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Statistical complexity and the road to equilibrium in many-body chaotic quantum systems
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In this work we revisit the problem of equilibration in isolated many-body interacting quantum systems.
We pay particular attention to quantum chaotic Hamiltonians, and rather than focusing on the properties of
the asymptotic states and how they adhere to the predictions of the Eigenstate Thermalization Hypothesis, we
focus on the equilibration process itself, i.e., the road to equilibrium. Along the road to equilibrium the diagonal
ensembles obey an emergent form of the second law of thermodynamics and we provide an information theoretic
proof of this fact. With this proof at hand we show that the road to equilibrium is nothing but a hierarchy in time of
diagonal ensembles. Furthermore, introducing the notions of statistical complexity and the entropy-complexity
plane, we investigate the uniqueness of the road to equilibrium in a generic many-body system by comparing its
trajectories in the entropy-complexity plane to those generated by a random Hamiltonian. Finally, by treating the
random Hamiltonian as a perturbation we analyzed the stability of entropy-complexity trajectories associated
with the road to equilibrium for a chaotic Hamiltonian and different types of initial states.
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I. INTRODUCTION

Strongly interacting quantum many-body systems far from
equilibrium [1] have helped us to establish a modern in-
terpretation and understanding of some traditional topics in
quantum theory, as for instance quantum chaos [2,3]. At
the same time, their study has implications in a variety of
other fields. For example, quantum simulation and computa-
tion [4,5], and more recently, quantum error correction with
the advent of the so called Floquet codes [6]. Their study has
also helped in the establishment of new research topics with a
wide range of application. Relevant examples are the notion of
quantum information scrambling [7–10], dynamical quantum
phase transitions [11] and dynamical criticality [12], and more
recently, out-of-equilibrium phases of matter [13,14].

Importantly, a foundation for the emergence of statisti-
cal mechanics in closed quantum systems has resulted from
investigations of the nature and structure of Hamiltonians
describing strongly interacting many-body quantum systems.
This result has the form of the celebrated, and now widely ac-
cepted, eigenstate thermalization hypothesis (ETH) [15–18].
In a simplified form it states that eigenstates in the bulk of
the many-body spectrum are their own microcanonical ensem-
bles, as such, expectation values of observables can be readily
computed by the microcanonical average over a small energy
window centered at the mean energy of the initial state.

Despite all these different advances, the physical nature of
the mechanism responsible for the equilibration of many-body
closed quantum systems under their own dynamics [1,19], in
a generic many-body quantum system, is still an object of
ongoing work [17,19–27]. A rather widely accepted point of
view is that interaction terms, which yield the Hamiltonian
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nonintegrable, or even more, quantum chaotic, will generate
time evolution leading to equilibration for almost all states
beginning out of equilibrium.

One method to bring interacting Hamiltonian terms into
the picture is a Hamiltonian quench [1]. One considers a time-
independent Hamiltonian with a control parameter and picks
the initial state to be a stationary state of the Hamiltonian for
a given value of the control parameter. Then suddenly chang-
ing the value of the control parameter such that the initial
state will begin out-of-equilibrium. In this work we study the
nonequilibrium dynamics of a chaotic many-body quantum
system after a Hamiltonian quench. We focus on the timescale
between t = 0 and t = tequiv the equilibration time, i.e., the
transient dynamics or local equilibration, which we refer to as
the road to equilibrium. In contrast with the more standardized
studies of equilibrium properties, where observable quanti-
ties can be computed using the appropriate random matrix
ensemble depending on the system symmetries. Usually the
Gaussian orthogonal ensemble (GOE) or circular orthogonal
ensemble (COE), for Hamiltonians or unitary operators which
have time reversal symmetry. By making use of the notion
of statistical complexity [28,28–30], a common tool in time
series analysis, we will show that the road to equilibrium is
highly nontrivial and markedly different to that obtained from
evolution under a random Hamiltonian, which nevertheless
captures almost perfectly the system properties once equilib-
rium has been reached.

As an example of a closed many-body quantum system,
which is known to be quantum chaotic [31,32], we con-
sider the single-band Bose-Hubbard (BH) model and will
pay special attention to the time evolution of states in the
Fock (site occupation number) basis, and study the trajec-
tories of the transient dynamics in the entropy-complexity
plane [33,34]. Nonequilibrium dynamics of this model has
been studied extensively, both theoretically [35–40] and
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experimentally [41], using ultracold bosonic atoms trapped in
optical lattices.

The rest of this manuscript is organized as follows. In
Sec. II we discuss the idea of the road to equilibrium in
many-body chaotic quantum systems and its connection to
an emergent second law of thermodynamics, and as a com-
plement we present an information theoretic proof of the
emergence of a notion of second law. In Sec. III we introduce
the concept of statistical complexity and the way to quantify
it. At the same time we introduce a way of visualizing the
dynamics of the statistical complexity known as the entropy-
complexity (E-C) plane. In Sec. IV we briefly comment on
the BH model, which will be our working example of quan-
tum chaotic many-body system. Results on the dynamics of
statistical complexity during equilibration and its implications
for the physical characterization of the road to equilibrium are
presented in Sec. V. To complement these results we include,
in Sec. V, a study of the effects on the road to equilibrium of a
random perturbation, in particular a clear separation between
coherent quantum dynamics and random evolution is seen in
the E-C plane. A summary and outlook is presented in Sec. VI.

II. THE ROAD TO EQUILIBRIUM IN CLOSED
MANY-BODY CHAOTIC QUANTUM SYSTEMS AND THE

SECOND LAW OF THERMODYNAMICS

We consider equilibration in a closed many-body quantum
system as consequence of a quantum quench. This scheme
begins with an initial state which is “easy” to prepare, that
we assume to be an eigenstate of the Hamiltonian prior to
the quench. In the case of a spin system one might prepare
a spin coherent state, for instance the stretched state | ↑〉⊗N ,
where N is the number of spins in the chain, and σ̂z| ↑〉 = | ↑〉
with σ̂z the z Pauli matrix. In the case of a bosonic lattice
one might prepare a state with well define site occupations
|n1〉 ⊗ ... ⊗ |nL〉, where L is the number of sites on the lattice,
and n̂ j |n j〉 = n j |n j〉 with n̂ j the number operator for site j.
Assuming the the initial state is an eigenstate of the Hamilto-
nian prior to the quench already fixes a preferred basis. In the
above examples we recognize the computational basis in the
case of the spin chain, and the Fock (site occupation number)
basis in the case of the bosonic lattice. Once the initial state
has been prepared, the Hamiltonian is quenched, this action
drives the initial state out-of-equilibrium, guaranteeing that a
nontrivial time evolution will follow and eventually, after a
time tequiv, equilibrium will be reached.

Given our choice of reference basis, we can study the road
to equilibrium by investigating the properties of the states
from t = 0 up to tequiv. Described in this basis, the road to
equilibrium is an nonequilibrium process with fixed points
on both ends. On the one hand, the initial state gives rise
to a probability distribution assigning full certainty to a sin-
gle event, i.e., observation of the initial state. On the other
hand, after equilibrium has been reached, expectation values
of observables agree with the values computed from one of the
ensembles of equilibrium statistical mechanics [42]. As such,
the statistical ensemble provides an acceptable representation
of the state of the system.

Notice that the road to equilibrium takes a simple initial
state, assigning complete certainty to a single event, into

a “delocalized” state, making an assignment of probability
weights to a large set of events. This implies that as the system
evolves toward equilibrium, knowledge of the initial state is
lost, and thus entropy increases. In a classical thermodynamic
setting, where system is coupled to a large thermal bath, the
above statement is summarized in the form of the second
law of thermodynamics, guaranteeing the monotony of the
thermodynamic entropy. However, as we are working with a
closed quantum system, there is no notion of temperature in
the usual sense, and thus no clear notion of thermodynamic
entropy. An alternative is to use the diagonal entropy [19],
which is constructed as the Shannon information entropy of
the diagonal ensemble, the latter is given by the diagonal
entries of the density matrix ρ, that is

ρ|diag =
DH∑
m=1

ρmm|m〉〈m|, (1)

where {|m〉} is a reference basis [43], ρmm are the diagonal
entries of the density matrix in the reference basis, and DH
is the Hilbert space dimension. With this definition of the
diagonal ensemble we write the diagonal entropy as

Sdiag = −
DH∑
n=1

ρnn ln(ρnn), (2)

that is, the Shannon entropy of the diagonal entries of ρ in the
reference basis. It can be shown [19] that for quantum chaotic
systems the diagonal entropy in Eq. (2) is a good thermody-
namic entropy, and thus the second law of thermodynamics
determines its nonequilibrium evolution.

We then reach the following statement: the road to equi-
librium in a closed many-body interacting chaotic quantum
system can be understood as thermal, via the diagonal entropy,
and as such, it is governed by an emergent form of a second
law of thermodynamics. This has been put into formal footing
in Refs. [19,40,44]. In other words, if t < t ′ then it is true that

Sdiag(t ) < Sdiag(t ′), (3)

under unitary evolution for a closed interacting many-body
chaotic Hamiltonian. The first contribution of this work is to
present an alternative proof of this fact based on tools from
the theory of majorization, given in the next subsection.

A. An information theoretic view on the second law of
thermodynamics for closed quantum systems

To show that Sdiag obeys a second law of thermodynamics,
we need to show two things. First, that Sdiag grows mono-
tonically with time as a consequence of the nonequilibrium
dynamics, and second that it is a good thermodynamic en-
tropy.

Monotonicity can be shown using tools from the theory of
majorization [45–48]. We introduce the necessary ones here.
Consider two positive real D-dimensional vectors, �p and �q.
We say that �p majorizes �q if

k∑
l=1

�p↓
l �

k∑
l=1

�q↓
l (4)
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for all k = 1, ...,D − 1, with strict equality when k = D, and
write �p 	 �q. The notation ↓ indicates that the vector is sorted
in decreasing order. The definition in Eq. (4) does not talk
about the normalization of the vectors, and thus it applies to
probability vectors, where

∑D
n=1 �pn = 1, as the ones we are

concerned about for this work. The relation 	 induces a partial
order in the space of probability vectors, since there exist pairs
of vectors where neither one majorizes the other. Intuitively
we can understand the majorization relation �p 	 �q as telling
us that �p is a narrower distribution, hence less uncertain than
�q.

The key result from the theory of majorization which al-
lows us to show the monotonicity of Sdiag, is the connection
between majorization and Schur-concave functions [48]. It is
known that if

�p 	 �q ⇒ F[ �p] � F[�q], (5)

where F is any Schur-concave function of the probability
vector.

To use this statement we need to show that the time evolu-
tion of our closed quantum system generates a hierarchical
structure, based on the relation 	, of the diagonal ensem-
bles which is strictly descending. This implies the diagonal
ensemble at any new time instant must always be majorized
by those diagonal ensembles at previous time instants. This
fact follows from Horn’s Lemma [45,49]. Given �p and �q two
D-dimensional vectors, then

�p 	 �q ⇐⇒ �q = D �p, (6)

where D is a unitary-stochastic matrix. An elegant proof of
this statement, other than the original, was given by Nielsen
in Ref. [50].

To see how time evolution in our isolated system can be
related to Eqs. (5) and (6), we follow Ref. [19]. Let us now go
back to the physical situation under investigation. Initially, we
prepare our system in a stationary state, which then undergoes
unitary evolution in response to an external change. The exter-
nal change induces a change in the Hamiltonian parameters,
taking place during a finite time interval (instantaneous in
the case of quench dynamics), after which the Hamiltonian
is again time independent.

From the point of view of the state, even though we be-
gan with a stationary state (diagonal ρ in the basis of the
initial Hamiltonian), after the external process, the state is not
stationary anymore. Yet, under the lens of ETH, expectation
values of observable quantities are completely determined
by the diagonal entries of ρ, thus we can write the unitary
evolution as

ρm′m′ =
D∑

m=1

Um′mρ (0)
mmU †

m′m, (7)

where {|m′〉} is the eigenbasis of the initial Hamiltonian, {|m〉}
is the eigenbasis of the Hamiltonian after the external process,
and Um′m = 〈m′|Û |m〉, with Û the time evolution operator.
Equation (7) can be written as

ρm′m′ =
D∑

m=1

ρ (0)
mmPm→m′ , (8)

where Pm→m′ = Um′mU †
mm′ = |Um′m|2. Let us explore further

the nature of these transition probabilities. From the unitarity
of the time evolution we know∑

m′
Um′nU

†
sm′ = δns,

∑
n

U †
nk′Um′n = δk′m′ , (9)

thus ∑
m′

Um′nU
†
nm′ =

∑
m′

Pn→m′ = 1, (10)

∑
n

U †
nm′Um′n =

∑
n

Pn→m′ = 1. (11)

Noticing that all the Pn→m′ are always positive, we have

0 � Pn→m′ � 1. (12)

Any semipositive matrix P satisfying Eqs. (10), (11), and (12)
is called doubly stochastic. Furthermore, the matrix with en-
tries Pnm′ = Pn→m′ = |Unm′ |2 is called unitary-stochastic.

We see then that, assuming the stationarity of the initial
density matrix and invoking ETH, ρ|diag evolves following
Eq. (8), which is an evolution driven by a unitary stochas-
tic matrix. Therefore, Horn’s lemma, Eq. (6), implies that
ρ|diag(t ) 	 ρ|diag(t ′) for any t ′ > t . Then, Eq. (5) applied to
Sdiag implies

Sdiag(t ′) � Sdiag(t ), (13)

for all t ′ � t . Which completes the proof of the monotonicity
of the diagonal entropy.

Other consequence of the unitary-stochastic character of
time evolution is the fact that, in the long-time limit, any initial
distribution tends toward the eigenvector of eigenvalue 1. This
eigenvector acts as an attractor, and is of the form ρ∞ = 1

D1,
i.e., the “infinite temperature.” As such, Sdiag is bounded from
above by S∞ = ln(D), and for ant t � t ′ one has Sdiag(t ) �
Sdiag(t ′) < ln(D).

After showing the monotonous character of the diagonal
entropy, we need to show it is a good thermodynamic entropy,
possibly up to subextensive fluctuations. A detailed proof of
this fact can be found in chapter 5 of Ref. [19]. Here we will
mention that, if one specializes to quantum chaotic Hamilto-
nians, then one can guarantee the thermodynamic character
of the diagonal entropy up to subextensive fluctuations [19].
This is why from now on we will only be concerned with
many-body quantum systems which are quantum chaotic.

Motivated by this complementary interpretation of the road
to equilibrium in many-body interacting chaotic quantum sys-
tems after a quantum quench, in the rest of this work we will
employ the tools of statistical complexity and the entropy-
complexity plane to present a more in-depth characterization
of the hierarchy of diagonal ensembles composing the road to
equilibrium. We initiate the presentation of these results with
a brief introduction to the notions of statistical complexity and
the entropy-complexity plane.

III. STATISTICAL COMPLEXITY AND THE
ENTROPY-COMPLEXITY PLANE

The notion of complexity is perhaps one of the most at-
tractive ideas in the natural sciences. On the one hand, it
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fundamentally appeals to physical intuition, as based on com-
mon sense it is really easy to say whether a physical process
is complex or not. On the other hand, its proper and precise
quantification is extremely challenging, and has been the topic
of extensive research work in the past couple of decades.

Due to this innate difficulty in many cases, rather than
presenting a universally valid notion of complexity, narrowing
down the set of physical processes whose complexity needs to
be quantified, helps in simplifying this challenging tasks. In
this spirit, different notions of complexity have emerged in the
past, coming from a variety of subdisciplines. For instance,
one can quantify complexity via the length of the minimum
program needed to generate certain output bit string, which
is known as the Kolmogorov complexity [51]. In a system
composed of several different individual constituents one can
look for the degree of cooperativity or collective phenom-
ena [52,53], or use tools from the domain of differential
geometry to construct complexity quantifiers [54], compu-
tational complexity and the complexity classes [55], among
several others [56,57].

As discussed in Sec. II, the road to equilibrium is governed
by an emergent second law of thermodynamics. In terms of
the diagonal ensembles, it is manifested as a hierarchy of them
in time. In other words, we have simple distributions describ-
ing the states on both ends of the equilibration dynamics, as
such, if the system access any complex states during the road
to equilibrium, this must take place at intermediate times, and
it can be studied via their statistical complexity [29,30].

In a general context, the evolution of the diagonal ensemble
is doubly stochastic (see Sec. II A), implying that equilibrium
should be characterized by ρ∞ = 1

D1 or a nearby distribution
ρ∞ + δρ with δρ a small increment. This limit distribution is
featureless and it tends to a uniform distribution when δρ →
0. Thus, a natural way of quantifying the complexity of a given
diagonal ensemble is to take ρ∞ as a reference, and compute
how far a given diagonal ensemble is from the equilibrium
distribution, i.e., by defining a disequilibrium quantifier. The
latter is a measure constructed via a divergence (or relative
entropy) between the distribution under study and ρ∞. This
way of quantifying complexity is referred to as statistical
complexity, and it was first introduced and characterized in
Refs. [29,58] and later extended in Refs. [33,34,59], and it is
the notion of statistical complexity we will use in the setup
under investigation in this manuscript.

We define the disequilibrium quantifier as

Q[P] = Q0D[P, Pe], (14)

where Q0 is a normalization factor chosen such that 0 � Q �
1, Pe is the uniform distribution or ρ∞, and D is a measure
of distance in probability space or divergence. Based on the
choice of D[., .] one can define a variety of disequilibrium
quantifiers, a thorough list of possibilities with their respective
normalization factors is given in Ref. [33]. For the results
presented in this work we will consider the Jensen-Shannon
divergence [60,61], a symmetrized version of the well known
Kullback-Lieber divergence [62], which satisfies the trian-
gle inequality and hence constitutes a true metric [63]. The

Jensen-Shannon divergence is give by

D[P, Pe] = S

[
P + Pe

2

]
− 1

2
S[P] − 1

2
ln(D), (15)

where S[P] is the Shannon information entropy of the distri-
bution P.

Using the Eq. (14) we can quantify how far a distribution
is from the featureless distribution, however a distribution as-
signing complete certainty to a single event, say an eigenstate
of the initial Hamiltonian written in its eigenbasis, will have
a large value of D in Eq. (14). This type of distributions can
be seen as “featureless” and should be characterized by a zero
statistical complexity. To achieve this we define the statistical
complexity quantifier C[.] as the product

C[P] = Q[P]H[P], (16)

where H[P] is a normalized measure of information or un-
certainty (entropy). As with Q, one has different choices for
H . For instance Renyi, Tsallis, or Shannon entropies are good
candidates [33]. For the present study we will consider the
normalized Shannon entropy H[P] = S[P]/ ln(D). However,
the results on the dynamics of C as presented in Sec. V do not
depend on the choice of Q or H . The definition of statistical
complexity in Eq. (16) satisfies two constraints, it vanishes
at complete certainty (eigenstate of the initial Hamiltonian)
and it vanishes at complete uncertainty H[P] = 1 (equilibrium
state ρ∞). Thus it provides a way of quantifying the structures
arising in all the diagonal states the system occupied along
the road to equilibrium having these two states as boundary
points.

The monotonic character of Sdiag allow us to use H[P] ∈
[0, 1] as a time dimension, and thus provides a way of study-
ing the dynamics of statistical complexity which involves only
the quantities in Eq. (16). We notice that C[.] is not a trivial
function of H[.], and thus for a given value of H , the possible
values of C are bounded from above and below. That is,
C[P] yields a value within a range [C[Plower],C[Pupper]]. The
region of the (H,C) space in between these two boundary
curves is known as the entropy-complexity (E-C) plane [34].
By looking at the trajectories in this plane we can build an
intuition of the behavior of the statistical complexity during
equilibration dynamics of a many-body quantum system. The
explicit form of the distributions saturating the lower and
upper bound curves of the E-C plane are of great interest
to us. Those saturating the lower bound tell us what type of
distributions are seen as having the less complex structures
by C, and those saturating the upper bound curve will give
the ones of maximum C, for all values of H ∈ [0, 1]. We
present the details of the construction of these “boundary”
distributions in Appendix A.

IV. THE SINGLE-BAND BOSE-HUBBARD MODEL

As discussed in Sec. I, the quantum chaotic many-body
model we consider to investigate the behavior of the statistical
complexity during equilibration dynamics is the single-band
Bose-Hubbard model. Originally proposed in Ref. [64], and
later on studied in Ref. [65] as a model for quantum computa-
tion, the BH Hamiltonian describes identical bosonic particles
trapped in a periodic potential. Individual particles are
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allowed to hop between lattice sites with a hopping amplitude
J , and we will restrict ourselves to the case of nearest neighbor
hopping. Additionally, doubly or higher occupations of a sin-
gle lattice site are penalized with an energy cost proportional
to U (the particle-particle interaction strength). Several out-
of-equilibrium aspects of this model have been extensively
studied in the past couple of decades, with particular emphasis
on their connections to experiments with ultracold atoms in
optical lattices [36].

In the present work we will restrict ourselves to the sin-
gle energy band limit in one spatial dimension. Under these
constraints the BH Hamiltonian reads

ĤBH = Ĥhop + Ĥint, (17)

where Ĥhop represents the kinetic energy part of the Hamil-
tonian, accounting for hopping events, and Ĥint represents
the interaction energy, due to particle-particle interactions via
collisions. These two Hamiltonian terms are given by

Ĥhop = −J

2

L−1∑
l=1

b̂†
l+1b̂l + H.c. (18a)

Ĥint = U

2

L∑
l=1

n̂l (n̂l − 1), (18b)

where b̂l (b̂†
l ) is an annihilation (creation) operator for bosons

on site l , n̂l = b̂†
l b̂l is the bosonic number operator on site l , L

is the number of lattice sites and N the number of bosonic
particles on the lattice. We will consider BH systems with
either unit filling, N/L = 1, or nearly unit filling. In this model
the many-body quantum state lives in a Hilbert space of di-
mension

DBH = (N + L − 1)!

N!(L − 1)!
, (19)

thus we will explore statistical complexity of diagonal en-
sembles, i.e., probability vectors, living in a DBH-dimensional

space. Equilibrium [66,67] and nonequilibrium [37,40,68]
aspects of the dynamics of bosons in optical lattices have
been extensively studied with this model. In particular, an
experimental verification of the volume law characterizing
thermal-like states for the Renyi entropy was presented in
Ref. [69], and an extensive study of equilibration and thermal-
ization in the BH model was presented in Ref. [40]. In contrast
with the latter here we focus on the regime J/U > 1 for which
the BH model is known to be quantum chaotic [31,32,70,71].

V. RESULTS OF NUMERICAL EXPERIMENTS

In this section we present numerical results on the dy-
namics of statistical complexity under pure equilibration, and
results on the robustness of this dynamics under the presence
of an external perturbation.

A. Dynamics of statistical complexity

We study the dynamics of statistical complexity with the
following setup. Initially one of the stationary states of Ĥint

is prepared, then time evolution is driven by ĤBH until a
sufficient long time is reach and equilibrium is observed. In
this section we will focus on a BH system with 8 atoms in 8
lattice sites and we fix J = 2U . Results for other system sizes
are presented in Appendix B.

Recall that the road to equilibrium is given by a hierarchy
of diagonal ensembles, of the form

ρ|(t0 )
diag, ρ|(t1 )

diag, ..., ρ|(tequiv )
diag , ..., ρ|(t f )

diag, (20)

with t f > tequiv some final time. In the E-C plane this hierarchy
gives rise to a trajectory, defined by the succession of E-C
coordinates

(
H

[
ρ
∣∣(t0 )

diag

]
,C

[
ρ
∣∣(t0 )

diag

])
,
(
H

[
ρ
∣∣(t1 )

diag

]
,C

[
ρ
∣∣(t1 )

diag

])
, ...,

(
H

[
ρ
∣∣(tequiv )

diag

]
,C

[
ρ
∣∣(tequiv )

diag

])
, ...,

(
H

[
ρ
∣∣(t f )

diag

]
,C

[
ρ|(t f )

diag

])
. (21)

Following the discussion in Sec. III and using the generating
functions in Appendix A we construct the boundary curves
defining the E-C plane of our 8in8 BH system. Then, For each
initial Fock state we use their corresponding E-C trajectory to
compute two complementary quantities. First the equilibrium
E-C coordinate, obtained by approximating the long-time av-
erage of both H and C, defined as

H [P] = lim
T →∞

1

T

∫ T

0
H[P]dt, (22a)

C[P] = lim
T →∞

1

T

∫ T

0
C[P]dt . (22b)

These equilibrium coordinates are shown in the E-C plane as
colorful dots in Fig. 1(a).

Using the E-C trajectory we define the criteria for equili-
bration as the size of the statistical variance of both H and

C along the entire trajectory. If the state has equilibrated,
then one expects these statistical fluctuations to be exponen-
tially small in the system size. The size of the fluctuations
can be seen as the error bars in Fig. 1(a). With this crite-
ria we identify two sets of Fock states which do equilibrate
[blue and green dots in Fig. 1(a)] for which fluctuations are
indeed exponentially small. These two sets of Fock states
also correspond to states which are highly delocalized in the
eigenbasis of the quench Hamiltonian. We also identified a
set of states which do not equilibrate (blackdots in Fig. 1),
with large itinerant statistical fluctuations in their equilibrium
E-C coordinates [72]. We will go back to the discussion of
localization/delocalization properties of equilibrating states
later in this section.

From the two sets of Fock states which equilibrate, blue
and green dots in Fig. 1(a), we can readily identify those
states which correspond more closely to ergodic states. This

044103-5



MANUEL H. MUÑOZ-ARIAS PHYSICAL REVIEW E 106, 044103 (2022)

FIG. 1. (a) Long-time average E-C coordinates, (H ,C), of the
diagonal ensemble in the Fock basis, for all Fock states as initial
states, quenched under ĤBH in Eq. (17). We work with a unit filled
lattice at N = L = 8 and U = 1.23, J = 2U . (b, c) Dynamics of the
diagonal ensemble in the Fock basis shown as trajectories in the
entropy-complexity plane. Time flows from H = 0 to H = 1, follow-
ing the monotonicity of the diagonal entropy. In both cases we show
the trajectories of some representative initial Fock states, belonging
to the states colored blue and green in panel (a), respectively. In
all three subplots the red star shows the coordinates of distributions
evolved under random unitaries sampled from the circular orthogonal
ensemble.

is done by comparing their E-C coordinate with the E-C
coordinate of a random vector obtained by evolution under
a random unitary sampled from the COE, which is shown by
the red star in Fig. 1(a). We then recognize the blue set of
Fock states as those resembling more closely ergodic states,
and having the random vector as a good representation of
their equilibrium properties [73]. Additionally, all the states
in the green and blue sets exhibit a larger value of normalized
diagonal entropy when compared to those states which do
not equilibrate. This last observation follows from the typical
behavior of ergodic states, which are usually delocalized [74].
To investigate the localization properties of states in the basis
of the quench Hamiltonian we computed the inverse partici-
pation ratio (IPR), defined as

IPR(|�n〉) =
D∑

j=1

|〈�n|E〉|4, (23)

where �n = (n1, n2, ..., nL ) is a vector giving the occupations
of the L lattice sites for a given Fock state, with

∑L
l=1 nl = N ,

and {|E〉} is the eigenbasis of the quench Hamiltonian ĤBH.
The IPR in Eq. (23) gives 1 for a fully localized state and

3
DBH+1 for a fully delocalized state. The latter correspond to the
IPR value averaged over states obtained from the eigenbasis of
random Hamiltonians sampled from the GOE (see the meth-
ods in Ref. [5] for further details). Results for the 8 in 8 BH
system are shown in Fig. 2(b), we have ordered the Fock basis
such that states in each of the three sets, blue, green and black,
appear together. All the states in the blue set are saturating the
COE value, implying maximal delocalization and hence and

FIG. 2. (a) Energy density of the quench BH Hamiltonian with
8 atoms in 8 lattice sites, and J = 2U and U = 1.23. The energy
density has a Gaussian shape, characteristic of quantum chaotic
systems [75]. The bars represent the values of mean energy for all
the states in the Fock basis. (b) Inverse participation ratio of the Fock
states for the 8 in 8 BH system under study. The IPR is measured
on the eigenbasis of ĤBH. The dashed red line shows the IPR value
averaged over the COE. (c–e) Width in energy of all the Fock states
whose energy is shown in panel (a). In all the subplots we use the
same color code as in Fig. 1.

expected ergodic behavior [74], states in the black set show
IPR’s which are two orders of magnitude larger than those
in the blue set, thus we expect strong nonergodic behavior
with long lived coherences. Finally, states in the green set are
characterized by IPR values in between those of the blue and
black sets, however these values cluster near those of the blue
set, indicating a stronger presence of ergodic properties, and
as such we see them reaching equilibration.

In Figs. 1(b) and 1(c) we display the E-C trajectories fol-
lowed by a subset of states in each of the two sets reaching
equilibrium, i.e., blue and green states in Fig. 1(a). Few com-
mon universal features can be appreciated. First, for small
values of the normalized entropy, i.e., short times, the diagonal
ensembles closely resemble Pupper, thus have forms similar to
those in Eq. (A2). This monotonic character of the statistical
complexity reaches a maximum for intermediate values of
the normalized diagonal entropy, after which trajectories turn
around and asymptotically tend toward the E-C coordinate
of the COE. Therefore, equilibration dynamics characterized
to be an ever increasing entropy process generates complex
structures only for a portion of the local equilibration time,
after which those structures are washed out as the distributions
start resembling a random one.

Similarly, two differences between Fock states in the blue
and green sets are manifested. First, those in the blue set
peaked at higher values of statistical complexity and equili-
brate to the COE value, whereas those in the green set have a
smaller maximum of statistical complexity and do not saturate
the COE value.

In Fig. 2(a) we show the energy density of the quench
Hamiltonian (red histogram), defined as

P(E ) =
DBH∑
l=1

δ(E − El ), (24)
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where ĤBH|El〉 = El |El〉. We notice the Gaussian shape of the
energy density, characteristic of quantum chaotic Hamiltoni-
ans [75]. On top of the energy density histogram in Fig. 2(a)
we show the mean energies, 〈�n|ĤBH|�n〉, of each and all the
Fock states. The height and width of the blue, green, and black
bars are arbitrary; they only illustrate the location of the mean
energies for the different Fock states. States in the blue set,
which equilibrate close to the COE value, have mean energies
deep within the bulk and denser part of the energy spectrum,
or in other words, when expressed in the eigenbasis of the
quench Hamiltonian will have support on a large number of
eigenvectors, they are “delocalized” in the energy basis as
follows from the IPR results in Fig. 2(b). However, the states
in the black subset, which do not equilibrate, are all very close
to the edge of the spectrum, in a sense they are “localized” in
energy, hence coherences are long lived. Finally, the states on
the green subset have mean energies in between those of the
blue set and those of the black set. Thus, they are neither fully
“localized” nor completely “delocalized” in energy, and they
display a mixture of properties between those of ergodic and
nonergodic states.

The previous analysis is complemented with the en-
ergy width of all the Fock states, that is, �Ĥ =√

〈�n|Ĥ2
BH|�n〉 − 〈�n|ĤBH|�n〉2. Results are shown in the his-

tograms of Figs. 2(c)–2(e); from these results it is evident that
the blue states are the ones with wider support on the energy
basis of all, and thus diffusion in Hilbert space is facilitated.
Those in the black set are the narrower ones. Notice how both
the maximum and mean of the histograms moves to smaller
values of �Ĥ blue in Fig. 2(c) to black in Fig. 2(e). Similar
to the IPR results in Fig. 2(b), the width of the green states
is closer to those of the blue states than those of the black
states. Hence, they display properties which are a mix between
ergodic and nonergodic behaviors, yet the ergodic behavior is
dominant and thus we see these states equilibrating.

B. The effect of a random perturbation

In the previous section we discussed the road E-C tra-
jectories of all the initial Fock states, and we used these
trajectories to characterize the road to equilibrium. We found
a subset of the initial Fock states which are ergodic states.
This implies that the form of the E-C trajectories in Fig. 1(b)
is a generic feature of the road to equilibrium for any typical
(ergodic) state. We also observe the E-C coordinates of these
ergodic states to be fairly close to the E-C coordinate of the
COE. This is another generic feature of ergodic states, as
their equilibrium properties are usually well described by the
appropriate random matrix ensemble. Follwoing from these
results, in this section we will explore the question: how the
road to equilibrium generated by a physical chaotic Hamil-
tonian differs from the one driven by a random Hamiltonian?
We study this question in two different ways. First, by looking
at how the presence of a perturbation in the form of a random
Hamiltonian modifies the E-C trajectories shown in Figs. 1(b)
and 1(c) and the difference of these Hamiltonian E-C trajec-
tories with those coming from the evolution generated by a
random Hamiltonian. In particular we will show evidence of
a separation between nonequilibrium Hamiltonian evolution
and random evolution. The former produces E-C trajectories

FIG. 3. Trajectories in the E-C plane of the diagonal ensemble in
the Fock basis, for a single initial Fock state evolved under the Hamil-
tonian in Eq. (25), for each of the three sets identified in Fig. 1(a),
blue (a), green (b), and black (c). In all panels, the continuous red line
corresponds to the unperturbed E-C trajectory, the dashed line to the
E-C trajectory obtained evolving under a random Hamiltonian, and
the yellow star the COE coordinate. The continuous, blue, green and
black lines show 40 different trajectories resulting from 40 different
realization of the perturbed evolution, each with a different random
Hamiltonian. For the displayed results we use ε = 0.5 for the pertur-
bation strength, other parameters are as in Fig. 1.

composed of diagonal ensembles with higher values of statis-
tical complexity. Second, the robustness of the observed E-C
plane trajectories to the action of the random perturbation as
a function of the perturbation strength.

1. Effects of a random perturbation in the Fock basis

Let us consider a perturbation, in the form of a random
Hamiltonian, acting on the quench Hamiltonian. Then equili-
bration dynamics is driven by a Hamiltonian of the form

Ĥ ′
BH = ĤBH + ε�0Ĥ , (25)

where ĤBH is defined in Eq. (17), Ĥ is a random Hamiltonian
sampled from the GOE, ε a parameter controlling the strength
of the perturbation, and �0 the mean energy level spacing of
ĤBH.

After adding the random Hamiltonian, we evolve different
initial Fock states belonging to each of the three different sets
identified in Fig. 1(a), and construct the perturbed trajectories
in the E-C plane. They are shown in Figs. 3(a)–3(c), where the
trajectories for 40 different random Hamiltonians are shown
for a single initial Fock state, along with the original trajectory
(continuous red lines).

The dashed lines in Fig. 3 correspond to the evolution in the
E-C plane of initial Fock states under a random Hamiltonian
of the form ε�0Ĥ . We compare this trajectory to the one
obtained under the Hamiltonian evolution, and immediately
recognize a clear separation of the two roads to equilibrium
given by the E-C trajectories. Hamiltonian evolution builds
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a road toward equilibration constituted by diagonal ensem-
bles characterized by large values of statistical complexity,
remaining close to the upper boundary of the E-C plane for
small values of the entropy. However, the evolution dominated
by a random Hamiltonian builds a road to equilibrium via a
succession of diagonal ensembles which lack structure, and
thus the E-C trajectory remains, for all values of the entropy,
close to the lower boundary curve of the E-C plane. Further-
more, evolution under the perturbed Hamiltonian in Eq. (25)
generates a E-C trajectory which interpolates between that
of a pure Hamiltonian evolution and that of an evolution
under a random Hamiltonian, as a function of the perturbation
strength ε.

The E-C trajectories describing the road to equilibrium
are a low dimensional representation of the evolution toward
equilibrium of the diagonal ensembles, which are probability
vectors in a DBH-dimensional probability space. As such, the
difference between the road to equilibrium under coherent
quantum evolution and under evolution by a random Hamil-
tonian can be further investigated in the behavior of their
respective trajectories in probability space.

The space of D-dimensional probability vectors is the set
of all the convex combinations of the linearly independent
vectors {�e j} j=1,..,D given by

PD−1 =
{

�v ∈ RD : �v =
D∑

j=1

u j �e j,

D∑
j=1

u j = 1, u j � 0

}
.

(26)
A set of real vectors satisfying Eq. (26) is called a (D − 1)-

simplex.
The vertices of this (D − 1)-simplex are the basis vectors

�el , and are represented in the E-C plane at the (0,0) point (left
corner), having multiplicity D. The “infinite temperature”
state can be identified with the baricenter of PD−1, it is unique
and is represented by the (1,0) point at the right corner on the
E-C plane. It can be shown that the behavior of C is identical
in each one of the D! baricentric subdivisions of PD−1; see
Ref. [33]. A baricentric subdivision of PD−1 is the subset of
probability vectors

PD−1
bari = {

�g(m)
τ : τ ∈ Permu(D), m = 1, ...,D

}
, (27)

where Permu(D) is the set of permutations of [1, 2, ..,D] and
the vectors �g(m)

τ are given by

�g(m)
τ =

τ (N )∑
n=τ (m)

(
1

D − m + 1

)
�eτ (n), (28)

with �e j the vertices of PD−1. In our numerical experiments,
for a given Fock state represented by �el , we are choosing the
baricentric subdivision of PD−1 such that τ is a permutation
swapping D with l , therefore the subsimplex PD−1

bari has ρ∞ as
the first vertex and �el as the last one.

The distributions giving the two boundary curves of the
E-C plane correspond to the probability vectors on the edges
of the baricentric subdivision of PD−1 for the Fock state under
study. In particular, for our choice of entropy and disequi-
librium, distributions on the edge connecting the very first
and last (the two nonconsecutive) vertices build the lower
boundary curve of the E-C plane, see Eq. (A1). Those distri-

butions on the union of all the edges connecting consecutive
vertices build the upper boundary curve of the E-C plane, see
Eq. (A2). We saw in Fig. 1(a) that the equilibrium state is
obtained by the action of a COE unitary on one of the basis
vectors �e j , for a given baricentric subdivision, this equilibrium
state is a distribution in the vicinity of the baricenter, i.e.,
the “infinite temperature” state. Thus, in probability space
reaching equilibrium means the trajectory is already inside
this neighborhood of the baricenter and remains there for all
later times.

We can use these correspondences to create a picture in the
(D − 1)-simplex of the trajectories for each of the two time
evolutions under scrutiny. Consider first the evolution driven
by a random Hamiltonian. We saw in Figs. 3(a)–3(c) that the
E-C trajectory remains for all values of H[ρ|(t )

diag] close to the
lower bound curve. Therefore in probability space, the initial
state �e j moves toward the neighborhood of the baricenter
staying at all times close to the edge connecting the baricenter
with �e j until reaching equilibrium. However, the quantum
evolution remains close to the upper bound curve on the E-C
plane [see Figs. 1(b) and 1(c)], thus the initial state �e j evolves
along a path that follows all the edges connecting consecu-
tive vertices on the baricentric subdivision, until reaching the
neighborhood of the baricenter and equilibrating.

2. Robustness analysis in the basis of the quench Hamiltonian

To gauge the robustness of our set of initial states against
a random perturbation, we need to nullify the effect of the
nonequilibrium dynamics. This can be readily done by choos-
ing the eigenbasis of the quench Hamiltonian, ĤBH as the
reference basis. In this basis, an initial Fock state can be
written as

|n1n2...nL〉 =
DBH∑
l=1

cl (0)|El〉, (29)

where cl (0) = 〈n1n2...nL|El〉. Here, the initial diagonal en-
semble ρ|(t0 )

diag = |cl (0)|2 is invariant to the action of the

unitary e−it ĤBH , and the E-C trajectories are now represented
by a single point. Under the action of a random unitary
of the form Ûrand(ε) = e−itε�0Ĥ with Ĥ a random Hamil-
tonian as in Eq. (25), the diagonal ensemble does evolve.
Then, as a function of the perturbation strength, ε, the di-
agonal ensemble traces a new E-C trajectory going from
ρ|(t0 )

diag = |cl (0)|2 to the E-C coordinate of the COE. We see
then that quantifying the robustness of a given initial Fock
state can be done via the euclidean distance between the
E-C coordinate of ρ|(t0 )

diag = |cl (0)|2, (H[|cl (0)|2],C[|cl (0)|2]),
and the E-C coordinate of the diagonal ensemble after
the action of the random Hamiltonian, ρ|rand

diag = |cl (rand)|2,

given by (H [|cl (rand)|2],C[|cl (rand)|2]), where cl (rand) =
〈n1n2...nL|Ûrand(ε)|El〉 and the overline indicates average over
random unitaries. In other words, we look at the distance

d (ε) =
√

�H2(ε) + �C2(ε), (30)

where �H = H [|cl (rand)|2] − H[|cl (0)|2] and �C =
C[|cl (rand)|2] − C[|cl (0)|2]. In Fig. 4 we show the normalized
distance to the COE coordinate as a function of the
perturbation strength ε for each of the three sets of states
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FIG. 4. (a) Euclidean distance between the diagonal ensemble
of Fock states, in the basis of the quench Hamiltonian, to their
diagonal ensemble after the action of a random unitary. The normal-
ization factor is given by the distance between the E-C coordinate of
ρ|(t0 )

diag = |cl (0)|2 and the E-C coordinate of the COE. Each point is
the result of averaging over ten initial Fock states in each of the three
sets (blue, green, and black). The distance to the COE coordinate
for each of those states is the result of averaging over 100 different
trajectories generated by 100 random Hamiltonians sampled from the
GOE. The inset shows the d (ε) for all the BH systems considered;
the solid red line is the finite size scaling curve giving the infinite size
limit. The inset and the main subplot share the x axis. (b–d) Charac-
teristic exponent η of the sensitivity to perturbations as a function
of the inverse dimension 1/DBH. In all figures the solid line repre-
sents the points in the regime ε < 0.1 and the dashed lines the points
in the regime ε > 0.1. The point at 1/DBH = 0 is obtained from the
finite size scaling.

identified in Fig. 1(a). For each set of states, we compute this
distance as the result of two averages, one over a subset of 10
states and one over 100 different random Hamiltonians. The
normalization factor d0 corresponds to the euclidean distance
between the E-C coordinate of ρ|(t0 )

diag = |cl (0)|2 and the E-C
coordinate of the COE.

We notice that for a large enough ε, all initial Fock states
are mapped to a random state by the action of Ûrand(ε), as
can be observed by the distance tending to one in the right
most end of Fig. 4(a). As the the value of ε is decreased we
observe two different behaviors of the distance to the E-C
coordinate of the initial diagonal ensemble, one for small
ε < 0.1 and one for large ε > 0.1. The linear behavior of the
distance in each of these two regimes, on a log-log scale,
suggests that the sensitivity to a perturbation in the form
of a random Hamiltonian exhibits a characteristic exponent.
In other words, one has, d (ε)

d0
∼ εη with η the characteristic

exponent. The typical states [blue dots in Fig. 1(a)] present
a higher sensitivity to the effect of the random perturbation
in the regime ε < 0.1, where the growth rate in this regime
goes as η ≈ 2 [see dark red line in Fig. 4(a)], indicating that
typical states (ergodic states) are more fragile to the effects
of an added random perturbation. As a consequence of this
larger sensitivity in the regime ε < 0.1, the set of blue states
exhibits the slower growth rate in the regime ε > 0.1, given
by η ≈ 1/3, since saturation to the COE coordinate happens
faster. In contrast the green and black states exhibit a smaller

sensitivity to the effects of the random perturbation in the
regime ε < 0.1, where we obtained the dependence η ≈ 7/4,
and as a consequence exhibit a larger sensitivity in the regime
ε > 0.1, in the process of saturating to the COE coordinate.
For this second regime we obtained the dependence η ≈ 2/3
[see the magenta and red lines in Fig. 4(a)].

To complete the characterization of sensitivity to random
perturbations using the E-C plane, we obtained numerical
results for other three B-H systems with filling factors N/L =
7/7, 8/7, 7/8, respectively. The equilibrium E-C coordinates
and IPR values for these other B-H systems are shown in
Appendix B. The respective growth rates were obtained by
similar means as those in Fig. 4(a). We use these four data
points, as a function of the inverse dimension 1/DBH to find
the value of η in the thermodynamic limit DBH → ∞ via a
finite size scaling. In other words, the intercept of a linear
fit to the points of the form (1/DBH, η). Results are shown
in Figs. 4(b)–4(d), where we have included the result of the
finite size scaling, point at 1/DBH = 0. These results confirm
our previous observation for the states in the blue set, with
the two sensitivity regimes η = 2 and η = 1/3 for ε < 0.1
and ε > 0.1, respectively. However, the results of the finite
size scaling point toward a small separation in sensitivity be-
tween green and black states in the regime ε < 0.1, we found
η = 9/5 and η = 17/10 for green and black, respectively. We
adjudicate this to the fact that the properties of the states in
the green set are a mixture between ergodic and nonergodic.
Whereas in the regime ε > 0.1 we obtained η = 2/3 for both
sets, supporting our previous findings.

VI. SUMMARY AND OUTLOOK

In this work we have revisited the paradigmatic problem
of an interacting many-body quantum system equilibrating
under its own dynamics. We focus on the situation of equi-
libration as a consequence of a quantum quench, and study
the time evolution of diagonal ensembles. We showed, using
tools from information theory and the theory of majorization,
that the equilibration process in quantum chaotic many-body
systems can be understood as the emergence of a hierarchy of
diagonal ensembles, inducing a hierarchization of probability
space. We referred to this hierarchy of diagonal ensembles
as the road to equilibrium, and investigated its structure in
detail. We showed that this hierarchization guarantees the
emergence of a form of the second law of thermodynamics
for the diagonal entropy. This latter fact allowed us to use
some statistical tools, namely the statistical complexity and
the entropy-complexity plane, popular in the analysis of time
series data, to investigate salient features of the road to equi-
librium.

As an illustrative example we focus on a system of bosons
trapped in a one dimensional lattice, described by the single
band Bose-Hubbard model. The analysis of the road to equi-
librium as an E-C trajectory revealed that initial states with
ergodic properties visit diagonal ensembles of high statistical
complexity during their road to equilibrium. Furthermore,
these trajectories allow us to present a clear separation be-
tween the road to equilibrium driven by a physical quantum
Hamiltonian and that generated by evolution under a random
Hamiltonian, which nevertheless captures almost perfectly
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the system properties once equilibrium has been reached. In
the road toward equilibrium the former explores a region of
probability space characterized by a large value of statistical
complexity, whereas the latter visits states with small values
of statistical complexity, staying at all times very close to the
allowed lower bound. Finally, we use the E-C plane in the
basis of the quench Hamiltonian to characterize the robustness
of the quantum dynamics against the effects of the random
perturbation, finding that all the initial Fock states, either
ergodic or not, exhibit a polynomial sensitivity.

The discussion in this manuscript provides a new point
of view into well established results in the study of many-
body quantum systems out-of-equilibrium. Additionally, they
illustrate the usefulness of certain statistical tools, popular in
the study of time series and classical dynamical systems, in
the study and characterization of out-of-equilibrium many-
body quantum dynamics, in particular, opening the door to
a convergence of quantum many-body dynamics and complex
systems science.

In the present manuscript we focused on the study of di-
agonal ensembles and ignored the off-diagonal elements of
the density matrix. However, the off-diagonal elements carry
important information of the nonequilibrium dynamics. In
principle, by constructing a well defined probability distribu-
tion based on this elements one could use the tools presented
in this manuscript to characterize their behavior during a
nonequilibrium process. This immediately poises the question
of how can we extend the current analysis to use the informa-
tion encoded in the full quantum state. An alternative, which
is currently under investigation, is to consider reduced density
matrices by partially tracing out part of the lattice system. In
particular, when considering reduced states of many-body lat-
tice systems, one could exploit the entropy-complexity plane
to distinguish scrambling dynamics from pure decoherence, a
topic which has seen elevated interest in recent years [76,77].
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APPENDIX A: BOUNDARY CURVES OF THE
ENTROPY-COMPLEXITY PLANE

The explicit form of the distributions defining the upper
and lower bound curves of the entropy-complexity plane can
be constructed from the following generating functions

P1,D(r) = r
D−1∑
j=1

�e j − +[1 − r(D − 1)]�eD, (A1)

FIG. 5. Equilibrium coordinates in the entropy-complexity plane
for all the states in the Fock basis, after evolving under a Hamiltonian
quench. The shown coordinates in panels (a), (b), and (c) correspond
to B-H systems with filling factors of N/L = 7/7, 8/7, 7/8, respec-
tively. For all the studied BH systems we observe the separation,
in the E-C plane, of the Fock basis into the three sets identified in
Fig. 1(a).

where r ∈ [0, 1
D ], and

P j, j+1(r) = r�e j +
(

1 − r

D − j

) D∑
l= j+1

�el , (A2)

FIG. 6. Inverse participation ratios of Fock basis states, mea-
sured in the basis of the quench Hamiltonian, ĤBH. Results are for
the BH systems with N/L = 7/7, 8/7, 7/8 in panels (a), (b), and (c),
respectively. We have ordered the Fock basis so that states in each of
the three sets, blue, green and black will appear together. The dashed
red line shows the IPR value average over the COE.
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where r ∈ [0, 1
D− j+1 ] and j = 1, ..,D − 1. Here {�e j} j=1,..,D

is the canonical basis of RD, which constitutes a set of basis
vectors for the space of D-dimensional probability vectors
under the 1-norm. Depending on the details of the construc-
tion of C one can have Eq. (A1) generating distributions
which saturate either of the two bounds, hence Eq. (A2) will
generate those saturating the other one. Regularity conditions
allowing the identification of the boundary upper and lower
distributions were laid out in Ref. [33]. For our choice of
Jensen-Shannon divergence and Shanon entropy, distributions
generated by Eq. (A1) build C[Plower] and distributions gener-
ated by Eq. (A2) build C[Pupper].

APPENDIX B: RESULTS FOR OTHER SYSTEM SIZES

In this Appendix we show additional results for the other
BH systems considered in our study. In Figs. 5(a)–5(c) we
show the E-C equilibrium coordinates for the BH systems

with N/L = 7/7, 8/7, 7/8, and point out that the three sets,
blue, green and black of states equilibrating to the CUE co-
ordinate, equilibrating to a different value and no reaching
equilibrium, identified in Fig. 1(a) have validity for these other
system sizes.

The inverse participation ratios of all the states in the Fock
basis for each of the BH systems with N/L = 7/7, 8/7, 7/8,
are shown in Figs. 6(a)–6(c). We have ordered the Fock basis
such that states belonging to each of the three sets, blue, green
and black, will be display together. Notice how there are two
orders of magnitude separating the IPR of a typical state in
the blue set and a state on the black set. Pointing at the differ-
ence between ergodic states an nonergodic states, additionally
ergodic states in the blue staurate the IPR averaged over the
COE, dashed red line in Figs. 6(a)–6(c), IPRCOE = 3.0

DBH+1
see [5]. However, states on the green set sit in between the IPR
values of the blue and black sets, and thus we expect them to
display a mixture of ergodic and nonergodic properties.
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