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Autonomous circular heat engine
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A dynamical model of a highly efficient heat engine is proposed, where an applied temperature difference
maintains the motion of particles around the circuit consisting of two asymmetric narrow channels, in one of
which the current flows against the applied thermodynamic forces. Numerical simulations and linear-response
analysis suggest that, in the absence of frictional losses, the Carnot efficiency can be achieved in the thermody-
namic limit.
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I. INTRODUCTION

In the past decades, studying classical and quantum trans-
port from the microscopic dynamics perspective has led to
major advances in our understanding of heat conduction in
low-dimensional systems [1–8], unveiling fundamental mech-
anisms of normal and anomalous transport and the conditions
for heat rectification. In more recent years, investigations
have been extended to more complicated situations involv-
ing two or more coupled currents, like in thermoelectric [9]
or thermodiffusive [10] transport. Also in this case, a mi-
croscopic approach has played a unique role, finding new
paths to achieve the Carnot efficiency in heat-to-work con-
version [11,12], extending Onsager reciprocal relations to
systems with broken time-reversal symmetry [13,14], and dis-
covering the highly counterintuitive phenomenon of inverse
currents, whereby an induced current flows opposite to the
applied thermodynamic forces [15–17].

We propose to extend these notions to mass transport in low
dimensional geometries, like narrow channels, where particles
tend to move in single-files [18]. Indeed, when their diameter
is comparable to the channel cross section, particles either do
not pass each other at all, or do so only by overcoming a re-
pulsive potential barrier and, possibly, at the cost of frictional
losses [19]. However, single files subject to thermal gradient
not only pose a fundamental problem for themselves (with po-
tential applications to natural and artificial nanodevices [18])
but can also be suitably arranged to produce coupled particle
currents.

Here, we demonstrate the possibility of building a circu-
lar heat engine consisting of two channels coupled to two
particle reservoirs maintained at different temperatures. In

addition, each channel contains particles of a different species,
which either repel or bypass the particle flowing between the
reservoirs, depending on their masses and velocities. For an
appropriate choice of these parameters, the particle current
in one channel may flow from low to high temperatures,
and a stationary circular current between the reservoirs is
established. As a consequence, the engine can convert a sub-
stantial fraction of the heat flowing from the hot to the cold
reservoir into work. Extensive numerical simulations and a
linear-response analysis suggest that the Carnot efficiency
can indeed be achieved in the thermodynamic limit, i.e., for
infinitely long channels.

II. MODEL AND ENGINE MECHANISM

A sketch of the proposed engine is plotted in Fig. 1. It
is made of two one-dimensional (1D) channels of length L�

(� = A, B), coupled at their end points to two reservoirs of
temperatures Tk (k = L, R). The number of particles in the
overall system (channels plus reservoirs) is fixed. Each chan-
nel contains two species of particles, graphically represented
by bullets of mass m and rods of mass M�, respectively.
Dynamics inside the channels is purely Hamiltonian. All par-
ticles move freely, except when they collide with one another
or hit a channel end point. When two particles collide, they
either pass through each other, if their total energy in the
frame of their center of mass is larger than a fixed inner
potential barrier h� or simply bounce back; in both cases the
pair momentum and the pair kinetic energy are conserved.
The particle dynamics adopted here is inspired to well-known
models for single-file diffusion and granular fluids, where
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FIG. 1. Sketch of a two-channel engine working between two
reservoirs of fixed temperatures TL and TR and adjustable chemical
potentials μL and μR. The two particle species in each channel are
represented by bullets of mass m and rods of mass MA,B. When a
stationary circular current of bullets is established, the engine can
work against applied potentials UA,B. In this drawing, the channels
have equal lengths, LA = LB.

h� can be regarded as the energy barriers associated with
the configurational changes two particles undergo whereas
passing each other in the channel [18,20,21]. For the engine
to work it is essential that the rods in the two channels are
different. When a rod hits a channel-reservoir boundary, it is
reflected back with a newly assigned velocity sampled from
a certain distribution determined by the reservoir temperature
(see below). Accordingly, the number of rods in each channel
is conserved as they only exchange energy with the reservoirs.
As for the bullets, when one reaches a channel boundary, it
will enter the connected reservoir. Meanwhile, the reservoirs
keep injecting bullets into the channels with rates and energy
distributions determined by their temperatures Tk and densi-
ties (or chemical potentials μk). Following these simple rules,
after an appropriate transient, a steady-state circular current
of bullets sets in, sustained by the temperature difference im-
posed by the reservoirs; the bullet densities (and the chemical
potentials μk) in each (large but finite) reservoir autonomously
adjust to support such a current. Ultimately, the circulating
particle current and, thus, the possibility of extracting useful
work depend on the fixed temperature difference between the
reservoirs.

Suppose that TL > TR and μL > μR. Intuitively, we may
expect that in each channel, both the energy and the bullet
current would flow forward from left to right. This is indeed
the case when M� > m. In sharp contrast, for M� < m either
the energy or the bullet current—depending on the parame-
ter choice—may flow on reverse from right to left, against
both thermodynamical forces [16]. The mechanism of current
reversal is related to the fact that under the given collision
rules, the probability for a bullet-rod pair to cross each other
is higher when the light (heavy) particle is on the hot (cold)
reservoir side because in such a case, their relative velocities
are likely to be higher. The kinetics of bullets and rods, thus,
causes a left-right unbalance in their densities along the chan-
nel [22].

Thanks to this peculiar dynamical effect, we can make the
bullets flow on reverse in one channel, say, channel B, by
setting MB < m and, thus, create a clockwise circular bullet

current through the whole system. Such current can work also
against an external bias, represented by the potentials UA,B in
Fig. 1 [23]. For instance, one could use part of the kinetic
energy of the circulating particles to lift a weight. A fraction
of the heat flowing from the hot to the cold reservoir would be
then converted into mechanical work, the rest being dumped
into the cold reservoir. This fulfills the function of an engine.

III. LINEAR-RESPONSE ANALYSIS

Before presenting the output of our numerical simulations,
we analyze the model in the linear-response regime. We adopt
here for concreteness the language of thermoelectricity, with
charged particles circulating, such as in a thermocouple, but
our results apply equally well to other coupled flows, such as
in thermodiffusion. We start from the linear transport equa-
tions [24,25] for channel � (� = A, B),(

Jρ
�

Ju
�

)
=

(Lρρ
� Lρu

�

Luρ
� Luu

�

)(Fρ
�/L�

Fu/L�

)
. (1)

Here Jρ
� and Ju

� are the particle (bullet) and the energy cur-
rents, L� = (Li j

�) (i, j = ρ, u) the matrix of the Onsager
kinetic coefficients, and Fρ

� and Fu the thermodynami-
cal forces, defined as Fρ

A = μLβL − (μR + UA)βR, Fρ
B =

μLβL − (μR − UB)βR, and Fu = βR − βL, respectively, with
βk = 1/(kBTk ) (k = L, R, kB is the Boltzmann constant). The
Onsager coefficients are related with the familiar transport
coefficients, i.e., the electrical conductivity σ�, the thermal
conductivity κ�, and the thermopower S� as follows:

σ� = e2

T
Lρρ

� , κ� = 1

T 2

det L�

Lρρ
�

, S� = 1

eT

(
Lρu

�

Lρρ
�

− μ

)
,

(2)
where e is the charge of each particle, T ≈ TL ≈ TR, μ ≈
μL ≈ μR in linear-response approximation. We can then
rewrite Eq. (1) as

LAJu
A = κ ′

A�T + T σASA(�μ − UA),

LBJu
B = κ ′

B�T + T σBSB(�μ + UB),

LAJρ
A = σASA�T + σA(�μ − UA),

LBJρ
B = σBSB�T + σB(�μ + UB).

Here κ ′
A = κA + T σAS2

A, κ ′
B = κB + T σBS2

B, �T = TL − TR,
and �μ = μL − μR. On imposing the circular steady-flow
condition,

Jρ
A + Jρ

B = 0, (3)

the output power P and the efficiency η read, respectively,

P = Jρ
AUA − Jρ

BUB, η = P/(Ju
A + Ju

B ). (4)

Note that by using the steady-flow condition, P and η can be
explicitly rewritten as functions of UA + UB, rather than of
UA and UB, separately (see Appendix A). Moreover, both the
maximum efficiency ηmax and the efficiency at the maximum
power η(Pmax) have the usual dependence [9] on a nondimen-
sional figure of merit,

Y T = (σA/LA)(σB/LB)(SA − SB)2

(σA/LA + σB/LB)(κA/LA + κB/LB)
T, (5)
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(in lieu of the thermoelectric figure of merit ZT [26,27]),
namely,

ηmax = ηC

√
Y T + 1 − 1√
Y T + 1 + 1

, η(Pmax) = ηC

2

Y T

Y T + 2
, (6)

with Carnot efficiency ηC = 1 − TR/TL (we assume TL > TR)
and maximum power,

Pmax = 1

4

σAσB

σALB + σBLA
(SA − SB)2(�T )2.

The power-efficiency trade-off for a given value of Y T can
also be obtained (see, e.g., Ref. [9]),

η

ηC
= P/Pmax

2[1 + 2/(Y T ) ∓ √
1 − P/Pmax ]

. (7)

A limiting case is represented by the conventional thermo-
couple configuration with LA = LB ≡ L, σA = σB ≡ σ , κA =
κB ≡ κ , and SA = −SB ≡ S. Here, the figure of merit ZT
is recovered, ZT = Y T , and the maximum power Pmax =
(σ/2L)S2(�T )2 amounts to twice the maximum power of a
single channel.

IV. NUMERICAL STUDY

Our numerical results show that the proposed engine
is very efficient. In our simulations, we model the reser-
voirs as 1D ideal gases of bullets [28]. They inject bullets
into the channels randomly in time with constant rates
γk (k = L, R) [29], γk = (ρ0/

√
2πmβ0)(β0/βk )eμkβk−μ0β0 ,

where T0 = 1/(kBβ0), ρ0, and μ0 are, respectively, the tem-
perature, particle number density, and chemical potential of
a reference state (see below). The injection intervals, thus,
follow the Poisson distribution πk (t ) = γke−γkt , whereas the
speeds of the injected particles are sampled according to the
Maxwell distribution [30], Pk (v, m) = m|v|βke−mv2βk/2. Ac-
cordingly, when a rod particle of mass M� hits the channel
boundary next to reservoir k, it bounces back with speed
distribution Pk (v, M�).

To establish the circular steady-flow condition of Eq. (3),
rather than simulating the entire closed system (that is, chan-
nels and reservoirs), we simulated first the two channels,
separately, and computed the two curves Jρ

� vs U� (� = A, B).
Then, for a given value of Jρ ≡ Jρ

A = −Jρ
B , we determined the

corresponding values of UA,B, to be used in the subsequent
simulation steps, which involve both channels simultane-
ously. After the system had relaxed to its stationary state, we
computed the time-averaged currents and from Eqs. (4), the
relevant output power P and the efficiency η.

In the simulations reported here, we set TL = T + �T/2,
μL = μ + �μ/2, TR = T − �T/2, and μR = μ − �μ/2.
The number of rods in each channel is set to half of the
expected particle number of a 1D ideal gas at the equilibrium
with the assigned T and μ, i.e., Nrod,� = ρL�/2 with ρ =
ρ0

√
β0/βeβμ−β0μ0 . As for the reference state, we set ρ0 = 1,

T0 = 1, and μ0 = 0 (in units such that m = 1, e = 1, and
kB = 1). To make the system evolve in time, we implemented
an effective event-driven algorithm [31], which yields output
data points with relative error less than 0.5%.

Our data show that this model works as an autonomous en-
gine in a wide range of parameters. Typical numerical results

FIG. 2. (a) Efficiency, η, vs output power P for two channels of
equal length LA = LB. Blue dots, red squares, blue diamonds, and
green triangles are for L� = 100, 200, 400, and 1600, respectively.
The curves next to each data set are obtained via Eq. (7) with
numerically computed Y T . Fixed model parameters are as follows:
hA = hB = 1, MA = 1.5, MB = 0.5, T = 1, and μ = 1.5; Other tun-
able parameters are �T = 0.1 and �μ = 0.15. (b) η vs P, such as
in (a), for L� = 200 but finite dissipation parameter δ (see the text
below).

for the efficiency and the power are displayed in Fig. 2(a),
where for any given system size LA = LB, a data point repre-
sents the result obtained for a certain value of Jρ (or UA and
UB). The closed curve next to each set of the data points is
the prediction of Eq. (7), plotted for the corresponding value
of Y T , also obtained by numerical simulation as explained
below. The linear-response theory reproduces quite closely
the numerical data of Fig. 2(a). Moreover, such agreement
improves with increasing the system size as expected since
the temperature gradient (∇T )� = �T/L�, decreases upon
increasing L� at constant �T . More importantly, we note that
as L� increases, the efficiency vs power curves shift upwards,
meaning that the engine performance improves. This remark
hints at the possibility that the figure of merit Y T in Eq. (7) is
a monotonically increasing function of the system size.

To determine Y T we made use of Eq. (5), where the trans-
port coefficients are also to be computed numerically. To this
purpose, the two channels were considered separately. For
each channel, we followed the method detailed in Ref. [29],
i.e., the particle and energy currents were measured twice,
namely, for Fρ

� �= 0 and Fu = 0, and for Fρ
� = 0 and Fu �= 0

(having set U� = 0). The Onsager kinetic coefficients can
then be evaluated through Eq. (1). The corresponding trans-
port coefficients Eq. (2), computed for three different potential
barrier values, hA = hB = 0.5, 1.0, and 1.5, are displayed in
Figs. 3(a)–3(c) vs L�. First of all, we note that due to the
inverse bullet current in channel B, the off-diagonal elements
of the Onsager matrix are negative [16,32]. Accordingly, the
Seebeck coefficients SA and SB are, respectively, positive and
negative [see Fig. 3(a)], which enhances the figure of merit
Y T through the quadratic factor (SA − SB)2 in Eq. (5). This
is the key advantage of our model. Moreover, due to the
fact that the momentum is the only conserved mechanical
quantity both S� and factor (SA − SB)2 in our expression for
Y T are predicted to saturate in the thermodynamic limit [12],
a prediction corroborated by our numerical simulations.
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FIG. 3. (a)–(c) Transport coefficients of the two channels vs their
lengths where the empty and the full symbols are for channel A and
channel B, respectively. (d) Y T versus LA = LB ≡ L for hA = hB. In
all four panels, green squares, blue dots, and red triangles are for,
respectively, h� = 0.5, 1.0, and 1.5, All other simulation parameters
are the same as in Fig. 2(a).

As for the electrical and thermal conductivities, it helps
consider two limits for the potential barriers h�. In the limit
h� → ∞, all particles turn out to be hard core and the two
species in each channel are always nonpassing. The bullet
currents are, therefore, blocked, thus, resulting in σ� = 0.
On the other hand, according to the 1D heat conduction
theory [3,4,33,34], in the thermodynamical limit the heat con-
ductivity would diverge, such as κ� ∼ Lν

� with 0 < ν < 1.
Consequently, see Eq. (5), in the same limit both Y T and the
engine efficiency would vanish. In the opposite limit h� → 0
the dynamics becomes integrable, and the bullets flow through
the channel freely; hence, σ� ∼ L� and κ� ∼ L�. This work-
ing regime is not advantageous either. Indeed, the bullet-rod
interaction is crucial to maintain an inverse current [16] in
channel B. Therefore, when the bullet-rod interaction vanishes
for hB → 0, so does the inverse current. More precisely, there
exists a critical value h∗

B such that for hB < h∗
B, the bullet

current in channel Bstarts flowing forward, and our engine,
thus, stops working. Note that h∗

B ∼ L−0.5
B (see Appendix B)

so that h∗
B → 0 as LB → ∞. It is, therefore, reasonable to

conjecture that for a given system size, one can determine the
optimal finite values of h� that maximize Y T .

Based on the data in Figs. 3(a)–3(c), we can investigate
how Y T depends on the system size for assigned values of h�.
We find that, in general, when LA + LB is fixed, Y T reaches
its maximum for LA � LB and hA = hB. For this reason, we
focus on cases with LA = LB and hA = hB, and in Fig. 3(d)
plot Y T vs L� for three values of h�. Y T is confirmed to be
an increasing function of L�, which saturates asymptotically
to a value that increases as h� decreases. In addition, the

optimal h� value that for a given L� maximizes Y T decreases
as L� increases [from Fig. 3(d), we can tell that the optimal
h� value is larger than one for L� < 150 but smaller than one
for L� > 4000]. Based on the numerical and analytical results
reported above, we conjecture that the engine achieves the
Carnot efficiency (corresponding for Y T → ∞ to the values
of bias potentials UA,B for which the efficiency is maximum,
transport is dissipationless and power vanishes [9]) in the
thermodynamic limit L� → ∞ and for vanishing barriers
h� ∼ 1/

√
L� → 0.

Of course, this conclusion holds under the condition that
the dynamics in both channels is frictionless. Two particles
in a single file (say, a bullet and a rod) do squeeze their
way past each other when their relative velocity |vi+1 − vi|
is large enough to overcome the relevant repulsive barrier h�.
However, the collisional mechanism may involve the loss of
a fraction of their kinetic energy. Accordingly, imposing pair
momentum conservation, the respective momentum changes
would be �pi = −�pi+1 = δ/(vi − vi+1) with δ the assumed
dissipation parameter. Such a simple collisional friction model
impacts the backward current in channel B more than the for-
ward current in channel A; this results in the net suppression
of the power-efficiency performance of the engine illustrated
in Fig. 2(b).

V. SUMMARY AND DISCUSSION

We have exploited the phenomenon of inverse particle
current to design an autonomous engine, which for a given
temperature difference, operates without any external time-
dependent control. When operated on reverse, this engine
would work as a refrigerator. The linear-response analysis
outlined above shows that the engine performance would still
be governed by Y T with maximum efficiency as in Eq. (6)
but with reversed Carnot coefficient ηC = (TL/TR − 1)−1. Fi-
nally, due to its peculiar nature, distinct from the conventional
steady-state engines characterized by ZT , our engine can be
used to investigate the trade-off of power, efficiency, and
fluctuations, encompassed in thermodynamic uncertainty re-
lations [35–38].
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APPENDIX A: DEPENDENCE OF POWER AND
EFFICIENCY ON UA + UB

Given the currents [see the four equations before Eq. (3)]
for the currents, and the steady-flow condition Jρ

A + Jρ
B = 0,

we obtain

Jρ
A = −Jρ

B = 1

2
(Jρ

A − Jρ
B ) = 1

2

[(σASA

LA
− σBSB

LB

)
�T

+
(σA

LA
− σB

LB

)
�μ − (UA + UB)

]
, (A1)
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FIG. 4. Dependence of the current Jρ
B on the potential barrier hB

for MB = 0.5, T = 1, μ = 1.5, �T = 0.1, and �μ = 0.

where the last equality is obtained by substituting Jρ
A and Jρ

B .
This expression shows that both Jρ

A and Jρ
B depend on UA +

UB, rather than on UA and UB, separately. Moreover, as

P = Jρ
AUA − Jρ

BUB = Jρ
A (UA + UB), (A2)

we conclude that the power depends on UA + UB as well. On
the other hand, by eliminating σA(�μ − UA) and σB(�μ +
UB) based on the four equations before Eq. (3), we have that

Ju
A = T SAJρ

A + κA�T/LA,

Ju
B = T SBJρ

B + κB�T/LB. (A3)

It follows that Ju
A and Ju

B , and, in turn, the efficiency, also

FIG. 5. Dependence of the critical potential barrier h

B, obtained

from the data of Fig. 4, on the channel length LB.

depend on UA + UB alone. In conclusion, as long as their sum
is kept constant, we can vary UA and UB without modifying
power and efficiency.

APPENDIX B: CRITICAL VALUE FOR THE
POTENTIAL BARRIER

There exists a critical value h∗
B such that for hB < h∗

B, the
bullet current in channel B starts flowing forward and the
engine, thus, stops working. In the main text it was stated
that h∗

B ∼ L−0.5
B . This is a very accurate numerical observation.

Figure 4 shows the dependence of the particle current Jρ
B on

the potential barrier hB for various channel lengths LB. For a
given value of LB, the critical potential value h∗

B is identified
by interpolating data points and solving Jρ

B (h∗
B) = 0. We can

see from Fig. 5 that the obtained values of the critical potential
barrier are in excellent agreement with the scaling h∗

B ∼ Lα
B

with α = −0.500 ± 0.004.
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