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Effects of the kinetic energy in heat for overdamped systems
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In the derivation of the thermodynamics of overdamped systems, one ignores the kinetic energy contribution
since the velocity is a fast variable. In this paper, we show that the kinetic energy needs to be present in the
calculation of the heat distribution to have a correct correspondence between the underdamped and overdamped
cases, meaning that the velocity can not be fully ignored in the thermodynamics of these systems. We do this
by investigating in detail the effect of the kinetic energy for three different systems: the harmonic potential, the
logarithm potential, and an arbitrary non-isothermal process.
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I. INTRODUCTION

The attempt to understand and control heat has been
pursued by humanity since before the dawn of modern civ-
ilization [1,2]. Nowadays, we currently understand heat as
a disordered form of energy that can be used as a source
for thermal machines [3,4]. With the development of new
technologies, we can now manipulate small systems, on the
order of nanometers, to the point of building such thermal
machines on this scale [5,6].

On the microscale, thermodynamics has a different charac-
ter than in the macroworld. Namely, quantities like heat and
work now become fluctuating quantities. A lot of attention
was devoted to obtaining the probability distribution for these
thermodynamic functionals with experimental [7–10] and the-
oretical [11–21] calculations. Microscale thermodynamics is
now a proper field of research, that is now called stochastic
thermodynamics [22–24].

Most of the works in stochastic thermodynamics make use
of overdamped models, where one can neglect the inertia of
the particle due to the large dissipation from contact with a
heat bath. When this is the case, one, in principle, neglects the
kinetic energy by disregarding the inertia, as opposed to the
underdamped case, where we always have this contribution
[23]. However, since there is a distinction between the proba-
bility distributions when m = 0 is taken first, instead of taking
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m/γ → 0 after the calculations [25], the kinetic energy needs
to be present. Moreover, the velocities in an overdamped sys-
tem are stationary, obeying a Boltzmann Gibbs distribution.

Futhermore, in [26] it has been shown that for overdamped
systems in an isochoric process, the kinetic energy can not
be ignored. They have shown that the average heat of the
overdamped Brownian motion, when there is a temperature
protocol, does not correspond to the underdamped case in
the large friction limit. At the same time, if no temperature
protocol is present they find that the correspondence between
the averages is satisfied. The problem is to take the limit in
the system dynamics before the calculation of its thermody-
namics. While we can ignore the velocity in the dynamics and
in the average thermodynamics for isothermal processes, in
the fluctuating thermodynamics the kinetic energy needs to be
present; a conclusion already found by Ref. [27]. Morevoer,
similar investigations were carried out for systems with mul-
tiple thermal baths [28], and for active systems [29,30]

Another result that breaks the correspondence between
underdamped and overdamped systems was obtained by the
authors in [31]. We have showed that the heat distribution of
the free particle in the underdamped case,
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does not correspond to the heat distribution of the free particle
in the overdamped case

Po(Q) = δ(Q), (2)
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in the limit of large friction, where γ � m. The absence of
the correspondence manifests the necessity of considering the
kinetic energy.

In this paper, we show that by considering the kinetic
energy, the correspondence is satisfied between the heat dis-
tributions. Different from the conclusions in [26], our result
shows that even in an isothermal process, there is the necessity
to consider the kinetic energy in order to obtain the correct
heat distribution of an overdamped system.

The aim of this paper is to show that the presence of the
kinetic energy is necessary concerning the thermodynamics of
overdamped systems due to the necessity of a correspondence
between the heat distribution of an underdamped system and
the corresponding overdamped one. We start by explicitly
calculating the correct heat distribution for the free particle
case. Then, we investigate the differences when the kinetic
energy is included for harmonic and logarithm systems. We
find that there are, in general, more fluctuations. Moreover,
since the kinetic energy is more relevant for nonisothermal
processes, we also investigate the heat of a free particle subject
to an arbitrary protocol where the only constraint is that the
initial and final temperatures are welldefined.

In Sec. II, we review the free-particle case, showing the
fundamental differences when including the kinetic energy.
In Secs. III and IV, the heat distribution for the harmonic
and logarithmic cases are obtained respectively, and studied
in details its fluctuations by the calculation of the central
moments. In section V, we study the effect of considering the
kinetic energy in a nonisothermal process. In section VI, we
present our conclusions and discussions.

II. THE KINETIC ENERGY

A free Brownian particle in contact with a heat bath in
the overdamped regime obeys the Langevin equation (always
assuming kB = 1)

γ ẋ(t ) = η(t ), (3)

where γ is the friction coefficient, and η(t ) is a white
noise process with zero mean and correlation 〈η(t )η(t ′)〉 =
2γ T δ(t − t ′), where T is the temperature of the heat bath.

If one considers the definition of heat given by Sekimoto
[23],

Q[x] =
∫ τ

0
(γ ẋ − η(t ))ẋdt, (4)

which is the definition of the energy exchanged between the
Brownian particle and the heat bath, one obtains that Q[x] = 0
in the free case. One can ask if this result is compatible with
our physical intuition. To move, the particle has to receive
or lose energy in some way. What Q[x] = 0 is saying is that
there are no fluctuations in the energy exchanged between the
particle and the heat bath. Using the definition in Eq. (4), the
heat distribution of the free particle in the overdamped case
has a simple formula given by a Dirac delta, as shown in
Eq. (2), which is a deterministic probability (in a sense that
there is no fluctuation). In addition, if one calculates the heat
distribution of the free particle in the underdamped regime,
one obtains Eq. (1) [31]. The problem is, Eq. (1) does not
correspond to Eq. (2) in the large friction limit γ � m. If we

take this limit, we obtain

Pu(Q) −−→
γ�m

1

πT
K0

( |Q|
T

)
. (5)

What we find is that the solution of this problem is solved by
considering the kinetic energy in the heat of the overdamped
system. For the free particle case, this means that the heat is
now

Q[x] = 1
2 m

(
v2

τ − v2
0

) = �K, (6)

where vτ is the final velocity and v0 is the initial velocity.
By calculating the distribution of this heat, we can recover
the correspondence. The calculation is easy since in the over-
damped limit we assume that the velocities obey a stationary
equilibrium distribution at all times. This means that the initial
distribution and transitional distribution of the particle veloci-
ties are

P(v0)P[vτ , τ |v0, 0] = m

2πT
e− m

2T (v2
τ +v2

0 ). (7)

Thus, if we calculate the heat distribution, we will have the
characteristic function (see the Appendix)
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, (8)

that can be Fourier transformed to obtain the desired heat
distribution

Po(Q) =
∫

dλ

2π

eiλQ

√
1 + λ2T 2

= 1

πT
K0

( |Q|
T

)
, (9)

which is the exact heat distribution that one obtains if one
calculates the underdamped heat distribution and takes the
large friction limit. Also, note that the heat distribution is
stationary, due its independence in time.

As a result, to have a correspondence between the heat
distributions of the two cases, one needs to take into account
the kinetic energy term [27]. Moreover, this means that the
definition of heat given by Sekimoto, Eq. (4) is probably
not the complete version of the heat in stochastic thermody-
namics. Nevertheless, a complete version could be achieved
if one can always define the heat according to the first law
using the complete energy of the system, i.e., the potential
energy plus the kinetic energy. The natural recipe is: first,
defining the work, then using the first law together with the
complete energy of the system to define the heat. Although
the distributions in Eqs. (2) and 9 have a similar statistical
behavior, both distributions have a singularity in Q = 0 and
give the same average for the heat 〈Q[x]〉 = 0. Furthermore,
in the overdamped limit in an isothermal process where the
velocities are in equilibrium, the average kinetic energy is
always zero. Explaining why in [26] the average heat in an
isothermal process has the correspondence between its over-
damped and underdamped cases.

III. HARMONIC SYSTEM

The necessity to include the kinetic energy modifies some
results already obtained in the literature. Here, we investigate

044106-2



EFFECTS OF THE KINETIC ENERGY IN HEAT FOR … PHYSICAL REVIEW E 106, 044106 (2022)

FIG. 1. Heat distribution with and without the kinetic energy.
The pink dashed line is the case without the kinetic energy, while
the solid green line is the corrected heat distribution with the kinetic
energy. All the constants are set to one. We can see that the correct
heat distribution allows more fluctuations for the heat due to the
velocities.

the effects of the kinetic term in the harmonic potential case
that was first calculated (without the kinetic contribution) in
[11]. This system obeys the Langevin equation

γ ẋ(t ) = −kx(t ) + η(t ), (10)

where k is the stiffness of the harmonic potential. We start by
noticing that by considering the kinetic energy we only add
more integrals in the calculation of the characteristic function.
That is

Z (λ) =
∫

dv0

∫
dvτ

m

2πT
e− m

2T (v2
τ +v2

0 )e−iλ m
2 (v2

τ −v2
0 )z(λ), (11)

where z(λ) is the characteristic function that one obtains if we
do not consider the kinetic energy. For the harmonic case, this
characteristic function is [11,31]

z(λ) =
√(

coth
(

kτ
γ

) + 1
)

√
coth

(
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) + 2λ2T 2 + 1
. (12)

Integrating in the velocities, we obtain the correct characteris-
tic function

Z (λ) = 1√
1 + λ2T 2

√(
coth

(
kτ
γ

) + 1
)

√
coth

(
kτ
γ

) + 2λ2T 2 + 1
, (13)

that, unfortunately, does not allow us to analytically obtain
the heat distribution P(Q). Nevertheless, we can integrate it
numerically, and the result is shown in Fig. 1 in comparison
with the heat distribution obtained without the kinetic energy
correction. What we find is that the corrected heat distribution
has larger fluctuation tails than the naive distribution. This
occurs due to the equilibrium fluctuations of the velocities.
Having a greater probability of heat values occurring far from
the mean, it can be exploited in the design of thermal machines
[3], where one wants to use the fluctuations to improve the
efficiency of these machines.

In the asymptotic time limit of the system, we can recover
an analytical solution by noticing that

lim
τ→∞ Z (λ) = 1

(λ2T 2 + 1)
, (14)

which gives an exponential distribution for the heat distribu-
tion

lim
τ→∞ Po(Q) = e− |Q|

T

2T
. (15)

A result different from the Bessel function obtained in [9],
PImparato(Q) ∼ K0(T −1|Q|). Moreover, this asymptotic heat
distribution is the same asymptotic distribution of the har-
monic case in the underdamped regime [31]. Therefore, in the
asymptotic limit, the heat distribution is the same for under-
damped and overdamped systems in a harmonic potential.

A. General considerations

Some general considerations can be obtained by using the
characteristic function formula. It is easy to see that for an
isothermal overdamped process, the new characteristic func-
tion will always be

Z (λ) = z(λ)√
1 + λ2T 2

, (16)

where this is valid for systems with velocity independent of
the position. Note that this equation is just the Fourier-space
version of Eqs. (1) and (2) of [27]. Due to the quadratic
dependence in λ in the new term, the mean and skewness
are not affected by the kinetic energy. That is, 〈Q〉 = 〈Q〉kin.
Moreover the difference between the variances will always be
given by

σ kin
Q − σQ = T 2, (17)

where the superscript kin is used to specify that we obtain
the variance with the new characteristic function, and the
moments can always be calculated by

(−i)n ∂nZ (λ)

∂λn

∣∣∣∣
λ=0

= 〈Qn〉. (18)

This difference means that, for higher temperatures, the dif-
ference between the variances increases. Thus the effect of
including the kinetic energy is more visible for high tempera-
tures. As far as we know for the kurtosis, no general statement
appears.

B. Central Moments

Now, let us study in detail the fluctuations of the heat with
harmonic potential. We will compare the central moments;
mean, variance, skewness, and kurtosis, with and without the
kinetic energy.

The odd moments, the mean and skewness, are null for
both cases since the distribution is symmetric around zero and
the kinetic energy does not affect this behavior.

For the variance, we have a slight difference, while the
variance without kinetic energy is

σQ = 2T 2

coth
(

kτ
γ

) + 1
, (19)
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the case with kinetic energy is

σ kin
Q = T 2(2 − e− 2kτ

γ ), (20)

where one can check that these variances satisfy Eq. (17).
For the kurtosis, the fourth central moment, we have

κ = 〈(Q − 〈Q〉)4〉
σ 2

Q

= 9, κkin = 3

(1 − 2e
2kt
γ )2

+ 6, (21)

where the constant value for the kurtosis without kinetic en-
ergy comes from the variance having the same dependency
of the constants as the fourth moment. Both cases are always
Leptokurtic [32] since the kurtosis is greater than three for all
times.

IV. LOGARITHM SYSTEM

Here we show the modification of another interesting case
of the heat distribution in the logarithm potential calculated
without correction by one of the authors in [15]. The logarithm
potential appears in different stochastic phenomena [33–39],
and its Langevin equation is (we take γ = 1 for simplicity)

ẋ(t ) = − k

x(t )
+ η(t ), (22)

where k is the strength of the logarithm potential and x(t ) is
defined only in the positive real axis [40], while the initial
position distribution is a Dirac delta [15]. Now we will ex-
plicitly show the modifications that one must consider when
calculating the heat distribution. This time, without using
the characteristic function method and choosing to illustrate
another approach, where instead of the Fourier transform of
the Dirac delta, we use its properties.

The heat is shifted with the kinetic correction, therefore we
have

Q[x] = �K + k ln
xτ

x0
, (23)

and thus the heat distribution is

P(Q) =
〈
δ

(
Q − �K − k ln

xτ

x0

)〉
. (24)

If we define Q̃ = Q − �K , the calculation can be carried
along the same lines in Ref. [15]. However, we will still need
to integrate the velocities. Hence, we arrive at the integrals

P(Q) =
∫

dv0dvτ

m

2πT
e− m

2T (v2
τ +v2

0 ) p(Q − �K ), (25)

where p(Q) is the expression of the heat distribution obtained
in [15] without the kinetic energy, that is

p(Q) = 1

4T kt
Iκ

(
eQ/kx2

i

2T t

)
(eQ/kxi )

κ+2xκ
i

× exp

(
− 1

4T t
(e2Q/k + 1)x2

i

)
,

where κ = 1
2 (k/T − 1), and xi are the particle initial position

due to the initial Dirac delta distribution (see [15]). Note
that the above expression is similar to one found by [27].

FIG. 2. Probability distribution of the heat for the logarithm case,
with and without the kinetic energy. The pink dashed line is the case
without the kinetic energy, while the solid green line is the corrected
heat distribution with the kinetic energy. All constants are set to
one. Note that the kinetic energy has a more broaden distribution,
as expected since the variance increases due the kinetic energy.

Again, we cannot obtain an analytical result for the heat,
but it can be solved by numerical integration. The result is
plotted in Fig. 2 where one can see that the distribution with
kinetic energy has a more broad probability. Furthermore, it is
interesting to note that previous analytical results, when con-
sidering the correction of the kinetic energy, no longer give an
analytical solution. This suggests that the heat distribution of
overdamped systems is much more complex when the kinetic
energy is taken into account.

Central Moments

Different from the harmonic case, the logarithm potential
does not have an equilibrium initial distribution or null odd
moments. Here we compare the central moments of heat be-
tween the case with and without kinetic energy.

The characteristic function of the logarithm case without
the kinetic energy is [15,18],

z(λ) = 2ikλx−ikλ
0 (tT )

ikλ
2 �

(
iT λk + k + T

2T

)

× 1F̃1

(
−1

2
ikλ;

k + T

2T
; − x2

0

4tT

)
, (26)

where, 1F̃ 1 is the hypergeometric regularized function [41],
while the characteristic function with the kinetic energy is just
Z (λ) = z(λ)(1 + λ2T 2)−1/2. Therefore, the moments can be
calculated analytically.

The odd central moments, the mean and skewness, are
exactly the same, independently of the kinetic term, since that
kinetic term has a quadratic dependence in λ. The mean is
given by

〈Q〉 = 〈Q〉kin = 1

2
k

(
− �

(
k + T

2T

)
1F̃ (1,0,0)

1

×
(

0,
k + T

2T
,− x2

0

4tT

)
+ ψ (0)

(
k + T

2T

)

+ log

(
4tT

x2
0

))
, (27)
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FIG. 3. Variance with and without kinetic energy for the loga-
rithm potential case. All constants are set to one.

FIG. 4. Mean and skewness for the logarithm case with and
without the kinetic energy. All parameters are set to one. Note that
the mean is always increasing, while the skewness becomes constat.

where ψ is the Polygamma function. The mean is increasing as time passes, as already shown in [15]. The variance is given by

σ kin
Q = σQ + T 2 = 1

4

(
4T 2 + k2

(
log(tT ) log

(
16tT

x4
0

)
−

(
log

(
16tT

x2
0

)
− 2 log(x0)

)(
log

(
tT

x2
0

)
+ 2 log(x0)

))
−

+ k2ψ (1)

(
k + T

2T

)
− k2�

(
k + T

2T

)2

1

F̃ (1,0,0)
1

(
0,

k + T

2T
,− x2

0

4tT

)2

+ k2�

(
k + T

2T

)
1

F̃ (2,0,0)
1

(
0,

k + T

2T
,− x2

0

4tT

))
. (28)

Despite this complicated formula, the variance has a simple
behavior as shown in Fig. 3. The variance also increase as
time passes until it reaches a stationary behavior.

The next central moments are very long expressions, and
the results are plotted in Figs. 4 and 5. For the skewness,
one can see that it is negative, meaning that the left tail of
the distribution is longer than the right tail, measuring the
asymmetry of the distribution. The dynamics is simple: the
skewness rapidly saturates in its stationary value.

The behavior of the kurtosis is more complex. For the case
without kinetic energy the kurtosis saturates very rapidly in
a fixed value greater than three, meaning that the distribution
without kinetic energy is leptokurtic, while for the case with-
out kinetic energy, the tail also becomes leptokurtic, however,
with a small value. Therefore, as expected, the tails with
kinetic energy are more fat.

V. NONISOTHERMAL PROCESS

From the theoretical point of view, we see that taking
the kinetic energy into account preserves the consistency of
stochastic thermodynamics. From a practical point of view,
however, the fluctuations in kinetic energy will not be dom-
inated by the protocol, but by the accuracy of the apparatus.
The case with isothermal is simple and does not have sub-
stantial consequences in experimental measures. However, for
the nonisothermal process, the effect of including the kinetic
energy is more apparent, as already shown in [26]. As a first
model, here we will use the free particle case connected with
two different equilibrium heat baths in the initial and final time
of the process.

The position of an overdamped free particle in contact with
a heat bath again obeys the following Langevin equation

γ ẋ(t ) = η(t ), (29)

where now T (t ) is the time-dependent temperature of the heat
bath. Here, we are considering a temperature protocol

T (t ) = T0 + (Tf − T0) f (t ), (30)

where we are assuming f (t ) → 1 in the end of the process in
order to give 〈v2

τ 〉 ∼ Tf . That is, the final velocity is in equi-
librium with the final state of the heat bath with temperature
Tf . Whether the equilibration is possible, or not, is beyond the
scope of this paper, and will be addressed in a future work.

FIG. 5. Kurtosis for the logarithm case, with and without kinetic
energy. All constants are set to one.
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The heat exchanged by the particle will be just the kinetic
energy

Q = �K = 1
2 m

(
v2

τ − v2
0

)
. (31)

Note that if the kinetic energy is not considered, there is no
meaning in discussing the heat for this system.

The characteristic function of the heat can be calculated
along the same lines of the previous cases; assuming that the
particle velocity equilibrates at the end of the process, we have

Z (λ) =
∫

dv0

∫
dvτ

m

2π
√

T0Tf
e
− mv2

τ
2Tf

− mv2
0

2T0 e−iλ m
2 (v2

τ −v2
0 )

= 1√
1 + iλTf

1√
1 − iλT0

. (32)

Note that the Fourier transform of the characteristic function
gives the Bessel function in the probability distribution for
the heat, when T0 = Tf as shown in [11]. Furthermore, the
probability distribution can be calculated analytically (see
Appendix B), and the result is

P(Q) = 1

π
e

�T
2T0Tf K0

(
|Q|

√
�T 2 + 4T0Tf

2T0Tf

)
. (33)

It should be noted that we have an exponential factor outside
the Bessel function that depends on the two temperature dif-
ference.

Surprisingly, the characteristic function obeys a kind of
exchange fluctuation theorem for the heat [42]

Z

(
i

(
1

Tf
− 1

T0

))
= 1. (34)

It is surprising because in [42] the setup studied is different
from our system. While in [42] the setup is two bodies in
contact with two different reservoirs, here we have one body
(the free particle) in contact with a heat bath that changes its
temperature.

Moreover, as a matter of curiosity, we have an interesting
result if we choose the initial temperature in the characteristic
function

Z
(−iT −1

0

) = 1√
2ηC

, (35)

where ηC is the Carnot efficiency. As far as we known, there
is no application of this formula. Nevertheless we can see this
as a bound in the fluctuations of the heat. Since Z (−iT −1

0 ) =
〈e−Q/T0〉, we have:

〈e−Q/T0〉 = 1√
2ηC

� e−〈Q〉/T0 , (36)

which follows from the Jenssen inequality.

Heat Statistics

The first moment is the mean, and is given by

〈Q〉 = Tf − T0

2
. (37)

This result is thermodynamically consistent because when
we assume Tf > T0, that is, the temperature of the bath is

increased after the protocol, we have 〈Q〉 > 0, meaning that
the particles gain energy if we increase the temperature.
Therefore, the heat flows from a hotter (the bath) to a colder
body (the particle).

The variance will be

σ 2
Q = 1

2

(
T 2

f + T 2
0

)
. (38)

Being a measure of dispersion, the variance of the heat is
greater for greater temperatures and is not affected by the
signal difference between T0 and Tf .

The next quantity is the skewness which measures the
asymmetry of the distribution. By simplicity, we use the
non-normalized skewness, which is just calculated by μ3 =
〈(Q − 〈Q〉)3〉. Thus, using the characteristic function we have

μ3 = T 3
f − T 3

0 . (39)

We obtain a negative skewness for T0 > Tf , meaning that
negative values of heat are more probable, which is what we
expected due to thermodynamic consistency. For T0 < Tf , the
behavior is the opposite.

The last quantity is the kurtosis, which informs about the
tail extremity of the distribution [32]. We define the excess
kurtosis as

κQ = 〈(Q − 〈Q〉)4〉(
σ 2

Q

)2 (40)

= 3
(
5T 4

0 + 2T 2
0 T 2

f + 5T 4
f

)
(
T 2

0 + T 2
f

)2 , (41)

which is always greater than three for positive values of T0

and Tf , meaning that the distribution is Leptokurtic, i.e., the
distribution has fatter tails compared with a normal distri-
bution, similar with the heat distribution for a particle in a
logarithm-harmonic potential [18]. Having fatter tails means
that we have more chance for events to occur far from the
mean.

For a nonisothermal process, we thus find that, by includ-
ing the kinetic energy, the found heat distribution leads to
consistent results with thermodynamics.

VI. CONCLUSION

By considering the kinetic energy, some theoretical works
might need to be revisited. Mainly, the works on the fluctu-
ations of the heat in the isothermal process [11–16] might
need to be adjusted to include the kinetic energy. That is,
those calculations need to be taken using Eqs. (11) and (25).
Furthermore, some results in harmonic thermal machines need
to be reviewed to properly calculate the fluctuations of the
efficiency of such machines. We have shown that the heat
distribution with the kinetic energy allows more fluctuations
for the exchanged heat, a result that can be exploited in
the development of thermal machines. Moreover, it ensures
that by considering the kinetic energy, the calculation of the
heat distribution becomes more difficult. Previous analytical
results, obtained without the kinetic energy, are not possible
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now. As an example, here we have shown the harmonic and
logarithm potentials.

It will be interesting to see whether there are cases where
we can take the overdamped limit before the calculation of
the thermodynamic properties. One case was already shown
in [26], where the average heat is not affected by taking the
overdamped limit before in an isothermal process.

In conclusion, the inclusion of kinetic energy allows us
to keep the theoretical consistency of stochastic thermody-
namics since it validates the correspondence between the
underdamped and overdamped heat distribution. Here we
investigate in detail the effects of the kinetic energy for har-
monic, logarithm, and an arbitrary nonisothermal process.
We calculated the central moments and the heat distribution,
seeing that the fluctuations of the heat increase, a result that a
priori can be explored theoretically.

Some questions are left for future work. In the nonisother-
mal process, if the final temperature of the bath is not fixed,
the overdamped approximation is no longer valid and the final
velocity distribution needs to be given by a nonequilibrium
distribution coming from an underdamped process. It will be
interesting to see what are the modifications.
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APPENDIX A: CALCULATING THE
CHARACTERISTIC FUNCTION

The definition of the heat distribution is

P(Q) = 〈δ(Q − Q[x])〉, (A1)

where the average is over the fluctuating degrees of freedom of
the system. Here the average is over v0, vτ , x0, xτ . Therefore,
if the heat depends only on the boundary degrees of freedom
we have

P(Q) =
∫

dv0dvτ dx0dxτ P(vτ , v0, xτ , x0)δ(Q − Q[x]).

(A2)
The joint distribution of the velocities and position can be
decomposed as

P(vτ , v0, xτ , x0) = P(vτ , v0)P(xτ , x0), (A3)

since the positions and velocities are independent random
variables. And the joint distributions are given by

P(vτ , v0) = P[vτ , τ |v0, 0]P0(v0), (A4)

P(xτ , x0) = P[xτ , τ |x0, 0]P0(x0), (A5)

where P0 is the initial probability distribution.
In our case, the velocities are assumed to be in an

equilibrium stationary distribution at all times, which means

that

P[vτ , τ |v0, 0]P0(v0) = P0(vτ )P0(v0). (A6)

Therefore, the calculation of the heat distribution reduces to

P(Q) =
∫

dv0dvτ P0(vτ )P0(v0)

×
∫

dx0dxτ P[xτ , τ |x0, 0]P0(x0)δ(Q − Q[x]).

(A7)

The Dirac delta can be rewritten in terms of its Fourier trans-
form, giving

P(Q) =
∫

dλ

2π
eiλQ

∫
dv0dvτ P0(vτ )P0(v0) (A8)∫

dx0dxτ P[xτ , τ |x0, 0]P0(x0)e−iλQ[x]. (A9)

If Q[x] only depends on the velocity, the integrals in the
position reduces to one,∫

dx0dxτ P[xτ , τ |x0, 0]P0(x0) = 1, (A10)

yielding

P(Q) =
∫

dλ

2π
eiλQ

∫
dv0dvτ P0(vτ )P0(v0)e−iλQ[x];

(A11)

one thus can recognize Eq. (8), where the characteristic func-
tion is

Z (λ) =
∫

dv0dvτ P0(vτ )P0(v0)e−iλQ[x]. (A12)

APPENDIX B: CALCULATION OF THE HEAT
DISTRIBUTION

The Heat distribution can be calculated analytically by the
Fourier Transform of the characteristic function

P(Q) =
∫

dλ

2π
eiλQZ (λ). (B1)

The first step is to rewrite the characteristic function Eq. (32)
as

Z (λ) = 1√
α(Tf , T0)

1√
1 + (

λ + i �T
2T0Tf

)2
α(Tf , T0)−1

, (B2)

where �T = Tf − T0 and α(Tf , T0) = (1 + �T 2

4T0Tf
). By rewrit-

ing the characteristic function, the only thing that we need to
do is use the formula∫

dμ
eiμx√
1 + μ2

= 2K0(|x|). (B3)

Thus, by integral transformations one can obtain the probabil-
ity distribution of Eq. (33).
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