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Complex systems are characterized by a tight, nontrivial interplay of their constituents, which gives rise to
a multiscale spectrum of emergent properties. In this scenario, it is practically and conceptually difficult to
identify those degrees of freedom that mostly determine the behavior of the system and separate them from
less prominent players. Here, we tackle this problem making use of three measures of statistical information:
Resolution, relevance, and mapping entropy. We address the links existing among them, taking the moves from
the established relation between resolution and relevance and further developing novel connections between
resolution and mapping entropy; by these means we can identify, in a quantitative manner, the number and
selection of degrees of freedom of the system that preserve the largest information content about the generative
process that underlies an empirical dataset. The method, which is implemented in a freely available software,
is fully general, as it is shown through the application to three very diverse systems, namely, a toy model of
independent binary spins, a coarse-grained representation of the financial stock market, and a fully atomistic

simulation of a protein.
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I. INTRODUCTION

Complex systems challenge our understanding as they re-
sist the reductionist breakdown. A complicated system can be
decomposed into simpler parts and comprehended in terms
of their behavior; on the contrary, a complex system features
a degree of interplay among its constituents that makes its
emergent properties impossible to deduce from the study of
the irreducible elements it is made of [1-3]. In principle, then,
these elements should be investigated altogether, simultane-
ously accounting for their individual behavior as well as their
mutual interactions, correlations, and cooperations.

Nonetheless, a system composed by a large number of
degrees of freedom can rarely be understood through a holistic
inspection of all of them (it is sufficient to have >2 degrees
of freedom to have chaotic behavior [4,5]). A substantial
decrease of the amount of detail is necessary to attain two
goals: On the one hand, the reduction in the sheer number of
variables a human mind has to simultaneously cope with; on
the other hand, the separation of the relevant information from
the irrelevant noise, that is, those properties whose knowledge
does not contribute significantly to comprehension. These op-
erations constitute the core business of those methods devoted
to dimensionality reduction.

Many examples of dimensionality reduction algorithms
exist [6,7], such as principal component analysis (PCA),
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clustering, diffusion maps, intrinsic dimension, and machine
learning (ML) approaches. All these provide information
about the properties of the system by “condensing” the avail-
able data about it in to a smaller-sized number of variables
that are easier to read, visualise, and interpret. The afore-
mentioned methods are very general in their applicability,
and hence the kind of information they provide is similarly
general and naturally requires some degree of interpretation
to be understood. It is clearly desirable to have methods that
are as parameter-free as possible, to minimize the amount of
antecedent knowledge of the system one has to employ to
aptly guide the procedure of simplification; however, “one-
size-fits-all” approaches are either very hard to conceive or
plainly inadequate to tackle the remarkable variety of complex
systems that nature offers to those who aim at understanding
them. A balance between generality and specificity has then
to be found.

A very specific dimensionality reduction strategy is pro-
vided by coarse-graining (CG’ing) [8—10], which can make a
synthesis between unsupervised feature extraction and a case-
specific, easily intelligible analysis of a given system. Orig-
inating in the context of critical phenomena [11,12], coarse-
graining was subsequently extended to soft matter modeling
[8,13]. Here, one aims at constructing simplified representa-
tions of molecular systems in which a single super-atom, or
bead, is representative of a number of physical atoms; taking
advantage of the reduced number of degrees of freedom, the
fewer interactions, and the simpler functional form of the lat-
ter it is possible to build computationally efficient models that
retain the essential qualities of the original system of interest
and allow the study of larger molecules for longer times.

Recently, techniques developed in the context of coarse-
graining have been employed as instruments not only to model
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a system, but also to analyse a high-resolution model of it,
leveraging the fact that the effectiveness of the model largely
depends on the appropriate selection of its fundamental con-
stituents. It is in this context that an information-theoretic
measure, dubbed mapping entropy [13—18], turned out to be
a valuable tool to make sense of a high-resolution model by
inspecting lower-resolution representations of it and ranking
them according to their mapping entropy value. This quantity,
in fact, measures the distance between the reference probabil-
ity distribution of high-resolution configurations and the one
obtained by looking at the system in coarse-grained terms:
The lower the mapping entropy, the higher the amount of
information retained by a reduced description of the system.

Another approach for studying complex systems is the
resolution and relevance framework [19-25]: Here, for a given
set of features used to describe the system, the first quantity
measures the level of detail this representation provides, while
the second quantifies its useful information content. Together,
resolution and relevance allow one to pinpoint the level of
coarseness that optimally balances data parsimony and infor-
mativeness.

In this work we address the problem of identifying novel
connections between these distinct measures of information
content that have been developed independently in different
contexts. We show that these quantities can be employed to
differentiate between informative and noninformative features
in a sensitive and unsupervised manner, with impactful im-
plications for the comprehension of a large class of complex
systems. In particular, we demonstrate that resolution and
mapping entropy are strictly connected with one another, and
that the combined usage of resolution-relevance first, and
mapping entropy later, can constitute a useful data processing
pipeline to extract information from empirical data sets.

The paper is organized as follows. In Sec. I we present a
synthetic overview of the resolution and relevance framework,
discuss the derivation and interpretation of mapping entropy,
and report novel analytical results on the relation between
resolution and mapping entropy. In Sec. III we present the
results of applying the analysis based on resolution, relevance,
and mapping entropy to three distinct systems of increasing
complexity. Finally, in Sec. IV we sum up the results and
discuss future perspectives.

II. THEORETICAL BACKGROUND
A. The resolution-relevance framework

Consider a system composed of n degrees of freedom, e.g.,
nspins oy, . . ., 0,, whose overall state is specified by the state
of each spin. A specific realization of these spins constitutes
an element X of an n-dimensional vector space. A specific
dataset of L configurations, {X;, X,, --- X.}, constitutes the
empirical sample that we aim to investigate.

The elements X; of the dataset can be categorized in terms
of some labeling s; = s(X;), where the labels s take values
from a discrete set S of size |S| = C. Depending on the clas-
sification scheme induced by s(X), the same label can occur
more than once in the same dataset; think, for example, of
Ising spin strings classified in terms of their average magneti-
zation M = ) ;0 The value M = 0 appears for each string

in which half of the spins are up and the other half are down.
The number of realizations X; corresponding to the label value
s is denoted by k,. The following constraints apply:

ko €{0,1,...,L}, ZkS:L, 1)
seS

meaning that each label can occur a number of time between
zero (it never appears) and the size of the empirical dataset
(the same label is associated to all data points); furthermore,
the occurrences of each label have to sum to the size of the
dataset.

The choice of the set of labels induces an empirical proba-
bility distribution over the sample given by

p(s) = —. 2

The Shannon entropy of this distribution

ke ks
H[s]:—zzln— 3)

L
seS

is termed the resolution [20], as it provides a measure of
the level of detail employed in the description of the sample.
Indeed, a description given by a few labels corresponds to low
resolution, as the number of terms in the sum in Eq. (3) is
small. In contrast, the limiting case where each state has a
different label corresponds to a uniform empirical probability
p(s) = 1/L, leading to the maximal value of the resolution
for a sample of L realizations, H[s] = In L. Intuitively, these
two extremes of very gross and very fine descriptions, corre-
sponding to low and high resolution values, do not provide an
informative view over the empirical sample; additionally, we
observe that the resolution H[s], on average, grows monoton-
ically with the number of labels C.

To quantify the informativeness of the description given
by the classification s(X), Marsili and coworkers [19,20,22—
24] proposed to employ the relevance: This is given by the
Shannon entropy of the distribution of frequencies of labels
s. Defining my, the number of labels that have frequency «,
namely,

m = Z(Sk,ku 4

the relevance is then given by
k k
Hlk] = — § ﬂlnﬂ‘ 5)

Note that we omit from the sum those terms for which
my, = 0, to avoid zeros in the logarithm.

The description of an empirical sample in terms of the
frequencies of labels k; provides a minimally sufficient rep-
resentation of the sample [23]. This can be seen by the
decomposition of the information content of the sample, the
resolution H, in two parts:

H[s] = H[k] + H[s|k]. (6)
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FIG. 1. Probability of sampling the “up” configuration of each
spin. The first 10 spins are biased to a varying degree, whereas the
last 10 spins are all unbiased.

The first term is the relevance H[k], and the second term is
a measure of the noise:

L

Hislk) =Y ]% In my. )
k=1

An intuitive view on this decomposition is the follow-
ing. The frequency k, contains information about the label
s; hence, so does the relevance, which is the entropy of the
frequency distribution. Consider now two labels, s1, 57, having
the same frequency k;, = k;,; in view of the relevance, these
labels are equivalent and thus H[k] alone cannot provide any
information allowing one to tell them apart. Because of this
ambiguity, the term H[s|k] quantifies the degeneracy of the
choice of classification scheme s(X) that produces a specific
frequency distribution, and hence it is a measure of noise.

It is now possible to rationalise the intuition for the
noninformativeness associated with both extreme values of
resolution showcased above. In fact, they both correspond to
zero relevance: In particular, when the resolution is zero, all
configurations correspond to a single label s, and thus k&, = L
and m; = §; 1; analogously, the maximum value of the reso-
lution, In L, corresponds to a single state per label, namely,
ks = 1V s and thus m; = L§; ;; making use of these values of
m; for the relevance, Eq. (5), gives zero. The nonnegativity of
the entropy combined with Rolle’s theorem implies that the
relevance must have a maximum.

Resolution and relevance depend on the specific set of
labels s as well as on their number C. In general, for small
C the resolution is low, and each label has a unique empirical
frequency k; different from that of the other labels. Therefore,
knowledge of the frequency implies that of the label, and
thus the noise H[s|k] is negligible [see Eq. (6)]; hence, the
relevance is almost equal to the resolution, H[s] % H{[k]. This
linear behavior is observed in the left part (i.e., low resolution
values) of typical resolution-relevance plots, as can be seen
in Figs. 2(a), 2(b) 4(a), 4(b) and 7(a). Increasing the number
of labels C, the resolution increases as well. The linear trend
H|[k] ~ H|[s] weakens, until the relevance reaches a maximum
and then decreases. Finally, at the highest resolution value
H[s] = In L, the relevance becomes zero.

It is useful to consider the description of the system from
the opposite direction, namely, going from the maximal res-
olution and lowering it. This shows that, by reducing the
resolution, we actually increase the relevance. The slope of
the curve as a function of the resolution, u = w(H[s]), tells
us how many bits of relevance we gain by lowering the res-
olution by one bit. The behavior of the resolution-relevance

curve is extensively discussed by Marsili and coworkers
in their analysis of maximally informative samples [22,23],
i.e., those sets of realizations of a complex system that
maximize the relevance at each value of the resolution. In
particular, they identify the threshold point with © = —1 in
these samples as especially interesting, since it provides the
optimal tradeoff between the two entropies. In the right part of
the resolution-relevance plot, the slope w(H[s]) is generically
a decreasing (negative) function of the resolution. Thus, re-
ducing the resolution, which corresponds to going from right
to left in the resolution-relevance plot, further beyond u = —1
corresponds to gaining less in relevance than what was lost in
resolution. The point © = —1 has also been put in relation
with a scale-free distribution of frequencies my; ~ k=2, also
known as Zipf’s law [23].

B. Mapping entropy

One of the goals of coarse-graining is to identify a reduced
representation, called mapping, of a high-resolution system
that retains as much information as possible about it [13]. In
general, the mapping consists of defining a number N < n of
coarse-grained sites in terms of a linear combination of the
n original degrees of freedom. For the sake of simplicity we
here limit ourselves to decimation mappings [11-13,17,26],
in which a degree of freedom o; can be either retained or
removed from the high-resolution description.

The decimation mapping M is defined by the set of indices
of the retained degrees of freedom, ji, ..., jy, namely,

M(o, .. S OGy). (8)

.,Un)Z(O'jl,..

As in the previous section, it is possible to label the dif-
ferent realizations of the system. In this case, we possess a
fine-grained label X, associated to a state of the high-resolution
system (o1, ..., 0,), and a coarse-grained one s = s(X), refer-
ring to the same configuration, but observed at low-resolution:

S:(O’j],...,O'jN)EM(O’],...,O’H). (9)

Our label s in this case is thus the (N-dimensional) string
of spins that we retain from the whole. Given this prescription
and a coarse-grained mapping M [Eq. (8)], we can now as-
sociate the configuration X to the corresponding, unique label
in the mapped space, s(X); assuming that the high-resolution
states are distributed according to a probability p(X), we can
define a mapped probability distribution in the coarse-grained
space p(s), that is the probability of observing the CG label s,
as

LOEDINIGLIENS (10)

At this point one can introduce the mapping entropy
[13-18], which is a Kullback-Leibler divergence measuring
the quality of a CG mapping by comparing p(s) to its high-
resolution space analog, p(X),

11
pls)] (a

Sm=2mmﬂmﬁﬂﬂ}
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FIG. 2. Resolution, relevance and mapping entropy for different coarse-grained representations of the system of noninteracting spins.
Panels (a) and (c) show how relevance and mapping entropy vary with increasing resolution. Each data point is depicted according to the
number of conserved sites N. The gray line in panel (c) denotes the mean of the mapping entropy for a small range of resolution values, and the
shaded region denotes the range of the standard deviation for this range. Panels (b) and (d) report the values of relevance and mapping entropy
in the case of N = 10, respectively. Points are coloured according to their rank, as defined in Eq. (24). M®®* marks the mapping in which

all the ten biased spins, o7, ..
These mappings contain the spins o, ..

where €2)(s) is the number of fully detailed, fine-grained
configurations X mapping onto s:

Q) =Y S (12)

Specifically, the mapping entropy compares the reference,
high-resolution probability, p(X), against another distribution
[15,17],

pls(¥)]
Qils(®)]1’
which assigns equal probability weight to all the fine-grained

configurations that map onto the same CG one. As not
all of these configurations are equally probable, these two

p(X) = 13)

., oy are retained, while {M°"'} marks the set of ten mappings displaying the lowest values of mapping entropy.
., 019, 0}, for 11 < j < 20. These are all the biased spins except o; and one of the unbiased spins.

distributions, p(X¥) and p(X), are not equivalent. Ideally, an
“optimal” mapping M minimizes the impact of the process
of dimensionality reduction by aggregating high-resolution
configurations with similar probability weight p(X) inside the
same s.

The mapping entropy is related to the resolution through
(the detailed derivation is provided in Appendix A 1):

pls)]

= —H[X]+Hs]+ Y _p(&)InQi(s),  (14)

Smap = 3 (D)1 {p@)M}
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FIG. 3. A pictorial representation of the prescription used to
build the data set of the discrete model of financial markets illustrated
in this section. If the stock value V grows (decreases) during the day
with respect to its starting value, that is, if Viipa > Viare (Viina < Vstart)»
a spin up (down) is assigned to the company for the specific date. If
the two values coincide (Viina = Vian), the date is labeled as station-
ary for the considered stock.

where we have identified —) . p(¥)In p(X) as the entropy
of the high-resolution representation of the data, H[X], and
— >, p(s)In p(s) as the entropy of the low-resolution repre-
sentation, hence the resolution H[s]. The entropy H [X] can be
decomposed as follows:

HI¥] = H[s] + H[¥|s]. (15)

This equation holds because s = s(X), that is, the quantity
H{[s|X] = 0, since the knowledge of the configuration X im-
plies the exact knowledge of the corresponding value of the
label s. By definition of conditional entropy, the following
holds (see Appendix A 1 for further details on the derivation
of this result):

— Z pE, s)In P&, )

HI[X|s] 2)

X,

= 2P Y p@Ep@Es).  (16)

A specific category of classifications s exists that are suf-
ficient representations [23]; these are those for which all
configurations X mapping on a given label s have the same
probability, that is,

s(X) = s(¥), p(E) = pE). a7

Consequently, the conditional probability p(X|s) of observ-
ing a given data point X given the value s of the label is just
the inverse of the number of high-resolution configurations
mapping on that label:

Vi X

> 65(2) s
p(X[s) = =, (18)

Qi(s)
where the Kronecker § is needed to enforce the fact that the
conditional probability is different from zero only for those
configurations X that map onto s. Making use of Eq. (18) in

Eq. (16) we find that

HIZ|sl = = ) p(s) ) p(Els)In p(3ls)

> p(s)In 2 (s), (19)

where the last step comes from the definition of €2;(s) given
in Eq. (12). In conclusion, we have that, if the labeling s is
a sufficient representation of the data points, then H[X|s] =
> p(s)In 2 (s). If this is the case, combining Eqgs. (14) and
(15) with this result we have

Smap = —H[®|s] + Y p(s)InQ;(s) = 0. (20)

This demonstrates that the mapping entropy is the differ-
ence between the conditional entropy of the high-resolution
data subject to the labeling and the largest value that it can
have, which corresponds to s being a sufficient representation.
In general, however, resolution and mapping entropy have a
nontrivial relation due to the last term in Eq. (14).

Changing mapping changes the definition of s, and hence
the resolution H[s]. A mapping that induces a sufficient
representation will then have zero mapping entropy; how-
ever, the distribution of label frequencies associated to such
mapping might not be unique to it, in the sense that other
(sufficient) representations might generate the same distri-
bution and, hence, the same relevance. Irrespectively of
the mapping entropy being zero, then, the value of the
relevance can be smaller or larger depending on the degen-
eracy of the classifications that produce a given frequency
distribution.

III. RESULTS

In this work we aim at investigating the behavior of rel-
evance, resolution, and mapping entropy on distinct systems
at varying levels of complexity and abstraction, with the aim
of devising a pipeline to process empirical data and extract
information out of the dataset. To this end, we concentrated on
three different case studies, each of which aims at clarifying
specific aspects of the relation among, or possible usages of,
these quantities.

First, we made use of a simple toy model to inspect
resolution, relevance, and mapping entropy altogether. The
system is constituted by a string of noninteracting binary
spins; while its properties are trivial to understand once the
underlying single-spin probabilities are known, the behavior
of resolution, relevance, and mapping entropy computed on
various coarse-grained representations of it is not, as they
critically depend on the empirical sample onto which they are
computed. This is the ideal situation to (begin to) grasp the
essence of these quantities, in that all the nontrivial features
that emerge are only marginally due to the complexity of the
system itself, and mainly emerging as a consequence of the
finiteness of the dataset.

Second, we tackled a real-world case, namely, a simpli-
fied model of the stock market based on real data. Here,
we focus on the relationship between resolution, directly
employed as a measure of the detail retained in a given low-
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FIG. 4. Resolution, relevance (a), (b) and mapping entropy (c), (d) for the two models. Mappings in m2 can reach high values of resolution
because adding information (two stocks) allows to define a higher number of high-resolution labels s out of the available sampling. In panels
(a), (b) there exists a CG mapping with N = 1 possessing a very low value of relevance (H; ~ 0); this is the mapping that retains TSLA stock:
By chance, the number of spins in the up and down configurations coincide (see Table I).

detail description of the system, and the mapping entropy,
which serves to identify nontrivial correlations within the
dataset.

Third, we employed the resolution-relevance framework to
reconstruct an empirical probability distribution to be investi-
gated by means of the mapping entropy minimization method.
The latter, in fact, relies on the knowledge of a reference
probability distribution of the high-resolution data, against
which the low-resolution one is compared. Here we explored
the possibility of reconstructing the reference probability from
a dataset of protein conformations sampled in a molecular
dynamics simulation; to this end, we coarsened the configura-
tional space and identified the reference distribution as the one
corresponding to the optimal resolution-relevance threshold
(n~ =1).

In the following sections, the results obtained in each of
these three systems are presented and discussed.

A. Discrete, noninteracting case: A simple spin system

The first model system is composed of n = 20 noninter-
acting spins, each characterized by its probability to be in
the “up” state. These spins are partitioned into two subsets
of biased and unbiased spins. The first 10 spins are biased in
a linear descending order according to p?(o,- =D)=1—-(G-
1)/20 for 1 < i < 10, while the last 10 spins are unbiased,
namely, p‘?(ai =1)=0.5for 11 < i < 20; see Fig. 1.

The number of states of the system is, in principle, 2% ~
6 x 10°. However, not all of these are realisable as the first
spin, oy, has zero probability to be in the “down” state. To
study this system, we generated a sample of L = 10° states
given by {5/ }?:1- The sample provides an empirical probabil-
ity distribution of system configurations:

! XL:(S(&J' —-3) = ]3.
j=1 L

po) = 21

|
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In the limit of an infinite sample, the empirical distribution
p(6) coincides with the underlying distribution p(& ), that is,

lim p@) = p@) =[] pito). (22)
j=1

where the last equality is due to the independence of spins.

Let us next discuss the properties of the coarse-grained
representations of this spin system, that is, those selections
of N specific spins out of the total n. Such a coarse-grained
representation is given by a mapping M : {0, 1} — {0, 1}V
which takes the state & = (o4, ..., 0,) and returns the CG
state s(o1, ...,0,) = (0, ..., 0j,), for some specific choice
of N indices ji, ..., jny. Each choice of N spins corresponds to
another empirical probability of the CG system, p(s), which
comes about from marginalising over the spins that are not
retained. The resolution [Eq. (3)] and the relevance [Eq. (5)]
can be readily calculated: The former directly from the proba-
bility p(s), the latter through the computation of the frequency
distribution, Eq. (4). To calculate the mapping entropy one
needs to compare the full empirical probability p(5) with
the “smeared” coarse-grained one, p(d); see Eq. (13). For
each decimation-based CG representation, the corresponding
resolution, relevance, and mapping entropy are computed and
reported in Figs. 2(a)-2(d).

Specifically, the resolution-relevance values for all possi-
ble coarse-grainings of N =1, ..., 20 spins are reported in
Fig. 2(a). The first observation we make is that the data follow
the expected behavior in spite of the system being composed
of uncorrelated degrees of freedom. The reason for this is that,
even if the probability of each spin being “up” is independent
of the others, the pool of configurations on which resolution
and relevance are computed is finite and smaller than the
cardinality of possible states (103 randomly sampled strings
versus 2'9 &~ 3 x 10° possible ones (recall that the 1st spin
is always “up”); hence, for about half of the resolution range
we are in the under-sampling regime: Because of this, when
the resolution is too high, we deal with too few data points
to accurately reconstruct the underlying reference probability,
and the relevance is lower than the resolution. In the interme-
diate regime, however, the finiteness of the sample enhances
the relevance, and indicates the appropriate resolution level to
describe the dataset in a synthetic manner that, nonetheless,
allows one to extract nontrivial information about the genera-
tive process.

This result is inherently due to the finiteness of the dataset.
In fact, if we were to compute resolution and relevance on
an exhaustive list of configurations with the exact probability
associated to them, the curves would turn out as a band of
straight lines, trivially linking resolution and relevance, and
with the latter having values below those that are observed
in the finite-sampling case (see Sec. A2 and Fig. 10 in the
Appendix).

Another interesting aspect revealed by Fig. 2(a) is the range
of resolution and relevance values for different numbers N
of retained spins. CG mappings such that N is close to n
display little variations in resolution and relevance, while an
intermediate coarse-graining is associated with a wide range
of values. Figure 2(b) reports the results for the CG represen-
tations obtained retaining N = 10 sites. Such CG mappings

are distributed in a clustered structure that can be captured
by introducing a rank for each mapping, which quantifies the
balance between biased and unbiased spins. The rank of a
single spin o; is given by

. +1, ifbiased: 1 < j < 10,
Floj) = . . . (23)
—1, ifunbiased: 11 < j < 20,
and the rank for a CG representation M(oy,...,0,) =
(6j,,...,0j,) is given by the average of the rank over all
retained spins, that is
1N
rM) = > Fo). (24)

i=1
For any choice of N, the rank takes a value between —1

and 1, measuring the proportion between biased and unbiased
spins in the CG state: When (M) =1 all retained spins

are biased; when »(M) = —1 all retained spins are unbiased;
when r(M) = 0 there is an equal number of biased and unbi-
ased spins.

Figure 2(b) shows that CG configurations with positive
rank provide higher relevance values, whereas negative rank
CG configurations have lower relevance and possess higher
resolution. Thus, high relevance values correspond to CG
mappings that retain more biased spins than unbiased spins,
but it is not very sensitive to the rank—having an equal
number of biased and unbiased spins saturates the relevance,
i.e., replacing an unbiased spin with a biased one, does not
increase the relevance. Therefore, in regards to the question
“which spins are more informative?” the relevance answers in
an ambiguous manner: One should retain just enough biased
spins (in this case five), and adding more spins does not
change the outcome appreciably.

The reason for this result is a consequence of the marginal-
ized empirical probability of the retained spins. Consider the
case of retaining all the unbiased spins: This would provide
an empirical sample of labels with a roughly uniform distri-
bution, resulting in a large entropy of the sample and thus a
high resolution. As for the relevance, one needs to consider
the distribution of frequencies, which in this case would be
narrow; as the relevance is the entropy of this distribution,
it would correspond to low values. Replacing unbiased spins
with biased spins would make the distribution of the sample
less uniform, thereby decreasing the resolution. The frequency
distribution would become broader, and so the relevance
would increase. Nonetheless, the relevance saturates when we
have a rank of zero, i.e., when the number of biased and
unbiased spins is equal. This indicates a qualitative feature of
the relevance: It thrives when the probabilities of constituents
are slightly rather than extremely biased, but it increases when
retaining constituents with different probabilities. Indeed, for
a finite sample, the unbiased spins are sampled with finite
precision, and therefore, from the empirical point of view,
they are slightly biased. Since statistically they are biased in
the same manner, retaining too many of them would result in
a narrow distribution of frequencies and thus low relevance.
However, retaining some of them, already provides enough
variability in the frequency distribution to result in high rel-
evance. For further discussion on the differences between
infinite and finite samples see the Appendix A 2.
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In Figs. 2(c) and 2(d) the dependence of the mapping en-
tropy on the resolution is reported. In contrast to the relevance,
which tends to zero in the two limiting cases of low and high
resolution, the mapping entropy is monotonically decreasing
(on average) with the resolution; when all spins are retained,
i.e., N = n, the smeared probability p(c) [Eq. (13)] is ex-
actly equal to the distribution p(6) and no coarse-graining
is performed; however, if only one spin is retained, then the
resulting CG probability is as far as it can be from the full-
system probability. For some intermediate values of N it is
possible to observe a large range of mapping entropy values,
which depend on the specific choice of the CG representation.

Figure 2(d) shows that, for a given N, minimal values of
the mapping entropy are obtained for high-rank CG configu-
rations, that is, those displaying nonuniform probabilities. A
closer look into the minimal values of Fig. 2(d) reveals that
the CG mapping [denoted by M®#¢d in Figs. 2(b) and 2(d)]
with maximum rank, s = (o1, 03, ..., 019), is not the absolute
minimum of the mapping entropy. All of the mappings in
which the first spin is replaced by one of the nonbiased spins,
namely, s = (02, 03, ..., 019, 07), correspond to lower values
of mapping entropy [these are denoted by M in Figs. 2(b)
and 2(d)]. This is a consequence of the fact that the first
spin, having p; = 1, is not informative at all (keeping track
of its value does not carry any information since it is always
“up”), while each of the nonbiased spins provides a minimal
advantage due to the finite sample size. In contrast, in the case
of fully analytical calculations [which is equivalent to infinite
sampling, see Eq. (22)] the values of the mapping entropy
obtained by retaining all the 2, ..., 10 spins plus any one of
the other eleven spins would be exactly equal.

These considerations allow one to rationalise a feature of
Fig. 2(c), namely, the fact that the minimum value of the
mapping entropy remains approximately constant for a wide
range of CG spin numbers, that is, for N =9, ..., 16. When
N =9, the minimum of this quantity is obtained for the CG
mapping that retains the spins with indices 2 < j < 10, and
adding other spins to this representation does not guarantee
a substantial decrease in the mapping entropy, which is only
obtained when the mapping gets closer to the fully detailed
representation (when N > 17). At the same time, some map-
pings with N = 18 exist, whose associated mapping entropy is
higher than the minimum value obtained when N = 9: These
are coarse-grained representations that do not retain two of the
biased spins.

In conclusion of this section, a discrete system whose
constituents are completely independent was analysed with
the help of resolution, relevance, and mapping entropy. These
three quantities shed light on some intrinsic features of the
model at hand, thus making them promising candidate analy-
sis tools for more complex systems. In particular, we find that
the kind of information highlighted by relevance and mapping
entropy is oriented to different goals. The relevance is focused
on reconstructing the statistics of the specific empirical sam-
ple, and thus it is more “compression-oriented.” In contrast,
the mapping entropy is aimed at marginalising degrees of
freedom which do not change the probabilistic description of
the sample, and thus it is more “generation-oriented.” This
different sensitivity results in the fact that the mapping entropy
favours the biased spins (except o) over the unbiased spins,

while the relevance treats all mappings with zero rank as
roughly equal.

B. Discrete interacting case: A model of a financial market

The second model considered here concerns a simplified
description of a financial market, whose constituents are cer-
tainly interacting with a functional form that is not only
unknown a priori, but also not representative of statistical
equilibrium.

Common stock market indices, such as NASDAQ-100,
FTSE MIB, DAX 30, are usually defined in terms of the value
of the most traded stocks, or the ones with the highest market
capitalization. As an example, the NASDAQ-100 index con-
siders the largest nonfinancial companies listed on the Nasdaq
stock market [27]. It is well-known [28,29] that changes in
the composition of such indices have an impact on the stock
prices, temporarily favoring the stocks that are added to the
index.

These indices can be considered as coarse-grained map-
pings of the high-resolution system, i.e., the full stock market,
to a lower number of degrees of freedom. The natural ques-
tion that arises is the following: Are these indices always
appropriate to coarse-grain the full market? Can one find a
different subset of stocks that brings more information about
the high-resolution system?

Throughout this section, we consider two “high-
resolution” systems, namely, m/ and m2, defined as the ten
(for m1) and twelve (for m2) stocks with the highest market
capitalization (at the date 1/10/2021) in the NASDAQ-100
index, which are described in Table I. The values of these
stocks are investigated over a ten year time window, for a total
of 2225 days of sampling considered. For each day, a stock
can assume three discrete values (see Fig. 3), namely, +1 if
the stock value increases during the day, O if it is stationary
and —1 if it decreases. In this way the full market is mapped
to a system of interacting, three-states spins with 3! (3!2)
available realizations. As in the noninteracting case discussed
in Sec. IIT A, many of these are impossible to observe in a
pool of real configurations: Imagine for example how unlikely
it is that 12 stocks of this importance are stationary in the
same day. Indeed, it is possible to observe only 630 (1148)
configurations of the system in the available sampling. As
in Sec. IITA, we use the set of degrees of freedom as the
high-resolution labeling X, see Eq. (9), whose probability p(X)
is defined as the number of times a full-system configuration
{o1,...,0,} is observed divided by the number of days
[Eq. 21)].

Next, we analyze the behavior of resolution, relevance, and
mapping entropy for all the 2° (2'!) CG decimation mappings
that can be defined for the two models. The analysis follows
Fig. 4, which reports the values of these three quantities for
all possible CG mappings, as well as Fig. 5, where we show
the probability that a stock is retained in a mapping that
minimizes the mapping entropy, as a function of the number
of retained stocks.

First, looking into the behavior of the relevance, we
observe the expected bell shape, with a linear resolution-
relevance trend for 1 to 4 retained stocks. This is suggestive
of the fact that the model is in the well-sampled regime, and
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TABLE I. Nasdaq stocks considered in this subsection. # |, # —, and # 1 represent the number of down, stationary and up “spins” for
each stock during the available sampling time, respectively. CSCO and NTES are absent in m/ and are included in m2. Data were downloaded
using yfinance [30], a python package to download Yahoo! finance data. Companies for which there are no data for all the considered dates

were excluded from the dataset.

Symbol Name #] #— #1

AAPL Apple Inc. Common Stock 1060 5 1160
ADBE Adobe Inc. Common Stock 1017 5 1203
ADI Analog Devices, Inc. Common Stock 1090 13 1122
CSCO Cisco Systems, Inc. Common Stock 1022 29 1174
GOOG Alphabet Inc. Class C Capital Stock 1069 1 1155
GOOGL Alphabet Inc. Class A Common Stock 1075 2 1148
IDXX IDEXX Laboratories, Inc. Common Stock 977 8 1240
MSFT Microsoft Corporation Common Stock 1048 24 1153
NFLX Netflix, Inc. Common Stock 1110 1 1114
NTES NetEase, Inc. American Depositary Shares 1095 4 1126
NVDA NVIDIA Corporation Common Stock 1078 15 1132
TSLA Tesla, Inc. Common Stock 1111 3 1111

the information content of the dataset is fully captured; for
larger numbers of retained sites (N = 5, 6, 7), on the contrary,
we find a regime where the empirical dataset is noisy, but the
coarse representation gathers the largest amount of available
information about the underlying statistics. Finally, for N > 8§,
the data are too noisy and the low-resolution representation is
not informative.

We then investigate the behavior of the resolution that
is observed in all panels of Fig. 4. For each value of 1 <
N < n there exist two clouds of points separated by a gap
in resolution. A direct inspection of the data shows that, at
fixed N, the lower-resolution clouds of mappings are char-
acterized by a common trait: All these representations retain

ml
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both GOOG and GOOGL. As expected, these two stocks are
highly interacting and correlated, displaying the same value
in the 94.3% of the selected time window. Therefore, it is
reasonable that a mapping containing both Google stocks pro-
vides a low-resolution coarse-graining of the system, which is
comparable to the resolution of a coarse-grained system with
N — 1 stocks. In Figs. 4(c) and 4(d) it is possible to appreciate
how the choice of the model influences the average value of
mapping entropy of the two clouds. For model m/ [Fig. 4(c)],
the mappings containing both Google stocks (corresponding
to the left cloud for each N) display an average mapping en-
tropy equal or lower compared to other mappings that contain
only one Google stock (corresponding to the right cloud for

m?2
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FIG. 5. Probability P..,s of finding a given stock in a selection that minimizes the mapping entropy, for the model m/ (left panel) and m2
(right panel). At a given value of N, P is calculated as the probability of each stock to be present in the 10% of the mappings with lowest
Smap- Those stocks whose knowledge brings the least information about the overall behavior of the model market appear in darker color: The
presence of dark bars that extend for a broad range of retained stocks numbers indicates that these specific stocks are consistently identified as

little informative.
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each N). This is not the case for m2 shown in Fig. 4(d):
Since two additional stocks are included in m2, p(s) is less
biased by the presence of Google instances, and the mapping
entropy of representations (i.e., mappings) containing both
GOOG and GOOGL is consistently higher than that of the
other mappings. Intuitively, one of the two Google stocks
possesses a high level of information about the system, but
the inclusion of both of them in a coarse-grained description
of the full market is redundant.

A further interesting aspect revealed by an inspection of
Figs. 4(c), 4(d), and 5 is that all the mappings retaining
GOOG, MSFT, and NVDA display a value of mapping en-
tropy lower than the average. In particular it is possible to
observe that, in both models, when 3 < N < n — 1, the map-
pings displaying the lowest value of mapping entropy at fixed
N always include the combination of these three stocks. The
reason behind the high informativeness of these companies
can be attributed to their long-time, dominant presence in the
stock market.

As for particularly uninformative mappings, that is, those
with high mapping entropy, it is possible to observe that TSLA
and NFLX (for mI) and TSLA and NTES (for m2) appear to
be always retained in those representations. In particular, we
note that, for m/ (respectively, m2), (i) when N = n — 2 the
mapping with lowest mapping entropy is the one that does not
contain TSLA and NFLX (respectively, TSLA and NTES),
and (i) when 2 < N < n — 2 the mapping with highest map-
ping entropy retains TSLA and NFLX (respectively, TSLA
and NTES). A possible explanation for this behavior can be
related to their marginal importance to the market for a vast
majority of the sampling time (10 years), having experienced
an exponential growth only in the latest years. In the case of
TSLA, the corresponding company operates in a field that is
neatly separated from the other stocks reported in Table 1.

Lastly, we note that the “interacting” system considered
in this section does not display the flatness in the mapping
entropy minima that was observed in Fig. 2(c) describing
the noninteracting spins system in Sec. III A. In fact, for an
interacting system the addition of a new site to an optimal
coarse-grained mapping is likely to result in a gain of informa-
tion about the high-resolution system and, hence, in a decrease
of the mapping entropy.

In summary, the information measures under examination,
and in particular their joint usage, proved to constitute an
informative instrument of analysis of our simple description
of a subset of the Nasdaq financial market. Specifically, the
resolution-relevance curve was shown to highlight interesting
distinct regimes of the low-resolution description, providing
a guide in assessing, qualitative and semiquantitatively, the
amount of useful information that a coarse picture of the
system can retain; the mapping entropy, however, allowed us
to rationalise the features observed in the resolution and to
identify those specific stocks that contributed the most (or the
least) to the overall behavior of the model market. The pro-
posed strategy can thus be generalized to the full stock market
with the aim of selecting the most appropriate low-resolution
index, identified as the set of stocks with minimal mapping
entropy at a fixed degree of coarse-graining N, the latter that
can be determined with the help of the resolution-relevance
curve.

C. Continuous system: A small protein in solution

As it has been illustrated in the previous sections, the
mapping entropy is a measure of how much information about
a reference, high-resolution system (and its configurational
probability distribution) can be retrieved or inferred from a
low-resolution representation of it. In particular, one com-
putes the Kullback-Leibler divergence between the reference
distribution p(X) and the reconstructed one, p(X), which is
obtained from the former assuming that all configurations X
mapping on the same coarse-grained label s have the same
probability; the latter is defined as the average over the group
G of configurations X; : s(X;) =sg Vi€ G.

In this section we address the practical aspect of investi-
gating systems with continuous degrees of freedom, whose
reference empirical probability distribution p(¥) has to be
determined. The problem lies in the fact that, while systems
with discrete degrees of freedom (such as the stock market
model) are naturally prone to a histogramming procedure,
systems described in terms of continuous variables are not:
Arbitrarily small discrepancies in the coordinates would make
two configurations look different, and whether they really are
or not is a matter to be settled before addressing the computa-
tion of the mapping entropy.

Here, our objective is to employ the resolution-relevance
framework to perform an optimal clustering of the high-
resolution configurations of the system, based on which we
determine the reference empirical probability p(X). This is a
key step for the calculation of the mapping entropy: In fact, in
specific cases, e.g., molecular systems at thermal equilibrium,
the mapping entropy can be computed by means of a cumulant
expansion of the Kullback-Leibler divergence that relies on
the assumption that the system follows Boltzmann statistics,
and hence the underlying probability density of the micro-
states is the well-known exp(—BH ); this strategy was indeed
employed by Giulini and coworkers (see Ref. [17] as well as
Eq. (A12) in the Appendix) to identify the representations of
least mapping entropy for a set of proteins. This assumption,
however, does not hold in general, and it might be the case
that one finds themselves with a dataset of configurations
defined on a continuum range of values, whose underlying
probability density is not known. The computation of mapping
entropy in these cases has to rely on the definition based on
the Kullback-Leibler divergence, which, in turn, assumes the
knowledge of a reference, high-resolution probability density.
Hereafter, we show how to obtain such probability distribution
for a dataset of configurations defined on the continuum, and
demonstrate that the results so obtained are consistent with
those derived from the cumulant expansion.

The system under examination here is a small protein
in water, whose time evolution is obtained by means of a
plain, all-atom molecular dynamics (MD) [31,32] simulation.
Specifically, we consider 6D93 [33], a mutant of the tamapin
protein, a toxin of the Indian red scorpion [34]. This small
protein (230 heavy atoms, 31 amino acids) is simulated in the
canonical ensemble at 300K for 200 ns. The Cartesian coordi-
nates of the atoms are saved once every 20 ps, thus creating a
data sample (trajectory) of L = 10001 configurations. Details
on the GROMACS 2018 [35,36] simulation can be found in
the Supplemental Material of Ref. [17].
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FIG. 6. The L realizations of a continuous system can be clus-
tered in a variable number C of labels X, ranging from C =1 to
C = L. These two discretizations are not informative about the sys-
tem, as they induce a trivial frequency distribution and, consequently,
a uniform probability p(X) of observing the label X over the sample.
We identify (see main text) the threshold C as the number of labels
that separates the regimes of lossless and lossy compression.

In this context, the state of the system is encoded in a
vector r containing the positions of its n constituent atoms.
Differently from the discrete model, the distribution of the
labels X cannot be identified with a simple counting over the
states of these 3n degrees of freedom, due to their continuous
nature. Hence, the labels X have to be defined by lumping
several, in principle different configurations r of the sample
in the same (high resolution) state, thus defining a nonuniform
probability p(X) of observing it.

To this end, we apply the UPGMA clustering algorithm
with average linkage [37] to the fully atomistic, pairwise
RMSD matrix between all the elements of the sample:

n 3
/ 1
RMSD(r,1) = |~} % (30 = RTr5; 0% (25)
j=1 k=1

where R7T is the roto-translation that superimposes r to r’
according to the Kabsch optimality criterion [38,39], thus
minimizing the overall displacement.

Changing the threshold used to cut the dendrogram (see
Fig. 6) resulting from the UPGMA clustering of this matrix,
we can obtain arbitrary values of the number C of fine-grained
labels X. A criterion is thus needed to establish the appropriate
value of C that should be used to create this histogram of
atomistic structures. A very coarse (respectively, detailed) dis-
cretization of the sample corresponds to C ~ 1 (respectively,
C ~ L) clusters, as shown in Fig. 6. Both of these choices are
not “relevant” for the comprehension of the system, since they
result in a uniform probability p(X) over the labels.

Hence, resolution and relevance are employed to determine
the optimal number of fine-grained labels, which we denote
by C, used to partition the collected protein structures. In
Fig. 7(a) we report the H[s]-H[k] dependence for the 10001
realizations of the system; the considered trajectory displays
a flat maximum of the relevance, which remains constant over
a wide range of values of H[s] and C. The nature of this
behavior is certainly related to the hidden structure of the
sample and to the properties of the clustering algorithm used
to label its constituent elements.

(a)
4
4
3 L4 2962
&
L]
L]
el °
R Y
2 °
L]
L]
L]
! c
. 2 2000 4000 6000 8000
0
0 2 4 6 8
Hs
1 (b)
0
N\2962
-1+ AS
3
-2
-3
-4
0 2000 4000 6000 8000 10000
Cc

FIG. 7. (a) Resolution-relevance plot for 6D93, whose all-atom
trajectory of L = 10001 sampled realizations has been clustered in
2000 different values of C, starting from C =2 and ending with
C = 9997, with an intermediate step equal to 5. The UPGMA algo-
rithm [37] is applied to the fully-atomistic RMSD matrix [Eq. (25)]
to perform the clustering (see Ref. [17]). Each data point is coloured
according to the value of C employed to label the original trajectory.
(b) Local slope p of the H[s]-H[k] curve over all the spectrum of
possible values of C. p is computed by iteratively performing a
linear regression over all values of the curve such that the resolution
falls into an interval of amplitude % Such resolution window is
iteratively moved from right to left by a factor I'SOLO, until points with
H[s] = H[k] ~ 0 are found.

The separation between the regimes of lossless and lossy
compression [23] operated by the relevance is exploited to se-
lect C. Indeed, C is chosen as the value of C corresponding to
the critical point where the slope p of the resolution-relevance
curve is —1. The probability of each label X is now given by
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FIG. 8. After C fine-grained labels are identified (see Fig. 6), the
corresponding configurations r/ are coarse-grained by a mapping
operator M. Here j; is the index (in the original sample) of the con-
figuration associated to the fine-grained label k. The low-resolution
projections M(r) are first compared and then clustered in a coarse-
grained dendrogram. The latter is inspected at several points Kj,
K,..., Ks, to identify different selections of CG labels s, over which
the mapping entropy is calculated using Eq. (27). Here we follow
Ref. [17] in defining K| = 34, K, = 48, K3 = 62, K, = 76, Ks = 91.

the number of times it is observed in the sample [kz/L, see
Eq. (2)]. B

The calculation of the optimal C that separates the region
with 4 < —1 from that with u > —1 is shown in Fig. 7(b).
In this context, we choose the first value of C after which
u < —1 for a consistent set of values of C, meaning that the
induced discretization remains in the regime of lossy com-
pression for a while. At the end, the original trajectory of
L snapshots is converted into its reduced counterpart of C
protein structures by choosing the first configuration of the
sample belonging to each label X. This procedure allows us
to determine the reference, empirical probability distribution
p(®) as the frequency with which each of the C sampled
high-resolution configurations appears.

Next, we consider low-resolution representations of the
protein structure, to identify the one that provides the most
informative picture of the system with respect to the all-atom
reference. A CG decimated representation of a protein is a
selection of N out n atoms, which amounts at keeping N
triplets of the original degrees of freedom. The coarse-grained
labeling s = M(ry, ..., r3,) lumps C high-resolution labels ¥
in K CG labels s. Following Ref. [17], we here select five
different values of K to cut the dendrogram, thus creating five
different probability distributions p(X). In Fig. 8 we provide
a schematic depiction of this procedure: First, C mapped
configurations M(ry, . .., r3,), are compared using the coarse-
grained RMSD

RMSD®[M(r), M(r')]

N 3
= ]%/ Z Z(ri3f+k - RT"éM )2, (26)

j=1 k=1

where i denotes the indices of the retained degrees of free-
dom, and then the corresponding dendrogram is constructed
with the UPGMA algorithm. Subsequently, different thresh-
olds are employed to define the CG labels, and the resulting

Probability
1

0.5

FIG. 9. Probability Py, of conserving each atom in an optimal
mapping built minimizing X [see Eq. (27)]. Five residues are high-
lighted, namely, the three arginines and other two solvent-exposed,
charged residues. While the former are retained with a good level of
detail inside optimal mappings (one atom per side chain, see main
text), the latter are highly coarse-grained (see also Table III).

average mapping entropy is calculated using the following
formula [17]:
1
r=— Smap(K), 27
| p(K) 27)
K}

where {K} is the set of values of K and Sy,p(K) is the cor-
responding mapping entropy, arising from the clustering of C
high-resolution labels into K CG labels; |K| = 5 is the number
of K values.

Now that we possess a method to calculate the mapping en-
tropy [Eq. (11)] for a continuous system, we follow Ref. [17]
and run 48 mapping optimizations for the protein, employing
N =31 and sticking to the same minimization protocol. As
in Ref. [17], one can perform a basic statistics over the pool
of low-S,,p mappings by using the conservation probability,
P.ons, of each atom, defined as the fraction of times it is
included inside an optimized solution.

Once projected over the high-resolution protein (see Fig.
9), such probability distribution appears to be broadly spread
throughout the polypeptide chain, with few notable peaks
in correspondence of terminal atoms of the three arginine
residues of the protein (ARG6, ARG7, ARG13), which are
well-known [40-42] to play a crucial role in the binding
of tamapin to its substrate. Let us focus on the side chain
of ARG6: Here, the atom with highest importance is NH2
[P.ons(NH2, ARG6) = 0.60], but all the other atoms in the ter-
minal region of the arginine display a nonnegligible value of
Peons, namely, 0.10, 0.23, 0.08 for NE, CZ, and NH1, respec-
tively. The sum of these probabilities with the one associated
to NH2 gives 1.02: Except for two (respectively, one) cases in
which there are two (respectively, zero) atoms of this region
in the optimal mapping, all the remaining 46 optimal solutions
contain exactly one atom in the terminal region of ARG6. In
other words, the optimization procedures are informing the
modeler that the side chain of this arginine must be treated
with exactly one atom, with a preference for NH2. As for
ARG7 and ARG13, they display a similar behavior, with the
majority of the optimizations retaining one atom of their side
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chain terminus. In particular, the NH2 atom of ARG7 shows
the highest value of P.ons [Peons(NH2, ARG7) = 0.67]. These
results are consistent with those found through the cumulant
expansion approximation [17], thus supporting the viability
and robustness of this procedure.

In summary, the properties of relevance and resolution are
here exploited to extract a set of fine-grained labels out of
a molecular dynamics trajectory, each one weighted with its
own approximated probability. This step is key to compute the
mapping entropy of a system defined in terms of continuous
degrees of freedom: In fact, while for the case of a molecular
system in thermal equilibrium approximations are possible,
that rely on the assumption of Boltzmann statistics and the
cumulant expansion approximation of the mapping entropy
(as it was done in Ref. [17]), in general the underlying proba-
bility density of the system micro-states is not known, and/or
it is not an equilibrium distribution. The approach illustrated
here is general and unsupervised, and it can be also applied
to tasks other than the calculation of the mapping entropy.
We deem it important to remark the fact that the choice of
distance (RMSD) and clustering algorithm (UPGMA) played
no special role in the analysis presented in this section, thus
broadening the generality of the proposed approach.

IV. CONCLUSIONS

In this manuscript we investigated the properties of coarse-
grained representations by studying the behavior of the
associated resolution, relevance, and mapping entropy, com-
puted over empirical samples of three complex systems. These
three quantities offer distinct and complementary perspec-
tives on the properties of a dataset, allowing one to extract
crucial information about its underlying generative process,
the nonlinear correlations among its degrees of freedom, and
the levels of significance of the latter. Mapping entropy, in
particular, is employed to characterise a system by quantifying
the amount of information retained in a low-dimensional rep-
resentation of it, which thus highlights those reduced models
that preserve relevant details while discarding noise or other-
wise trivial features. When coupled, resolution and mapping
entropy show, in a clear and easily intelligible way, how the in-
formation content of a representation increases together with
the detail with which such representation describes the data
set.

In the case of the noninteracting spin system, the mapping
entropy pinpoints as ideal mappings those subsets of features
that match our intuition of most informative representations.
In contrast, when the system’s constituents are interacting,
as it is the case for the model of the Nasdaq stock market,
the interpretation of maximally informative coarse-grained
mappings is less immediate. Still, the mapping entropy effi-
ciently and consistently separates the stocks that have been
influential for the majority of the sampling time from those
whose importance has been limited to the last portion of
the selected time-window [43]. In both cases, the resolution-
relevance framework proved to be capable of highlighting the
optimal level of detail at which a coarse representation of the
system provides the largest amount of nontrivial information
about the underlying generative process.

This feature was explicitly employed in addressing the
problem of dimensionality reduction for a biomolecule,
namely, a small protein; in this case, the mapping en-
tropy minimization requires the knowledge of an underlying,
high-resolution probability density that cannot be naively re-
constructed from a sample of configurations. To tackle this
issue, we proposed a method, based on the optimal tradeoff
between resolution and relevance, to identify unambigu-
ous high-resolution labels defining a nonuniform probability
distribution in the fine-grained space; these corresponds to
clusters of configurations whose relative discrepancies are
classified as noise by the relevance, thereby allowing the con-
struction of a dataset of high-resolution configurations each
associated to its empirical probability. Making use of this
protocol, we then carried out several minimizations of the
mapping entropy: the resulting optimal representations tend
to display an uneven level of detail throughout the protein,
treating with higher accuracy the three arginine residues that
are fundamental for its binding to the substrate, consistently
with data obtained through an independent procedure.

These results, obtained from a relevant set of distinct test
cases, show that the combined usage of resolution, relevance,
and mapping entropy is capable of quantifying the informa-
tion content proper to different combinations of features of
a high-dimensional, large-sized data set. In particular, it is
our opinion that the multibody nature of the mapping en-
tropy, together with its simplicity of interpretation, can make
its application in data science extremely fruitful, either as a
feature selection algorithm or as a novel instrument of anal-
ysis of complex data sets. The first use is analogous to the
mapping definition in CG, that is, a smart prescription to be
implemented prior to the modeling. The second application
is even more intriguing, as it suggests that the process of
dimensionality reduction per se can provide information on
high-dimensional data sets.

Looking at resolution, relevance, and mapping entropy
from this multidisciplinary perspective, it is our opinion that
their application in diverse contexts would contribute a pow-
erful instrument to make sense of data in a world increasingly
full of them.

The program and the data employed for the two models
presented in Sec. III A and III B, as well as the results showed
in Sec. I C are available from the GitHub repository at Ref.
[45] as well as on the Zenodo repository at Ref. [46].
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APPENDIX

1. Explicit derivation of the relation between resolution
and mapping entropy

Hereafter we provide the full derivation of Eq. (14), in
which each step is made explicit:

_ og PGD) - o Q1[s(X)]
Smap = ;p Ohee = ;p (01 {p O @1 }

=Y p@Inp®) — Y p(®)In pls(¥)]

+ ) pE) In Q) [s@)]

X

= —H[Z] — )Y 8[s(®) — slp() In pls(¥)]
+ D) 8Is(®) — s1p(®) In @y [s(¥)]

= —H[¥]| = )_ p(s)Inp(s)+ Y p(s)In Qi (s)

—H[X] + H[s]+ ) p(s)In ;(s). (A1)

As for Eq. (16), which relates the conditional entropy
H{[X|s] to the conditional probability p(X|s), we have

X, )
S

o . P
H =— § )1
[X]s] > p(X, s)In o(5)

=" pE. $)In p(ls)

X,5

= p(s)p(Els) In p(E|s)

X,

= p(s) ) p@Els)In p(E|s).

(A2)

2. Infinite sampling assumption

Sections III A and III B discuss the case in which the fine-
grained and coarse-grained labels X and s(X) are determined
through a marginalization over the retained degrees of free-
dom. We now discuss how, in such scenarios, we can apply
the assumption of infinite sampling and how it changes the
overall results.

First we investigate the impact on the relevance of having
such a large sampling that the empirical probability p(s) is
arbitrarily close to the real one obtained marginalising over
the exact p(X). To this end, we consider the toy model of
Sec. IITA and compute resolution and relevance summing
over the complete list of all possible states of the system,
whose probability is known from Eq. (22). In this case, we
obtain the resolution-relevance curves reported in Fig. 10.
These are quite different from the empirical ones emerging
from a finite sample [see Fig. 2(a)], demonstrating that the
relevance shows a nontrivial behavior even in the case of a
simple system.

Let us explain how a finite sample size can create such a
qualitatively different behavior. This happens when the sys-
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FIG. 10. Relevance vs resolution for the toy model of binary
spins with exhaustive configurational sampling and exact underlying
probabilities. The colors refer to the number of retained sites. These
results should be compared with the finite sample case in Fig. 2(a).

tem has some equiprobable configuration p(s;) = p(s;) for
two distinct CG labels s;, s;. This means that, for an infinite
sample, the frequencies of these configurations are equal, i.e.,
ks, = ks,

Let us assume that the frequency &, appears exactly twice
in the sample, my = 2. This implies p(ky,) = 2k, /L. Recall
that the relevance is given by summing over the frequencies k;
therefore, if k;, = k;,, then there is only one term contributing,
whereas if k;, # ksj , then there are two terms. The contribution
of the frequency k;, to the relevance is

%, 2k,
_pk, ) log plk, ) = — 3 Jog
Plks;) log p(ky,) 7 g
2ks,»1 ks, 2kx;1 2. (A3)
=— —'log — — —Llog?2.
L 8T T L ¢

When the empirical sample is finite and the frequencies are
not equal, ks, # kg, but close, k;, & k;,, the contribution to the
relevance is

—plks;)log p(ks,) — p(ks;) log pks,) (A4)
ke ko ke ks
= _ i 2 Biqpe 2 A5
L %L 1T %L (AS5)
2%,k
A =2 jog B (A6)
L &7

Comparing these two cases, we observe that the contribu-
tion to the relevance of the infinite sample is lower than the
finite case by roughly 2k, /Llog?2 = 2p(s;)log2. Therefore,
in case of some equiprobable configurations, observing high
values of the relevance relies on finite imperfect sampling;
sampling “too well” can reduce the relevance substantially.

We now consider the effect of infinite sampling on the
mapping entropy. When the configuration of the complex
system of interest is sampled for an infinite number of times,
the multiplicity of labels X mapping onto the same CG label s
is given by the analytical degeneracy:

QF(s) =) 8(s(®) —s)=V"",

X

(AT)

where V is the phase space volume accessible to each degree
of freedom. Here for simplicity we assume that all degrees of
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freedom have the same accessible phase space volume. In this
case, the mapping entropy can be expressed as a difference
of two Kullback-Leibler divergences, where the probabilities
p(X) and p(s) are compared to the uniform distributions V"
and VN, respectively:

Sy ==Y p®In[V"pE), (A8)

S

=Y p) IV p(s)1. (A9)

Here, S5 and S, quantify the gain in information guaranteed
by employing p(X) and p(s) to sample the phase space in
place of the uniform probability, respectively. The “infinite-
sampling” mapping entropy can be expressed as a difference
between these quantities [15-18]:

o _ > P& o . e o
Smap = gp(x)ln <—p[s(55)]91 [S(x)]) =S, — S (A10)

which is still a strictly nonnegative Kullback-Leibler di-
vergence. As an example, let us focus on the case of the
approximate financial market discussed in Sec. III B, where
each stock can assume three different values (V = 3, see
Fig. 3). In this case S reads

map

S =m—N)In3+ H[s] — H[X].

map

(Al1)

Smap can be decomposed in a constant term, proportional to
n — N, accounting for the inherent loss of information arising
from retaining fewer stocks, and a difference of resolutions.
As the fine-grained entropy is fixed for all CG mappings,
the only expression that varies with the mapping M is the
coarse-grained resolution, H{[s]. To decrease S;’f;p, the map-
ping must induce a CG distribution p(s) with low entropy. It
is useful to note that H[X] (respectively, H[s]) cannot exceed
nln3 (respectively, N In3), which corresponds to the maxi-
mum entropy over the possible 3" fine-grained (respectively,
3N coarse-grained) labels.

Figure 11 reports the comparison between the values of
Sﬁf;p [Eq. (A11)] and those of Spmap [Eq. (11)] for the two
models mI, m2, considered in Sec. III B. Since Sf;f;lp discrimi-
nates coarse-grained mappings according to their value of CG
resolution H[s], there are two clouds of points for each value
of N, separating those representations containing both GOOG
and GOOGL stocks from the others. However, restricting the
analysis to a specific cloud of points, we observe that a dis-
tinct, positive correlation exists between the collected values,
which is quantified by Table II in terms of the Pearson cor-
relation and linear coefficients. The correlation is weak when
N =2, growing up to values higher than 0.8 for mappings
with N ~ n. Equation (14) sheds light on the presence of such
correlation, showing that a reduction of the coarse-grained
resolution is beneficial for a CG mapping if and only if it is
not counterbalanced by an increase in ) . p(X) In{Q;[s(¥)]}.
The latter situation is experienced by mappings containing
both GOOG and GOOGL stocks, which possess a low-H[s]
probability distribution not because of their informativeness,
but only because the number of resolved CG labels s is lim-
ited.
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FIG. 11. Comparison between the values Sy, given by Eq. (11)
and those of ST [Eq. (A11)]. The top and bottom panels correspond
to the models m1, m2 considered in Sec. III B, respectively. Points are
coloured according to the number N of retained degrees of freedom,

ranging from 1 to n.

3. Mapping entropy of biomolecules: A comparison with
previous strategies

In two recent articles [17,44], some of us exploited the
mapping entropy as an instrument to explore the space of
coarse-grained mappings of 6D93. For this quantity to be
computed from a fully atomistic MD trajectory, a few ap-
proximations are employed in these works, giving rise to the
approximated mapping entropy:

2
St = ke YO — UL A1)
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TABLE II. Pearson correlation (r) and linear interpolation (g)
coefficients between the values of S and those of Sy, (see Fig. 11)
for the two models considered. At each value of the number of
CG sites N, the coefficients are calculated considering mappings
containing both Google stocks (7, qg) and representations in which

there is at most one of the two Google stocks (7, gg)-

ml m2

N G 96 TG qc rG 96 e qc
2 / / 023 0.16 / / 0.15 0.05
3 025 022 054 047 022 010 043 0.18
4 054 058 067 062 045 021 055 023
5 069 079 075 070 056 026 062 026
6 078 091 079 075 0.62 028 066 028
7 084 1.00 081 077 066 030 070 031
8 0.88 106 075 070 071 033 072 034
9 090 1.03 / / 075 037 073 037
10 / / / / 079 044 072 042
11 / / / / 0.82 0.5 / /

where the sum runs over CG labels s, U is the potential
energy of the system and the subscript s denotes an average
conditioned to the CG label s. In other words, the approximate
mapping entropy of a CG label s is given by the variance of
the potential energy proper of those high-resolution configu-
rations X mapping onto it.

Such approximations are necessary due to the incapacity
of calculating the probability distributions involved in the
definition of the mapping entropy, which is the canonical
average of the logarithm of p(X)/p(X) [see Eq. (11)]. Both
p(¥) and p(X) are complicated to extract because of their high
dimensionality and the numerical instabilities associated to
the explicit calculations of the exponentials.

Analogously to Eq. (27), we can define an average mapping
entropy

1
> = rd Shap(K).
{K}

(A13)
In Fig. 12 we report the comparison of the values of ¥ and
% calculated for the data set of 4968 mappings with N = 31
employed in Ref. [44]. The scatter plot shows that a good
but not perfect correspondence exists between the two sets
of values. It is important to underline how the nature of the
energy considered in the calculation of S,’?lap can possibly play

TABLE III. Differences between the values of conservation
probabilities for the terminal atoms of residues GLU24 and LYS27.
The difference is striking especially for GLU24, as its terminal atoms
are never conserved in the Kullback-Leibler-based optimization.

Atom P céms Peons
GLU24-CD 0.27 0.00
GLU24-OE1 0.21 0.00
GLU24-OE2 0.44 0.02
LYS27-CE 0.52 0.17
LYS27-NZ 0.44 0.27

22 A

20 A

18 1

14 4

124

104

0.38 0.39 0.40 0.41 0.42 0.43

FIG. 12. Comparison of the values of mapping entropy calcu-
lated using the original Kullback-Leibler formula [Spqp, Eq. (11)]
and the approximated expression Srﬂnap of Eq. (A12) [17], expressed in
units of kJ/mol/K. The protein displays a clear correlation between
the two expressions, resulting in a Pearson correlation coefficient

equal to 0.62.

a role in this difference: indeed, Sﬁap is computed employing
only the protein-protein interaction energy, thus neglecting
protein-solvent and solvent-solvent effects. Such approxima-
tion can give rise to a bias toward exposed regions, where the
interactions are not properly screened. One of the strengths of
Smap 18 represented by the fact that the solvent contribution is
taken into account more accurately by the probability. Overall,
further work is needed to assess the nature of this discrepancy.

Analogously to Sec. III C we now analyze the 48 optimal
mappings obtained minimizing X# (see Ref. [17]), with the
aim of comparing the resulting conservation probability P
to the one considered in the main text (Pns). Figure 13

Probability
1
0.5
o
GLU24
0

FIG. 13. Probability P2 _ of conserving each atom in an optimal
mapping built minimizing X#. With respect to Peons, P2, is more

concentrated in the terminal regions of charged residues, showing
more pronounced peaks in correspondence of peculiar atoms.
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shows how an optimal CG mapping of 6D93 must contain
the NH1 atom [PZ,((NH1, ARG6) = 0.92], while P.oy, is
more evenly distributed throughout the variable region of this
amino acid (see Fig. 9 and Sec. IIIC). Another interesting
difference emerging from a comparison between Fig. 9 and
Fig. 13 concerns the reduced values of conservation proba-
bilities assigned to terminal atoms of the variable regions of
GLU24 and LYS27; while these atoms were usually part of
low-%# mappings, they are almost never present in the CG
representations built minimizing ¥. GLU24 and LYS27 are

charged residues, and the energetic fluctuations proper to the
terminal atoms can be huge, especially when the considered
energies are not screened by the solvent. This is a further
proof that Sy,p is less biased toward solvent-exposed, charged

residues than S,’flap.

Overall, it is possible to conclude that Figs. 9 and 13
are quite similar, with P, that is, on average, more evenly
distributed over the full structure, displaying a tendency to
reduce the probability weight assigned to terminal atoms of
charged residues with respect to P
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