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Contact process with simultaneous spatial and temporal disorder
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We study the absorbing-state phase transition in the one-dimensional contact process under the combined
influence of spatial and temporal random disorders. We focus on situations in which the spatial and temporal
disorders decouple. Couched in the language of epidemic spreading, this means that some spatial regions are,
at all times, more favorable than others for infections, and some time periods are more favorable than others
independent of spatial location. We employ a generalized Harris criterion to discuss the stability of the directed
percolation universality class against such disorder. We then perform large-scale Monte Carlo simulations to
analyze the critical behavior in detail. We also discuss how the Griffiths singularities that accompany the
nonequilibrium phase transition are affected by the simultaneous presence of both disorders.
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I. INTRODUCTION

Macroscopic systems far from thermal equilibrium can
undergo abrupt transformations between different steady
states when their external conditions are varied. These
nonequilibrium phase transitions share many features with
thermodynamic (equilibrium) phase transitions, including col-
lective behavior and large-scale fluctuations. They can be
found, for example, in interface growth, chemical reactions,
granular flow, and in biological problems such as popula-
tion dynamics or epidemic spreading (for reviews, see, e.g.,
Refs. [1–5]).

When a nonequilibrium phase transition separates an active
fluctuating steady state from an inactive absorbing state in
which fluctuations completely stop, it is called an absorb-
ing state transition. Experimental realizations of absorbing
state transitions have been observed, for example, in turbulent
liquid crystals [6], periodically driven suspensions [7,8],
bacteria colony biofilms [9,10], and the dynamics of super-
conducting vortices [11]. Janssen and Grassberger [12,13]
conjectured that all continuous transitions into a single ab-
sorbing state having a scalar order parameter and short-range
interactions belong to the directed percolation (DP) universal-
ity class [14], provided they do not feature extra symmetries,
conservation laws, inhomogeneities, or disorder.

Many realistic systems undergoing absorbing state tran-
sitions feature random spatial inhomogeneities (i.e., spatial
disorder) or random variations of their external parameters
with time (i.e., temporal disorder). The question of how disor-
der affects absorbing state transitions (and the DP universality
class in particular) has attracted significant attention during
the last two decades or so. According to the Harris criterion
[15], the DP critical point is unstable against spatial disor-
der because its correlation length exponent ν⊥ violates the
inequality dν⊥ > 2 in all physical dimensions, d = 1, 2, and
3. The DP critical point is also unstable against temporal dis-
order because its correlation time exponent ν‖ = zν⊥ violates
Kinzel’s generalization [16] ν‖ > 2 of the Harris criterion (see

Ref. [17] for an extension of the Harris criterion to general
spatiotemporal disorder).

Spatial disorder has been demonstrated to have dramatic
effects on the DP universality class. Hooyberghs et al.
[18] developed a strong-disorder renormalization group (RG)
[19,20] method and predicted the transition to be governed
by an unconventional infinite-randomness critical point. It
is accompanied by strong power-law Griffiths singularities
[21,22] in the parameter region close to the transition. The
infinite-randomness critical point scenario was confirmed by
large-scale Monte Carlo simulations in one, two, and three
space dimensions [23–26]. Similar critical behavior was also
observed in diluted systems near the percolation threshold
[27] and in systems featuring aperiodic order [28].

More recently, the effects of temporal disorder on the DP
universality class were analyzed by means of a real-time
“strong-noise” RG [29]. This method predicts that the disor-
der strength diverges with increasing timescale at criticality,
and the probability distribution of the density becomes in-
finitely broad, even on a logarithmic scale. This infinite-noise
critical behavior can be understood as the temporal coun-
terpart of infinite-randomness critical behavior in spatially
disordered systems, but with exchanged roles of space and
time. The RG predictions were later confirmed by Monte
Carlo simulations [30,31]. In addition, Vazquez et al. [32]
identified a temporal analog of the Griffiths phase in spatially
disordered systems that features an unusual power-law rela-
tion between lifetime and system size on the active side of the
phase transition.

Although the effects of pure spatial disorder and pure
temporal disorder have been studied in some detail, their
simultaneous influence on absorbing state transitions has re-
ceived much less attention. This is likely due to the fact that
uncorrelated spatiotemporal disorder is an irrelevant pertur-
bation at the clean DP critical point and thus not expected
to change the critical behavior (see, e.g., Ref. [2]). However,
many experimental applications do not lead to uncorrelated
spatiotemporal disorder. Consider, for example, an epidemic
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spreading in an inhomogeneous environment under conditions
that fluctuate with time. If the locations of favorable spatial
regions do not change with time, and if favorable conditions
in time apply uniformly to the entire population, the resulting
spatiotemporal disorder features infinite-range correlations
and is thus expected to be a relevant perturbation at the clean
DP critical point.

In the present paper, we combine generalizations of the
Harris criterion, optimal fluctuation arguments, and large-
scale Monte Carlo simulations to investigate the fate of the
nonequilibrium phase transition in the contact process [33]
under the influence of such spatiotemporal disorder. We find
that adding weak temporal disorder to a spatially disor-
dered system does not change the infinite-randomness critical
behavior. Analogously, adding weak spatial disorder to a tem-
porally disordered system does not affect the infinite-noise
critical behavior. We also explore the fate of the transitions
if both disorders are strong. In addition, we demonstrate that
the functional form of the Griffiths singularities changes in the
simultaneous presence of both disorders.

Our paper is organized as follows. The contact process
and our implementation of the spatiotemporal disorder are
introduced in Sec. II. Section III briefly summarizes what is
known about the phase transition in the clean contact process,
the spatially disordered contact process, and the temporally
disordered contact process. The effects of rare regions and
the resulting Griffiths singularities in the contact process with
purely spatial or purely temporal disorder are summarized in
Sec. IV. The computer simulations methods are introduced in
Sec. V. Sections VI and VII are devoted to our results for the
contact process in the presence of spatiotemporal disorder. We
conclude in Sec. VIII.

II. CONTACT PROCESS

The nonequilibrium phase transition in the clean contact
process is well studied and belongs to the DP universality
class [33]. We consider a d-dimensional hypercubic lattice
in which each site can be either active (infected) or inactive
(healthy). As the time progresses, an active site can either
infect its lattice neighbors or spontaneously become inactive.
More specifically, the time evolution of the contact process is
a continuous-time Markov process during which the infected
sites heal at rate μ, and infect their inactive neighbors at
infection rate λ. Thus an inactive site becomes active at rate
λn/2d . Here, n stands for the number of active neighbors. The
long-time fate of the contact process is determined by the ratio
between the infection rate λ and the healing rate μ. (Since
only the ratio matters, μ can be set to unity without loss of
generality).

For small infection rate λ, the healing process is favored.
Because of the lack of new infections, all active sites will heal
eventually. The system thus ends up in the absorbing healthy
state. This is called the inactive phase. For large infection rate
λ, the active sites proliferate and never die out. This is called
the active phase. The active and inactive phases are separated
by a transition in the DP universality class.

We now introduce spatial and temporal disorder into the
infection rate λ by defining the local infection rate λ(x, t ) at

lattice site x and time t with a multiplicative structure,

λ(x, t ) = λ0 f (x)g(t ). (1)

Here, the random variables f (x) and g(t ) are non-negative
and independent of each other. They are characterized by the
averages

〈 f (x)〉 = f̄ , 〈g(t )〉 = ḡ (2)

and short-range correlations

〈 f (x) f (x′)〉 − f̄ 2 = σ 2
f δ(x − x′), (3)

〈g(t )g(t ′)〉 − ḡ2 = σ 2
g δ(t − t ′). (4)

The multiplicative structure implies that favorable (for the in-
fection) spatial regions do not change with time, and favorable
time intervals apply to the whole system. In other words, the
disorder contains infinite-range correlations in space and time.
This is reflected in the covariance function of λ(x, t ), which
reads

G(x − x′, t − t ′) = 〈λ(x, t )λ(x′, t ′)〉 − 〈λ(x, t )〉〈λ(x′, t ′)〉
= λ2

0σ
2
f σ

2
g δ(x − x′)δ(t − t ′)

+ λ2
0σ

2
f ḡ2δ(x − x′) + λ2

0σ
2
g f̄ 2δ(t − t ′).

(5)

Here the first term represents uncorrelated spatiotemporal dis-
order, the second term is perfectly correlated in time, and
the last term is perfectly correlated in space. Purely spatial
disorder can be understood as a special case of (1) with
g = const. Analogously, purely temporal disorder emerges for
f = const.

III. SCALING SCENARIOS

In this section, we briefly summarize what is known about
the critical behavior of the nonequilibrium phase transitions
in the clean contact process, the contact process with purely
spatial disorder, and the contact process with purely temporal
disorder.

A. Clean contact process: Conventional power-law
critical behavior

The (clean) DP universality class features three indepen-
dent critical exponents that can be chosen to be β, ν⊥, and z
(see, e.g., Ref. [2]). The order-parameter exponent β controls
how the steady-state density ρstat varies as the infection rate
λ approaches its critical value λc from the active side of the
transition,

ρstat ∼ (λ − λc)β ∼ rβ, (6)

with r = (λ − λc)/λc the dimensionless distance from crit-
icality. The correlation length exponent ν⊥ controls the
divergence of the (spatial) correlation length ξ⊥,

ξ⊥ ∼ |r|−ν⊥, (7)

and the dynamical exponent z relates the correlation time ξ‖
to the correlation length,

ξ‖ ∼ ξ z
⊥. (8)
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The density ρ of active sites as a function of the distance
r from criticality, the time t , and the system size L fulfills the
homogeneity relation

ρ(r, t, L) = 	β/ν⊥ρ(r	−1/ν⊥ , t	z, L	), (9)

where 	 is an arbitrary dimensionless length scale factor. The
survival probability Ps is the probability that an active cluster
survives to time t if the epidemic starts at time 0 from a
single infected site in an otherwise inactive lattice. In the DP
universality class, Ps has the same scaling form as the density
of active sites (9) [34],

Ps(
, t, L) = 	β/ν⊥Ps(
	−1/ν⊥ , t	z, L	). (10)

The pair connectedness function C(x, t ) is given by the prob-
ability that site x is infected at time t when the time evolution
starts from a single infected site at x = 0 and time t = 0. The
scale dimension of C is 2β/ν⊥ because it involves a product
of two densities [35]. This implies the scaling form

C(r, x, t, L) = 	2β/ν⊥C(r	−1/ν⊥ , x	, t	z, L	). (11)

The number Ns of sites in an active cluster growing from a
single seed can be calculated by integrating C over all x,

Ns(r, t, L) = 	2β/ν⊥−d Ns(r	
−1/ν⊥ , t	z, L	). (12)

Because the mean-square radius R of this active cluster has
the dimension of a length, its scaling form reads

R(r, t, L) = 	−1R(r	−1/ν⊥ , t	z, L	). (13)

The time dependencies of ρ, Ps, Ns, and R at the critical
point r = 0 and in the thermodynamic limit L → ∞ can be
easily derived from Eqs. (9)–(13) by setting the scale factor
	 to suitable values. In the long-time limit, the density of
infected sites and the survival probability are expected to
follow the relations

ρ(t ) ∼ t−δ, Ps(t ) ∼ t−δ (14)

with δ = β/(ν⊥z). The mean-square radius and the number
of sites of an active cluster starting from a single seed site
behave as

R(t ) ∼ t1/z, Ns(t ) ∼ t�. (15)

Here, � = d/z − 2β/(ν⊥z) is the critical initial slip exponent.
These results imply that �, δ, and z are not independent; they
fulfill the hyperscaling relation � + 2δ = d/z.

Highly accurate estimates of the critical exponents
for the clean DP universality class in d = 1 dimensions
were computed by series expansions [36]: β = 0.276 486,
ν⊥ = 1.096 854, z = 1.580 745, δ = 0.159 464, and � =
0.313 686.

The clean correlation length exponent violates Harris’
inequality dν⊥ > 2 [15]. Analogously, the exponent combi-
nation ν‖ = zν⊥ violates the corresponding inequality ν‖ > 2
for temporal disorder [16]. Consequently, the clean DP critical
behavior is unstable against both purely spatial disorder and
purely temporal disorder.

B. Spatially disordered contact process: Infinite-randomness
critical behavior

Hooyberghs et al. [18] employed a strong-disorder RG
[19,20] method to demonstrate that the nonequilibrium phase
transition in the spatially disordered contact process is gov-
erned by an exotic infinite-randomness critical point in the
same universality class as the random transverse-field Ising
model [37]. This was later verified by Monte Carlo simula-
tions in one, two, and three space dimensions [23–26].

A key difference between a conventional critical point and
an infinite-randomness critical point is the replacement of the
power-law relation (8) between correlation length and time by
an exponential (activated) one,

ln(ξ‖/t0) ∼ ξ
ψ

⊥ . (16)

Here ψ is the so-called tunneling exponent, and t0 is a mi-
croscopic timescale. This exponential relation implies that
the dynamical exponent z is formally infinite at an infinite-
randomness critical point. In contrast, the static scaling
relations remain of power-law type, i.e., Eqs. (6) and (7)
remain valid.

The scaling forms of disorder-averaged observables can
be obtained by simply substituting the variable combination
ln(t/t0)	ψ for t	z in the arguments of the scaling functions,
yielding

ρ(r, ln(t/t0), L) = 	β/ν⊥ρ(r	−1/ν⊥ , ln(t/t0)	ψ, L	), (17)

Ps(r, ln(t/t0), L) = 	β/ν⊥Ps(r	−1/ν⊥ , ln(t/t0)	ψ, L	), (18)

Ns(r, ln(t/t0), L) = 	2β/ν⊥−d Ns(r	−1/ν⊥ , ln(t/t0)	ψ, L	),

(19)

R(r, ln(t/t0), L) = 	−1R(r	−1/ν⊥ , ln(t/t0)	ψ, L	). (20)

The resulting critical time dependencies of ρ, Ps, Ns, and R
are logarithmic (in the thermodynamic limit),

ρ(t ) ∼ [ln(t/t0)]−δ̄ , Ps(t ) ∼ [ln(t/t0)]−δ̄ , (21)

R(t ) ∼ [ln(t/t0)]1/ψ , Ns(t ) ∼ [ln(t/t0)]�̄, (22)

with δ̄ = β/(ν⊥ψ ) and �̄ = d/ψ − 2β/(ν⊥ψ ).
Within the strong-disorder renormalization-group ap-

proach, the critical exponents of the spatially disordered
one-dimensional contact process can be calculated exactly.
Their numerical values are β = 0.381 97, ν⊥ = 2, ψ = 0.5,
δ̄ = 0.381 97, and �̄ = 1.2360.

C. Temporally disordered contact process: Infinite-noise
critical behavior

To attack the problem of temporal disorder in the contact
process, Vojta and Hoyos [29] developed a real-time strong-
noise renormalization group that can be understood as the
temporal counterpart of the strong-disorder renormalization
group for spatially disordered systems. This renormalization
group predicts (in any finite dimensionality d) a Kosterlitz-
Thouless [38] -type transition at which the critical fixed point
is the end point of a line of fixed points that describe the
ordered phase. Consequently, observables at criticality show
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the same qualitative behavior as in the active phase, except
for logarithmic corrections. This can be expressed in the fol-
lowing heuristic scaling theory [30].

The density of active sites fulfills the scaling form

ρ(r, t, L) = (ln 	)−β/ν̄⊥ρ(r(ln 	)1/ν̄⊥ , t	−z, L	−1) (23)

with order parameter exponent β = 1/2, correlation length
exponent ν̄⊥ = 1/2, and dynamical exponent z = 1. The
scaling combination r(ln 	)1/ν̄⊥ reflects the exponential de-
pendence of the correlation length ξ⊥ on the distance r from
criticality. Because the time-reversal symmetry of DP [14] is
still valid in the presence of temporal disorder, the survival
probability has the same scaling form,

Ps(r, t, L) = (ln 	)−β/ν̄⊥Ps(r(ln 	)1/ν̄⊥ , t	−z, L	−1). (24)

The cloud of active sites originating from a single infected
seed site spreads ballistically, apart from logarithmic correc-
tions, yielding the scaling forms

Ns(r, t, L) = 	d (ln 	)−yN Ns(r(ln 	)1/ν̄⊥ , t	−z, L	−1), (25)

R(r, t, L) = 	(ln 	)−yR R(r(ln 	)1/ν̄⊥ , t	−z, L	−1). (26)

The exponents yN and yR that govern the logarithmic correc-
tions are not independent of each other. Because Ns ∼ PsρRd ,
they must fulfill the relation yN = 2β/ν̄⊥ + dyR.

Setting L = ∞, r = 0, and 	 = t1/z = t in the scaling
forms (23) to (26) gives the time dependencies of the observ-
ables at criticality,

ρ(t ) ∼ (ln t )−δ̄ , Ps(t ) ∼ (ln t )−δ̄ , (27)

R(t ) ∼ t1/z(ln t )−yR , Ns(t ) ∼ t�(ln t )−yN (28)

with δ̄ = β/ν̄‖ = 1 and � = d/z = d .
This scaling theory was confirmed by large-scale Monte

Carlo simulations of the contact process with temporal disor-
der in one and two space dimensions [30]. The simulations
resulted in the estimates yN = 3.6(4) and yR = 1.7(3) for
the exponents governing the logarithmic corrections in one
dimension [39].

IV. RARE EVENTS AND GRIFFITHS SINGULARITIES

Spatial and temporal disorder do not only destabilize the
DP critical behavior. Rare strong disorder fluctuations also
lead to unusual singularities, namely the Griffiths singularities
[21,40], in an entire parameter region around the transition.
This section briefly summarizes the rare region effects in the
contact process with purely spatial disorder, and in the contact
process with purely temporal disorder.

A. Spatial disorder

The inactive phase of a spatially disordered contact process
can generally be divided into two regions. Far away from
criticality (i.e., for sufficiently small infection rate), the sys-
tem approaches the absorbing state exponentially fast in time,
just as in the absence of disorder. This is the conventional
inactive phase. For infection rates closer to the disordered
critical point, the system may feature large spatial regions
that are locally in the active phase even though the system

as a whole is still inactive. Because these regions are of finite
size, they cannot support a nonzero steady-state density, but
their density decay is very slow since it requires a rare density
fluctuation of the entire region [22]. The range in parameter
space for which such rare locally active spatial regions exist is
called the (inactive) Griffith phase.

The contribution ρRR(t ) of the rare regions to the system’s
density can be easily estimated as

ρRR(t ) ∼
∫

dLRR Ld
RR w(LRR) exp[−t/τ (LRR)], (29)

where w(LRR) is the probability for finding a rare region of
linear size LRR, and τ (LRR) is its decay time. For uncorrelated
or short-range correlated disorder, the rare region probability
is given by w(LRR) ∼ exp(−bLd

RR) (up to preexponential fac-
tors). The decay time reads τ (LRR) ∼ exp(aLd

RR) because a
coordinated fluctuation of the entire rare region is required to
take it to the absorbing state.

In the long-time limit, the integral (29) can be evaluated
using the saddle point method, yielding an anomalous power-
law decay of the density in the Griffiths phase,

ρ(t ) ∼ t−b/a = t−d/z′
, (30)

rather than the exponential decay in the conventional inactive
phase. Here z′ = da/b is the nonuniversal Griffiths dynamical
exponent. The survival probability Ps shows exactly the same
time dependence. The behavior of z′ close to the infinite-
randomness critical point λc follows from the strong-disorder
renormalization group [18,37],

z′ ∼ |λ − λc|−ψν⊥, (31)

where ψ and ν⊥ are the critical exponents of the infinite-
randomness critical point. Similar rare region effects also exist
in the active phase where they govern the approach to the
nonzero steady-state density.

B. Temporal disorder

The temporal Griffiths phase, introduced by Vazquez et al.
[32], is the part of the active phase in which the lifetime τL

of a finite-size sample shows an anomalous (nonexponential)
dependence on the system size L.

The temporal Griffiths behavior is the result of rare, long
time intervals during which the system is temporarily on
the inactive side of the transition. The probability of finding
such a time interval of length TRR depends exponentially on
its length, w(TRR) ∼ exp(−bTRR) (neglecting preexponential
factors). During TRR, the density of active sites decays expo-
nentially as ρ ∼ exp(−at ). Because the typical lifetime of a
system of linear size L can be estimated as the time when
the density reaches the value L−d , a system of size L will
die during a rare time interval of length TRR ∼ (d/a) ln L. The
characteristic time it takes for such a rare time interval to ap-
pear is given by τ ∼ w−1(TRR) ∼ exp(bTRR). Consequently,
the lifetime τ of a finite-size system in the temporal Griffiths
phase shows a power-law dependence on its size L,

τ (L) ∼ Ldb/a = Ld/κ . (32)

The infinite-noise renormalization group [29,30] predicts
that the Griffiths exponent κ = a/b takes the value κc = d
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right at criticality. κ decreases with increasing distance from
criticality and is expected to vanish at the boundary between
the temporal Griffiths phase and the conventional active phase
(in which the lifetime increases exponentially with system
size). The temporal Griffiths behavior has been confirmed by
Monte Carlo simulations of the contact process with temporal
disorder in one and two space dimensions [30].

V. SIMULATIONS METHODS

Our computer simulations focus on the case of one
space dimension. The numerical implementation of the one-
dimensional contact process follows the method developed by
Dickman [41]. We start at t = 0 from a system with at least
one active site. For each time step, we follow this sequence:
First, an active site is randomly chosen from all Na active
sites. Then we randomly let this site infect one of its neighbors
with probability λ(x, t )/[λ(x, t ) + 1] or become inactive with
probability 1/[λ(x, t ) + 1]. If the infection process is chosen,
only a single neighbor is infected, chosen randomly. The time
increment associated with this sequence is 1/Na.

As discussed in Sec. II, the local infection rates take the
form λ(x, t ) = λ0 f (x)g(t ), where λ0 is the control parameter
used to tune the phase transition, and f (x) and g(t ) are inde-
pendent random variables. (In the following, we will drop the
subscript 0 from λ0 if the meaning is clear.) For the computer
simulations, we employ the binary probability distribution

P( f ) = (1 − p)δ( f − 1) + p( f − c), (33)

with 0 < c � 1. This means the local infection rate is reduced
by a factor c with probability p. g(t ) is piecewise constant
over short time intervals of length 
t = 6, i.e., g(t ) = gn for
tn+1 > t > tn with tn = n
t . The gn follow a binary probabil-
ity distribution

P(gn) = (1 − pt )δ(gn − 1) + pt (gn − ct ). (34)

We study two sequences of parameters. The first sequence
starts from (strong) purely spatial disorder, adding an increas-
ing amount of temporal disorders (p = 0.3, c = 0.2, pt = 0.2,
and ct varying from 1.0 to 0.12). The other sequence starts
from (strong) purely temporal disorder and adds an increasing
amount of spatial disorder (pt = 0.2, ct = 0.05, p = 0.2, and
c varying from 1.0 to 0.05).

For each parameter set λ0, p, c, pt , and ct , the results are
averaged over many disorder realizations (between 700 and
5 × 105). We employ two types of simulation runs: (i) In de-
cay simulations, the system starts with all sites being active. In
this case, we perform one simulation run per disorder config-
uration and observe the active site density ρ(t ). (ii) Spreading
simulations start with a single active seed site only. In this
case, we perform 5−105 runs per disorder configuration and
analyze the survival probability Ps(t ), the average number of
active sites Ns(t ), and the (mean-square) radius R(t ) of the
active cloud. To eliminate the finite-size effects for spreading
runs, the system size is chosen to be much larger than the
maximum active cloud size.

VI. RESULTS: CRITICAL BEHAVIOR

A. Generalized Harris criterion

The Harris criterion dν⊥ > 2 controls the stability of a
clean critical point against uncorrelated (or short-range cor-
related) purely spatial disorder. Analogously, the inequality
ν‖ > 2 governs the stability against uncorrelated purely tem-
poral disorder [16]. As pointed out in Sec. III A, the clean DP
critical point is unstable against both purely spatial disorder
and purely temporal disorder because its critical exponents
violate both inequalities.

The effects of general spatiotemporal disorder can be as-
certained by means of the generalized Harris criterion [17]. It
predicts that a critical point is (perturbatively) stable against
weak spatiotemporal disorder if the disorder covariance func-
tion G(x, t ) fulfills the condition

ξ
2/ν⊥−d
⊥ ξ−1

‖

∫ ξ⊥/2

−ξ⊥/2
dd x

∫ ξ‖/2

−ξ‖/2
dt G(x, t ) → 0 (35)

as the critical point is approached, i.e., for ξ⊥, ξ‖ → ∞ with
the appropriate scaling relation between ξ⊥ and ξ‖. For power-
law dynamical scaling, this means ξ‖ ∼ ξ z

⊥, and for activated
scaling, ln(ξ‖/t0) ∼ ξ

ψ

⊥ .
For completely uncorrelated spatiotemporal disorder with

G(x, t ) ∼ δ(x)δ(t ), the left-hand side of Eq. (35) behaves
as ξ

2/ν⊥−d
⊥ ξ−1

‖ . The resulting stability criterion thus reads
(d + z)ν⊥ > 2 in the case of power-law dynamical scaling.
The clean DP critical exponents fulfill this inequality implying
that uncorrelated spatiotemporal disorder is not a relevant
perturbation, as was already pointed out in the literature (see,
e.g., Ref. [2]).

Let us now apply the generalized Harris criterion to
the disorder (1) studied in this paper. Inserting the covari-
ance function (5), G(x, t ) = λ2

0σ
2
f σ

2
g δ(x)δ(t ) + λ2

0σ
2
f ḡ2δ(x) +

λ2
0σ

2
g f̄ 2δ(t ), into Eq. (35) produces three contributions. The

first term (which represents uncorrelated disorder) goes to
zero in the critical limit ξ⊥ → ∞ provided the critical ex-
ponents fulfill the inequality (d + z)ν⊥ > 2. The second term
vanishes for dν⊥ > 2, and the third term vanishes for zν⊥ > 2.
Because the DP critical exponents violate the latter two in-
equalities, the disorder (1) is a relevant perturbation at the
clean DP critical point and is expected to modify the critical
behavior.

The generalized Harris criterion can also be used to an-
alyze the addition of weak temporal disorder to the already
spatially disordered contact process. For purely temporal dis-
order, G(x, t ) ∼ δ(t ). The left-hand side of (35) thus behaves
as ξ

2/ν⊥
⊥ ξ−1

‖ . Because the correlation time ξ‖ depends exponen-
tially on the correlation length ξ⊥ at the infinite-randomness
critical point of the spatially disordered contact process [see
Eq. (16)], ξ

2/ν⊥
⊥ ξ−1

‖ vanishes as criticality is approached,
ξ⊥ → ∞. Thus, the infinite-randomness critical point is ex-
pected to be stable against weak temporal disorder. The same
result also follows from Kinzel’s inequality zν⊥ > 2 because
z is formally infinite at the infinite-randomness critical point.

To study the stability of the infinite-noise critical point of
the temporally disordered contact process against weak spatial
disorder, we insert G(x, t ) ∼ δ(x) into Eq. (35). The left-hand
side then takes the form ξ

2/ν⊥−d
⊥ leading to the usual Harris in-
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FIG. 1. Inverse survival probability 1/Ps vs ln t close to crit-
icality. The data are averages over 10 000 to 20 000 disorder
configurations, with 5 runs per configuration (pt = 0.2, ct = 0.05,

t = 6, p = 0.2, and c = 0.8). The statistical errors of every fifth
data point of the critical curve are shown. The dashed line is a linear
fit of the data from ln t = 4.9 to ln t = 13.8 (reduced χ 2 ≈ 0.9).

equality dν⊥ > 2. As the infinite-noise critical point features
Kosterlitz-Thouless critical behavior with ln ξ⊥ ∼ |r|−1/2, the
exponent ν⊥ is formally infinite. This implies that weak spatial
disorder is not a relevant perturbation at the infinite-noise
critical point.

The generalized Harris criterion thus predicts that adding
weak temporal disorder does not modify the critical behavior
of the spatially disordered contact process and vice versa.
This raises the interesting question of what happens if both
disorders are of comparable strength. We will return to this
question in Sec. VI D.

B. Adding weak spatial disorder to the temporal disordered
contact process

After the discussion of the generalized Harris criterion, we
turn to computer simulation results. We start by adding weak
spatial disorder to an already temporally disordered contact
process. To this end, we simulate a sequence of systems with
fixed strong temporal disorder, pt = 0.2, ct = 0.05, and 
t =
6, and increasing spatial disorder, p = 0.2, c varying from
1.0 to 0.05. The case of purely temporal disorder (c = 1.0)
corresponds to the parameters studied in detail in Ref. [30].
Based on the generalized Harris criterion, we anticipate that
the critical behavior for sufficiently weak spatial disorder re-
mains identical to the pure temporal disorder case, albeit with
a shift of the critical infection rate λc.

We therefore analyze the simulation data based on
Eqs. (27) and (28). Figure 1 presents the inverse survival
probability 1/Ps of spreading runs as a function of ln t for the
weakest nonzero spatial disorder (c = 0.8). The figure shows
that the data for λ = 28.4 follow the predicted logarithmic
behavior (27) over almost five orders in magnitude in t . The
data points with higher or lower λ curve away from the
straight line, as expected. We therefore identify λc = 28.4
as the critical value for c = 0.8. For comparison, the critical

FIG. 2. (Ns/t )−1/yN and (R/t )−1/yR vs ln t at criticality, λc = 28.4
for pt = 0.2, ct = 0.05, 
t = 6, p = 0.2, and c = 0.8. The data are
averages over 20 000 disorder configurations with 5 runs for each.
The exponents yN = 3.6 and yR = 1.7 are fixed at the values found
for purely temporal disorder [30]. The straight lines are fits of the
data from ln t = 6.5 to ln t =13.8 with Eq. (28).

value for the case of purely temporal disorder is λc = 27.27
[30]. Figure 1 thus provides evidence that adding weak spatial
disorder does not change the strong-noise critical behavior of
the purely temporally disordered system.

To further confirm this, we test Eqs. (28) by analyzing the
number of active sites Ns and the cloud radius R at criticality
as functions of time in Fig. 2. To make the logarithmic
corrections visible, we modify Ns and R by dividing out the
leading term t . We then plot (Ns/t )−1/yN and (R/t )−1/yR versus
ln t , using the exponents yN = 3.6 and yR = 1.7 found for the
case of purely temporal disorder [30]. The data follow straight
lines, confirming that Eqs. (28) are also fulfilled.

Now, we extend the simulations to stronger spatial disorder
(decreasing c towards 0). For c = 0.6, 0.4, and 0.2, the critical
behavior can be fitted well with the infinite-noise functional
forms Eqs. (27) and (28). This can be seen in Fig. 3, which
shows the inverse survival probability as a function of ln t
of the critical curves for c = 1, 0.8, 0.6, 0.4, and 0.2. All
data follow straight lines for more than three orders of mag-
nitude in t , confirming Eq. (27). The resulting values for λc

are presented in Fig. 4. When the spatial disorder is further
increased, the critical behavior deviates from the infinite-noise
critical behavior (27) and (28). We will discuss this case in
Sec. VI D.

C. Adding weak temporal disorder to the spatial disorder case

We now simulate a sequence of systems with fixed strong
spatial disorder p = 0.3, c = 0.2, to which we add increasing
temporal disorder with pt = 0.2 and ct varying from 1.0 to
0.12. The starting point of this sequence, the purely spatially
disordered system with ct = 1, corresponds to the parameters
studied in Ref. [23].

For weak temporal disorder, ct = 0.8, we anticipate the
system will show the infinite-randomness critical behavior
discussed in Sec. III B. This is tested in Figs. 5 and 6, which
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FIG. 3. Inverse survival probability 1/Ps vs ln t at criticality for
different c and pt = 0.2, ct = 0.05, 
t = 6, p = 0.2. The data are
averages over 20 000 disorder configurations with 5 runs for each.
The statistical errors of every fifth data point are shown. The dashed
lines are linear fits of the data.

present the results of spreading simulations. Figure 5 shows
a plot of P−1/δ

s versus ln t . The predicted critical behavior (21)
corresponds to a straight line in this plot. The figure demon-
strates that the data for λ = 5.52 follow (21) for almost five
orders of magnitude in t . This yields evidence for the infinite-
randomness critical behavior. Similarly, Fig. 6 shows that the
number of active sites Ns and the cloud radius R fulfill Eq. (22)
for almost four orders of magnitude in t . We conclude that
the system is still controlled by infinite-randomness critical
behavior.

We repeat this analysis for systems with stronger temporal
disorder. For ct = 0.6 and 0.4, we find that the critical behav-
ior can be fitted well with the infinite-randomness expressions
(21) and (22). This can be seen in Fig. 7, which shows P−1/δ

s
versus ln t at criticality for ct = 1, 0.8, 0.6, 0.4. The data
feature straight-line behavior for more than four orders of

FIG. 4. Left: Critical infection rate λc as a function of spatial
disorder strength c for pt = 0.2, ct = 0.05, p = 0.2. Right: Critical
λc as a function of temporal disorder strength ct for p = 0.3, c =
0.2, pt = 0.2.

FIG. 5. Survival probability vs time plotted as P−1/δ̄
s vs ln t close

to criticality, where δ̄ = 0.381 97 (pt = 0.2, ct = 0.8, 
t = 6, p =
0.3, and c = 0.2). The data are averages over 700 disorder configu-
rations with 100 runs per configuration. The statistical errors of every
fifth data point of the critical curve are marked. The dashed line is a
linear fit of the data for ln t = 6.5–18.4 (reduced χ2 ≈ 0.9).

magnitude in t , confirming (22). The critical infection rates
λc resulting from these simulations are shown in the phase
diagram in Fig. 4.

For even stronger temporal disorder, the critical behavior
deviates from the infinite-randomness criticality of Sec. III B,
as will be discussed in the next section.

D. Spatial and temporal disorder of comparable strength

In Sec. VI B, we have demonstrated that the infinite-noise
critical point of the temporally disordered contact process is

FIG. 6. (Ns)1/� and (R)ψ vs ln t at criticality λc = 5.52 for pt =
0.2, ct = 0.8, 
t = 6, p = 0.3, and c = 0.2. The data are averages
over 700 disorder configurations with 100 runs per configuration.
The values of the initial slip exponent � and the tunneling exponent
ψ are fixed at the values of the infinite-randomness critical point,
� = 1.2360, ψ = 0.5. The solid lines represents fits to Eq. (22) from
ln t = 12.7 to 18.4.
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FIG. 7. Survival probability vs time plotted as P−1/δ̄
s vs ln t at

criticality for different ct , where δ̄ = 0.381 97 (pt = 0.2, 
t = 6,
p = 0.3, and c = 0.2). The data are averages over 700–1000 disorder
configurations with 30–100 runs for each. The statistical errors of
every fifth data point are marked. The dashed lines are linear fits of
the data.

stable against the addition of weak spatial disorder. Analo-
gously, the infinite-randomness critical point of the spatially
disordered contact process is stable against the addition of
weak temporal disorder, as shown in Sec. VI C. Since the
infinite-noise and infinite-randomness critical behaviors differ
qualitatively from each other, novel behavior is expected to
emerge if the spatial and temporal disorders are of comparable
strength.

Arguably the simplest scenario corresponds to the
schematic renormalization-group flow diagram sketched in
Fig. 8, which contains a multicritical point separating the
infinite-noise and infinite-randomness regimes. If the ratio
of the spatial and temporal disorder strengths is fine-tuned
to be exactly on the separatrix (dashed line) in Fig. 8, the
system flows to the multicritical point under coarse-graining.
The nonequilibrium phase transition then features novel mul-
ticritical behavior. If the system is not exactly on the dashed

FIG. 8. Schematic renormalization-group flow on the critical
manifold spanned by the spatial and temporal disorder strengths. (DP
marks the direct percolation fixed point of the clean contact process.)

FIG. 9. Survival probability vs time for pt = 0.2, ct = 0.05 p =
0.2, c = 0.05, and 
t = 6. The data are averages over 20 000 disor-
der configurations with 5 runs per configuration.

line, it will eventually flow either to the infinite-noise critical
point or to the infinite-randomness critical point. However, if
the system is close to (but not exactly on) the dashed line,
it will flow towards the multicritical point for a long time
before eventually approaching one of the other fixed points.
This means the system will show multicritical behavior over a
wide transient time interval before eventually crossing over to
either infinite-randomness or infinite-noise critical behavior.

Studying the regime where the spatial and temporal
disorders are of comparable strength is extremely challeng-
ing numerically because the logarithmically slow dynamics
makes it difficult to distinguish the asymptotic behavior from
slow crossovers during the achievable simulation times. In
the following, we demonstrate that our numerical data are
compatible with the multicritical point scenario. We empha-
size, however, that the unequivocal determination of the fate
of the contact process in this regime is beyond our current
computational capabilities.

To identify a multicritical system, we start from the se-
quence of systems studied in Sec. VI B and further increase
the spatial disorder by reducing c, aiming at identifying a
disorder strength for which the (asymptotic) critical behavior
differs from both the infinite-randomness and the infinite-
noise behavior. As the functional forms of the observables at
the multicritical point are not known, we employ Dickman’s
[42] heuristic criterion of λc being the smallest λ supporting
asymptotic growth of Ns(t ) to identify the phase transition.
Figures 9 and 10 show that the system with pt = 0.2, ct =
0.05, p = 0.2, c = 0.05 approximately fulfills these condi-
tions. The data at an infection rate of about 35.82–35.84
follow the functional forms

Ps ∼ ln−2(t ), Ns ∼ t θ (36)

with θ ≈ 0.5 for almost six orders of magnitude in time. These
functional forms differ from the behavior in the bulk phases
as well as from the infinite-randomness and infinite-noise
critical behaviors. This suggests that the parameters pt = 0.2,
ct = 0.05, p = 0.2, and c = 0.05 put the system very close
to the separatrix in Fig. 8, and (36) approximately represents
the multicritical behavior. Small deviations at late times can
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FIG. 10. Number of active sites vs time for pt = 0.2, ct =
0.05, p = 0.2, c = 0.05, and 
t = 6. The data are aver-
ages over 20 000 disorder configurations with 5 runs per
configuration.

be attributed to the fact that the system is likely not exactly
on the separatrix. To check the consistency of the analysis, we
have confirmed that Ns/R behaves as ln−4(t ) as expected from
the relation Ns ∼ PsρRd .

The multicritical point can also be reached (approxi-
mately) by starting from the sequence of systems in Sec. VI C
and further increasing the temporal disorder. The system
with pt = 0.2, ct = 0.12, p = 0.3, and c = 0.2 follows the
same multicritical behavior (36) at an infection rate of
λ ≈ 16.35.

The functional forms of Eq. (36), which combine a
logarithmic decay of Ps with a power-law time dependence
of Ns, indicate an unconventional type of multicritical point
because they appear to be incompatible with the usual scaling
laws in which either t or ln t appears as scaling variables
(but not both). We emphasize, however, that a similar situ-
ation already occurs at the infinite-noise critical point of a
system with purely temporal disorder; see Eqs. (27) and (28).
In that case, the logarithmic time dependence of Ps can be
understood as a logarithmic correction to a critical exponent
of value zero. A similar scenario may apply to the multicritical
point as well.

It is also interesting to note that the decay of Ps at the pu-
tative multicritical point, Ps ∼ ln−2(t ), is faster than its decay
at both the infinite-randomness critical point and the infinite-
noise critical point (even though the Ps data are not compatible
with an even faster power-law decay). This suggests that when
the spatial and temporal disorders are of comparable strength,
they weaken each other. The same phenomenon is also ob-
served for the rare region effects and Griffiths singularities
discussed in the next section.

VII. RESULTS: RARE REGIONS AND
GRIFFITHS SINGULARITIES

In this section, we discuss the effects of rare spatial regions
and rare time intervals on the behavior of the contact process
with the combined spatial and temporal disorder of the form
λ(x, t ) = λ0 f (x)g(t ).

A. Theory

Consider a spatial rare region with an above average f (x).
This region can be locally in the active phase even if the bulk
system is still inactive. If f follows the binary distribution
(33), the strongest rare regions consist of sites with f = 1
only. As in Sec. IV A, the probability for finding such a rare
region is given by w(LRR) ∼ exp(−bLd

RR) (up to preexponen-
tial factors). However, the behavior of the lifetime τ (LRR) of
such a region depends on the strength of the temporal disorder.
If the temporal disorder is sufficiently weak such that the rare
region is locally active for all times, τ (LRR) ∼ exp(aLd

RR) as
in the case of purely spatial disorder. For stronger temporal
disorder, in contrast, the rare region will still be mostly active,
but inactive during rare time intervals. In this case, the lifetime
τ (LRR) depends on LRR via the power law τ (LRR) ≈ (aLd

RR)y,
as shown in Sec. IV B.

Inserting τ (LRR) in (29) yields the following anomalous
density decay in the Griffiths phase on the inactive side of the
transition:

ρ(t ) ∼ t−b/a = t−d/z′
weak temporal disorder, (37)

ρ(t ) ∼ exp(−bt1/y/a) strong temporal disorder. (38)

The survival probability Ps(t ) in spreading runs behaves in the
same manner as ρ(t ). Thus, for sufficiently strong temporal
disorder, the power-law Griffiths singularities are weakened
and replaced by stretched exponential behavior. The exponent
y is nonuniversal and depends on how far in the inactive phase
a rare region is during the “bad” [low g(t )] time periods. 1/y
is expected to decrease to zero as the transition is approached
from the inactive side.

For moderately strong temporal disorder, we expect the
Griffiths phase to feature two regions: The density decay
follows a power law for infection rates close to the critical
point but a stretched-exponential behavior for smaller infec-
tion rates (i.e., further away from criticality). With increasing
temporal disorder, the power-law region of the Griffiths phase
shrinks while the stretched exponential region expands.

Analogous arguments can be made for the Griffiths singu-
larity in the lifetime τL of a finite-size system on the active
side of the phase transition. Consider a system globally in the
active phase. Temporal disorder can produce rare time inter-
vals during which the system is temporarily on the inactive
side of the transition. For the binary distribution (34), the
strongest rare time intervals have g(t ) ≡ ct . The probability
of finding such time intervals depends exponentially on their
lengths, w(TRR) ∼ exp(−bTRR), as in Sec. IV B. However, the
time evolution of the density of active sites during these rare
time intervals depends on the strength of the spatial disorder.
For weak spatial disorder, the entire system will be in the
inactive phase during these intervals, leading to an exponential
density decay, ρ ∼ exp(−at ), as in the case of purely tempo-
ral disorder. For stronger spatial disorder, the system will have
spatial regions that remain locally active during the rare time
interval, leading to a slower power-law decay of the density
ρ ∼ (at )−y,

044102-9



XUECHENG YE AND THOMAS VOJTA PHYSICAL REVIEW E 106, 044102 (2022)

FIG. 11. Main panel: ln Ps vs ln t for different λ below criticality
λc ≈ 5.52 for p = 0.3, c = 0.2, pt = 0.2, ct = 0.8, and 
t = 6. The
data are averages over 1000–10 000 disorder configurations with
100−105 runs per configuration. The solid lines are fits to (37). Inset:
resulting Griffiths exponent z′ as a function of the infection rate λ.

Repeating the analysis of Sec. IV B for these two cases, we
conclude that the lifetime τ of a finite-size system behaves as

τ (L) ∼ Ldb/a = Ld/κ weak spatial disorder, (39)

τ (L) ∼ exp(bLd/y/a) strong spatial disorder (40)

with system size L in the Griffiths phase on the active side
of the transition. This means that for sufficiently strong
spatial disorder, the power-law temporal Griffith singulari-
ties of Sec. IV B are weakened and replaced by stretched
exponentials.

Note that the functional forms (38) and (40) have been
derived assuming that the relevant rare regions and rare time
intervals are uniform in space and time, respectively. This is
justified for bounded disorder for which the strongest spatial
rare regions have f (x) ≡ fmax and the strongest rare time in-
tervals have g(t ) ≡ gmin. The asymptotic behavior of ρ and Ps

for t → ∞ is governed by the strongest rare regions and thus
given by (38). Along the same lines, the asymptotic behavior
of τ (L) for L → ∞ is governed by the strongest rare time
intervals and thus given by (40). The preasymptotic behavior
has contributions from nonuniform rare regions that feature
more complicated behavior, leading to nontrivial crossovers.

B. Simulation results

We first consider the survival probability Ps on the inactive
side of the transition. To test the power-law Griffiths behavior
(37), we consider a system with strong spatial disorder but
weak temporal disorder (p = 0.3, c = 0.2, pt = 0.2, ct = 0.8,
and 
t = 6). Figure 11 presents a double-log plot of Ps ver-
sus t for several λ below the critical value λc ≈ 5.52. The
data indicate that the survival probability follows (37) for all
shown λ � 4.3. Moreover, the Griffiths dynamical exponent
z′ diverges as the critical infection rate λc is approached, in
agreement with the behavior for purely spatial disorder. For

FIG. 12. Main panel: ln Ps vs t for different λ between 2.3 and
3.9, far from criticality, λc ≈ 7.26 for p = 0.3 and c = 0.2, pt =
0.2, ct = 0.4, and 
t = 6). The data are averages over at least 105

disorder configurations with 105 runs each. Inset: enlarged plot for
λ = 2.3; the linear fit (solid line) confirms a simple exponential
decay.

λ = 3.9, in contrast, the data continue to curve downward to
the longest times.

These results are in agreement with the scenario discussed
in Sec. VII A. To understand this in detail, consider the
strongest spatial rare regions which consist of sites with f ≡ 1
only. The local infection rate on such a rare region is thus
either λ or ctλ = 0.8 × λ. For infection rates λ > λ0

c/ct =
4.122 (where λ0

c = 3.298 is the clean critical infection rate),
the strongest rare regions are thus always on the active side of
the clean critical point, explaining the power-law form of the
Griffiths singularity. For λ < λ0

c/ct , the rare regions become
inactive during the “bad” [low g(t )] time intervals, putting
the system in the stretched-exponential part of the Griffiths
phase in which the density decay follows Eq. (38).

To explore the novel stretched exponential Griffiths be-
havior (38) in more detail, we study a system with stronger
temporal disorder, ct = 0.4 rather than 0.8. The other parame-
ters remain unchanged (p = 0.3, c = 0.2, pt = 0.2, and 
t =
6). The critical infection rate for these parameters is λc ≈
7.26. To cover the entire (inactive) Griffiths phase, we perform
simulations for infection rates ranging from 2.3 (below the
clean critical value λ0

c) to 6.9 close to the phase transition.
A semilog plot of the survival probability for infection rates
between 2.3 and 3.9 is shown in Fig. 12. For λ below the clean
critical value λ0

c = 3.298, the survival probability features a
simple exponential decay, as expected in the conventional
inactive phase in which there are no locally active rare re-
gions. For λ > λ0

c , the system enters the Griffiths phase, and
the decay of Ps becomes slower than exponential. However,
as is demonstrated via the double-log plot of Ps versus t in
Fig. 13(a), the decay for all λ in the (inactive) Griffiths phase
is faster than a power law. In fact, all data can be fitted
very well with the stretched exponential form (38), as shown
in Fig. 13(b), which replots the same data in the form ln Ps

versus t1/y with y chosen such that the data fall onto straight
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FIG. 13. (a) ln Ps vs ln t for different λ below criticality λc ≈
7.26 for p = 0.3, c = 0.2, pt = 0.2, ct = 0.4, and 
t = 6. The data
are averages over 104−105 disorder configurations with 104−105

runs per configuration. (b) ln Ps vs t1/y for the same data. The solid
lines are linear fits. (c) Exponent 1/y of the stretched exponential (38)
vs λ. For λ < λ0

c , the data can be fitted well with y = 1, as expected in
the conventional inactive phase even though an unrestricted fit yields
1/y values slightly below unity.

lines. The resulting values of the exponent 1/y governing the
stretched exponential evolve from unity at the clean critical
infection rate λ0

c towards zero at the phase transition. Note
that even the strongest rare regions ( f ≡ 1) will be inactive
during the “bad” time intervals everywhere in the Griffiths
phase because ctλc < λ0

c . This explains why the decay of the
survival probability takes the stretched exponential form for
all infection rates with λ0

c < λ < λc.
We now turn to the behavior of the lifetime of a finite-size

system on the active side of the transition. The goal is to
test whether the power-law temporal Griffiths behavior (39)
gets replaced by the stretched exponential (40) if sufficiently
strong spatial disorder is added to the temporally disordered
contact process. Figure 14(a) shows a double-log plot of
the lifetime versus system size for p = 0.3, c = 0.2, pt =
0.2, ct = 0.2, and 
t = 6 at infection rates slightly above
the critical value λc ≈ 11.08. The figure demonstrates that
the increase is faster than a power law. The same data are
replotted in Fig. 14(b) in the form ln τ versus L1/y moti-
vated by Eq. (40). For properly chosen y-values, all data fall
onto straight lines, confirming that the lifetime follows the
stretched exponential Griffiths behavior (40). The exponent
1/y increases with increasing distance from criticality, as
expected.

VIII. CONCLUSIONS

In summary, we have investigated the combined influence
of spatial and temporal random disorder on the absorbing-
state phase transition in the one-dimensional contact process.
Specifically, we have studied the case of decoupled spatial and
temporal disorders for which the local infection rates λ(x, t )
are the product of a purely spatial term and a purely temporal
term, λ(x, t ) = λ0 f (x)g(t ). In contrast to completely un-

FIG. 14. (a) Double-log plot of lifetime τ vs system size L for
different λ above criticality λc ≈ 11.08 for p = 0.3, c = 0.2, pt =
0.2, ct = 0.2, and 
t = 6. The data are determined from decay runs,
averaged over 10 240 disorder configurations (one run per configu-
ration). (b) The same data plotted as ln τ vs L1/y, with y chosen such
that the data fall onto straight lines.

correlated spatiotemporal randomness, such disorder, which
contains infinite-range correlations in space and time, is a
relevant perturbation at the clean DP critical point.

We have employed a generalization of the Harris criterion
[17] to predict that the infinite-randomness critical point of
the spatially disordered contact process is stable against weak
temporal disorder. Analogously, the criterion predicts that the
infinite-noise critical point of the temporally disordered con-
tact process is stable against weak spatial disorder. We have
confirmed these predictions by extensive computer simula-
tions. In the interesting parameter region where both disorders
are of comparable strength, the critical behavior appears to
differ from both the infinite-randomness and infinite-noise
critical behaviors. Our simulation data are compatible with
the simplest scenario in which a single multicritical point
separates the infinite-randomness and infinite-noise regimes.
However, due to the very slow dynamics of the contact process
in the presence of both disorders, we cannot exclude more
complicated scenarios that involve novel critical behavior in
an extended parameter region. In the absence of theoretical
predictions, the complete quantitative understanding of the
(multi)critical behavior from simulations would require sim-
ulation times several orders of magnitude larger than what
is achievable today. This problem thus remains a task for
the future.

In addition to the nonequilibrium phase transition itself,
we have also investigated the effects of rare regions and rare
time intervals in the Griffiths phases near the transition. By
means of optimal fluctuation arguments, we have shown that
adding weak temporal disorder does not change the power-law
Griffiths behavior of the density and survival probability of the
spatially disordered contact process on the inactive side of the
transition (at least sufficiently close to the transition). Stronger
temporal disorder, in contrast, weakens the “spatial” Griffiths
singularity in the density and survival probability, replacing
the slow power-law decay with a faster stretched exponential.
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The behavior of the lifetime as a function of system size in the
“temporal” Griffiths phase on the active side of the transition
is completely analogous. Adding weak spatial disorder to the
temporally disordered contact process does not change the
power-law Griffiths behavior, but sufficiently strong spatial
disorder weakens the singularity from power-law to stretched
exponential behavior. The notion that the spatial and temporal
disorders weaken each other is also consistent with the obser-
vation that the decay of the survival probability with time at
the putative multicritical point is faster than the decay at ei-
ther the infinite-randomness critical point or the infinite-noise
critical point.

Our explicit computer simulation results are for one space
dimension. However, the stability arguments based on the
generalized Harris criterion apply equally to one, two, and
three space dimensions. The same applies to the optimal fluc-
tuation arguments governing the Griffiths singularities. We
therefore expect most of our qualitative results to carry over
from one to two and three space dimensions.

Recently, Odor [43] studied the stability against temporal
disorder of the Griffiths phase in a threshold model running
on a large human connectome graph. As in our problem, he
found that the (spatial) Griffiths phase is insensitive to weak
temporal disorder, while sufficiently strong temporal disorder
suppresses the power-law Griffiths singularities.

Clear-cut experimental examples of absorbing-state tran-
sitions were missing for a long time [44]. By now,
such transitions have been observed, however, in turbulent
liquid crystals [6], driven suspensions [7,8], growing bacte-
ria colonies [9,10], and in the dynamics of superconducting
vortices [11]. Studying these systems under the combined
influence of spatial disorder and external noise will permit
experimental tests of our results. The influence of environ-
mental fluctuations and inhomogeneities on the extinction of
a biological population is attracting considerable attention
today in the contexts of both epidemic spreading and of global
warming and other large-scale environmental changes (see,
e.g., Ref. [45]). In the laboratory, these questions could be
analyzed, e.g., by growing bacteria or yeast populations in
spatially inhomogeneous environments and fluctuating exter-
nal conditions.
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