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Analysis of heterogeneous Markov media for particle transport problems
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Markov media provide a prototype class of stochastic geometries that are widely used in order to model
several complex and disordered systems encompassing, e.g., turbulent fluids and plasma, atmospheric layers,
or biological tissues, especially in relation to particle transport problems. In several key applications, the
statistical properties of random media may display spatial gradients due to material stratification, which means
that the typical spatial scale and the probability of finding a given material phase at a spatial location become
nonhomogeneous. In this paper we investigate the main features of spatially heterogeneous Markov media, using
Poisson hyperplane tessellations and Arak polygonal fields. We show that both models can generate geometry
realizations sharing Markov-like properties, and discuss their distinct advantages and drawbacks in terms of
flexibility and ease of use. The impact of these models on the observables related to particle transport will be
assessed using Monte Carlo simulations.
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I. INTRODUCTION

Random media are ubiquitous models that emerge in sev-
eral applications in physics and life sciences [1], in particular
in relation to particle transport problems [2]. Examples are
widespread and concern, for instance, photon and ion prop-
agation through Rayleigh-Taylor turbulent layers in inertial
confinement fusion [3–6], radiative transfer in turbid materials
[7–9], or neutron transport in randomly dispersed fuel lumps
and absorbers [10–14], to name a few. The material properties
of stochastic media at a given position are known only sta-
tistically. To fix the ideas, we will assume that a finite set of
N immiscible phases with label α = {0, 1, . . . , N − 1} can be
present at a given point,1 and we denote by pα (r) the probabil-
ity of finding phase α at position r [2]. In order to characterize
d-dimensional random media, a key question concerns the
degree of correlation between the phases present at various
points, which can be typically assessed via stereological meth-
ods by estimating the covariance between material phases at
positions {r, r′} along d∗-dimensional sections, with d∗ � d .
In particular, it has been shown that the statistical features
of random media are intimately related to the distribution
of one-dimensional sections, which can be inferred from the
probability density fα (s|r,�) of the chord length s deter-
mined by intersecting an arbitrary line of orientation � at
position r with the boundaries of a material chunk of phase
α [1]. Knowledge of fα (s|r,�) is especially valuable for par-
ticle transport problems, since it allows inferring the effects
of the random material structure on the particle trajectories
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1We follow the usual convention in Pomraning, where the number-

ing of the material phases starts from α = 0 [2].

[2]. In this respect, Markov media provide an idealized math-
ematical model for complex disordered materials, demanding
minimal information content: chord lengths are assumed to
obey the nonhomogeneous exponential distribution

fα (s|r,�) = ρα (r + s�,�)e− ∫ s
0 ρα (r+s′�,�) ds′

, (1)

where the parameter ρα (r,�) represents the probability per
unit length to leave material α in direction � at position r
[2]. The material probabilities pα (r) are related to the rates
ρα (r,�) through the Chapman-Kolmogorov equation, which
is basically a probability conservation law [2]. In addition to
providing a prototype reference model that can be usefully
adopted to benchmark annealed-disorder approaches [15,16],
Markov media offer a fairly accurate description of real-world
turbulent fluids and plasma, despite their highly simplified
nature; for a review, see, e.g., [9,17,18].

In the context of particle transport, Markov media satisfy-
ing Eq. (1) were first introduced in one-dimensional settings,
where the corresponding material realizations can be sampled
by a Markov jump process along a line [2], and extensively
investigated for the case of spatially homogeneous statistics
[19,20]. A faithful description of many realistic applications,
such as density-driven material stratification in turbulent mix-
ing, requires to take into account the presence of spatial
gradients: generally speaking, the statistical properties of the
stochastic media will depend on the space position. Hetero-
geneity can be introduced in two distinct ways: by the spatial
scale and by the material probability. For one-dimensional
Markov media, this can be achieved by using space-dependent
parameters in the underlying Markov jump process along the
line, which allows separately controlling a gradient in the
spatial scale and in the material probability [21–23].

The practical feasibility of generalizing Markov media to
higher dimensions, which is of utmost importance to model
real-world systems, has been long debated [3,24–26]. Switzer
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exhibited a pioneering example of spatially homogeneous and
isotropic random media in dimension d = 2 having Markov
line transects, via a two-step approach based on first sam-
pling random polygons using a Poisson line process and then
attributing each polygon a phase (“color”) with independent
probability [27]: such construction was then used for particle
transport applications [28,29]. Switzer’s procedure has been
later extended to dimension d = 3 (and beyond) [15,30] using
homogeneous and isotropic Poisson hyperplane tessellations,
a powerful tool of stochastic geometry [31]. Building on these
findings, further generalizations to nonisotropic [32] and spa-
tially heterogeneous d-dimensional Markov media [33] have
been recently proposed.

In this work, we revisit higher-dimensional Markov media
for particle transport problems, with a twofold aim. First,
we illustrate the main statistical features of the stochas-
tic geometries built using Switzer’s procedure, in a general
space-dependent and nonisotropic setting. In particular, we
will point out that Switzer’s procedure can yield heterogene-
ity in the spatial scale but not in the material probability,
which somewhat restrains the kind of spatial gradients of
the material properties that can be modeled by this class of
Markov media. Second, we will show that other models exist
satisfying Eq. (1) and being amenable to an explicit con-
struction: the broad class of Arak’s polygonal mosaics, e.g.,
exhibits a stronger spatial Markov property in addition to the
line-Markov property [34–37]. The family of Arak’s models,
although requiring a much more cumbersome sampling than
Poisson tessellations, can be extended to accommodate spatial
gradients in both the spatial scale and the material probability.

This paper is organized as follows: in Sec. II we will
present a brief review of Markov media on a line. In Sec. III
we will introduce higher-dimensional spatially heterogeneous
Markov media obtained by the Switzer’s procedure, and dis-
cuss their statistical properties. In Sec. IV we will then address
the homogeneous and isotropic Arak’s polygonal mosaics and
show how they can be extended to include spatial gradients
in the spatial scale and/or the material probability. Finally,
in Sec. V we will compare the features of Switzer-based and
Arak-based Markov media with respect to particle transport
problems, using Monte Carlo simulations to support our in-
vestigations. Conclusions will be drawn in Sec. VI.

II. REVIEW OF MARKOV MIXING ON A LINE

We begin by recalling the basic features of Markov media
on a line, a prototype model that will be used as a reference for
the higher-dimensional generalizations discussed in the next
sections.

A. Construction based on sweeping

Consider a line populated with a finite collection of N
random materials (“colors”), each associated to a discrete in-
dex α = {0, 1, . . . , N − 1}, and define the stochastic process
(Cx )x�x0 whose family of random variables yields the color
C(x) at position x � x0 along the line. Multimaterial Markov
statistics on a line are specified by assigning the Poisson
transition rates ρα,β (x,�+), denoting the probability per unit
length to have a transition from material α to material β �= α

FIG. 1. Monte Carlo sampling of one-dimensional Markov me-
dia on a line. (a) Scheme based on sweeping using (oriented)
transition rates ρα,β (x,�±) between colors. (b) The Switzer pro-
cedure, based on a Poisson point process with density ρ(x) and
independent coloring probabilities.

at position x, together with the probability pα (x0) of having
color α at x = x0 [2,22]. The quantities ρα,β (x,�+) are in
general space-dependent, and the symbol �+ is reminiscent
of the fact that the transition rates are taken in the direction
of increasing x. The transition rates satisfy ρα,β (x,�+) �
0 for β �= α, and we set ρα,α (x,�+) = 0. Knowledge of
ρα,β (x,�+) and pα (x0) enables a Monte Carlo strategy to
sample an ensemble of Markov media, using, e.g., Gillespie’s
algorithm [38]: one would “sweep” the line from left to right
by adding the random material segment lengths, starting from
the initial condition at x0. For visualization, the sweeping
procedure is illustrated in Fig. 1(a).

Several exact formulas for one-dimensional Markov statis-
tics can be obtained by transposing well-known results from
time-dependent Markov processes, mapping the time variable
into the space coordinate along the line [2,22]. We will denote
by

ρα (x,�+) =
∑
β �=α

ρα,β (x,�+) (2)

the rate at which material α is abandoned. By construction, the
probability density of having a chord of length s in material α

at the right of point x obeys

fα (s|x,�+) = ρα (x + s,�+)e− ∫ s
0 ρα (x+s′,�+ )ds′

, (3)

which is the one-dimensional equivalent of Eq. (1). The
memory-less nature of the chord length distribution in Eq. (3)
induces the following spatial Markov property: given a col-
lection of n ordered points x1, x2, . . . , xn along the line, for
the color probabilities we have

P (Cn|Cn−1, . . . ,C2,C1) = P (Cn|Cn−1), (4)

where Ci is the color at point xi, i = 1, . . . , n. We will further
introduce the conditional transition probability Pα,β (x′, x) of
having material β at x given that x′ < x is in material α, which
is related to the transition rates by

ρα,β (x,�+) = lim
x′→x

1

x′ − x
Pα,β (x, x′). (5)
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Based on the Markov property, Pα,β (x′, x) obeys the
Chapman-Kolmogorov equation

Pα,β (x′, x) =
∑

γ

Pα,γ (x′, x′′)Pγ ,β (x′′, x), (6)

for x0 � x′ < x′′ < x, with the normalization∑
β Pα,β (x′, x) = 1. By taking the derivative of Eq. (6)

with respect to x and using the definition in Eq. (5), it can
be shown that Pα,β (x′, x) satisfies the forward Kolmogorov
equation

∂

∂x
Pα,β (x′, x) =

∑
γ �=β

Pα,γ (x′, x)ργ ,β (x,�+)

− Pα,β (x′, x)ρβ (x,�+), (7)

with the initial condition Pα,β (x, x) = δα,β . For the special
case of binary media, with N = 2, the transition rates will only
depend on the initial state, i.e., ρα,β (x,�+) = ρα (x,�+) for
β �= α, and the solution of Eq. (7) reads

Pα,β (x′, x) =
∫ x

x′
ρα (z,�+)e− ∫ x

z ρ̂2(u,�+ ) dudz (8)

for β �= α, with ρ̂2(x,�+) = ρ0(x,�+) + ρ1(x,�+), and
Pα,α (x′, x) = 1 − Pα,β (x′, x). The solution of the N-ary case
N > 2 could be solved by matrix exponential methods, al-
though in practice closed-form results are typically out of
reach. For binary mixtures, it has been suggested that the
quantity ρ̂2 plays the role of the typical (inverse) spatial scale
of the random media [2]; by analogy, it would be tempting to
similarly use ρ̂N = ∑

α ρα (x,�±) for N > 2. The color prob-
ability pα (x) of having phase α at x follows from Pα,β (x′, x):
we set

pα (x) =
∑

β

pβ (x0)Pβ,α (x0, x), (9)

with the normalization
∑

α pα (x) = 1. Taking the derivative
of Eq. (9) with respect to x and using the definitions above,
pα (x) satisfies the forward Kolmogorov equation

∂

∂x
pα (x) =

∑
β �=α

pβ (x)ρβ,α (x,�+) − pα (x)ρα (x,�+). (10)

Equations (10) form a system of N differential equations, to
be solved with the initial condition at x = x0. Similarly as for
Pα,β (x′, x), solutions to arbitrary N-ary cases are generally
difficult to compute, but for N = 2 the solution is readily
found:

pα (x) =
∫ x

x0

ρβ (z,�+)e− ∫ x
z ρ̂2(u,�+ )dudz, (11)

with pβ (x) = 1 − pα (x). Stationary solutions pα (x) = πα to
the system of Eqs. (10) may exist, provided that the transition
rates satisfy ∑

β �=α

πβρβ,α (x,�+) = παρα (x,�+) (12)

for any α, which implies ∂x pα (x) = 0; if the initial condition
pα (x0) �= πα , there will be a transient regime.

So far, we have assumed that the Markov statistics are
induced by sweeping the line from left to right, using the

transition rates ρα,β (x,�+). The line can equivalently be
swept from right to left: we will denote by ρα,β (x,�−) the
corresponding rates of transition from material α to material
β �= α in the direction of decreasing x. It can be shown that for
Markov media a symmetry relation holds between forward-
and backward-oriented rates [22], namely,

pα (x)ρα,β (x,�±) = pβ (x)ρβ,α (x,�∓) (13)

for β �= α, whence also

pα (x)ρα (x,�±) =
∑
β �=α

pβ (x)ρβ,α (x,�∓). (14)

Using the symmetry property, Eq. (10) can be rewritten in
terms of the backward-oriented rates as

− ∂

∂x
pα (x) =

∑
β �=α

pβ (x)ρβ,α (x,�−) − pα (x)ρα (x,�−).
(15)

The chord length densities in the forward fα (s|x,�+) and
backward direction fα (s|x,�−) are related by the following
symmetry condition:∑

β �=α

pβ (x)ρβ,α (x,�+) fα (s|x,�+)

=
∑
β �=α

pβ (x + s)ρβ,α (x + s,�−) fα (s|x + s,�−), (16)

which expresses a balance between the rate at which real-
izations enter material α at x and leave it at x + s in the
direction of positive x (the left-hand side) and the opposite
rate at which realizations enter material α at x + s and leave
it at x in the direction of negative x (the right-hand side) [22].
A few significant examples of chord length distributions for
spatially heterogeneous binary media are illustrated in Fig. 2,
where the solutions of Eqs. (3) and (16) are compared with
Monte Carlo simulations.

The transition rates ρα,β (x,�±) describe Markov line
statistics with arbitrary spatial gradients. In the special case
where the rates ρα,β (x,�±) = ρα,β (�±) are spatially homo-
geneous, the corresponding mixing statistics are invariant
under arbitrary translations,2 which results in a simplifica-
tion of the general formulas provided above. In particular,
two-point probabilities Pα,β (x′, x) will depend on the distance
x − x′ alone, whereas the local quantities pα (x) and ρα (x,�±)
will be spatially constant. For the chord length distribution,
invariance under translation combined with symmetry yields
in particular

fα (s|�+) = fα (s|�−), (17)

which implies that the transition rates for spatially homoge-
neous statistics

ρα (�+) = ρα (�−) = ρα (18)

do not depend on the sweeping direction (symmetry un-
der reversal �± → �∓). The chord length distribution is
thus the simple exponential density function fα (s|�±) =
ρα exp(−ραs). Furthermore, since fα (s|�±) are spatially

2Provided that the initial condition pα (x0) is set accordingly.
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FIG. 2. Statistical properties of one-dimensional heterogeneous binary Markov media on interval [0,10]. The “color flip” case in (a) and
(b) represents an inversion of coloring probability, which initially was p0 = 0.3 with ρ = 5. The “step change” case in (c) and (d) represents a
change in both spatial scale and color achieved by a step increase of the transition rate ρ0 for phase α = 0. [(a), (c)] Comparison of the Monte
Carlo histogram of the chord length distribution (symbols) against the solution of Eq. (3) (solid lines). For reversed direction �−, the estimated
transition rates were used in the nonhomogeneous exponential distribution. [(b), (d)] Corresponding transition rates (Monte Carlo estimates
displayed as symbols; analytical formulas as solid lines). For the forward direction �+, the exact chosen value of the rates is displayed,
whereas for the reversed direction �− the estimated value is displayed. Error bars (barely visible) represent one σ uncertainty. Chord lengths
and transition rates were estimated based on independent sets of realizations.

constant, the quantity

�α = 1

ρα

=
∫ ∞

0
s fα (s|�±)ds (19)

can be interpreted as the average chord length in material α.
The color probability pα satisfies the system of equations

pαρα =
∑
β �=α

pβρβ,α (�±), (20)

with the constraints due to Eq. (2) and the normalization. For
the case of binary statistics, the only solution for pα is sym-
metrical, namely, pα = �α/(�0 + �1). For the N-ary case
with N > 2, symmetrical solutions pα = �α/

∑
α �α may

exist provided that the transition rates satisfy the condition

ρα,β (�±)

ρα

= ρβ,α (�∓)

ρβ

. (21)

For arbitrary transition rates, however, the solutions for pα

will be generally speaking nonsymmetrical.

B. Construction based on colored tessellations

One-dimensional Markov media can be alternatively ob-
tained using a two-step strategy that, although less general
than the sweeping procedure, is preparatory to the extension
to higher dimensions. The underlying idea is to first sample
a stochastic partition (tessellation) of the line using a point
process (the random points will define the boundaries of the
tessellation cells), and then apply a Switzer’s-like “coloring”
procedure whereupon the tessellation cells are assigned a ma-
terial label, in such a way that the resulting random media sat-
isfy the Markov line property in Eq. (3). Perhaps the simplest
way of achieving this goal is to use a one-dimensional Poisson
point process with density ρ(x), and then assign colors α to
each cell with independent probabilities pα . In this case, the
colored line statistics will have a line-Markov property, with
parameter ρα (x,�±) = ρ(x)(1 − pα ). For visualization, the
colored tessellation procedure is illustrated in Fig. 1(b).

Actually, the properties of this class of Markov media
are more restrictive than those obtained using the sweeping
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procedure. In particular, while spatial gradients can be gen-
erated through the space-dependent tessellation density ρ(x),
the color probability pα is necessarily homogeneous, so that
no color gradient effect can be taken into account. Fur-
thermore, one-dimensional Poisson tessellations induced by
the underlying Poisson point process satisfy by construction
symmetry under reversal �± → �∓, which means that in di-
mension d = 1 it will not be possible to introduce anisotropy
(direction-dependent) effects for the Markov media sampled
by this two-step strategy.

Alternative coloring procedures can be devised also lead-
ing to Markov media. In particular, if the cells induced by a
Poisson point process are deterministically assigned colors so
that each point is a frontier between α = 0 and α = 1 labels,
the resulting binary stochastic media satisfy again the Markov
line property, with parameter ρα (x,�±) = ρ(x)/2 [39].

III. MARKOV MEDIA BASED ON COLORED POISSON
TESSELLATIONS

The possibility of extending the Markov media construc-
tion to higher dimensions has been an open question for
several years. Pielou conjectured that it was possible to have
two-dimensional random media whose line transects had a
Markov property [25]: this hypothesis was initially questioned
by Bartlett [26], until Switzer provided a constructive de-
scription of a two-step procedure leading to planar stochastic
media with the sought line-Markov property [27]. The exis-
tence of a three-dimensional generalization of the Switzer’s
procedure was later suggested [3,24] and finally explicitly
exhibited in recent years building upon d-dimensional Poisson
tessellations, which can be sampled by Monte Carlo methods
[15,30,32,33].

A Poisson tessellation is a random division of a d-
dimensional space into disjoint polyhedral cells such that
the distribution of the distance to the next cell boundary for
any point and direction across multiple, independent replicas
satisfies the line-Markov property [31]. Such tessellation is
induced by a Poisson hyperplane process, conceived by Miles
in a series of seminal works as a generalization of the stan-
dard Poisson point process [40,41]. Using the representation
K = {r ∈ Rd : 〈n, r〉 = r}, where n is the unit vector normal
to the hyperplane and r is the distance of the hyperplane to
an arbitrary origin, each hyperplane K is mapped onto a dual
point M = rn. An example in dimension d = 3 is illustrated
in Fig. 3. The duality allows casting the Poisson hyperplane
process into a regular Poisson point process in the P-frame
{r, n}, which can be fully characterized by assigning the in-
tensity function g(r, n), with g(r < 0, n) = 0 by convention.3

The tessellation density ρ(r,�), i.e., the mean number of
hyperplanes intersecting a differential segment at position r
with direction �, is a key quantity physically corresponding to
the typical (inverse) spatial scale of the tessellation. Schneider
has shown that ρ(r,�) is related to the intensity function

3In dimension d = 3, the P-frame in spherical coordinates would
naturally be r-φ-μ, where r is the offset radius, φ an azimuthal angle
and μ = cos θ , with θ a polar angle.

z

L

x

K

O

R

r

y

n

M

ϕ
θ

FIG. 3. Sampling of a plane for Poisson tessellation in dimen-
sion d = 3, inside a cubic domain with side L and centered at O.
The random plane K = {r ∈ R3 : 〈n, r〉 = r} is cast into the dual
point M = rn, which can be represented in spherical coordinates as
r-θ -φ. Hyperplanes of the tessellation are sampled by a Poisson point
process that generates points M with intensity g(r, θ, φ). Scheme
adapted from Ref. [33].

g(r, n) by the elegant formula [42]

ρ(r,�) =
∫

Sd−1
|〈�, n〉|g(〈n, r〉, n) dn, (22)

where Sd−1 denotes the surface of the d-dimensional unit
sphere, and the integral is restricted to the half-sphere centered
on r. The tessellation density is invariant under reflection:

ρ(r,�) = ρ(r,−�). (23)

The underlying Poisson point process ensures a line-Markov
property for the resulting Poisson tessellation: an arbitrary line
of orientation � at position r will be cut by the hyperplanes
of the tessellation into chords whose distribution is nonhomo-
geneous exponential with parameter ρ(r,�) [31].

The most general class of Poisson tessellations satisfying
Eq. (22) with arbitrary intensity function g(r, n) has been
addressed only recently, and very few statistical properties
are known exactly [31]. Monte Carlo methods can be used
in order to sample the hyperplanes from g(r, n), followed by
a computationally expensive enumeration procedure to deter-
mine the resulting polyhedral cells. An additional source of
difficulty is due to the fact that in order to sample Poisson
tessellations with a target density ρ(r,�) one should solve the
integral equation (22) for the intensity function g(r, n), which
is a nontrivial task. Special cases of Poisson tessellations,
stemming from specific assumptions on g(r, n), may lead to
a larger number of analytical results, and simpler sampling
procedures. For instance, spatially homogeneous and isotropic
tessellations, which are invariant under translation and rota-
tion, correspond to taking a constant g(r > 0, n) = ḡ, which
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FIG. 4. Examples of Markov media produced with the Switzer
procedure: two-dimensional cuts of three-dimensional realizations
restricted to a spherical domain with radius R = 10 and pred = 0.3.
(a) Spatially homogeneous case, with ρ = 5. (b) Spatially hetero-
geneous case, with radial intensity g(r) = 5[1/4 + (3/4)u(r − 3)],
u(r) being the Heaviside step function.

yields a constant density

ρ(r,�) = ρ̄ = 1

2
ḡ
∫

Sd−1
|〈�, n〉|dn = ḡκd−1, (24)

ḡ being a spatial scale factor and κd the volume of the d-
dimensional unit sphere [31]. This class of tessellations has
been thoroughly investigated, mainly thanks to the pioneering
work by Miles [40,41]; yet only the low-order moments of
some statistical properties have been computed, and most of
their distributions are still unknown [31]. Invariance under
rotation can be relaxed by taking

g(r, n) = ḡH (n), (25)

where H (n) is the angular distribution of the hyperplanes,
with normalization

∫
Sd−1

+
H (n)dn = 1 on the positive half-

sphere Sd−1
+ . This leads to the class of nonisotropic (but

spatially homogeneous) Poisson tessellations with direction-
dependent density

ρ(r,�) = ρ(�) = ρ̄

∫
Sd−1

+
|〈�, n〉|H (n) dn, (26)

whose statistical properties are much more involved than in
the isotropic case and seldom known explicitly [31]. It is
worth mentioning that the superposition of two Poisson tes-
sellations is again a Poisson tessellation, whose density is
the sum of the respective densities [31]: this property can
be usefully applied in order to impose very broad shapes of
spatial gradients in ρ(r,�).

Markov media are finally obtained from Poisson tessella-
tions using the Switzer’s “coloring” procedure, i.e., assigning
each cell of the tessellation a color α with independent
probability pα , which leads to general d-dimensional N-ary
material mixtures. For illustration, some examples of binary
Markov media are displayed in Fig. 4. It can be shown that
material chunks with label α have colored chord lengths obey-
ing a nonhomogeneous exponential distribution as in Eq. (1),
with parameter

ρα (r,�) = (1 − pα )ρ(r,�). (27)

The alternative “deterministic” binary coloring discussed
in Sec. II B trivially generalizes to d-dimensional Poisson

FIG. 5. Comparison of the Monte Carlo estimated average chord
length (symbols) against the values of 1/ρ(r, �) obtained from
Eq. 22 (solid line) at point r = (5, 0, 0) for three-dimensional hetero-
geneous Poisson tessellations with radial intensity g(r, n) = 5g(r),
restricted to a sphere of radius R = 10. Here u(r) denotes the Heav-
iside step function. The angle γ represents the polar deflection
from the radial direction. Error bars correspond to one σ statistical
uncertainty.

tessellations: each hypersurface of the cells will be a disconti-
nuity between colors, and the line-Markov property still holds
true, with ρα (r,�) = ρ(r,�)/2.

A Monte Carlo code, named CASTOR, has been developed
at CEA for the purpose of sampling d-dimensional Markov
media resulting from the Switzer two-step approach: in re-
cent years, it has been successfully applied in the context of
particle transport problems, for homogeneous and isotropic
configurations [13,15,16], anisotropic configurations [14] and
configurations with spatial gradients [33].

For the purpose of illustration, we have examined the chord
length distribution for a few relevant examples of spatially
heterogeneous Switzer media. Since the colored chord lengths
are simply related to the uncolored chord lengths by Eq. (27),
it suffices to probe the underlying Poisson tessellation by
verifying Eq. 22. For our numerical tests, we have sampled
heterogeneous Poisson tessellations having symmetry with
respect to rotations around the origin [i.e., g(r, n) = g(r)], so
that the angular dependence of the tessellation density is lim-
ited to a polar deflection angle γ from the radial direction. We
have compared the Monte Carlo estimator of the mean chord
length at a point r in a specific direction � to the quantity
1/ρ(r,�) from Eq. (22). The large computational cost re-
quired to construct three-dimensional realizations has condi-
tioned the choice of this estimator, which is admittedly rather
crude; hence, Monte Carlo estimates are expected to agree
with the theoretical formula as long as the spatial gradient is
much smaller than the mean chord length. Simulation results
are displayed in Fig. 5 and show that, although the agreement
is rather good, this hypothesis is only partially satisfied.

Although the spatial structure of Markov media obtained
through the Switzer procedure is rather rich, and accounts in
principle for arbitrary gradients and anisotropy in the spatial
scale ρ(r,�) via the flexibility of the underlying Poisson
tessellations, the requirement of spatially constant pα implies
that no gradient can be imposed on the material phases: this is
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basically the same restriction as in the one-dimensional case
discussed in Sec. II B. For the same reason, the possibility
of sampling Markov media displaying complex conditional
transitions between phases in N-ary material mixtures is also
forbidden in this construction [43]. A further limitation of this
class of Markov media is the difficulty in imposing strong
spatial gradients in ρ(r,�), due to the combined action of
the smoothing effect of the integral in Eq. (22) and the
long-distance correlations induced by the Poisson hyperplane
process [33].

IV. MARKOV MEDIA BASED ON ARAK’S MODEL

One-dimensional random media have a peculiar feature, in
that material chords coincide with material regions: Markov
line transects imply a spatial Markov property. This is clearly
not the case for higher-dimensional random media: in the
context of particle transport, for historical reasons the term
“Markov geometries” is used for media having Markov line
transects, but not being necessarily Markov in the spatial
sense. Loosely speaking, random media in a bounded convex
region V are endowed with a spatial Markov property if the
interior coloring of a region V ′ ⊆ V is conditionally indepen-
dent of the exterior coloring, given the knowledge of the color
process on the boundary ∂V ′, i.e., information about both
the colors on ∂V ′ and the coordinates of the hypersurfaces
defining the frontiers between the colors [39].

In this respect, the Switzer procedure based on indepen-
dently colored Poisson tessellations leads to media that are not
spatially Markov: due to the long-range correlations induced
by the underlying Poisson hyperplane process, some of the
hyperplanes that cross the boundary ∂V ′ of a region V ′ ⊆ V
of the tessellation do not induce an interface between colors
on ∂V ′, while inducing (with probability one) an interface be-
tween colors outside V ′ [39]. The information content on ∂V ′
is thus not equivalent to that on the exterior of V ′. Conversely,
the deterministic binary coloring is spatially Markov, due to
the fact that all the hypersurfaces of the cells are visible, being
by construction interfaces between colors.

An intriguing question is thus whether other, less restrictive
d-dimensional stochastic media having the spatial Markov
property exist. A class of two-dimensional random media hav-
ing polygonal realizations and endowed with such property
has been introduced by Arak [34] and considerably extended
by Arak, Surgailis, and Clifford [35–37]. We denote by “col-
oring” a function ω mapping a bounded region V of the plane
into a finite space of discrete labels (i.e., colors). Consider a
finite set � = {l1, l1, . . . , ln} of lines intersecting V , and let ��

V
be the set of all colorings of V such that each line li ∈ � has
a segment [li] of strictly positive length where ω is discontin-
uous, with the constraint that the set of discontinuities of ω

is
⋃n

i=1[li]. Note that each line can contribute only a single
segment: two edges of a valid coloring will not be colinear
almost surely. For an illustration, see Fig. 6. The set of all such
polygonal colorings is denoted by �V = ⋃

� ��
V . A polygonal

mosaic is introduced by assigning the probability measure

PV (A) =
〈 ∑

ω∈��
V ∩A

e−F (ω)

ZV

〉
(28)

FIG. 6. Examples of two-dimensional colorings with polygonal
realizations [44]. (a) Set of lines intersecting a rectangular domain V .
(b) Invalid coloring based on the set of lines at the left: a single line
(marked in bold) contributes to two edges. (c) Valid coloring based
on the same set of lines: here each line contributes to a single edge
inside V .

to coloring events A ⊂ �V . The expectation over � in Eq. (28)
is taken with respect to the Poisson line process on V , and
F (ω) is a potential function mapping the set �V of possible
coloring into R ∪ {∞}. The quantity ZV is the normalization
factor of PV (A), i.e., the partition function of the probability
measure on �V . A sufficient condition for polygonal mosaics
to have the spatial Markov property is that the potential F (ω)
is additive, i.e., the value of F applied to the entire region V
equals the sum of the potentials applied to the partitions of V
[35]. Examples of additive potentials are, e.g., the total length
of the discontinuity boundary between colors, the total area of
a given color, and so on. Arak and Surgailis have exhibited
a very broad family of additive potentials F for which the
resulting Markov polygonal mosaics are endowed with the
following features: they are “consistent,” i.e., the mosaic of the
region V ′ is equal in distribution to the restriction to V ′ of the
mosaic of the region V , for V ′ ⊆ V ; the partition function ZV

is finite and has an explicit expression; and one-dimensional
transects have the line-Markov property [35,36].

Clifford and Middleton have proposed a Monte Carlo sam-
pling strategy that allows generating a collection of Markov
polygonal mosaics [39,45]: the underlying idea is to build a
Markov chain on the set �V of possible polygonal colorings,
based on a “skeleton” provided by a Poisson line process,
and to accept or reject the proposed changes in the coloring
via a Metropolis-Hastings algorithm in such a way that the
distribution of the coloring converges to Eq. (28) at equilib-
rium. Practical sampling of Arak geometries was proved to
be feasible using a clever scheme that eliminates the need
for the (extremely expensive) combinatorial enumeration of
the possible colorings [46]. Further theoretical results [47]
and the growth in available computer power have fostered
the development of conceptually and computationally easier
algorithms [48–52], which have been successfully used, e.g.,
in the field of image analysis.

A. Particle representation of the Arak model

A peculiar feature of the Markov polygonal mosaics is that
they can be alternatively represented in terms of a Markov
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FIG. 7. Illustration of the four main types of events in the dynam-
ics of the particle system resulting in Arak media. Leakage through
the boundaries is not shown. The notation used for velocity and
angles is given for the case of scattering. The angle θ is positive in
counterclockwise direction.

process of particles. It turns out that a two-dimensional ran-
dom geometry having the same distribution as the Arak model
described above can be constructed by simulating the stochas-
tic evolution of a system of interacting particles, placed on
a line segment and evolving in time [35]: one of the spatial
axes (usually x) becomes the “time” variable of the process,
whereas the other axis (say, y) denotes the spatial coordinate
of the particles. Following the simulation of the system of
particles (whose stochastic rules are detailed in the follow-
ing) on some rectangular window V spanning x ∈ [0, Lx] and
y ∈ [0, Ly], the free flights of the particles moving at constant
speed between subsequent “collision events” generate the set⋃

n{xn, yn(x)} of the edges of the random media. The colors
above and below each particle trajectory are assumed to be
always different, so that the paths of the particles define the
“color discontinuities” of the resulting random medium in the
x, y coordinates. Furthermore, storing the color information
in each edge is sufficient to later determine the color at each
point in the geometry. General N-ary mixtures can be repre-
sented in that fashion; in the simpler case of binary mixtures,
it is sufficient to note that the color systematically changes
when crossing a path traced by a particle.

Clearly, the key question is the relationship between the
types and rates of events that can happen to the particles
and the properties of the resulting two-dimensional geometry.
Fortunately, this question has been answered in the case of
homogeneous settings in the foundational papers by Arak
and Surgailis [35,36]. Here we will summarize their findings
for the case of homogeneous and isotropic binary Markov
media constructed on a rectangular window V . We restrict
our discussion to the following set of events for the Arak
particle process, summarized in Fig. 7. A random number
of particles is sampled at the initial condition at x = 0, as
detailed below. Furthermore, particles can be created in two

ways: either a particle enters from outside the geometry and is
spawned at the top or bottom boundary, or a pair of particles
is created in the interior of V . Once created, particles move
in space at constant velocity v, until an event occurs. The
quantity v, which is related to the dynamics of the stochastic
process, can be expressed as v = tan θ in terms of the angle
θ ∈ [−π/2, π/2] of the particle path with respect to the x
axis, which is a geometrical property.4 Particles can scatter,
whereupon the particle velocity randomly changes. Finally,
particles can be removed by two deterministic events: they can
either leak through the top or bottom boundary of V , or two
particles may annihilate each other if their trajectories collide
in the interior of V . In the original model proposed by Arak
and Surgailis, a much more general class of stochastic pro-
cesses was considered, with additional events leading in turn
to more complex polygonal shapes in the resulting random
media [35,36], but for clarity we will focus on a simpler, yet
nontrivial version.

To fully define the dynamics of the system of interacting
particles, the following distributions are required: the distri-
bution of the initial state (position and velocity) of the system
at time x = 0; the probability that a particle will scatter in
an infinitesimal time interval dx around x, as well as the
distribution of the outgoing velocity; the probability that a
particle will be spawned at the top or bottom boundary in an
infinitesimal time interval dx around x and its velocity distri-
bution; and finally the probability that a pair of particles will
be created at dxdy around coordinates x, y and their velocity
distributions. In addition, it is necessary to specify the density
parameter ρ and the color fraction pα (with α ∈ {0, 1}).

The initial state of the particle system at x = 0 is deter-
mined as follows: a collection of starting positions is sampled
from sweeping a Markov process on the line segment from
y = 0 to y = Ly. The initial color α at y = 0 is sampled ran-
domly using pα , and the rates of the process are assigned as
ρα = ρ(1 − pα ), depending on the color and on the spatial
scale. Each color discontinuity point on the segment becomes
a starting particle for the Arak model. The corresponding
angular distribution for the first flight paths reads

as(θ ) = cos(θ )

2
, (29)

from which the velocity v of the source particles can be
promptly sampled.

Somewhat surprisingly, the scattering rates of the Arak
model are color-sensitive, and also depend on the colors im-
mediately above and below a particle. A particle traveling
with velocity v′ = tan θ ′ and having phase β above and α �=
β below will undergo upward scattering (v � v′) with rate
2qβ

√
1 + u′2, and conversely downward scattering (v � v′)

with rate 2qα

√
1 + v′2. For a given color α, the rate qα is

defined as qα = (1/2)ρα . Qualitatively speaking, the particles
tend to be deflected in the direction of a phase with higher ρα .
The factor

√
1 + v′2 accounts for the projection on the time

4Our convention on θ is slightly different from the one in the
original papers [35,36].
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TABLE I. Arak model: rates of different events in dx, together with the associated velocity distributions. We assume that the space around
the particle is occupied by phase α above, and by phase β below (with α �= β).

Event Rate Velocity distribution

Top boundary birth qα ν−(v, 0)
Low boundary birth qβ ν+(v, 0)
Pair birth πq0q1dy ν(v2, tan(θ1)) and θ1 ∼ U (− π

2 , π

2 )
Scattering + 2qα

√
1 + u2 ν+(v, v′)

Scattering − 2qβ

√
1 + u2 ν−(v, v′)

axis. The velocity distribution for upward scattering is

ν+(v, v′) ∝
{
ν(v, v′), if v � v′
0, if v < v′, (30)

the case of downward scattering ν−(v, v′) being similarly
defined, with

ν(v, v′) = |sin(tan−1 v − tan−1 v′)|
2(1 + v2)

. (31)

The origin of Eq. (31) is the following. Given a particle
path with orientation θ ′, the orientation θ of the path after
the scattering event is chosen so that θ − θ ′ has the same
distribution as the angle between the lines of a Poisson line
process, which is key for the resulting geometry induced by
the Arak model to display a Markov property. This implies
the angular distribution [40]

a(θ, θ ′) = |sin(θ − θ ′)|
2

, (32)

whence, using the definition of v, v′ in terms of θ, θ ′, and the
transformation of variables

ν(v, v′) = a(θ, θ ′) cos2 θ (33)

we recover Eq. (31) for the velocity distribution. Observe that
as(θ ) = a(θ, π/2), which means that the angular distribution
of the source particles can be formally assimilated to a scat-
tering event where the incident particle direction is aligned
along the y axis (i.e., the velocity v′ → ∞). The sampling of
v, given the incident velocity v′, is achieved quite simply using
the inversion theorem:

v = tan
[
cos−1(1 − 2ξ ) + tan−1 v′], (34)

where ξ is a uniform random variable in [0, 1).
The birth events at the top (y = Ly) and bottom (y = 0)

boundaries are similar to scattering events. A particle having
phase α below (resp. above) will be produced at the top (resp.
bottom) boundary with rate qα , with associated downward
(resp. upward) velocity distribution ν−(v, 0) [resp. ν+(v, 0)].
Since the boundaries are parallel to the time axis, the correc-
tion factor

√
1 + v′2 does not appear in the rates. Furthermore,

the rates are halved with respect to scattering, because births
contribute only to the half of the intersections of the particle
paths with the boundaries, the other half being due to parti-
cles reaching the top or bottom boundary of the rectangular
window V and being removed.

The rate of the spontaneous births of pair of particles in the
interior of V is color-independent: these events are defined by
a two-dimensional Poisson point process on V with intensity

πqαqβ . The velocity of the pair of particles is determined
by first sampling a uniform angle θ ∈ [−π/2, π/2] and ob-
taining v1 = tan θ for the first particle, and then sampling v2

from ν(v2, v1) for the second particle. The justification for this
choice is again related to the properties of the resulting geom-
etry induced by the particle paths and its intimate connection
with Poisson line processes.

The events of the Arak model are summarized in Table I.
The two-dimensional coloring induced by the edges defined
by such interacting particle process satisfies a spatial Markov
property. Furthermore, line transects of arbitrary orientation
will display a line-Markov property, with chord length density
ρα = ρ(1 − pα ) [35,36]. Similarly to Markov media con-
structed using the Switzer procedure, the properties of the
colored chords of Arak media depend on a spatial scale factor
ρ and on the color probability pα , which is convenient in
view of comparing these two Markov media. For illustration, a
representative evolution of a particle system and the resulting

FIG. 8. An example of the evolution of the Arak particle system
on a square window. Each particle traces an edge which is assigned
a color on both sides (note the two colors composing an edge on
the diagram). The color of regions enclosed by edges is implicitly
determined by color on its boundary. Each event is annotated with
its type and marked by a white dot. Black dots represent particles
present in the configuration at a particular instant.
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geometry are shown in Fig. 8, with each event annotated with
the corresponding type. Note that the color information is
contained within double-colored edges. The color of the cells
is implicitly defined by the color of their boundary.

B. Implementation of Arak particle construction

The main advantage of the particle representation of the
Arak model is that it is more efficient to simulate than the
Markov chain Monte Carlo (MCMC) schemes based on the
potential representation, which typically require a large num-
ber of iterations to converge. Furthermore, the expression for
the potential F (ω) becomes extremely complex for the case
pα �= 1/2: it involves terms related to the number of closed
“loops” formed by edges around a chunk of a given color [as
shown in the last term of Eq. (3.3) in [36]].

In order to sample realizations of Arak media for numerical
investigations, we have developed a C++ code by the name
of POLLUX. The main idea in the simulation of the evolving
system of particles is to store all the events in a priority queue
and process each of them sequentially, for increasing time.
Whenever a particle is created or undergoes scattering, an
event descriptor for its next collision with another particle of
the system is stored in the event queue. The same is done
for the sampled time of its next scattering event. The main
challenge in the simulation is the fact that some event descrip-
tors in a queue may become invalid, since a particle involved
in an interaction may undergo scatter or be annihilated at an
earlier time. This raises the question of how one would keep
the event queue up to date with the current state of the system.
The answer to this problem is to supply an “event validation”
mechanism. Basically, each free-flight edge of the geometry
may be assigned a unique identifier, which is stored in the
event descriptor of its interaction (the scattering descriptor
stores a single identifier, whereas an annihilation descriptor
stores two). In addition, unique identifiers of all edges present
in the current state of the system are kept in a set. Thus,
once an event is removed from a queue, the identifiers of
its participants can be checked against the set. If they are all
present, the time must be advanced and the event processed.
If any is missing, the event is invalid and needs to be ignored.

Since the event rates are color-dependent, special care must
be taken so to ensure that the system of simulated particles
is consistent: the color of the region between neighboring
particles must be the same as for the “top” and “bottom” par-
ticle. To construct the geometry, after each event a free-flight
segment is saved together with the colors immediately above
and below it. Thus, the final geometry is represented as a col-
lection of colored edges, which mark the boundaries between
different faces. In contrast to colored Poisson tessellations,
the cells of Arak media are not explicitly represented. To
determine which phase occupies a given point, it is necessary
to emit a ray in any direction and to find its nearest intersection
with an edge, from which the color can be read. To accelerate
the search for the closest intersection, a Cartesian search mesh
is used to limit the number of the edges that need to be
checked. This strategy, while not being the most efficient way
to represent the geometry, has proven sufficient to perform
particle transport calculations and geometry visualization of
moderately large (or dense) geometries.

FIG. 9. Examples of realizations of spatially homogeneous Arak
media for two color fractions and ρ = 30. Note that only two edges
can meet at a point (V-shaped nodes) and there are no colinear edges,
contrary to the Markov media sampled with the Switzer procedure
shown in Fig. 4.

To allow easier experimentation with different types of par-
ticle dynamics, POLLUX separates the code which performs the
particle evolution and geometry construction from the code
which samples the events and velocity distributions, which
is hidden behind an abstract interface. This approach signif-
icantly reduces the effort required to introduce new kinds of
events in the stochastic process. Some examples of realiza-
tions of Arak media are shown in Fig. 9. At present, POLLUX is
limited to work with events leading to geometries whose lines
are connected by V-shaped nodes only. However, the support
of Y- and X-shaped nodes (which can be mixed in different
proportions together with V-shaped nodes) will be introduced
in a near future.

In order to verify our implementation, we have used the
same strategy as in [46], relying on analytical results for the
expected number of points and edges in a geometry with
pα = 1/2: numerical tests have shown very good agreement,
as summarized in Table II. For the case of pα �= 1/2, analo-
gous analytical formulas are unavailable in the literature, so
we have focused instead on the chord length distribution and
the volume fractions.

TABLE II. Monte Carlo verification of the Arak construction on
a unit square based on expected number of interior points and edges,
whose expressions are given in [46], for the case p0 = 1/2. For each
ρ, 1.0 × 107 samples were drawn.

ρ Expected number of points Monte Carlo

0.01 7.854 × 10−5 7.370(272) × 10−5

0.1 7.854 × 10−3 7.822(29) × 10−3

1 7.854 × 10−1 7.851(3) × 10−01

10 7.854 × 101 7.854(0) × 101

ρ Expected number of edges Monte Carlo

0.01 1.0079 × 10−02 1.0096(2) × 10−02

0.1 1.0785 × 10−01 1.0797(2) × 10−01

1 1.7854 1.7851(3)
10 8.8540 × 101 8.8542(4) × 101
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FIG. 10. Examples of realizations for the spatially heterogeneous
Arak media investigated in Sec. IV C, together with the correspond-
ing transition rates qα (x). For visualization, the magnitude of the
rates was increased by a factor of ×10 in the color flip case and ×4
in the step case in order to emphasise the gradient in the displayed
realizations.

C. Heterogeneous Arak model

The logic of the particle construction for the Arak model
is significantly different from the one used in the construction
of Markov media using Poisson tessellations: a strong resem-
blance with the “sweeping” construction of Markov media
on the line is apparent. Based on this analogy, it seems rea-
sonable to introduce one-dimensional gradients in the spatial
properties of Arak media in a fashion similar to the hetero-
geneous one-dimensional Markov media, i.e., by assuming
that the particle dynamics is time-dependent. This can be
achieved by making the Arak transition rates qα (x) functions
of “time” x, which in turn implies that all event rates in Ta-
ble I become also time-dependent. While it can be reasonably
argued that the resulting stochastic process is still Markov,
to the best of our knowledge this ad hoc generalization of
the Arak model lacks a fully developed theoretical support,
since most of the existing literature discusses exclusively the
case of time-homogeneous Arak dynamics. In this paper we
will not attempt to formulate rigorous proofs for the statistical
properties of heterogeneous Arak media, but instead propose
semi-formal arguments carefully supported by Monte Carlo
simulations.

To enable sampling particle events from a nonstationary
dynamics in POLLUX, we implemented a rejection scheme
similar to the delta-tracking method [53]. The time-dependent
events of the Arak dynamics are sampled based on the
time-independent qmax

α rate, and accepted with probability
qα (x)/qmax

α , where qmax
α is a precomputed upper bound on the

values of qα (x). The standard Lewis’s thinning method [54] is
employed to sample particle birth sites from a nonstationary
two-dimensional Poisson point process. For illustration, some
examples of realizations corresponding to a step change in
color fractions and a step change in single transition rate
are shown in Fig. 10. Theorem 8.1 of [35] states that the
geometry generated by the Arak particle dynamics has the
spatial Markov property provided that the associated potential

F (ω) is additive (and the partition function ZV is finite). The
additivity of the potential function of the heterogeneous Arak
model follows from F (ω) behaving as in the homogeneous
case for sufficiently small regions dxdy. The line-Markov
property has been assessed by resorting to Monte Carlo, via
a two-step verification process: we have first generated an
ensemble of realizations of Arak media, from which the chord
length densities ρα (r,�) have been estimated; then, a new,
independent ensemble of realizations has been sampled and
used to estimate the colored chord length distribution. The
histogram of the chord length distribution is finally compared
to the nonhomogeneous exponential distribution in Eq. (1)
having the inferred transition rates.

The chord length densities ρα (r,�) of the resulting non-
homogeneous Arak media were estimated as follows: for each
realization, a test segment of length 0.001 was placed at point
r in direction �, the color at r was found and the next in-
tersection in direction � was determined. Thus, by recording
whether this transition took place within the length of the test
segment, it was possible to measure the probability of a color
change, which yields the chord length densities under the
approximation that they are constant over the length of the test
segment. We have investigated a few relevant configurations,
with spatial gradients based on the ones used previously for
the one-dimensional heterogeneous Markov media on the line.
The Arak transition rates qα (x) were chosen to match the ones
imposed in the one-dimensional cases illustrated in Fig. 2.
Furthermore, the location of test points were the same for both
models. For the chord length densities, 1.0 × 108 indepen-
dent replicas were sampled. Chord length distributions in the
forward and backwards directions parallel to the x axis were
measured, based on additional 2 × 107 independent replicas.

The chord length densities as well as the comparison be-
tween measured and theoretical chord length distributions
are displayed in Fig. 11 for directions aligned with the x
axis. Figure 12 displays the comparison of the chord length
distributions against theoretical curves for directions aligned
with the y axis and with π/4 deflection direction. Clearly,
there is a statistically significant agreement between measured
and theoretical chord length distributions, which is a strong
evidence that the line-Markov property is preserved in the
case of spatially heterogeneous Arak geometries. As far as we
are aware, this is the first time two-dimensional heterogeneous
Markov media with gradients in the color fractions pα (r) are
explicitly exhibited.

As expected, the observed chord length densities
ρα (r,�) = ρα (x) projected on the positive direction of the x
axis do not reproduce the Arak transition rates qα (x) exactly.
There is a noticeable lag in the measured chord length den-
sities, which may be attributed to the fact that the observed
ρα (x) in the Arak media depend not only on the rates qα (x) of
the Markov process used to generate the geometry, as it was
the case in one-dimensional Markov media, but also on the
current state of the particle system. Basically, after each step
change in the dynamics, particles require a relaxation time
to reach a new equilibrium state. The “lag” of the ρα (x) is
key to predicting the statistical properties of nonhomogeneous
media: for this purpose, at present we rely on the stochastic
measurement of the chord length densities; future work will
be devoted to developing theoretical tools for the analysis of
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FIG. 11. Statistical properties of Arak media with spatial gradients. (a, c) Comparison of the Monte Carlo histogram of the chord length
distribution against the formula assuming that the distribution given by Eq. (1). Here ux is used to denote the unit vector along the x axis. The
dashed line representing the postulated distribution has a statistically significant agreement with respect to Monte Carlo sampled values. [(b),
(d)] Estimated measured transition rates. Error bars (barely visible) represent one σ statistical uncertainty. Chord length and transition rates
were estimated on independent sets of realizations. For the step change case, the shape of the Arak transition rate 2q0(x) is shown to emphasize
that the transition rate behaves similarly as in one-dimensional Markov media on the line.

FIG. 12. Comparison of the Monte Carlo histogram of the chord length distribution against the formula assuming the distribution given by
Eq. (1) for directions not aligned with the x axis. The same statistically significant agreement as in Fig. 10 can be observed. The test point for
all cases was placed at x = 5. Note that in (b) three of the cases yield the same homogeneous exponential chord length distribution (displayed
as a straight line).
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this behavior. The same “lag” phenomenon also accounts for
the fact that the discontinuities observed in the chord length
distributions for one-dimensional Markov media are absent
from the those measured in Arak media. Notwithstanding
these discrepancies, the overall qualitative features of ρα (x)
for one-dimensional and Arak media are very similar.

V. COMPARISON OF SWITZER AND ARAK MODELS FOR
PARTICLE TRANSPORT PROBLEMS

In this section we examine the impact of the different
Markov media models on particle transport problems, which
is the primary motivation for this work. Since particle histories
are composed of a series of successive exponential flights
in between collisions with direction reorientation, a widely
adopted assumption is that transport in random media is pri-
marily affected by the colored chord length distribution (and
in particular the average chord length) [2]. We would like then
to assess to which extent Switzer and Arak media sharing the
same chord length distribution (but generally having differ-
ent higher-order spatial correlations) may show discrepancies
in transport-related observables, such as the ensemble-
averaged flux. For this purpose, we have selected a simple
configuration for particle transmission, adapted from the
higher-dimensional version of the celebrated Adams-Larsen-
Pomraning benchmark [15]: the Boltzmann equation for
single-speed transport was solved by Monte Carlo simulation
in a cube with a side length of L = 10 filled with spatially
homogeneous realizations of the random media. The ran-
dom media are binary mixtures of a pure absorbing material
for phase α = 0 (with cross section �0 = 10/99) and pure
isotropically scattering material for phase α = 1 (with cross
section �1 = 100/11). Since the Arak model is inherently
two-dimensional, the realizations were extruded along the z
axis; for a fair comparison, for the Switzer geometries we have
also sampled two-dimensional configurations and extruded
them along the z axis. An isotropic source has been placed at
the side x = −5 of the box, and vacuum boundary conditions
have been imposed on the opposite face at x = 5; reflective
boundary conditions were imposed on the y and z axes.

Transport calculations were performed for Switzer and
Arak realizations with spatial scale ρ ∈ {0.25, 0.5, 0.4} and
binary color fractions pα ∈ {0.3, 0.7}. Markov media corre-
sponding to the Switzer procedure were sampled using the
CASTOR code and particle transport was solved using the
general-purpose TRIPOLI-4® Monte Carlo code developed at
CEA [55]. For the Arak model, realizations were sampled
using the POLLUX code and particle transport was solved using
a Monte Carlo mini-app with a special interface for dealing
with particle tracking in Arak media. For both random media
models, 2000 independent realizations were sampled, and for
each realization transport was solved using 2 × 106 particles
split into 400 replicas. The fiducial quantity is the ensemble-
averaged particle flux

〈ϕ(x)〉 = 1

M

M∑
i=1

ϕi(x) (35)

along the x axis of the geometry, where ϕi is the flux estimated
in the ith realization and M is the number of realizations for

the random media. The statistical uncertainty σ〈ϕ〉 affecting
the average flux 〈ϕ〉 stems from both the dispersion of the
realizations

σ 2
G(x) = 1

M

M∑
i=1

ϕ2
i (x) − 〈ϕ(x)〉2, (36)

and the dispersion

σ 2
ϕ (x) = 1

M

M∑
i=1

σ 2
ϕi

(37)

due the statistical uncertainty σ 2
ϕi

of Monte Carlo transport for
each realization i [15]. Hence, the combined error estimate on
the average flux is

σ 2
〈ϕ〉(x) = σ 2

G(x)

M
+ σ 2

ϕ (x). (38)

Observe that the track-length-based estimator used in TRIPOLI-
4 for the Switzer media is more efficient than the simpler
collision-based estimator used in the mini-app Monte Carlo
for the Arak media.

Our simulation results are shown in Fig. 13, where we
display the ensemble-averaged flux as well as its variance.
The standard error of the variance was estimated using the
bootstrap resampling available in the SciPy package [56].
The default bias-corrected and accelerated (BCa) method was
used, together with 9999 resamples for each bin. It is apparent
that for both the mean and the variance the number of samples
was sufficient to obtain small statistical uncertainty, which is
barely visible in the figure.

These findings clearly demonstrate that there is a system-
atic, albeit small, difference in the distribution of the flux
between “equivalent” Arak and Poisson models, where equiv-
alence has been established by choosing the model parameters
in order to have the same chord length distributions. A slight
difference can be observed in the mean value, but the effect
is much more pronounced for the second central moment.
As expected, the discrepancy is amplified by the amount
of scattering in the problem. In perfectly absorbing Markov
media, transport would effectively take place along straight
lines (except for the reflections from the boundary); thus, it
would be governed by the line-Markov property alone and
no differences between Arak and Poisson models should be
observed. This effect is partially demonstrated for the cases
with p0 = 0.7, where the difference is reduced significantly
with respect to cases with p0 = 0.3. The discrepancy between
the two models also decreases for larger ρ; however, this is
not the case for the variance, where some significant offset
remains.

VI. CONCLUSIONS

Several applications occurring in engineering and life sci-
ences involve particle transport in disordered media: such
materials, whose spatial features are known only statistically,
are often described using various models borrowed from the
theory of stochastic geometry. In this respect, random media
whose line transects have a Markov property play a prominent
role, in that they can be fully characterized by assigning two
single parameters, the typical spatial scale and the coloring
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FIG. 13. Comparison of the ensemble-averaged particle flux and ensemble-averaged flux variance for a benchmark problem of particle
transport in spatially homogeneous Switzer and Arak media with the same scale and color probability, for which the chord length distributions
are identical. Two-dimensional realizations have been extruded in the z axis. Error bars (barely visible) correspond to one σ statistical
uncertainty. The standard error of the variance was obtained by bootstrap.

probability. In this work, we have investigated the behavior
of several homogeneous and nonhomogeneous random media
exhibiting a Markov property, and their impact on the observ-
ables related to particle transport.

After reviewing the prototype case of one-dimensional
Markov media on the line, we have considered the case of
higher dimensions, which is mandatory to address real-world
systems. A first generalization has been presented based on
the Switzer procedure, where (generally nonhomogeneous)
d-dimensional Poisson tessellations are randomly colored
assigning each polyhedron a color with independent and spa-
tially homogeneous probabilities: the resulting random media
exhibit a line-Markov property. However, contrary to the
one-dimensional case, where the sweeping procedure enables
separately imposing spatial gradients in the spatial scale as
well as in the coloring probability, Markov media obtained
from the Switzer procedure can only display spatial gradients
in the spatial scale.

In order to overcome this limitation, we have then ex-
amined the broad family of the Arak models, which can be
used to sample two-dimensional random media exhibiting
a stronger spatial Markov property, in addition to the line-
Markov property. For the special case that we have selected
in this paper, the only free parameters of the model are again
the typical spatial scale and the coloring probability. Although
their sampling strategy is much more cumbersome than in the
case of the Switzer procedure, Arak models have an increased
flexibility and allow for spatial gradients in the spatial scale as
well as in the coloring probability.

A comparison of particle transport in Switzer-based and
Arak-based Markov media for a few benchmark configura-
tions consisting in binary mixtures of absorbing and scattering
materials has shown that small but significant discrepancies
appear in the ensemble-average particle flux through the ge-
ometries, despite the fact that both models were tuned so to
share the same colored chord length distribution. The ob-
served discrepancies, which are physically due to higher-order
correlations between the particle trajectories and the spatial
distribution of the material chunks (not fully captured by the

chord distribution alone), increase with increasing scattering-
to-absorption probability, and disappear entirely in the case of
purely absorbing media. To the best of our knowledge, this is
the first time that such a comparison has been attempted in the
context of particle transport problems.

Future work will aim at extending our findings in several
directions. Our analysis of the nonhomogeneous Arak model
has been mainly driven by Monte Carlo simulations, and sig-
nificant efforts would be needed in order to derive analytical
results for the key statistical features, most importantly the
line transect distributions as a function of the nonstationary
event rates. Furthermore, the Arak model examined here is
actually a special case of a very broad family of stochastic
media with a spatial Markov property that can be obtained by
properly tuning an additive potential F (ω) and sampling the
corresponding particle dynamics: the effects of the resulting
spatial patterns on particle transport clearly deserve to be
investigated. A highly nontrivial question concerns the gener-
alization of Arak models to dimension d = 3: the construction
based on MCMC can be in principle carried over to higher
dimensions, but the computational cost is likely to become
unbearable; conversely, the particle dynamics construction,
despite some promising preliminary results, seems to be still
hindered by serious theoretical issues [57]. Finally, while our
main focus has been on comparing Switzer-based and Arak-
based random media, it would be interesting to further extend
our investigation of particle transport to other models with a
line-Markov property that are known in the literature, such as
the iteration stable tessellations (STIT) [58].
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