over n.

An alternative but equivalent form of the potential energy
for a periodic system that is useful for numerical applications
can be written in terms of the atomic-group potential energies,
as was done in Ref. [18]. The system potential energy is usu-
ally given by a sum of two-atom, three-atom, four-atom, or, in
general, few-atom interaction terms. Each of these few-atom
terms is commonly referred to as a group [18] and can be
specified with an index k. The number of groups, the number
of atoms in each group, and the number of groups in which
an atom participates depend on the total potential energy but
otherwise are completely arbitrary. The potential energy of
the group k is denoted by uk ({xk

i }), where {xk
i } is the set of

coordinates for group k with the index i running from 1 to Nk ,
the total number of atoms in the group k. (Note that the same
xi for atom i appears as xk

i with a different k for every group
in which atom i participates.) The Hamiltonian of a periodic
system in the atomic-group form can be written as

H = H0 +
∑

k

uk
({

xk
i

})
, (6)

where the sum over k runs over all groups associated with
the central box. Thompson et al. [18] discuss in detail how
such groups are defined and selected. Both Eq. (2) and Eq. (6)
forms of the Hamiltonian are used below to derive expressions
for the elastic constants.

B. The choice of strain

Elastic constants describe the system response to the im-
posed strain and, in general, depend on a particular form
of strain used. Consider a parallelepiped-shaped sample of
solid material specified by three basis vectors starting from
the common vertex. Any homogeneous transformation of this
sample can be represented by a real 3 × 3 matrix M that
transforms vectors x in the unstrained system to vectors x′ in
the strained system

x′ = Mx. (7)

The matrix M has nine independent components, of which six
represent pure strain and three represent rotation or reflection.
A convenient way to separate strain from rotation or reflection
is to use the polar decomposition of the matrix M wherein M
is uniquely written as [19]

M = OS, (8)

where O is an orthogonal matrix and S is a symmetric matrix.
Thus, the action of matrix M can be viewed as inducing a
pure strain with the matrix S followed by a pure rotation or
reflection, given by the matrix O, in which the strain state
remains unchanged. Clearly, if M is symmetric, then M = S
and the matrix M itself induces only pure strain with no
rotation or reflection. The difference between the matrix S and
the identity matrix I,

E = S − I, (9)

arguably represents the simplest definition of strain in that it
is given by a linear deviation of the matrix S from the identity
matrix. From Eq. (9) the matrix S is written in terms of E as

S = I + E . (10)

Using Eq. (8), the stress E can be reexpressed through M as

E = (MTM)
1
2 − I, (11)

where superscript T denotes the matrix transpose. The strain
E is sometimes referred to as the Biot strain [20].

A measure of strain most often used in the literature on
elastic constants is the Lagrangian strain H given by

H = 1

2
(MTM − I) = 1

2
(S2 − I) = E + E2

2
, (12)

for which

S = (I + 2H)
1
2 . (13)

In this work, we choose to define elastic constants using
E rather than H for the following reasons. First, it is more
natural to study system response to linear changes in geometry
as given by Eq. (10) rather than the nonlinear ones as given
by Eq. (13). Second, because of the linearity of Eq. (10), the
use of E leads to simpler general expressions for the elastic
constants. Third, there exists a one-to-one correspondence be-
tween the elastic constants defined using E and those defined
using H (see Appendix A). Thus one set of constants can
always be converted to the other one if necessary. (Note that
for pair potentials, the use of H rather than E leads to slightly
simpler microscopic expressions for elastic constants. This is
generally not true for more complex potentials.)
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C. Isothermal elastic constants

The second-order isothermal elastic constants can be de-
fined using Helmholtz free energy A as [21]

CT
αβμν = 1

V

(
∂2A

∂εαβ∂εμν

)
T,E=0

. (14)

Here V is the system volume and εαβ denotes the component
of the symmetric strain tensor E ; subscripts T and E = 0
mean that the derivatives are evaluated at constant temperature
and for E = 0. Since the tensor E is symmetric, the derivative
with respect to εαβ in Eq. (14) means (∂/∂εαβ + ∂/∂εβα )/2.

The Helmholtz free energy in Eq. (14) is given by

A = −kBT ln Z, (15)

where

Z =
∫

dp3N dx3N e− H
kBT . (16)

Here the integration extends over the whole phase space. The
dependence of A on strain comes from the dependence of the
integral in Eq. (16) on integration limits in coordinate space. A
standard technique to avoid the mathematically inconvenient
strain dependence of the integration limits is to transfer this
dependence to the Hamiltonian explicitly while holding the
integration limits fixed. This can be achieved by using a suit-
able variable transformation. This approach was first used by
Bogoliubov to derive the microscopic expression for pressure
as a derivative of A with respect to volume [22]. It was later
generalized to express the dependence of A on the full strain
tensor [2,4,6].

Here we use the following strain-dependent canonical
transformation of coordinates and momenta of the Hamilto-
nian (2):

x̃ni = (I + E )xni, p̃i = (I + E )−1pi. (17)

Note that the transformation of coordinates affects both the
atoms in the central box and the image boxes. Inserting p̃i,
x̃ni in the Hamiltonian (2) leads to the strain-dependent trans-
formed Hamiltonian H̃ = H̃0 + Ũ and the strain-dependent
Helmholtz free energy A for which the derivatives with re-
spect to the strain components can now be evaluated. Using
Eqs. (14), (15), and (16), we obtain

CT
αβμν = F T

αβμν + KT
αβμν + BT

αβμν, (18)

where

F T
αβμν = 1

kBTV

(〈
∂H̃

∂εαβ

〉〈
∂H̃

∂εμν

〉
−

〈
∂H̃

∂εαβ

∂H̃

∂εμν

〉)
(19)

is the so-called fluctuation term,

KT
αβμν = 1

V

〈
∂2H̃0

∂εαβ∂εμν

〉
(20)

is the kinetic term, and

BT
αβμν = 1

V

〈
∂2Ũ

∂εαβ∂εμν

〉
(21)

is the Born term. The derivatives in Eqs. (19), (20), and (21)
are evaluated at constant T and for E = 0 as in Eq. (14) with

the corresponding subscripts dropped for brevity; the brackets
denote averaging over the canonical ensemble.

The derivatives of H̃0 and Ũ with respect to strain com-
ponents in Eqs. (19), (20), and (21) can be rewritten in terms
of derivatives with respect to momenta and coordinates using
Eq. (17). Calculation of these derivatives is rather straightfor-
ward for Ũ because of the linear dependence of x̃ni on E . The
derivatives of H̃0 can also be calculated easily if one recalls
that

∑
α p̃2

iα is a dot product of vector p̃i with itself and

p̃i · p̃i = pi · [((I + E )−1)2pi]

= pi · [(I − 2E + 3E2)pi] + O(E3). (22)

Calculating the derivatives explicitly in Eq. (19), we obtain
for the fluctuation term

F T
αβμν = − V

kBT
(〈σαβσμν〉 − 〈σαβ〉〈σμν〉), (23)

where

σαβ = − 1

V

N∑
i=1

piα piβ

mi
+ 1

2V

∑
n

N∑
i=1

×
(

xniα
∂U

∂xniβ
+ xniβ

∂U

∂xniα

)
(24)

is the microscopic stress tensor. The second line of the last
equation is the symmetrized form of the virial tensor (divided
by volume) for a system with periodic boundaries which was
derived by Thompson et al. [18] without using strain deriva-
tives explicitly. This form of the virial was referred to as the
atom form in Ref. [18].

Using Eqs. (20) and (22), the kinetic term is calculated to
be

KT
αβμν = 3NkBT

2V
(δαμδβν + δανδβμ). (25)

Note that the kinetic term (25) is 3
4 of the kinetic term defined

using the Lagrangian strain [12]. We will use this fact in
Sec. III B when comparing the elastic constants defined using
the Biot and Lagrangian strains.

The Born term is

BT
αβμν = 1

V

∑
n,m

N∑
i, j=1

〈
xniαxm jμ

∂2U

∂xniβ∂xm jν

〉
sym

. (26)

Here the subscript sym is introduced to shorten the corre-
sponding expression. It means that the expression in angular
brackets is the average of four terms, namely the term shown
and the three terms obtained from it by the following subscript
changes: (α ↔ β ), (μ ↔ ν), and (α ↔ β,μ ↔ ν). The last
equation represents the atom form of the Born term for a
system with periodic boundaries.

For practical applications, it is useful to derive the equiva-
lent atomic-group forms of Eqs. (24) and (26). These can be
obtained from the atomic-group form of the Hamiltonian (6)
by using the canonical transformation

x̃k
i = (I + E )xk

i , p̃i = (I + E )−1pi, (27)
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and repeating the steps that lead to Eqs. (24) and (26). This
gives

σαβ = − 1

V

N∑
i=1

piα piβ

mi
− 1

V

∑
k

W k
αβ, (28)

where

W k
αβ = −1

2

Nk∑
i=1

(
xk

iα

∂uk

∂xk
iβ

+ xk
iβ

∂uk

∂xk
iα

)
(29)

is the symmetrized form of the atomic-group virial tensor for
a system with periodic boundaries, which was also derived
in Ref. [18] without using strain derivatives explicitly. Thus,
the atomic-group virial W k

αβ given by Eq. (29) is expressed in
terms of coordinate components of atoms in a given group and
the partial force components due to the group potential energy
uk .

For the atomic-group form of the Born term, we obtain

BT
αβμν = 1

V

∑
k

Nk∑
i, j=1

〈
xk

iαxk
jμ

∂2uk

∂xk
iβ∂xk

jν

〉
sym

. (30)

Equation (30) can be viewed as an extension of Eq. (29) for
the group form of the virial for periodic systems: the virial is
obtained from the first derivatives of Ũ with respect to strain
components, whereas Eq. (30) is derived using the second
derivatives. Equation (30) can be used directly to calculate
the Born term contribution to the elastic constants: once the
potential energy in the group form is expressed in Cartesian
coordinates, the second derivatives in Eq. (30) can be calcu-
lated. These expressions can be complicated for potentials that
involve few-particle interactions.

Here we show that the right-hand side of Eq. (30) can be
reduced to a form that involves only first derivatives by using
integration by parts with respect to one of the derivatives. The
basic steps of the derivation are similar to those used in the
derivation of the equipartition theorem [23,24]. A similar ap-
proach was used in Ref. [25] to express an ensemble-averaged
matrix of second derivatives in terms of the force-force co-
variance matrix. The details of the derivation are given in
Appendix B. The final expression, which is the central result
of this work, is

BT
αβμν = 1

2kBTV

∑
k

〈(
Ŵ k

αβW k
μν + W k

αβŴ k
μν

)〉
+ 1

2V

∑
k

(Nk − 1)
(
δαβ

〈
W k

μν

〉 + δμν

〈
W k

αβ

〉)
+ 1

V

∑
k

(
δαμ

〈
W k

βν

〉)
sym

, (31)

where the virial Ŵ k
αβ is given by

Ŵ k
αβ = −1

2

Nk∑
i=1

(
xk

iα

∂U

∂xk
iβ

+ xk
iβ

∂U

∂xk
iα

)
− 1

2

(
xk

α f
k
β + xk

β f
k
α

)
,

(32)

with

xk
α = 1

Nk

Nk∑
i=1

xk
iα, f

k
α = −

Nk∑
i=1

∂U

∂xk
iα

. (33)

Comparison of Ŵ k
αβ given by Eq. (32) and W k

αβ given by
Eq. (29) shows that Ŵ k

αβ depends on the same atomic coor-
dinate components, but the partial forces are replaced with the
total force component for a given atom. The second line of
Eq. (32) involves products of the arithmetic average of coordi-
nate components of all atoms in the group and the sum of force
components for atoms in the group; these terms ensure that
Ŵ k

αβ is translationally invariant. Translational invariance of
Ŵ k

αβ in Eq. (32) can be verified by displacing the system along
any of the Cartesian directions and using Eqs. (33) together
with the translational invariance of the total force components.
Thus, the Born term given by Eq. (31) depends on the first
derivatives of either atomic-group or total potential energies,
but does not contain the second derivatives. Because of this
fact, Eq. (31) can be of interest for numerical calculation
of elastic constants, particularly for complex potentials that
involve few-particle interaction terms.

D. Adiabatic elastic constants

Adiabatic elastic constants are defined using system inter-
nal energy E as [21]

CS
αβμν = 1

V

(
∂2E

∂εαβ∂εμν

)
S,E=0

, (34)

where the derivatives are now evaluated at constant entropy
S and for E = 0. It was shown in Refs. [6,7,26] that the
adiabatic elastic constants CS

αβμν can be calculated using the
same expressions as for the isothermal ones but with all
canonical-ensemble averages replaced with averages over the
microcanonical ensemble. Thus, Eqs. (18)–(21), (23), (25),
(26), and (30) remain valid for adiabatic constants, with the
superscript S replacing the superscript T and the brackets
now denoting microcanonical averaging. We show in Ap-
pendix C that Eq. (31) also remains valid for the adiabatic case
(with averages performed over the microcanonical ensemble).
Thus, adiabatic elastic constants can also be calculated using
atomic-group virials.

III. NUMERICAL VERIFICATION

The main goal of our numerical verification is to confirm
that elastic constants calculated using Eq. (18) with the origi-
nal Born term given by Eq. (30) and the Born term calculated
using virials (31) are indeed numerically identical. To this
end, we calculated elastic constants for crystalline argon and
silicon using molecular dynamics (MD). All MD simulations
were performed using the LAMMPS package [10].

A. Isothermal elastic constants of argon

In the case of argon, isothermal elastic constants were
calculated for several values of pressure and temperature.
The results for adiabatic constants of argon are qualitatively
similar and will not be reported here. Solid argon forms a
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face-centered-cubic (fcc) lattice. There are three independent
elastic constants for cubic crystals [27], which are commonly
chosen to be CT

1111, CT
1122, and CT

1212, whose values we report
below.

The atomic interactions in argon were modeled with the
Lennard-Jones potential

V (r) = 4ε
[(σ

r

)12
−

(σ

r

)6]
, (35)

where r is the distance between the two atoms, the parameters
σ and ε were set to be 3.4 Å and 1.67 × 10−21 J, respectively
[27,28]. The cubic simulation cell consisting of 12 × 12 × 12
conventional four-atom fcc unit cells was used. The cutoff
value for the potential was set at the relatively high value
of 28 Å to minimize any possible cutoff effects. A time step
of 0.5 fs was used. Atomic coordinates were recorded every
100 fs. These coordinates were used in Eqs. (30) and (31) to
calculate two forms of the Born term as functions of time.
The stress tensor components for the fluctuation term were
calculated using LAMMPS. Elastic constants were calculated at
zero pressure and at P = 1 GPa. For each of the two pressures,
three temperature values were considered. These temperature
values corresponded, approximately, to 2%, 40%, and 90% of
the argon melting temperature at a given pressure, which we
will refer to as the low, moderate, and high temperature, re-
spectively. The melting temperature of argon is approximately
84 K at zero pressure [29] and 250 K at 1 GPa [30]. Thus,
the temperatures of 2, 33, and 75 K for zero pressure and
5, 100, and 225 K for the 1 GPa pressure were considered.
The fluctuation term, the kinetic term, and the two forms of
the Born term were calculated from 1 ns equilibrium NV T
trajectory for each set of pressure and temperature values. As
an example, the behavior of these terms as functions of time
for CT

1111 is shown in Fig. 1 for the case of zero pressure and
T = 33 K.

Tables I and II list the elastic constants along with the
kinetic, fluctuation, and Born terms for each set of pressure
and temperature values. In the case of the Born terms, two
values are listed: the first line shows the values obtained from
Eq. (30), and the second line gives the values obtained from
Eq. (31). The two values for the elastic constants in Tables I
and II are calculated using the two forms of the Born term
with the same kinetic and fluctuation terms. The uncertainties
in Tables I and II correspond to one-sigma standard error.
They were calculated using statistical analysis for the time-
dependent correlated data [31].

One can see from Tables I and II that elastic constants cal-
culated using two forms of the Born term are indeed the same
within uncertainties for all pressure and temperature values
considered. Note that in all cases, the Born term calculated
using Eq. (31) converges slower than the one obtained from
the original expression (30), as reflected by the corresponding
uncertainties in Tables I and II. [See also panel (b) of Fig. 1.]
However, for moderate and high temperatures, the Born term
in the form of Eq. (31) converges faster than the fluctuation
term (cf. Fig. 1), whereas for low temperatures it converges
slower than the fluctuation term. Thus, for moderate and high
temperatures, the overall convergence of the elastic constants
calculated using the Born term given by Eq. (31) is approx-
imately the same as that for the elastic constants obtained

FIG. 1. Constitutive components of CT
1111 at zero pressure and

33 K as functions of time: (a) KT
1111 (black) and F T

1111 (gray), (b) BT
1111

calculated using Eqs. (30) (light gray) and (31) (black). Note differ-
ent scales for the y-axis for the two panels.

using the Born term given by Eq. (30). For low tempera-
tures, the elastic constants calculated using Eq. (31) converge
slower.

B. Adiabatic elastic constants of silicon

In the case of silicon, adiabatic rather than isothermal elas-
tic constants were calculated. This was done for the following
two reasons: to show that the new expression for the Born
term can also be applied to obtain adiabatic constants, and to
compare the calculated values to earlier MD-based adiabatic
results for elastic constants of silicon [11,32]. Similarly to fcc
argon, silicon is a cubic crystal. Thus, only CS

1111, CS
1122, and

CS
1212 needed to be calculated. The system was studied at zero

pressure and the following four temperatures: 300, 888, 1164,
and 1477 K. The latter three temperatures corresponded to the
ones considered in Refs. [11,32].

The atomic interactions in silicon were modeled with the
Stillinger-Weber potential [33], which consists of two- and
three-atom interaction terms. A cubic simulation cell of 216
silicon atoms was used. All force-field and other simulation
parameters reported in Refs. [11,32] were kept except for the
total number of simulation steps. References [32] and [11]

044110-5



ANDREY PEREVERZEV PHYSICAL REVIEW E 106, 044110 (2022)

TABLE I. Isothermal elastic constants of argon at zero pressure. The constitutive kinetic, fluctuation, and Born terms are also shown. The
two values for the Born term are obtained from Eqs. (30) and (31). The units are GPa.

2 K 33 K 75 K

KT
1111 0.002 294 7 ± 0.000 000 3 0.036 483 ± 0.000 005 0.077 42 ± 0.000 01

F T
1111 −0.0440 ± 0.0004 −0.695 ± 0.006 −1.50 ± 0.01

BT
1111 4.4324 ± 0.0001 3.9840 ± 0.0003 3.3035 ± 0.0003

4.43 ± 0.01 3.981 ± 0.003 3.302 ± 0.001
CT

1111 4.3907 ± 0.0004 3.326 ± 0.006 1.88 ± 0.01
4.38 ± 0.01 3.323 ± 0.007 1.88 ± 0.01

KT
1122 0 0 0

F T
1122 −0.0268 ± 0.0003 −0.381 ± 0.005 −0.80 ± 0.01

BT
1122 2.5339 ± 0.0003 2.2525 ± 0.0001 1.8146 ± 0.0001

2.53 ± 0.03 2.252 ± 0.001 1.814 ± 0.001
CT

1122 2.5071 ± 0.0004 1.872 ± 0.005 1.02 ± 0.01
2.50 ± 0.03 1.871 ± 0.005 1.02 ± 0.01

KT
1212 0.001 147 3 ± 0.000 000 2 0.018 242 ± 0.000 002 0.038 708 ± 0.000 005

F T
1212 −0.0184 ± 0.0002 −0.306 ± 0.002 −0.625 ± 0.005

BT
1212 2.5343 ± 0.0003 2.2586 ± 0.0001 1.8276 ± 0.0001

2.53 ± 0.04 2.258 ± 0.001 1.827 ± 0.001
CT

1212 2.5170 ± 0.0004 1.971 ± 0.002 1.241 ± 0.005
2.51 ± 0.04 1.970 ± 0.002 1.241 ± 0.005

used 150 000 and 1 million steps, respectively. We used 2
million steps for the three higher temperatures and 6 million
steps for 300 K to obtain good convergence of the Born terms
obtained using Eq. (31).

Kinetic, fluctuation, and Born terms were calculated using
microcanonical averaging, i.e., NV E trajectories, for each of
the four temperatures. Two forms of the Born terms were

calculated: the original one using Eq. (30) and the new form
based on Eq. (31). For each of these two forms, both two-atom
and three-atom contributions to the total Born terms were
calculated. These results are summarized in Table III. The
two values for the elastic constants reported in Table III were
calculated using the two forms of the total Born term with the
same kinetic and fluctuation terms.

TABLE II. Isothermal elastic constants of argon at P = 1 GPa. The constitutive kinetic, fluctuation, and Born terms are also shown. The
two values for the Born term are obtained from Eqs. (30) and (31). The units are GPa.

5 K 100 K 225 K

KT
1111 0.006 753 ± 0.000 001 0.130 24 ± 0.000 01 0.277 13 ± 0.000 04

F T
1111 −0.112 ± 0.001 −2.08 ± 0.02 −4.43 ± 0.04

BT
1111 13.2845 ± 0.0001 12.5129 ± 0.0004 11.5724 ± 0.0005

13.29 ± 0.02 12.512 ± 0.002 11.572 ± 0.001
CT

1111 13.180 ± 0.001 10.56 ± 0.02 7.42 ± 0.04
13.18 ± 0.02 10.56 ± 0.02 7.42 ± 0.04

KT
1122 0 0 0

F T
1122 −0.0618 ± 0.0007 −1.09 ± 0.01 −2.00 ± 0.03

BT
1122 7.6040 ± 0.0001 7.0648 ± 0.0003 6.3332 ± 0.0005

7.605 ± 0.008 7.065 ± 0.001 6.333 ± 0.002
CT

1122 7.5422 ± 0.0007 5.98 ± 0.01 4.33 ± 0.03
7.543 ± 0.008 5.98 ± 0.01 4.33 ± 0.03

KT
1212 0.003 376 5 ± 0.000 000 5 0.065 118 ± 0.000 006 0.138 56 ± 0.000 02

F T
1212 −0.0489 ± 0.0004 −0.898 ± 0.007 −1.85 ± 0.02

BT
1212 7.1051 ± 0.0001 6.5865 ± 0.0002 5.8795 ± 0.0005

7.11 ± 0.01 6.587 ± 0.001 5.880 ± 0.002
CT

1212 7.0595 ± 0.0004 5.753 ± 0.007 4.16 ± 0.02
7.06 ± 0.01 5.754 ± 0.007 4.16 ± 0.02
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TABLE III. Adiabatic elastic constants of Si at zero pressure. The constitutive kinetic, fluctuation, and two-atom, three-atom, and total
Born terms are also shown. The two listed values for the Born terms are obtained from Eqs. (30) and (31). Results of Refs. [11] and [32] are
also shown. The units are 1010 Pa.

300 K 888 K 1164 K 1477 K

KS
1111 0.0619 ± 0.0006 0.1819 ± 0.0005 0.2378 ± 0.0007 0.3015 ± 0.0008

KS
1111 Ref. [11] 0.18 0.25 0.30

F S
1111 −0.087 ± 0.002 −0.345 ± 0.009 −0.50 ± 0.01 −0.70 ± 0.01

F S
1111 Ref. [11] −0.34 −0.53 −0.71

BS
1111 (2-atom) 10.1571 ± 0.0004 9.687 ± 0.006 9.17 ± 0.01 8.44 ± 0.02

10.14 ± 0.05 9.68 ± 0.06 9.21 ± 0.05 8.49 ± 0.06
BS

1111 (3-atom) 4.781 ± 0.001 4.669 ± 0.004 4.883 ± 0.006 5.31 ± 0.01
4.76 ± 0.04 4.68 ± 0.02 4.88 ± 0.01 5.31 ± 0.02

BS
1111 (total) 14.938 ± 0.001 14.356 ± 0.007 14.05 ± 0.01 13.76 ± 0.02

14.90 ± 0.06 14.36 ± 0.06 14.09 ± 0.05 13.81 ± 0.06
BS

1111 (total) Ref. [11] 14.35 14.01 13.76
CS

1111 14.912 ± 0.002 14.19 ± 0.01 13.79 ± 0.01 13.35 ± 0.03
14.88 ± 0.06 14.20 ± 0.09 13.82 ± 0.05 13.42 ± 0.06

CS
1111 Ref. [11] 14.19 ± 0.02 13.73 ± 0.02 13.35 ± 0.02

CS
1111 Ref. [32] 14.14 ± 0.01 13.73 ± 0.03 13.32 ± 0.01

KS
1122 0 0 0 0

F S
1122 0.017 ± 0.002 0.006 ± 0.004 −0.01 ± 0.01 −0.04 ± 0.01

F S
1122 Ref. [11] 0.01 −0.02 −0.05

BS
1122 (2-atom) 9.980 ± 0.002 9.407 ± 0.006 9.17 ± 0.01 8.41 ± 0.01

9.96 ± 0.05 9.40 ± 0.06 9.21 ± 0.05 8.46 ± 0.06
BS

1122 (3-atom) −2.353 ± 0.001 −1.891 ± 0.005 −1.513 ± 0.007 −0.94 ± 0.01
−2.34 ± 0.02 −1.90 ± 0.01 −1.51 ± 0.01 −0.95 ± 0.02

BS
1122 (total) 7.626 ± 0.002 7.516 ± 0.008 7.47 ± 0.01 7.47 ± 0.01

7.62 ± 0.05 7.50 ± 0.06 7.50 ± 0.05 7.51 ± 0.06
BS

1122 (total) Ref. [11] 7.52 7.47 7.48
CS

1122 7.643 ± 0.003 7.522 ± 0.009 7.46 ± 0.01 7.42 ± 0.01
7.64 ± 0.05 7.51 ± 0.06 7.49 ± 0.05 7.47 ± 0.06

CS
1122 Ref. [11] 7.53 ± 0.01 7.45 ± 0.01 7.43 ± 0.01

CS
1122 Ref. [32] 7.52 ± 0.00 7.43 ± 0.01 7.39 ± 0.04

KS
1212 0.0309 ± 0.0003 0.0909 ± 0.0002 0.1189 ± 0.0004 0.1507 ± 0.0004

KS
1212 Ref. [11] 0.09 0.12 0.15

F S
1212 −5.6 ± 0.4 −5.0 ± 0.3 −5.4 ± 0.2 −5.6 ± 0.3

F S
1212 Ref. [11] −4.92 −5.66 −5.87

BS
1212 (2-atom) 10.003 ± 0.001 9.483 ± 0.006 9.089 ± 0.007 8.56 ± 0.01

9.99 ± 0.05 9.48 ± 0.06 9.12 ± 0.05 8.61 ± 0.06
BS

1212 (3-atom) 0.8285 ± 0.0002 0.969 ± 0.002 1.161 ± 0.004 1.468 ± 0.007
0.82 ± 0.01 0.97 ± 0.01 1.16 ± 0.01 1.47 ± 0.01

BS
1212 (total) 10.832 ± 0.001 10.451 ± 0.006 10.251 ± 0.007 10.03 ± 0.01

10.81 ± 0.05 10.45 ± 0.06 10.28 ± 0.05 10.07 ± 0.06
BS

1212 (total) Ref. [11] 10.45 10.22 10.03
CS

1212 5.3 ± 0.4 5.6 ± 0.3 4.9 ± 0.2 4.6 ± 0.3
5.3 ± 0.4 5.6 ± 0.3 5.0 ± 0.2 4.7 ± 0.3

CS
1212 Ref. [11] 5.62 ± 0.54 4.68 ± 0.21 4.31 ± 0.36

CS
1212 Ref. [32] 5.24 ± 0.84 4.57 ± 1.14 4.20 ± 0.83

One can see that elastic constants calculated using two
forms of the Born term agree with each other within uncertain-
ties for all temperatures considered. This remains true for the
two-atom, three-atom, and total Born terms calculated using
the two approaches. For all cases, the Born terms calculated
using Eq. (31) converge slower than the ones obtained from
the original expression (30), as reflected by the corresponding

uncertainties. Comparison of uncertainties for the fluctuation
terms and the Born terms calculated from Eq. (31) shows that
BS

1111 and BS
1122 converge slower and BS

1212 much faster than
the corresponding fluctuation terms for all four temperatures.

The results of Ref. [11] for the elastic constants of sili-
con along with the constitutive Born, kinetic, and fluctuation
terms for 888, 1164, and 1477 K are also listed in Table III.
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Also shown are the elastic constants reported in Ref. [32]
for the same three temperatures. When comparing our results
to the previously published data, we need to bear in mind that
the elastic constants reported in Refs. [11,32] were calculated
using the Lagrangian strain, whereas our results were based
of the Biot strain. Fortunately, the transformation between
the Lagrangian-strain and Biot-strain elastic constants (and
their constitutive terms) is straightforward. It follows from
Eq. (A5) that at zero pressure, the adiabatic elastic constants
obtained using the Lagrangian and Biot strains are identical,
thus they can be compared directly. However, this is not true
for the kinetic and Born terms for the two strains considered
separately. It was noted following Eq. (25) that the Biot kinetic
term is 3

4 of the Lagrangian one. The fluctuation terms for the
two strain measures are identical because the stress tensors
obtained using the two strains are identical. This implies that
the Biot Born term is equal to the Lagrangian Born term plus
one-fourth of the Lagrangian kinetic term. Thus, the original
Lagrangian results of Ref. [11] for the kinetic and total Born
terms were converted to the Biot form using the recipe given
above when reporting them in Table III.

One can see that the total Born terms of Ref. [11] and both
forms of the total Born terms calculated by us are generally
in good agreement: for most cases they are identical within
uncertainties. Elastic constants calculated by us also compare
well to the elastic constants from Refs. [32] and [11]. The
larger differences for CS

1212 at 1164 and 1477 K are still within
uncertainties and are due to the very large uncertainties of the
corresponding fluctuation terms.

IV. CONCLUSIONS

We derived expressions for isothermal and adiabatic elas-
tic constants that explicitly incorporate the effect of periodic
boundaries. These expressions can be used for numerical
calculations of elastic constants; they represent the second-
derivative generalizations of expressions for the virials of
periodic systems [17,18].

We also showed that the Born term can be expressed in
the form that involves only the first derivatives of the atomic-
group and total potential energies. This fact is important from
a fundamental standpoint because it means that knowledge of
atomic coordinates and suitably chosen partial and total forces
along with system volume and temperature is sufficient to de-
fine isothermal and adiabatic elastic constants. Equation (31)
is also of interest for numerical calculation of elastic constants
(as was done for argon and silicon in this work): molecular-
dynamics simulation packages such as LAMMPS can compute
atomic virial tensors given by Eq. (29), and calculation of
the Born term using Eq. (31) can be done with modest code
modifications.

Application of Eq. (31) to the Lennard-Jones argon and the
Stillinger-Weber silicon shows very good agreement with the
original Born expression given by Eq. (30) but with a slower
convergence. Numerical validation of Eq. (31) for the cases of
more complex potentials along with the studies of the system
size, stress, and temperature dependence is intended by us in
the near future.
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APPENDIX A

Here we derive the relationship between the elastic con-
stants CT

αβμν defined using the Biot strain E and the elastic
constants ĈT

αβμν defined using the Lagrangian strain H. We
treat tensor H (whose components are denoted by ηαβ) as a
function of E as given by the last equality of Eq. (12) and
apply the chain rule to express derivatives of A with respect to
εαβ in Eq. (14) in terms of derivatives with respect to ηαβ . We
have (using Einstein notation and dropping subscript T )(

∂2A

∂εαβ∂εμν

)
E=0

=
(

∂2A

∂ητυηφω

∂ητυ

∂εαβ

∂ηφω

∂εμν

+ ∂A

∂ητυ

∂2ητυ

∂εαβ∂εμν

)
E=0

. (A1)

Using Eq. (12), we can evaluate the following derivatives:(
∂ητυ

∂εαβ

)
E=0

= 1

2
(δταδυβ + δτβδυα ),(

∂2ητυ

∂εαβ∂εμν

)
E=0

= 1

8
(δταδβμδυν + δτβδαμδυν + δταδβνδυμ

+ δτβδανδυμ + δανδυβδτμ + δνβδυαδτμ

+ δαμδυβδτν + δμβδυαδτν ). (A2)

Inserting these into Eq. (A1) and using the fact that H = 0
when E = 0, we obtain(

∂2A

∂εαβ∂εμν

)
E=0

=
(

∂2A

∂ηαβ∂ημν

)
H=0

+ 1

4

(
∂A

∂ηαν

δβμ + ∂A

∂ηβν

δαμ

+ ∂A

∂ηαμ

δβν + ∂A

∂ηβμ

δαν

)
H=0

. (A3)

Dividing both sides of the last equation by volume and using
the fact that

1

V

(
∂A

∂ηαν

)
H=0

= 1

V

(
∂A

∂εαν

)
E=0

= 〈σαβ〉, (A4)

we obtain the sought-after relationship between the two sets
of isothermal elastic constants,

CT
αβμν = ĈT

αβμν + 1
4

(〈σαν〉δβμ + 〈σβν〉δαμ

+〈σαμ〉δβν + 〈σβμ〉δαν

)
. (A5)

Applying a similar argument to the system energy E , one
can verify that this relationship remains true for adiabatic
constants as well.
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APPENDIX B

Here we outline the derivation of Eq. (31) from Eq. (30).
Before proceeding with the derivation, let us note that the
potential energy uk of a group of Nk atoms is translationally
invariant, and therefore depends on at most 3(Nk − 1) vari-
ables. We want to account for this translational invariance
when doing integration by parts. This can be achieved by
doing an orthogonal transformation from coordinates xi to yi.
For each group k the transformation involves Nk atomic-group
coordinates xk

i and transforms them to new Nk coordinates
yk

i . The transformation within this group of Nk coordinates
can be arbitrary apart from the fact that one of the new
vector variables (assumed to be the last here) is expressed
through the arithmetic average of xk

i , i.e., yk
Nk

= 1√
Nk

∑Nk
i=1 xk

i .
For coordinates not involved in the group k, we take yi = xi.
The following relationship between the old and new variables
within the group is used in the analysis below:

Nk∑
i=1

xk
iα

∂g
({

xk
i

})
∂xk

iβ

=
Nk∑

i=1

yk
iα

∂g
({

yk
i

})
∂yk

iβ

. (B1)

Here g({xk
i }) is an arbitrary function of the old variables xk

i ,
and the same symbol is used for the transformed function
g({yk

i }) of the new variables yk
i . Transforming to the new

variables and using Eq. (B1), the double sum over atoms in
one group in the Born term (30) can be written as

Nk∑
i, j=1

〈
xk

iαxk
jμ

∂2uk

∂xk
iβ∂xk

jν

〉
sym

=
Nk−1∑
i, j=1

〈
yk

iαyk
jμ

∂2uk

∂yk
iβ∂yk

jν

〉
sym

, (B2)

where summations in the last expression now run from 1 to
Nk − 1 because uk is translationally invariant in the space
of Nk atomic-group coordinates, and therefore does not de-
pend on yk

Nk
. Consider one term in the summand of the last

expression with integrations written out explicitly and the
superscript k and the subscript sym dropped for brevity:〈

yiαy jμ
∂2uk

∂yiβ∂y jν

〉
= 1

Q

∫
dy3N e− U

kBT yiαy jμ
∂2uk

∂yiβ∂y jν
, (B3)

where Q = ∫
dy3N e− U

kBT . Integrating by parts with respect to
yiβ gives〈

yiαy jμ
∂2uk

∂yiβ∂y jν

〉

= 1

Q

∫
dy3N−1e− U

kBT yiαy jμ
∂uk

∂y jν

∣∣∣∣yiβ=l2

yiβ=l1

− 1

Q

∫
dy3N ∂uk

∂y jν

∂

∂yiβ

(
e− U

kBT yiαy jμ
)

= 1

Q

∫
dy3N−1e− U

kBT yiαy jμ
∂uk

∂y jν

∣∣∣∣yiβ=l2

yiβ=l1

− 1

Q

∫
dy3N ∂uk

∂y jν
e− U

kBT

(
− 1

kBT

∂U

∂yiβ
yiαy jμ

+ δαβy jμ + δi jδβμyiα

)
. (B4)

Here l1 and l2 in the second and fourth lines are the integration
limits for yiβ .

Up to this point, the derivation is exact. The key step in
deriving Eq. (31) is the omission of the integrated part, i.e., the
fourth line of Eq. (B4). The integrated part will vanish exactly
in the thermodynamic limit (as the integration limits tend
to ±∞) for typical atomic-group potential functions found
in solids. More specifically, for potentials that decrease with
interatomic distance (such as the Lennard-Jones or Coulombic
potentials), uk and its derivatives vanish at infinity, which
makes the integrated part vanish exactly. For potentials that
grow with interatomic distance, such as the harmonic bond po-
tential, the exponential factor in the integrated part of Eq. (B4)
will tend to zero as the potential itself goes to infinity at the
boundaries, which again makes the integrated part vanish ex-
actly. If the system is finite, the integrated part may not vanish
exactly, but its contribution will become progressively smaller
as the system size increases. In the following derivation, we
assume that the system is large enough to be treated as being
in the thermodynamic limit and omit the integrated part.

Clearly, integration by parts in (B3) can also be done with
respect to y jν with the result〈

yiαy jμ
∂2uk

∂yiβ∂y jν

〉
= − 1

Q

∫
dy3N ∂uk

∂yiβ
e− U

kBT

(
− 1

kBT

∂U

∂y jν
yiαy jμ

+ δμνyiα + δi jδανy jμ

)
. (B5)

To maintain proper symmetry of elastic constants, the average
of (B4) and (B5) has to be taken. Substituting this average into
(B2), performing summations, where it can be done explicitly,
and restoring the superscript k and the subscript sym, we
obtain

Nk−1∑
i, j=1

〈
yk

iαyk
jμ

∂2uk

∂yk
iβ∂yk

jν

〉
sym

= 1

2kBT

Nk−1∑
i, j=1

〈
yk

iαyk
jμ

(
∂uk

∂yk
jν

∂U

∂yk
iβ

+ ∂uk

∂yk
iβ

∂U

∂yk
jν

)〉
sym

− 1

2

Nk−1∑
i=1

〈(
(Nk − 1)δαβyk

iμ + δβμyk
iα

) ∂uk

∂yk
iν

〉
sym

− 1

2

Nk−1∑
i=1

〈(
(Nk − 1)δμνyk

iα + δανyk
iμ

) ∂uk

∂yk
iβ

〉
sym

. (B6)

We now transform Eq. (B6) back to the original coordinates xk
i

using Eq. (B1). The sums involving uk transform as follows:

Nk−1∑
i=1

yk
iα

∂uk

∂yk
iβ

=
Nk∑

i=1

yk
iα

∂uk

∂yk
iβ

=
Nk∑

i=1

xk
iα

∂uk

∂xk
iβ

. (B7)

Here the summation in the second expression is extended to
Nk because uk does not depend on yk

Nk
. The total potential en-

ergy U in Eq. (B6) does depend on yk
Nk

, in general. Therefore,

044110-9



ANDREY PEREVERZEV PHYSICAL REVIEW E 106, 044110 (2022)

when transforming back to xk
i ,

Nk−1∑
i=1

yk
iα

∂U

∂yk
iβ

=
(

Nk∑
i=1

yk
iα

∂U

∂yk
iβ

)
− yk

Nkα

∂U

∂yk
Nkβ

=
(

Nk∑
i=1

xk
iα

∂U

∂xk
iβ

)
− 1

Nk

(
Nk∑

i=1

xk
iα

)(
Nk∑

i=1

∂U

∂xk
iβ

)
. (B8)

Here the last term involving the product of two sums is obtained by transforming yk
Nkα

∂U/∂yk
Nkβ

to coordinates xk
i . Substituting

Eqs. (B7) and (B8) into Eq. (B6), performing symmetrizations, summing over all groups, and dividing by the volume lead to
Eq. (31).

APPENDIX C

In this Appendix, we show that the Born term (30) calculated using the microcanonical ensemble,

ρ = 1

�
δ(E − H ), (C1)

where � = ∫
dp3N dx3Nδ(E − H ), can also be rewritten in the form of Eq. (31), in which all averages are taken with the

microcanonical ensemble as well. The initial steps are the same as in Appendix B but with the canonical averages replaced
with the microcanonical ones. Thus we have the following microcanonical analog of (B3):〈

yiαy jμ
∂2uk

∂yiβ∂y jν

〉
= 1

�

∫
dp3N dy3Nδ(E − H )yiαy jμ

∂2uk

∂yiβ∂y jν
. (C2)

Performing integration by parts as in (B4) and omitting the integrated term, we obtain

− 1

�

∫
dp3N dy3N ∂uk

∂y jν

∂

∂yiβ
(δ(E − H )yiαy jμ) = − 1

�

∫
dp3N dy3N ∂uk

∂y jν

(
∂δ(E − H )

∂yiβ
yiαy jμ + δ(E − H )(δαβy jμ + δi jδβμyiα )

)
.

(C3)

The key step now is to show that

− 1

�

∫
dp3N dy3N ∂uk

∂y jν

∂δ(E − H )

∂yiβ
yiαy jμ = 1

kBT

〈
∂uk

∂y jν

∂U

∂yiβ
yiαy jμ

〉
, (C4)

where the angular brackets now denote averaging over the microcanonical ensemble. Here we follow the approach used in
Ref. [34]. Let us denote (∂uk/∂y jν )yiαy jμ in the first line of (C4) by G. We have

− 1

�(E )

∫
dp3N dy3N ∂δ(E − H )

∂yiβ
G

= 1

�(E )

∫
dp3N dy3N ∂δ(E − H )

∂E

∂U

∂yiβ
G

= 1

�(E )

∂

∂E

∫
dp3N dy3N δ(E − H )

�(E )
�(E )

∂U

∂yiβ
G =

∫
dp3N dy3N δ(E − H )

�(E )

(
∂ ln �(E )

∂E

)
∂U

∂yiβ
G

+ ∂

∂E

∫
dp3N dy3N δ(E − H )

�(E )

∂U

∂yiβ
G = 1

kBT

〈
∂U

∂yiβ
G

〉
+ ∂

∂E

〈
∂U

∂yiβ
G

〉
. (C5)

Here the second expression follows because δ(E − H ) depends on yiβ only through the potential energy U ; the third expression
is obtained by moving the derivative with respect to E in front of the integral and inserting �(E )/�(E ) = 1 in the integrand; the
fourth and fifth expressions follow because

∂

∂E

(
δ(E − H )�(E )

�(E )

)
= δ(E − H )

�(E )

∂�(E )

∂E
+ �(E )

∂

∂E

(
δ(E − H )

�(E )

)
; (C6)

and the last equality in Eq. (C5) is obtained using the fact that ln �(E ) = S(E )/kB and (∂S/∂E )V = 1/T . If 〈(∂U/∂yiβ )G〉 in
(C5) is finite, then the last term in (C5) vanishes in the thermodynamic limit because it represents a derivative of 〈(∂U/∂yiβ )G〉
with respect to an extensive variable. This proves the relationship (C4). The rest of the proof follows the same steps as in
Appendix B.
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