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After a sudden quench from the disordered high-temperature T0 → ∞ phase to a final temperature well below
the critical point TF � Tc, the nonconserved order parameter dynamics of the two-dimensional ferromagnetic
Ising model on a square lattice initially approaches the critical percolation state before entering the coarsening
regime. This approach involves two timescales associated with the first appearance (at time tp1 > 0) and
stabilization (at time tp > tp1 ) of a giant percolation cluster, as previously reported. However, the microscopic
mechanisms that control such timescales are not yet fully understood. In this paper, to study their role on
each time regime after the quench (TF = 0), we distinguish between spin flips that decrease the total energy
of the system from those that keep it constant, the latter being parametrized by the probability p. We show
that observables such as the cluster size heterogeneity H (t, p) and the typical domain size �(t, p) have no
dependence on p in the first time regime up to tp1 . Furthermore, when energy-decreasing flips are forbidden
while allowing constant-energy flips, the kinetics is essentially frozen after the quench and there is no percolation
event whatsoever. Taken together, these results indicate that the emergence of the first percolating cluster at tp1 is
completely driven by energy decreasing flips. However, the time for stabilizing a percolating cluster is controlled
by the acceptance probability of constant-energy flips: tp(p) ∼ p−1 for p � 1 (at p = 0, the dynamics gets stuck
in a metastable state). These flips are also the relevant ones in the later coarsening regime where dynamical
scaling takes place. Because the phenomenology on the approach to the percolation point seems to be shared by
many 2D systems with a nonconserved order parameter dynamics (and certain cases of conserved ones as well),
our results may suggest a simple and effective way to set, through the dynamics itself, tp1 and tp in such systems.

DOI: 10.1103/PhysRevE.106.044105

I. INTRODUCTION

After being equilibrated at a high temperature (T0 → ∞)
and suddenly quenched to a temperature well below the criti-
cal one, TF � Tc, the nonconserved order parameter dynamics
of the ferromagnetic 2D Ising model on a square lattice first
approaches the percolation critical point [1–4], to then follow
a curvature-driven, coarsening dynamics in which the spatial
structure is statistically invariant (dynamical scaling [5]) once
distances are measured with the lengthscale �(t ) associated
with the clusters linear size. These two temporal regimes
are connected, what has led to several predictions that were
experimentally verified in liquid crystals [6,7] (see the latter
reference for a recent and more detailed report on the universal
features of the curvature-driven dynamics in these experi-
ments). Moreover, sharing the geometrical properties of the
critical percolation state has a fundamental influence on the
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late stages of the dynamics, where the asymptotic state may
be fully magnetized or divided into parallel stripes [8–13].
The late-time growth of order during the coarsening regime
is clearly different from that ruling the development of the
stable, giant cluster that characterizes the critical percolation
threshold. The moment in which a cluster first percolates
defines the timescale tp1 > 0 (notice that for the triangular
lattice, not considered here, tp1 = 0). This first percolating
cluster, however, is not stable against the fluctuations still
present in the dynamics, despite the absence of activated
processes. It will break and regrow multiple times while
competing with the second largest cluster, until at least one
of them stabilizes at the timescale tp ∼ Lzp [3,4] when the
system approaches the percolation critical point. The stabi-
lization of the largest cluster at tp means that this cluster will
grow until a fully magnetized state or a striped one with flat
boundaries is attained. It is only after this time that the asymp-
totic power-law behavior associated with the curvature-driven
growth starts [4]. The exponent zp encodes the dependence on
static lattice properties (size and geometry) and, for the square
lattice, it has been argued that zp = 2/5 [4]. Nonetheless, the
dynamical microscopic mechanisms are not well known, nei-
ther how they set those timescales. The main objective of this
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paper is to disentangle the role of different classes of spin flips,
regarding their energy changes, on setting the characteristic
times for building and stabilizing the first percolating cluster
after the temperature quench.

The geometric description of the 2D ferromagnetic Ising
model equilibrium states is relatively simple at temperatures
well below and well above Tc. In these temperature regimes,
connected groups of parallel spins (clusters or domains) have
a small size diversity (as defined below). At temperatures
T � Tc, the system is dominated by a single large, perco-
lating cluster. Due to the weak thermal fluctuations, there
is also a few small clusters, whose size distribution decays
exponentially. In the other temperature limit, T � Tc, large
domains are destabilized by the thermal noise and the sys-
tem is populated by small clusters whose size distribution is,
once again, a decreasing exponential. It is only close to Tc

that the diversity of sizes increases and the size distribution
broadens, approaching a power-law. In the thermodynamic
limit, L → ∞, the domain size distribution for a single sample
becomes dense at all temperatures, i.e., the position of the
first missing cluster size also diverges. In contrast, for a finite
sample, the distribution is dense only below a certain cluster
size, and sparse above it. The diversity of the clusters may be
quantified by the so-called cluster size heterogeneity H , the
average number of distinct cluster sizes occurring in a finite
sample, irrespective of the number of domains that are equally
sized. This observable was studied in percolation [14–16],
spin equilibrium models [17–19] and recently extended to
out-of-equilibrium [20] and more general contexts [21]. The
rich behavior of the time-dependent heterogeneity, H (L, t ),
confirms that it may be useful to understand the interplay
between percolation and coarsening dynamics. For simplicity,
from now on we will omit the size dependence and write H (t )
(analogously for its equilibrium counterpart).

Quenching the system from T0 → ∞, the dynamical het-
erogeneity H (t ) presents a very pronounced peak at the
beginning of the dynamics [20]. After the quench, correlations
start building larger clusters, the domain-size distribution
widens and the growth of H (t ) is a consequence of the larger
size diversity. At the same time, the first spanning cluster
starts building up, taking most of the system size. Because less
space remains for the other clusters, their number and size de-
crease, and along with them, the system diversity. These two
competing mechanisms explain the peak of H (t ) occurring
slightly before tp1 , the time when the first percolation event
happens [3,4]. Interestingly, an analogous precursor behavior
was also observed for the Voter model [20], whose dynamics,
without surface tension, is much slower and the timescales are
longer [22,23]. In all these cases, the dynamical heterogeneity
H (t ) presents three well separated regimes: a peak soon after
the quench in temperature, followed by an incipient plateau
and, eventually, the power-law decaying. These regimes cor-
respond, respectively, to the appearance of the first percolating
cluster, its stabilization (and the approach to the percolation
critical point) and, finally, the coarsening, curvature driven
growth [20]. The approximated analytical results of Ref. [20]
well explained the height of the plateau and the exponent
of the later regime. They are, however, valid only after the
dynamics has approached the percolation critical point and
do not explain the peak of H (t ) and the region around it.

Particularly interesting is the universality of its height: not
only is it the same for both the Ising and the Voter model
after the quench but also very close to the maximum found
in Ref. [19] for the equilibrium heterogeneity at a temperature
well inside the paramagnetic phase (there are two peaks, one
small, very close to Tc, and a larger one at a temperature
T2 > Tc).

We are interested in the role played by the microscopic
mechanisms in building and stabilizing the percolating struc-
tures in the early time regime. If we take the temperature
quench to TF = 0, then only spin flips that either decrease
(�E < 0) or keep the energy constant (�E = 0) are allowed.
In particular, how does the characteristic time to attain the
percolation critical point depends on these processes? Since
in the curvature-driven regime domain coalescence does not
occur, how does the percolating cluster first appear? In Sec. II
we describe the model and the methods in more detail, while
in Sec. III we present new results for the size heterogeneity
H (t ) and the average linear size �(t ) of the geometric clusters
(connected regions of aligned spins). Finally, in Sec. IV we
summarize and discuss our results.

II. MODEL AND METHODS

Starting from an initial state with uncorrelated spins (in-
finite temperature) having an equal probability of being ±1,
we study the ferromagnetic 2D Ising model after a quench to
TF = 0. The Hamiltonian is

H = −J
∑
〈i j〉

σiσ j, (1)

where J > 0, σi is the spin at site i and the sum is over all
nearest-neighbor pairs on an N = L × L square lattice with
periodic boundary conditions. After the quench, the system
evolves through a continuous time, single-spin dynamics [24].

In the zero-temperature dynamics, a site is randomly
selected and the local field (the sum of the spins on the neigh-
boring sites) is computed. If, by flipping, this spin becomes
aligned with the local field, then the energy change is �E < 0
and the movement is accepted with probability 1. If �E > 0,
i.e., the spin becomes anti-aligned with the local field, then
the movement is rejected and the spin is left unchanged.
When the flip does not change the energy of the system,
�E = 0, it is accepted with probability p to assess the role
of each type of flip. For the heat bath and Glauber dynamics,
p = 1/2, while for the Metropolis algorithm, p = 1 [24]. In
the constrained case p = 0, only energy-lowering movements
are accepted [25–27]. In the continuous-time dynamics [24],
we keep a list of the Nmobile spins that may flip, i.e., those
with �E � 0 and, after each attempt of flipping one spin from
this list, the simulation time, measured in Monte Carlo steps
(MCS), is incremented by 1/Nmobile and the list is updated. We
present the results for L = 1280 although simulations were
performed with linear sizes up to L = 5120. Averages up to
10 000 samples were taken for the smaller systems, while
larger sizes require fewer samples (1000).

Once the percolating cluster is formed at tp1 we follow
the two largest clusters. Since they occupy a large fraction
of the system, their magnetizations have opposite signs. As
they both keep swapping places while competing for space,
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FIG. 1. Dynamical cluster heterogeneity, H (t ) versus time (in
MCS) after a quench from T0 → ∞ down to TF = 0, for several
values of p (the flipping probability when �E = 0). The system
linear size is L = 1280. The time a percolating cluster first appears is
indicated by tp1 (p) (dark squares), with almost no dependence on p.
The time that the percolating cluster stabilizes, tp(p) (dark circles),
however, decreases with p. In the first regime, t � tp1 , all curves
collapse and H (t ) is independent of p, differently from the interval
t > tp1 , where there is a strong dependence on it. Remarkably, the
height of H (t ) coincides with the height of the peak for the equi-
librium heterogeneity Heq that appears [19] at a temperature T2 > Tc

(indicated by a horizontal line). The inset shows tp(p)/tp(1) − 1, that
seems to have a power-law dependence on p as p decreases, p−1

(solid line). However, above p ∼ 0.5, tp(p) barely depends on p and
tp(p) 	 tp(1).

we measure [28] the stabilization time tp as the last change of
sign of the largest cluster [3,4].

III. RESULTS

The initial, equilibrium state at T0 → ∞ has uncorrelated
spins forming small domains that are similar in size. The
corresponding heterogeneity is H (t = 0) = Heq(∞), where
Heq(T ) is the equilibrium heterogeneity at the temperature T .
This initial state has a large number of spins with at least
half of their neighbors oriented in the opposite direction,
i.e., such that putative flips have �E � 0. These spins are
associated with rough surfaces that may become smoother
and with small internal clusters that may disappear (with less
holes, the embedding clusters get more compact) or coalesce
after a quench. With the growth of the domains, their size
distribution becomes wider and, consequently, H (t ) increases.
Soon after the quench from T → ∞ to zero temperature, there
is a peak in H (t ) [20] as shown in Fig. 1 for several values
of p and L = 1280. The peak occurs within the first MCS,
just before a percolating cluster appears for the first time at
t = tp1 . As observed in Ref. [20], the height of the peak has
some degree of universality. Besides being very close to the
height of H (t ) for the Voter model, it is also close to the
largest peak of the equilibrium measure Heq(T ) for the Ising
model that appear for a temperature T2 > Tc. Indeed, Heq(T )
presents two maxima. The first one is located very close to
Tc while the second one is larger and is at a temperature well
above Tc [19], T2. Its height is indicated, in Fig. 1, by a small
horizontal line. In Ref. [21] it was argued that an upper bound

for H is obtained when N is divided into smaller domains in
a deterministic way: one cluster of each size, starting from
1, until the system is fully covered. Obviously, for stochastic
systems this bound is never approached either because of
repeated sizes or too large clusters that decrease their total
number. The fact that the heterogeneity, in the several situa-
tions described above, reaches a similar maximum is related to
getting as close as possible of this upper limit in the presence
of stochasticity. Also remarkable is that not only the height of
the peak, but the whole region up to tp1 (p) does not depend
on p, i.e., on the dynamics. Since p is associated with the
�E = 0 flips, this in an indication that the energy-conserving
flips, although present, do not seem to play an important
role in the early dynamics. Notice that if no �E < 0 flips
is allowed whatsoever, the dynamics remains almost totally
blocked from the beginning (not shown). As discussed below,
the important role that �E = 0 flips have in the stabilization
of the percolating cluster and in the scaling regime is only
possible if the initial removal of dangling ends (�E < 0 flips)
occurred.

For the random initial condition that we consider, the be-
havior of H (t ) strongly depends on p between tp1 (p) and
tp(p), the regime in which the percolating cluster stabilizes,
and beyond (Fig. 1). For p = 0 the dynamics is halted, never
entering the coarsening regime [13,29], and H (t ) attains a
plateau. This blocking of the dynamics also occurs in lattices
with an odd coordination, as the honeycomb [30]. Deviations
from this plateau are already seen even for very small values
of p and the larger p is, the earlier the departure from the
plateau occurs. Therefore, energy-lowering flips alone are not
enough to stabilize the percolating cluster and, eventually, to
enter the curvature-driven growth regime. As p goes from 0 to
1, increasing the acceptance rate of energy conserving flips,
the time interval between tp(p) and tp1 (p) decreases, i.e., the
percolating cluster stabilizes faster. The minimum tp occurs
for p = 1 and the inset on Fig. 1 shows that although there
is little or no dependence for p � 0.5, below this value it
increases very fast, tp(p) ∼ p−1.

It is also interesting to compare the behavior of H (t ) with
the growth of a lengthscale associated with the average radius
of the domains after the quench, �(t ). The main panel of Fig. 2
shows this growing length for several values of p while the in-
set presents the corresponding instantaneous declivity, i.e., the
exponent z−1

eff (t ) ≡ d log �(t )/d log t . Initially, the growth is
exponential (indicated by a thin solid line) and, like H (t ), �(t )
has no dependence on p up to tp1 since all curves are collapsed.
For p = 0, �(t ) attains a constant value, whereas the case
p = 1 has the fastest growth. If p �= 0 and for times larger than
tp(p), the dynamics approach the coarsening regime where
�(t ) ∼ t1/2. The main panel of Fig. 2 shows that, in this late
regime, �(t ) is parallel to the thick solid line while, in the inset,
it corresponds to the plateau at z−1

eff 	 1/2. Notice that the
coefficient decreases with p and the curves, albeit parallel, are
displaced. It is in the intermediate regime, roughly between
tp1 (p) and tp(p), that the dependence on p has a larger impact.
This is an indication of how important the energy-conserving
flips are for the stabilization of the percolating cluster. For p �
0.5, the dynamics accelerates after tp1 up to a maximum (e.g.,
for p = 1, z−1

eff ∼ 0.6 at its largest value), and then decreases
approaching 0.5. Further decreasing p, the maximum moves
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FIG. 2. Growing lengthscale �(t ), as a function of time (in MCS),
after a temperature quench from T0 → ∞ down to TF = 0 for several
values of p and L = 1280. Dark squares and circles locate, respec-
tively, tp1 (p) and tp(p). The straight solid line indicates the power-law
t1/2, characteristic of the coarsening regime. The initial exponential
growth of �(t ), indicated by a thin solid line, extends up to the peak
of H (t ). Inset: local slope, z−1

eff (t ) ≡ d log �(t )/d log t , as a function
of time (semilog scale).

toward tp1 and a minimum develops and becomes deeper,
eventually attaining z−1

eff = 0 as p → 0.
When, instead of the time, we use the characteristic length

�(t ) as the independent variable, Fig. 3, a very good collapse is
obtained for the curves with different values of p. Notice that
even p = 0 is included, but in this case the curve is interrupted
when the plateau is attained. Some deviations from the scaling
are observed around tp1 , the beginning of the intermediate
region (inset). Before tp1 , the collapse is a direct consequence
of both H (t ) and �(t ) being independent of p, as shown in
Fig. 1. This is not, however, the case at larger times where
there is a strong p-dependence and all curves are different.
The overall shape of H (t ) and the diverse regimes have been
discussed in Ref. [20], including the power-law tail associated
with the coarsening regime.

FIG. 3. Relation between the H (t ) and the growing length �(t ).
Notice that even the p = 0 case is collapsed onto the universal curve
[in this case, however, the curve is interrupted at the maximum value
of �(t )]. The scaling is very good, with small deviations occurring
close to tp1 , as can be seen in the inset.

FIG. 4. Density of spins whose flip would decrease the energy,
n<(t ), or keep it constant, n=(t ), as a function of time, for p = 0
(dark, purple symbols) and p = 1 (clear, orange symbols). The sys-
tem linear size is L = 1280. Indeed, coarsening does not occur for
p = 0: n<(t ) vanishes exponentially and the dynamics is blocked
soon after tp1 . For p > 0, n<(t ) ∼ t−1/2 and n=(t ) ∼ t−3/2 for t � 1.

To confirm the role of each class of spin flips, we mea-
sured the densities n<(t ) and n=(t ) of spins whose flip would
either lower or keep the energy constant, respectively. As
shown in Fig 4, these densities are little affected by p in
the beginning of the dynamics, but start to evidence such
dependence close to tp1 (for clarity, we only show the extreme
cases p = 0 and 1 where energy-conserving flips are either all
forbidden or accepted, respectively). For p = 0 the dynamics
becomes blocked exponentially fast, n<(t ) ∼ exp(−t/2). In
contrast, for p = 1 the asymptotic behavior is a power-law,
n<(t ) ∼ t−3/2 (for intermediate values of p, the long-time
behavior seems to have the same exponent). However, the
density of energy-conserving flips, n=(t ) remains constant, for
t � tp1 even when p > 0, not because such flips do not occur,
but because they correspond only to a shift of the domain
walls. In the long-time limit, n=(t ) attains a plateau for the
blocked dynamics (p = 0), while n=(t ) ∼ t−1/2 for p = 1.
The exponent 1/2 may be understood as follows. On a square
lattice, a circular domain of radius R may be considered as
a pile of 2R lines whose spins are parallel. Each line in the
top half is smaller than the one below (in the bottom half is
the contrary) and, if it has more than a single spin, only the
far-left and/or the far-right spin may flip, with �E = 0, while
all the intermediate spins are blocked with �E > 0. In this
way, the overall contribution to n=(t ) is, roughly, 4R. Since
the number Nc of clusters linearly decreases with time (be-
cause Nc ∼ A−1) while R increases as t1/2, one may estimate
n=(t ) ∼ RNc ∼ t−1/2. However, the main contributions to n<

come from large clusters, i.e., those whose areas are much
larger than the typical ones (A � λt , with λ 	 2). Since the
area is much larger than the instantaneous correlation length,
many spins in the domain are uncorrelated. Because of that,
these large domains preserve some memory of the random
initial state, being less compact and with a rough interface. We
estimate n<(t ) considering the contributions from dangling
ends,

n<(t ) =
∫ L2

A0

f (A, t )n(A, t )dA, (2)
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where A0 is a microscopic area and n(A, t )dA is [2] the aver-
age density of clusters, in the coarsening regime (t � tp), with
area between A and A + dA,

n(A, t ) 	 2cd (λt )τ−2

(A + λt )τ
, A0 � A � L2, (3)

cd is a small constant and τ = 187/91. The fraction f (A, t ) is
the ratio between the average number of spins with �E < 0
in a cluster of area A at the time t after the quench (N<) and
the number of spins in the cluster (A/A0), f (A, t ) = N<A0/A.
The more irregular the perimeter is, the larger N< is. Area and
perimeter are related by A ∼ pα , where the exponent α is 2
for regular domains while irregular ones have α < 2. From
this relation, we assume that N< is given by deviations from
the regularity, i.e., N< ∼ (p/�0)2−α , where �0 is a microscopic
length. Thus,

f (A, t ) ∼
( p

�0

)2−α A0

A
∼ A1/α (λt )1/2−α, (4)

where the area-perimeter relation was extended [2] to include
time,

A

λt
∼

(
p√
λt

)α

.

For large clusters (A � λt), those that indeed contribute most
for N<, α 	 1 [2]. Using this value, and substituting Eqs. (3)
and (4) into Eq. (2), we obtain n<(t ) ∼ t−3/2. Notice also that
when the power-law regime settles (t > tp), n<(t ) � n=(t ),
the flips that decrease the energy are much less frequent,
and thus less relevant in this regime, than those that keep it
constant.

Finally, we also studied the different asymptotic states,
either the ground state or a set of parallel stripes, and how the
corresponding probabilities depend on p (except, of course,
for p = 0). Within the error bars, our results (not shown)
are essentially constant and compatible with those for p =
0.5 [10,11] and 1 [12].

IV. CONCLUSIONS

Soon after the ferromagnetic 2D Ising model is taken out
of equilibrium by a quench from T0 → ∞ to TF → 0, there
appear two timescales, tp1 and tp, respectively associated with
the first formation and the subsequent stabilization of the
percolating cluster. Although in Refs. [3,4] it was shown that
both tp1 and tp depend on the lattice properties, it remained
unclear which were the corresponding dynamical microscopic
mechanisms. We here presented an attempt to elucidate these
issues by disentangling the spin flips that decrease the energy
(always accepted) from those that keep it constant (entropic
flips, accepted with probability p) under the nonconserved
order parameter dynamics. There are three relevant time in-
tervals: from the quench until the first percolating cluster
appears at tp1 (0 < t < tp1 ), from tp1 until the stabilization
of the percolating cluster at tp (tp1 < t < tp), and finally, the
scaling regime that may arise beyond tp.

The short-time dynamics, up to the time tp1 > 0 when
the first percolating cluster appears, is independent of p, for
the observables that we considered here, the heterogeneity
H (t ) and the lengthscale �(t ). The results are all equivalent,

collapsing even when completely suppressing the constant-
energy flips (p = 0). Thus, in this initial regime, spin flips
with �E = 0 play no relevant role on the construction of
the large, percolating cluster, differently from the coales-
cence processes driven by the energy-lowering spin flips. It
is indeed the coalescence of small domains that explain the
exponential growth that leads to the first cluster spanning the
whole system. Moreover, if the �E < 0 flips were forbidden
while allowing those with �E = 0, then the dynamics would
be essentially frozen since the initial disordered state and
there would be no percolation event at tp1 whatsoever. The
energetic flips are thus not only important for the formation
of the percolating cluster but also essential for unblocking the
�E = 0 flips that are relevant in the other time intervals.

After being formed, the percolating cluster is broken and
rebuilt many times until it becomes stable at a much larger
time (tp), when the system approaches the percolation critical
point. The larger the probability p of accepting energy con-
serving flips is, the sooner this stabilization is attained. When
p � 1, we obtain tp(p) ∼ p−1. Without these flips (p = 0),
the system freezes soon after tp1 . This reveals the pivotal role
played by the spin flips with �E = 0 for the stabilization of
the percolating cluster. If the processes leading to tp occur af-
ter the number of energy-decreasing flips became sufficiently
small and most of the spins that may flip would keep the en-
ergy constant, the probability p is only a rescaling time factor,
explaining the p−1 behavior. In this regime, the curves can
be indeed collapsed once time is rescaled by p (not shown).
Note that tp depends on the system size as tp ∼ Lzp , and it was
conjectured that zp = 2/5 for the square lattice [3,4]. It is still
an open question whether zp depends on p. Combining with
our result, we may write tp(L, p) ∼ Lzp/p for small p.

Once the dynamics enter the curvature-driven regime, the
spin flips with �E = 0 continue to have a central role. Indeed,
n<(t ) < n=(t ) soon after tp and, as shown by both simula-
tions and theoretical arguments, they asymptotically evolve
as n<(t ) ∼ t−3/2 and n=(t ) ∼ t−1/2. But despite the fact that
the energy decreasing flips are no longer the most relevant in
this later regime, their role at the beginning of the dynamics,
while the percolating cluster was being formed, is essential
for the very existence of the subsequent regimes. Without the
formation of the percolating cluster, the dynamics becomes
blocked by the excess of dangling ends that are no longer
removed (the process involves energy-decreasing flips).

The importance of the early approach to critical percola-
tion to the ensuing dynamics and the geometric properties of
clusters and interfaces have been emphasized and recognized
in the last years. Although we only considered here the non-
conserved order parameter dynamics (Model A), the approach
to the percolation point also occurs for symmetric mixtures
(50:50) the model B dynamics that conserves the order param-
eter [31–33]. Understanding how tp depends on p in this case
may be relevant for a multitude of phase separating systems.
Moreover, it is possible to devise protocols that change the
value of p along the dynamics. For example, the system may
first evolve with a constrained dynamics (p = 0), commonly
observed in glassy systems and colloidal suspensions [34],
until a metastable state is attained. From that state on, it may
evolve following the chosen p(t ) protocol to study, for exam-
ple, the yield to escape from metastable states and the role
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of memory in the reorganization of the geometrical structures.
Whatever the dynamics is, it would be interesting to find ways
to mimic the effect of p on experimental setups. In addition, it
would be important to access the universality of those results
on lattices with different coordination numbers such as the
triangular one [35,36] and on different systems such as the
Potts [8,37–40] and Voter models [20,22,23,33,41].
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