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Boundary conditions for the Boltzmann equation from gas-surface interaction kinetic models
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Boundary conditions for the Boltzmann equation are investigated on the basis of a kinetic model for gas-
surface interactions. The model takes into account gas and physisorbed molecules interacting with a surface
potential and colliding with phonons. The potential field is generated by fixed crystal molecules, and the
interaction with phonons represents the fluctuating part of the surface. The interaction layer is assumed to be
thinner than the mean free path of the gas and physisorbed molecules, and the phonons are assumed to be at
equilibrium. The asymptotic kinetic equation for the inner physisorbate layer is derived and used to investigate
gas distribution boundary conditions. To be more specific, a model of the boundary condition for the Boltzmann
equation is derived on the basis of an approximate iterative solution of the kinetic equation for the physisorbate
layer, and the quality of the model is assessed by detailed numerical simulations, which also clarify the behavior
of the molecules in the layer.
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I. INTRODUCTION

Empirically derived Maxwell boundary conditions have
traditionally been used at solid walls for Boltzmann equations.
The flux of reflected gas molecules (or particles) at the wall
is then specified as a linear combination between specular
reflection and diffuse reflection of the incident flux [1]. More
general boundary conditions for kinetic equations involve
scattering kernels relating the incident and reflected molecular
fluxes at the surface [1–6]. A main disadvantage of these
boundary conditions, however, is that they are mathematical
in nature, derived empirically, and not related to physical
quantities like atom characteristics, crystal characteristics, or
interaction potentials [1]. A more physical approach is to
obtain information about the reflected molecules by the use
of molecular dynamics (MD) simulations [7–10]. However, it
is not easy in general to construct handy models of gas-solid
interaction on the basis of the results of MD simulations.

An alternative physical approach is to use kinetic equations
that describe gas molecules subject to a potential field gen-
erated by fixed crystal molecules and colliding with phonons
describing the fluctuating part of the surface potential [11–19].
A kinetic equation for volume or surface phonons may also
be introduced [11,20–22], but it may otherwise be assumed
that phonons are at equilibrium [12,13]. We investigate in
this paper gas distribution functions in the neighborhood of
a crystal surface on the basis of a kinetic framework similar
to that used in [11–18]. The phonons are assumed to be at
equilibrium for the sake of simplicity.

The kinetic equation governing the distribution function
near the crystal is rescaled by assuming that the adsorbate
layer is thin in comparison with the mean free path and that
the phonon-molecule collision dynamics is fast with respect

to molecular collisions. This implies in particular that the
characteristic time of transit through the layer is shorter than
the gas mean free time for collisions. In contrast, previous
work by two of the present authors was associated with fluid
type scalings and reactive crystal surfaces [23–26].

The rescaled inner structure of the physisorbate is an-
alyzed, and the zeroth-order equation, which involves the
interaction potential and the phonon collision operator, is ob-
tained. The equation forms a half-space problem that has a
different structure from traditional half-space problems rele-
vant to Knudsen layers [27–29]. More specifically, its solution
is determined by specifying the velocity distribution for the
molecules toward the surface at infinity. Therefore, the ve-
locity distribution of the outgoing molecules at infinity is
determined by that of the incident molecules there. This
means that the solution of the half-space problem for the
physisorbate layer provides the boundary condition for the
Boltzmann equation that holds outside the layer.

We first propose an iteration scheme for the half-space
problem for the physisorbate layer and construct a model
of the boundary condition for the Boltzmann equation on
the basis of the first iteration. The model has the form of
the Maxwell boundary condition with a velocity-dependent
accommodation coefficient. Then, we carry out an accurate
numerical analysis of the problem, assuming some explicit
forms of the interaction potential as well as the phonon
characteristic time, in order to observe the resulting velocity
distribution of the outgoing molecules at infinity deter-
mined in response to a given velocity distribution of the
incoming molecules there. The numerical result validates the
model based on the first iteration and also reveals singu-
lar properties of the half-space problem for the physisorbate
layer.
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FIG. 1. Typical surface interaction potential W as a function of ζ .

The paper is organized as follows. A kinetic model for
gas-surface interaction is proposed in Sec. II, and the kinetic
equation for the inner physisorbate layer is derived by appro-
priate scaling (kinetic scaling) in Sec. III. In Sec. IV, it is
shown that the boundary condition for the Boltzmann equa-
tion is related to the solution of the half-space problem for
the inner physisorbate layer. An approximate solution for the
half-space problem and the resulting model of the boundary
condition for the Boltzmann equation are obtained in Sec. V.
Then, the same half-space problem is solved numerically for
the purpose of validating the model boundary condition in
Sec. VI and clarifying the behavior of the solution in Sec. VII.
Finally, Sec. VIII is devoted to concluding remarks.

II. A GAS-SURFACE INTERACTION KINETIC MODEL

The kinetic equation modeling a gas interacting with a
crystal surface is presented in this section [11–18].

A. Interaction potential and Maxwellians

We consider a single monatomic gas interacting with a
crystal surface assumed to be planar and located at z = 0
with the spatial coordinates written as x = (x, y, z). The base
vector ez is in the normal direction and oriented toward the
gas, and the tangential coordinates read x‖ = (x, y) with x =
(x‖, z). We denote by W the interaction potential between
fixed crystal molecules and physisorbed or gas molecules.
The interaction potential W is assumed to only depend on the
normal coordinate z for the sake of simplicity and is written
in the form

W(z) = Ws(z/δ) = Ws(ζ ), (1)

where δ is a characteristic range of the surface potential and
ζ = z/δ denotes the rescaled normal coordinate, which is
dimensionless. The rescaled potential Ws is such that

lim
ζ→0

Ws(ζ ) = +∞, lim
ζ→+∞

Ws(ζ ) = 0, (2)

and usually involves an attractive zone and a repulsing zone
as Lennard-Jones (LJ) potentials integrated over all crystal
molecules, as illustrated in Fig. 1. In the repulsive zone
(0, ζmin), where ζmin > 0, the potential W decreases from +∞
to Wmin = Ws(ζmin) < 0 and in the attractive zone (ζmin, +∞)
the potential W increases from Wmin up to zero.

The wall Maxwellian distribution is given by

M(c) =
( m

2πkBTw

)3/2
exp

(
− m|c|2

2kBTw

)
, (3)

where m denotes the gas molecular mass, kB denotes the
Boltzmann constant, c denotes the physisorbed or gas molec-
ular velocity, and Tw denotes the wall temperature. We also
denote by cz the normal velocity and by c‖ = (cx, cy) the
tangential velocity so that c = (c‖, cz ). The wall temperature
Tw is assumed to be constant and uniform.

The modified Maxwellian distribution is defined as

m = M exp
(
− W

kBTw

)
=

( m

2πkBTw

)3/2
exp

(
− m|c|2

2kBTw
− W

kBTw

)
. (4)

B. Kinetic equation

The monatomic gas is assumed to be governed by the
Boltzmann equation [11,12,14]

∂ f

∂t
+ c · ∂ f

∂x
− 1

m

∂W

∂x
· ∂ f

∂c
= J ( f , f ) + Jph( f ), (5)

where f (t, x, c) denotes the velocity distribution function of
physisorbed or gas molecules, J ( f , f ) denotes the gas-gas
collision operator, and Jph( f ) denotes the gas-phonon colli-
sion operator.

The gas-gas collision operator J ( f , f ) is in the traditional
form [30–33]

J ( f , f ) =
∫

[ f (c′) f (c′
∗) − f (c) f (c∗)]W dc∗dc′dc′

∗, (6)

where in a direct collision c∗ denotes the velocity of the
collision partner, c′ and c′

∗ denote the velocities after collision,
W denotes the transition probability for gas-gas collisions,
and the dependence on (t, x) has been left implicit. Only
binary collisions are considered and the transition proba-
bility W satisfies the reciprocity relation W(c, c∗, c′, c′

∗) =
W(c′, c′

∗, c, c∗) associated with microreversibility. The colli-
sion term J may equivalently be written in terms of collision
cross sections [1,30–34]. The collisional invariants of the
operator J are associated with molecular number ψ1 = 1,
momentum ψ1+ν = mcν , ν ∈ {1, 2, 3}, as well as energy
ψ5 = 1

2 m|c|2 + W.
The phonon collision operator Jph( f ) is in the form

Jph( f ) =
∫ ( f (c′)

m(c′)
− f (c)

m(c)

)
Wphdc′, (7)

where Wph denotes the transition probability. This operator is
derived in Appendix A under the assumption that the phonons
are at equilibrium [11,12]. The transition probability Wph sat-
isfies the reciprocity relation Wph(c, c′) = Wph(c′, c) and is
nonzero only in the neighborhood of the surface. The collision
term Jph may further be simplified as −( f − nM)/τph where
n = ∫

f dc denotes the local number density and τph denotes
a relaxation time independent of c [12]. The momentum and
energy are not conserved by Jph, since they may be given to
phonons, and Jph only conserves the number of gas molecules
with the invariant ψ1 = 1.
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From the definition of the modified Maxwellian distribu-
tion and the properties of collision operators, it is obtained
that

∂m

∂t
= 0, c · ∂m

∂x
− 1

m

∂W

∂x
· ∂m

∂c
= 0,

J (m, m) = 0, Jph(m) = 0. (8)

The modified Maxwellian distribution m thus appears as a
natural solution of isothermal thin layer kinetic equations in
a potential field with phonon interactions or equivalently as a
natural steady solution of the corresponding kinetic equation.
Decomposing the second equation in Eq. (8) into the parallel
and normal directions with respect to the surface, we may also
write

∂m

∂x‖
= 0, cz

∂m

∂z
− 1

m

dW

dz

∂m

∂cz
= 0. (9)

Since the phonon collision operator Jph vanishes far from
the surface as well as the potential W, we may let z → ∞ in
Eq. (5) in order to obtain the kinetic equation in the gas phase

∂ fg

∂t
+ c · ∂ fg

∂x
= J ( fg, fg), (10)

where fg(t, x, c) denotes the distribution function of gas
molecules. This kinetic equation (10) is the standard Boltz-
mann equation for a monatomic gas and there is thus a
sole kinetic framework describing both gas and physisorbed
molecules. The gas equation is thus recovered far from the
surface and the distribution f must converge to fg far from the
surface. The macroscopic conservation equations in the gas
are further obtained by taking moments of Eq. (10) with the
inner product

〈ξ (c), ζ (c)〉 =
∫

ξ (c)ζ (c) dc,

where ξ (c) and ζ (c) are arbitrary functions of c. The
macroscopic properties naturally associated with the gas
read 〈 fg, ψ1〉 = ng, 〈 fg, ψ1+ν

g 〉 = ρgvg ν , and 〈 fg, ψ5〉 =
1
2ρg|vg|2 + Eg where ng denotes the gas number density, ρg =
ngm denotes the gas mass density, vg denotes the gas mass
average fluid velocity, vgν denotes the component in the di-
rection ν of vg, and Eg = ng( 3

2 kBTg + W) denotes the internal
energy per unit volume, where Tg is the gas temperature.

C. Surface kinetic entropy

The kinetic entropies compatible with the phonon colli-
sion operators Jph are slightly different from the traditional
expressions. The origin of this modification is that phonons
are supposed to be at equilibrium and the collision term Jph

has been simplified accordingly. Since phonons are interacting
with gas molecules, there should still be a phonon entropy
increase associated with this interaction. Such an increase
of phonon entropy having been discarded, the corresponding
terms are missing in the total entropy production and modified
entropies have to be introduced [35,36]. These modifications
are generally no longer required when phonons’ kinetic equa-
tions are taken into account [21,22].

The kinetic entropy per unit volume associated with the
physisorbed or gas molecules is defined by

Skin = −kB

∫
f [log( f /m) − 1] dc. (11)

Multiplying the Boltzmann equation (5) by log( f /m), us-
ing Eq. (8), and integrating with respect to c, we obtain a
balance equation for Skin in the form

∂Skin

∂t
+ ∂

∂x
· Fkin = vkin, (12)

where Fkin is the kinetic entropy flux

Fkin = −kB

∫
c f [log( f /m) − 1] dc,

and vkin the kinetic entropy source term. The entropy source
term vkin may be split as vkin = vkin

co + vkin
ph where

vkin
co = −kB

∫
J ( f , f ) log( f /m) dc, (13)

vkin
ph = −kB

∫
Jph( f ) log( f /m) dc. (14)

Noting that log(m) is a collisional invariant of J and may be
eliminated from Eq. (13), and using standard arguments from
kinetic theory, it is obtained that

vkin
co = kB

4

∫
ϒ( f (c) f (c∗), f (c′) f (c′

∗)) W dc dc∗dc′dc′
∗,

(15)
where ϒ denotes the non-negative function ϒ(x, y) = (x −
y)(log x − log y). Similarly, it is obtained that

vkin
ph = kB

2

∫
ϒ( f (c)/m(c), f (c′)/m(c′))Wph dc dc′. (16)

Since the function ϒ only takes non-negative values, both
vkin

co and vkin
ph are non-negative as well as vkin = vkin

co + vkin
ph .

The Boltzmann equation (5) is therefore compatible with the
Boltzmann H theorem and leads to a dissipative structure at
the molecular level.

III. INNER LAYER KINETIC EQUATION

In order to investigate the interaction layer and kinetic
boundary conditions, a kinetic scaling is introduced and the
inner layer kinetic equation is obtained.

A. Kinetic scaling

We introduce characteristic quantities that are marked with
the � superscript. We denote by n� the characteristic number
density and by τ �

fr the characteristic mean free time. We de-
note by v� = (kBTw/m)1/2 the characteristic thermal speed,
by f � = n�/v�3 the characteristic molecular velocity distribu-
tion, by λ� = τ �

frv
� the mean free path, by W� = 1/(n�τ �

frv
�6)

the characteristic transition probability, and by W� = mv�2

the characteristic potential. We also introduce the character-
istic time for phonon interaction τ �

ph that is easily related
to the characteristic transition probability W�

ph with 1/τ �
ph =

W�
phv

�6. We recall that δ, which appeared in Sec. II A, is the
characteristic length of the range of the surface potential, that
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is, the distance normal to the surface where W is significant,
so that the corresponding characteristic time of transit through
the layer is given by τ �

la = δ/v�.
With these characteristic quantities, we introduce the di-

mensionless quantities t̂ , x̂, ĉ, f̂ , f̂g, Ŵ, m̂, Ŵ, and Ŵph, which
correspond to t , x, c, f , fg, W, m, W, and Wph, respectively,
by the following relations:

t̂ = t/τ �
fr, x̂ = x/λ�, ĉ = c/v�, f̂ = f v�3/n�,

f̂g = fg v�3/n�, m̂ = mv�3, Ŵ = W/W�,

Ŵph = Wph/W�
ph, Ŵ(ζ ) = W(z)/W� = Ws(ζ )/mv�2, (17)

where the arguments of Ŵ, W, and Ws are shown ex-
plicitly for clarity. Substituting Eq. (17) into Eq. (5) and
dividing the resulting equation by n�/τ �

frv
�3, we obtain

the rescaled dimensionless kinetic equation. In this pro-
cess, we note that ζ appearing in Eq. (2) is expressed as
ζ = z/δ = (λ�/δ)(z/λ�) = (1/ε)(z/τ �

frv
�), where ε = δ/λ�,

so that dW/dz = (mv�/τ �
fr )(1/ε)(dŴ/dζ ) holds.

The rescaled kinetic equation involves the dimensionless
parameters

εph = τ �
ph

τ �
fr

, ε = δ

λ�
= τ �

la

τ �
fr

. (18)

The characteristic times and lengths at the solid-gas interface
are generally such that τ �

ph � τ �
fr and δ � λ� so that ε � 1

and εph � 1 [12]. Our aim in this paper is to derive kinetic
boundary conditions and it is thus assumed that ε 
 1 so that
δ 
 λ� and the adsorbate layer is a thin layer. Equivalently
we have τ �

la 
 τ �
fr and the characteristic time of transit through

the adsorbate layer τ �
la is shorter than the mean free time τ �

fr.
It is further assumed that the characteristic time for phonon-
molecule collisions τ �

ph is of the same order as the transit time
τ �

la and we may write

εph = ε 
 1. (19)

This corresponds to a fast phonon-molecule dynamics τ �
ph =

τ �
la 
 τ �

fr and may be seen as the simplest kinetic scaling of the
adsorbate layer model. It differs from the fluid scalings used in
previous work concerned with fluid type boundary conditions
[23–26].

In summary, under the assumption (19), the resulting
rescaled dimensionless equation reads

∂ f̂

∂ t̂
+ ĉ‖ · ∂ f̂

∂ x̂‖
+ ĉz

∂ f̂

∂ ẑ
− 1

ε

dŴ

dζ

∂ f̂

∂ ĉz
= 1

ε
Ĵph( f̂ ) + Ĵ ( f̂ , f̂ ),

(20)

where ĉ‖ = (ĉx, ĉy), x̂‖ = (x̂, ŷ), and

Ĵ ( f̂ , f̂ ) =
∫ [

f̂ (ĉ′) f̂ (ĉ′
∗) − f̂ (ĉ) f̂ (ĉ∗)

]
Ŵ d ĉ∗d ĉ′d ĉ′

∗, (21a)

Ĵph( f̂ ) =
∫ ( f̂ (ĉ′)

m̂(ĉ′)
− f̂ (ĉ)

m̂(ĉ)

)
Ŵphd ĉ′, (21b)

m̂ = (2π )−3/2 exp(−|ĉ|2/2 − Ŵ). (21c)

Here, we naturally assume that Jph also has a length scale δ

and Ĵph vanishes as ζ → ∞. Then, taking the limit ζ → ∞ of

Eq. (20), we recover the dimensionless version of the Boltz-
mann equation Eq. (10) in the gas phase, i.e.,

∂ f̂g

∂ t̂
+ ĉ · ∂ f̂g

∂ x̂
= Ĵ ( f̂g, f̂g). (22)

B. Inner layer

The surface interaction potential W depends on the adsor-
bate layer coordinate

ζ = ẑ/ε, (23)

and the problem appears as multiscale, since it involves the
normal coordinate ẑ = z/λ� as well as the inner layer coordi-
nate ζ . In order to investigate the adsorbate layer, we denote
the solution in the layer by f and assume the form

f = f̂g(t̂, x̂‖, ẑ, ĉ) + fLC(t̂, x̂‖, ζ , ĉ‖, ĉz ), (24)

where f̂g is the solution of Eq. (22), that is, the solution outside
the adsorbate layer, and fLC is the corrector inside the layer
that is assumed to vanish as ζ → ∞. We note that f̂g and
thus Eq. (22) have been extended to ẑ = 0 in Eq. (24). If we
take into account the fact that the inner layer distribution f
is a function of t̂ , x̂‖, ζ , ĉ‖, and ĉz, we have the following
equation for f by rescaling Eq. (20):

∂ f
∂ t̂

+ ĉ‖ · ∂ f
∂ x̂‖

+ 1

ε
ĉz

∂ f
∂ζ

− 1

ε

dŴ

dζ

∂ f
∂ ĉz

= 1

ε
Ĵph(f) + Ĵ (f, f).

(25)

Equation (25) suggests that f be expanded as f = f〈0〉 +
O(ε). Accordingly, the outer solution f̂g and the layer cor-
rector fLC are also expressed as f̂g = f̂ 〈0〉

g + O(ε) and fLC =
f〈0〉
LC + O(ε), where the O(ε) term in the latter should vanish

as ζ → ∞. It is obvious that f̂ 〈0〉
g is also governed by the

Boltzmann equation (22). In the following, we consider only
the zeroth order in ε, so that these forms are sufficient. From
Eq. (25), the equation for the zeroth order is obtained as

ĉz
∂ f〈0〉

∂ζ
− dŴ

dζ

∂ f〈0〉

∂ ĉz
= Ĵph(f〈0〉). (26)

On the other hand, Eq. (24) may be written as

f〈0〉(t̂, x̂‖, ζ , ĉ‖, ĉz ) = f̂ 〈0〉
g (t̂, x̂‖, εζ , ĉ‖, ĉz )

+ f〈0〉
LC(t̂, x̂‖, ζ , ĉ‖, ĉz ) + O(ε).

(27)

Now, we let ζ = 1/
√

ε in Eq. (27) and take the limit as ε → 0
recalling that f〈0〉

LC vanishes as ζ → ∞. Then, we have

f〈0〉(t̂, x̂‖, ∞, ĉ‖, ĉz ) = f̂ 〈0〉
g (t̂, x̂‖, 0, ĉ‖, ĉz ). (28)

This provides the connection condition between the inner
physisorbate layer and the outer gas domain.

C. Simplified phonon collision operator

It is assumed in the following that the phonon collision
operator is in the relaxation form

Jph( f ) = − 1

τph
( f − nM), (29)
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where M is the wall Maxwellian given by Eq. (3), n is the
molecular number density defined by

n =
∫

f dc,

and τph is the phonon relaxation time, which is positive, de-
pendent on z, and independent of the molecular velocity c. The
form (29) introduced by Borman et al. simplifies the analysis
of the adsorbate layer [11,12,16]. Here, we assume that τph

has the same length scale of variation as the potential W and
is a function of the scaled normal coordinate ζ , i.e.,

τph(z) = τph,s(z/δ) = τph,s(ζ ). (30)

Since there is no interaction between molecules and phonons
far from the surface, we make the natural assumption
limz→∞ τph(z) = limζ→∞ τph,s(ζ ) = ∞.

In order to nondimensionalize Eq. (29), we need to intro-
duce additional dimensionless quantities n̂, τ̂ph, and M̂ defined
by

n̂ = n/n�, M̂ = Mv�3, τ̂ph(ζ ) = τph(z)/τ �
ph = τph,s(ζ )/τ �

ph.

(31)

Then, because of Eqs. (18) and (19), Eq. (29) is expressed as

Jph( f ) = n�

τ �
frv

�3

1

ε
Ĵph( f̂ ), Ĵph( f̂ ) = − 1

τ̂ph(ζ )
( f̂ − n̂M̂), (32)

where

n̂ =
∫

f̂ d ĉ, (33a)

M̂ = (2π )−3/2 exp
(−|ĉ|2/2

)
. (33b)

IV. INNER LAYER AND BOUNDARY CONDITION FOR
THE BOLTZMANN EQUATION

In this section, we discuss the relation between the inner
adsorbate layer and the boundary condition for the Boltzmann
equation.

A. Inner layer problem

First, we formulate the inner layer problem. In what fol-
lows, the superscript 〈0〉 of f〈0〉 and f̂ 〈0〉

g is omitted, since
only the zeroth-order quantities will be considered. Then, the
inner layer kinetic equation (26) with the simplified phonon
collision operator (29) or (32) reads

ĉz
∂ f
∂ζ

− dŴ(ζ )

dζ

∂ f
∂ ĉz

= − 1

τ̂ph(ζ )

(
f − n̂M̂

)
, (0 < ζ < ∞),

(34)

with M̂ given by Eq. (33b) and n̂ given by

n̂ =
∫

f d ĉ. (35)

Note that n̂ is the zeroth-order number density in the inner
layer. In addition, the connection condition (28) becomes

f(ζ → ∞, ĉz ) = f̂g(ẑ = 0, ĉz ). (36)

Here and in what follows, the arguments t̂ , x̂‖, and ĉ‖, which
are just the parameters in Eq. (34), are not shown explicitly

FIG. 2. Schematic view of the characteristic lines (1/2)ĉ2
z +

Ŵ(ζ ) = const of Eq. (34) in the (ζ , ĉz ) plane. The direction of the
lines is shown by the arrows.

unless confusion may arise. Integrating both sides of Eq. (34)
with respect to ĉ over R3 and considering the fact that f → 0
as |ĉz| → ∞, we have

∂

∂ζ

∫
ĉzfd ĉ = 0. (37)

Since there is no molecule when ζ approaches zero, we have∫
ĉzfd ĉ = 0. (38)

As ζ → ∞, ∂f/∂ζ as well as dŴ(ζ )/dζ vanishes, since
we consider f bounded at infinity. If τ̂ph remains finite as
ζ → ∞, then Eq. (34) gives f = n̂M̂ at infinity. This situation
corresponds to usual half-space problems of the Boltzmann
equation in which Maxwellian distributions are assumed at in-
finity. In contrast, because 1/τ̂ph vanishes as ζ → ∞, Eq. (34)
imposes no condition on f at infinity. Since the gas molecules
undergo more or less free transport in the far field, we may
impose f arbitrarily but only for ĉz < 0 at infinity in analogy
with free-molecular flows, that is,

f(ζ , ĉz ) → f∞(ĉz ), as ζ → ∞, for ĉz < 0, (39)

where f∞ is an arbitrary function of ĉz (and t̂ , x̂‖, and ĉ‖).
Figure 2 shows the schematic view of the characteristic lines
ĉ2

z /2 + Ŵ(ζ ) = const of Eq. (34) in the (ζ , ĉz ) plane, where
the direction of the lines is also shown. Because of the prop-
erties of the potential Ŵ, the characteristic lines starting from
infinity do not touch the wall and go back to infinity. There-
fore, we expect that the solution of Eq. (34) is determined
uniquely just by imposing the condition (39) as will also be
shown numerically later. If it is the case, Eq. (34) with Eq. (39)
determines the solution f and thus f for ĉz > 0 at infinity. In
other words, the solution defines the operator � that maps
f(ζ → ∞, ĉz < 0) to f(ζ → ∞, ĉz > 0), i.e.,

f(ζ → ∞, ĉz > 0) = � f(ζ → ∞, ĉz < 0), (40)

or equivalently

f̂g(ẑ = 0, ĉz > 0) = � f̂g(ẑ = 0, ĉz < 0), (41)
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because of Eq. (36). The operator � could be termed an
adsorbate-layer albedo operator.

Equation (41) indicates that the operator � provides the
boundary condition on the wall ẑ = 0 for f̂g, that is, for the
Boltzmann equation. We try to solve the inner layer problem,
Eqs. (34), (35), and (39), approximately in Sec. V and numer-
ically in Sec. VI to establish the operator �.

B. Change of variables

Now, we let

ε = 1
2 ĉ2

z + Ŵ(ζ ). (42)

Then, for each ε ∈ [Ŵmin, ∞), where Ŵmin = Wmin/kBTw, the
range of ζ is as follows:{

[ζa(ε), ∞) for ε � 0,

[ζa(ε), ζb(ε)] for Ŵmin � ε < 0,
(43)

where ζa(ε) is the solution of ε = Ŵ(ζ ) for ε � 0, and ζa(ε)
and ζb(ε) are the two solutions of the same equation satisfying
ζa(ε) � ζmin � ζb(ε) for Ŵmin � ε < 0.

Here, we transform the independent variables from (ζ , ĉz )
to (ζ , ε) and define

f±(ζ , ε) = f
(
ζ , ±

√
2

√
ε − Ŵ(ζ )

)
. (44)

Recall that the arguments (t̂, x̂‖, ĉ‖), common to both sides,
are omitted, and note that f+ corresponds to ĉz > 0, and f− to
ĉz < 0. Then, Eqs. (34) and (35) are transformed to

±
√

2
√

ε − Ŵ(ζ )
∂ f±
∂ζ

= − 1

τ̂ph(ζ )
[f± − n̂M̂(ζ , ε)], (45a)

M̂(ζ , ε) = (2π )−3/2 exp(−|ĉ‖|2/2 − ε + Ŵ(ζ )), (45b)

n̂ = 1√
2

∫ ∞

Ŵ(ζ )

[∫∫ ∞

−∞
(f− + f+)dĉxdĉy

]
1√

ε − Ŵ(ζ )
dε, (45c)

where M̂(ζ , ε) is the expression of M̂ in Eq. (33b) in terms of ζ and ε, and the number density n̂ is a function of t̂ , x̂‖, and ζ . In
addition, the boundary condition (39) becomes

f− → f∞(−
√

2ε), as ζ → ∞, for ε > 0. (46)

Since the molecules with energy ε stop their motion in the ζ direction and are then reflected when they reach ζa(ε) and ζb(ε), it
is natural to assume the following additional boundary conditions:

f+(ζa(ε), ε) = f−(ζa(ε), ε), for ε > Ŵmin, (47a)

f−(ζb(ε), ε) = f+(ζb(ε), ε), for Ŵmin < ε < 0. (47b)

The mass conservation (38) is transformed to ∫ ∞

Ŵ(ζ )

∫∫ ∞

−∞
(f+ − f−)dĉxdĉydε = 0. (48)

C. Integral equation

Let us solve Eq. (45) formally to express f± in terms of n̂, supposing that n̂ is known and regarding Eq. (45) as the ordinary
differential equations (ODEs) for f±. To be more specific, we integrate Eq. (45a), regarded as an ODE, for f− from ∞ to ζ for
ε > 0 under the boundary condition (46) and from ζb(ε) to ζ for Ŵmin < ε < 0 under the boundary condition (47b). Similarly,
we integrate Eq. (45a) for f+ from ζa(ε) to ζ for Ŵmin < ε under the boundary condition (47a). Then, we have the following
expressions:

f−(ζ , ε) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
θ (ζ , ∞; ε)

[
f∞(−√

2ε) + 1√
2

∫ ∞
ζ

θ (∞, s; ε) n̂(s)M̂(s, ε)

τ̂ph(s)
√

ε−Ŵ(s)
ds

]
, (ε > 0),

θ (ζ , ζb(ε); ε)
[
f+(ζb(ε), ε) + 1√

2

∫ ζb(ε)
ζ

θ (ζb(ε), s; ε) n̂(s)M̂(s, ε)

τ̂ph(s)
√

ε−Ŵ(s)
ds

]
,

(Ŵmin < ε < 0),

(49a)

f+(ζ , ε) = θ (ζa(ε), ζ ; ε)

[
f−(ζa(ε), ε) + 1√

2

∫ ζ

ζa (ε)
θ (s, ζa(ε); ε)

n̂(s)M̂(s, ε)

τ̂ph(s)
√

ε − Ŵ(s)
ds

]
, (49b)

θ (a, b; ε) = exp

(
− 1√

2

∫ b

a

dξ

τ̂ph(ξ )
√

ε − Ŵ(ξ )

)
. (49c)
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Combined with Eq. (45c), Eq. (49) can be regarded as the
integral equations for f±. If Eq. (49) is used in Eq. (45c), the
latter can be regarded as the integral equation for n̂. Equa-
tion (49) will be used occasionally in our discussions though
it will not be used for the numerical analysis. For ε > 0,
Eqs. (49a) and (49b) give the following expression of f+ as
ζ → ∞:

f+(∞, ε) = [θ (ζa(ε), ∞; ε)]2f∞(−
√

2ε)

+ θ (ζa(ε), ∞; ε)√
2

×
∫ ∞

ζa(ε)
[θ (ζa(ε), s; ε) + θ (s, ζa(ε); ε)]

× n̂(s)M̂(s, ε)

τ̂ph(s)
√

ε − Ŵ(s)
ds. (50)

V. APPROXIMATE SOLUTION

In order to establish the boundary condition (41) for the
Boltzmann equation, we have to solve the half-space problem,
Eqs. (45)–(47). It can be solved numerically, as we will do
in the next section. However, the numerical solution does
not give an explicit analytical form of the boundary operator
� in Eq. (41). In this section, therefore, we try to obtain
approximate iterative solutions to the half-space problem to
deduce explicit approximations of the operator �.

A. Iteration scheme and first approximation

On the basis of Eqs. (45c) and (49), we can construct the
following iteration scheme for f±:

n̂(n)(ζ ) = 1√
2

∫ ∞

Ŵ(ζ )

{∫∫ ∞

−∞
[f(n)

− (ζ , ε) + f(n)
+ (ζ , ε)]dĉxdĉy

}
1√

ε − Ŵ(ζ )
dε, (51a)

f(n+1)
− (ζ , ε) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
θ (ζ , ∞; ε)

[
f∞(−√

2ε) + 1√
2

∫ ∞
ζ

θ (∞, s; ε) n̂(n) (s)M̂(s, ε)

τ̂ph(s)
√

ε−Ŵ(s)
ds

]
, (ε > 0),

θ (ζ , ζb(ε); ε)
[
f(n+1)
+ (ζb(ε), ε) + 1√

2

∫ ζb(ε)
ζ

θ (ζb(ε), s; ε) n̂(n) (s)M̂(s, ε)

τ̂ph(s)
√

ε−Ŵ(s)
ds

]
,

(Ŵmin < ε < 0),

(51b)

f(n+1)
+ (ζ , ε) = θ (ζa(ε), ζ ; ε)

[
f(n+1)
− (ζa(ε), ε) + 1√

2

∫ ζ

ζa (ε)
θ (s, ζa(ε); ε)

n̂(n)(s)M̂(s, ε)

τ̂ph(s)
√

ε − Ŵ(s)
ds

]
, (51c)

where f(n)
± denotes the nth iteration of f± and n̂(n) denotes the nth iteration of n̂. It should be recalled that the arguments t̂ , x̂‖, and

ĉ‖ are omitted in f(n+1)
± , and t̂ and x̂‖ are omitted in n̂(n).

Now, we consider the first iteration f(1)
± starting from the following zeroth guess f(0)

± :

f(0)
+ = f(0)

− = β̂ m̂(ε), (52)

where

m̂(ε) = (2π )−3/2 exp(−|ĉ‖|2/2 − ε), (53)

which is the expression of m̂ in Eq. (21c) in terms of ε, and β̂ is a constant to be determined later. Note that Eq. (52) is an exact
solution of Eq. (45). Then, Eq. (51a) gives

n̂(0)(ζ ) = β̂ exp(−Ŵ(ζ )). (54)

It should be remarked that this density is the same as that obtained at the zeroth order in ε, with a fluid scaling, for the physisorbed
molecules [see Eq. (70) in [25]]. With Eq. (54), the integrals in Eqs. (51b) and (51c) can be calculated explicitly.

Let us first consider the case where ε > 0. Since n̂(0)(s)M̂(s, ε) = β̂m̂(ε), the integral in the first line of Eq. (51b) is reduced
as follows:

1√
2

∫ ∞

ζ

θ (∞, s; ε)
n̂(0)(s)M̂(s, ε)

τ̂ph(s)
√

ε − Ŵ(s)
ds = −β̂m̂(ε)

∫ ∞

ζ

∂

∂s
θ (∞, s; ε)ds = β̂m̂(ε)[θ (∞, ζ ; ε) − 1]. (55)

The integral in Eq. (51c) can be calculated in the same way. As the result, f(1)
± for ε > 0 are obtained as follows:

f(1)
− (ζ , ε) = θ (ζ , ∞; ε)f∞(−

√
2ε) + [1 − θ (ζ , ∞; ε)]β̂m̂(ε), (56a)

f(1)
+ (ζ , ε) = θ (ζa(ε), ζ ; ε)f(1)

− (ζa(ε), ε) + [1 − θ (ζa(ε), ζ ; ε)]β̂m̂(ε). (56b)

From Eq. (56), it follows that

f(1)
+ (∞, ε) = θ (ζa(ε), ∞; ε) f(1)

− (ζa(ε), ε) + [1 − θ (ζa(ε), ∞; ε)]β̂ m̂(ε)

= [θ (ζa(ε), ∞; ε)]2 f(1)
− (∞, ε) + {1 − [θ (ζa(ε), ∞; ε)]2}β̂ m̂(ε) (57)
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where f∞(−√
2ε) in Eq. (56a) has been replaced with the

equivalent f(1)
− (∞, ε) for later convenience.

Now, we go back from the (ζ , ε) representation to the
original (ζ , ĉz ) representation. We omit the superscript (1) of
f(1)
± , supposing that f(1)

± is an approximation of f±, and note
that

f+(ζ , ε) = f(ζ , ĉz ) for ĉz > 0, (58a)

f−(ζ , ε) = f(ζ , ĉz ) for ĉz < 0, (58b)

ε = ĉ2
z /2 at ζ = ∞. (58c)

Then, Eq. (57) leads to the following expression:

f(∞, ĉz ) = [1 − α̂
(
ĉ2

z

)
] f(∞, −ĉz ) + α̂

(
ĉ2

z

)
β̂ M̂(ĉ),

for ĉz > 0, (59)

where

α̂
(
ĉ2

z

) = 1 − [
θ
(
ζa

(
ĉ2

z /2
)
, ∞; ĉ2

z /2
)]2

= 1 − exp

(
−

√
2

∫ ∞

ζa(ĉ2
z /2)

dξ

τ̂ph(ξ )
√

ĉ2
z /2 − Ŵ(ξ )

)
,

(60)

and M̂(ĉ) is given by Eq. (33b). Recall that ζa(ĉ2
z /2) is the

solution of Ŵ(ζ ) = ĉ2
z /2 and note that 0 < α̂(ĉ2

z ) < 1 holds.
It should be noted here that the mass is not generally

conserved for f(1)
± . Therefore, β̂ in Eq. (59) is chosen in such a

way that the mass conservation (38) is satisfied at ζ = ∞. As
the result, β̂ is obtained as follows:

β̂ = −
√

2π

[∫ ∞

0
ĉzα̂

(
ĉ2

z

)
exp

(−ĉ2
z /2

)
dĉz

]−1 ∫
ĉz<0

ĉzα̂(ĉ2
z )f(∞, ĉz )d ĉ. (61)

Equation (59) with Eqs. (60) and (61) provides an approximation of the operator � in Eq. (40), and thus in Eq. (41).
In order to complete f(1)

± , we need to consider the case where Ŵmin < ε < 0. In this case, the second line of Eq. (51b) and
Eq. (51c) give

f(1)
− (ζ , ε) = θ (ζ , ζb(ε); ε)f(1)

+ (ζb(ε), ε) + [1 − θ (ζ , ζb(ε); ε)]β̂m̂(ε), (62a)

f(1)
+ (ζ , ε) = θ (ζa(ε), ζ ; ε)f(1)

− (ζa(ε), ε) + [1 − θ (ζa(ε), ζ ; ε)]β̂m̂(ε), (62b)

from which it follows immediately that

f(1)
+ = f(1)

− = β̂ m̂(ε), Ŵmin < ε < 0. (63)

With Eqs. (56) and (63), we can obtain the second iteration f(2)
± from Eq. (51) with n = 1. In particular, f(2)

± (∞, ε) can be
obtained as [see Eq. (50)]

f(2)
+ (∞, ε) = [θ (ζa(ε), ∞; ε)]2f∞(−

√
2ε) + θ (ζa(ε), ∞; ε)√

2

∫ ∞

ζa(ε)
[θ (ζa(ε), s; ε) + θ (s, ζa(ε); ε)]

n̂(1)(s)M̂(s, ε)

τ̂ph(s)
√

ε − Ŵ(s)
ds, (64)

where ε > 0. The explicit form of n̂(1) is given in Appendix B. We note that β̂ contained in n̂(1) is an adjustable parameter
to satisfy the mass conservation for f(2)

± . Equation (64) provides the second approximation of the operator � in the boundary
condition (41) for the Boltzmann equation.

B. Summary of the first approximation boundary condition

In the previous subsection, we have constructed approximate forms of the operator � in Eq. (41), which is the boundary
condition for the Boltzmann equation on the wall, in the dimensionless setting. It is straightforward to transform the results to
their dimensional forms. In this subsection, restricting ourselves to the first approximation, we will summarize the result.

The dimensional version of the first approximation of Eq. (41) is expressed as follows:

fg(t, x, c‖, cz ) = [
1 − α

(
c2

z

)]
fg(t, x, c‖, −cz ) + α

(
c2

z

)
β M(c), at z = 0 for cz > 0, (65)

where

M(c) =
(

m

2πkBTw

)3/2

exp

(
− m|c|2

2kBTw

)
, (66a)

α
(
c2

z

) = 1 − exp

(
−

√
2m

∫ ∞

za(mc2
z /2)

dz

τph(z)
√

mc2
z /2 − W(z)

)
= 1 − exp

(
−

√
2m δ

∫ ∞

ζa(mc2
z /2kBTw )

dζ

τph,s(ζ )
√

mc2
z /2 − Ws(ζ )

)
,

(66b)

β = −
(

2πkBTw

m

)1/2[∫ ∞

0
czα

(
c2

z

)
exp

(
− mc2

z

2kBTw

)
dcz

]−1 ∫
cz<0

czα
(
c2

z

)
fg(t, x, c‖, cz )dc. (66c)
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Here, za(mc2
z /2) = δ ζa(mc2

z /2kBTw), i.e., z = za is the so-
lution of W(z) = mc2

z /2. In Eq. (66b), the middle is the
expression in terms of the dimensional normal coordinate z,
and the rightmost is that in terms of the dimensionless rescaled
normal coordinate ζ = z/δ.

Equation (65) with Eq. (66) provides an explicit form of
the operator � in Eq. (41) and is of the form of the so-called
Maxwell type condition with cz-dependent accommodation
coefficient α(c2

z ). When 1/τph(z) is sufficiently small, α(c2
z ) ≈

0, so that Eq. (65) reduces to the specular reflection; when
1/τph(z) is sufficiently large, α(c2

z ) ≈ 1, so that it reduces
to the diffuse reflection. It should be emphasized that the
accommodation coefficient α(c2

z ) is explicitly expressed in
terms of the phonon characteristic time τph(z) and the potential
W(z). In summary, Eqs. (65) and (66) give a model of the
gas-surface interaction explicitly expressed in terms of the
surface properties. This boundary condition will be compared
with the numerical result obtained by solving the original
half-space problem in the next section.

Under quite general assumptions, the boundary condition
for the Boltzmann equation in the present geometry can be
written in the following general form:

cz fg(t, x, c) =
∫

c∗z<0
|c∗z| fg(t, x, c∗)R(t, x‖; c, c∗)dc∗,

at z = 0 for cz > 0, (67)

where R(t, x‖; c, c∗)dc indicates the probability that a
molecule incident on the boundary with velocity c∗ is reflected
with the velocity contained in the neighborhood dc around c
at time t and position (x‖, 0) [1,33]. The probability density
R(c, c∗), where t and x‖ are not shown explicitly, should
satisfy the following conditions: (i) R(c, c∗) � 0 for cz > 0
and c∗z < 0 (non-negativity); (ii)

∫
cz>0 R(c, c∗)dc = 1 for

c∗z < 0 (normalization); and (iii) the wall Maxwellian M(c)
[Eq. (3)] is the only Maxwellian satisfying Eq. (67) up to an
arbitrary multiplication factor that is a function of t and x‖.
For our model (65), it follows that

R(c, c∗)

= [
1 − α

(
c2

z

)]
δ(c∗x − cx )δ(c∗y − cy)δ(c∗z + cz )

+
(

2πkBTw

m

)1/2[∫ ∞

0
czα

(
c2

z

)
exp

(
− mc2

z

2kBTw

)
dcz

]−1

× czα
(
c2

z

)
α
(
c2
∗z

)
M(c), (68)

where δ( · ) indicates the Dirac delta function. It is easily seen
that this R(c, c∗) satisfies the three conditions (i), (ii), and (iii)
(assuming that the Dirac delta function is non-negative). This
is partially due to the fact that we adopted Eq. (52) as the ini-
tial guess and determined β by mass conservation. However,
the boundary condition based on the numerical solution of the
half-space problem, Eqs. (34) and (39), enjoys the properties
(i)–(iii). It should be emphasized that Eq. (68) is one of few
examples of an explicit and physics-based scattering kernel.

In the present paper, we have assumed for simplicity that
the wall is planar, the potential W as well as the phonon relax-
ation time τph is the function of the normal coordinate z only,
and the wall temperature Tw is uniform and constant. How-
ever, some generalizations can be made straightforwardly. If

W, τph, and Tw depend also on the time t and the tangential
coordinates x‖ with the scales of variation τ �

fr for t and λ� for
x‖, then one can generalize Eqs. (65) and (66) to this case just
by the replacement

W(z) → W(t, x‖, z) or Ws(ζ ) → Ws(t, x‖, ζ ),

τph(z) → τph(t, x‖, z) or τph,s(ζ ) → τph,s(t, x‖, ζ ),

za
(
mc2

z

/
2
) → za

(
t, x‖; mc2

z

/
2
)

or

ζa
(
mc2

z

/
2kBTw

) → ζa
(
t, x‖; mc2

z

/
2kBTw

)
,

Tw → Tw(t, x‖),
(69)

where z = za(t, x‖; mc2
z /2) is the solution of W(t, x‖, z) =

mc2
z /2, and ζa(t, x‖; mc2

z /2kBTw) = za(t, x‖; mc2
z /2)/δ.

Then, α and β naturally depend on t and x‖. When the wall is
not planar but curved, and if the principal radii of curvature
are of the order of λ�, the generalization (69) is also valid if
x‖ is interpreted as the tangential coordinates on the surface.
The generalization to the case where the wall is moving is
also straightforward.

It should be remarked that Brull et al. [17] considered
a model of the physisorbate layer similar to ours to deduce
the kinetic boundary conditions. However, their model of the
physisorbate layer has a finite thickness, so that the match-
ing between the layer and the outer gas region is made at a
finite distance from the wall. In contrast, we considered the
confinement potentials, as well as the interaction with surface
phonons, extending to infinity and vanishing there. Therefore,
the matching between the inner physisorbate layer and the
outer gas region is only asymptotic as the distance from the
wall goes to infinity (ζ → ∞). Since there is no natural finite
distance for such a matching, our model seems to be more
natural. It should be mentioned that the approximate kinetic
boundary condition derived in [17] corresponds to our first
approximation of the iterative procedure, that is, Eqs. (65)
and (66). Therefore, Eqs. (65) and (66) should be recovered
from the result in [17] by letting the thickness of the surface
layer be infinitely large under appropriate assumptions on the
surface potential and the phonon relaxation time though it is
not discussed there.

In the present approach via the half-space problem,
Eqs. (34) and (39), including the approximate formula (65)
with Eq. (66), the effect of surface roughness in the molecular
scale is not taken into account. It should be mentioned that
in [17,18] the effect is considered by using a confinement po-
tential varying also in the tangential direction with the length
scale of δ.

C. Some remarks on classical models

As mentioned at the beginning of Sec. I, most of the classi-
cal and conventional models [1–6] of the boundary conditions
for the Boltzmann equation are of mathematical or empirical
nature. In contrast, our model (65) [with Eq. (66)], based on
the first iteration, has been derived systematically from the
kinetic model based on microscopic information near the solid
surface. Therefore, their nature is quite different. Neverthe-
less, it would be of interest to discuss the difference between
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FIG. 3. α̂(ĉ2
z ) and α̂E(ĉ). (a) α̂(ĉ2

z ) vs ĉz for the Lennard-Jones (9, 3) potential (88) and the algebraic-type relaxation time (91) in the case
of κ = 1, n = 4, and (κτ , σ ) = (1, 0.5), (1, 1), (1, 2), (0.5, 1), and (2, 1). (b) α̂E(ĉ) vs ĉz for (υ1, υ2, B) = (6, 6, 0.2), (12, 3, 0.2), and
(3, 12, 0.2) at ĉx = ĉy = 0 and for (6, 6, 0.2) at ĉx = ĉy = 1.

our model and the conventional models. Here, we consider the
Epstein model [2] and the Cercignani-Lampis model [1,4].

The Epstein model is of the same form as our Eq. (65),
but the function α(c2

z ) should be replaced with the following
αE(c):

αE(c) = exp

(
− m|c|2

2kBTwυ1

)
+ B

[
1 − exp

(
− m|c|2

2kBTwυ2

)]
,

(70)

where υ1, υ2, and B are the adjustable parameters to be de-
termined empirically. If we denote by α̂E(ĉ) its equivalent in
terms of the dimensionless molecular velocity ĉ, then

α̂E(ĉ) = exp(−|ĉ|2/2υ1) + B[1 − exp(−|ĉ|2/2υ2)]. (71)

The αE(c) was introduced as the probability that the incident
velocity c and the reflected velocity of an incident molecule
are uncorrelated, and the form of Eq. (65) [with α(c2

z ) →
αE(c)] was deduced with the help of the conditions (i), (ii), and
(iii) in Sec. V B. The form of Eq. (70) is assumed heuristically.
Therefore, the origin and background of the Epstein model
are quite different from those of Eqs. (65) and (66) though the
form (65) is common to both models.

Nevertheless, we compare the behavior of our α(c2
z ) and

αE(c) of the Epstein model numerically. We consider their
equivalents α̂(ĉ2

z ) [Eq. (60)] and α̂E(ĉ) [Eq. (71)] in terms
of the dimensionless variables for convenience. Figure 3(a)
shows α̂(ĉ2

z ) versus ĉz in the case where the potential ŵ and
the relaxation time τ̂ph are, respectively, assumed to be the
Lennard-Jones (9, 3) potential appearing later in Eq. (88)
and the algebraic-type relaxation time appearing later in
Eq. (91). The parameters in Eqs. (88) and (91) are chosen as
κ = 1, n = 4, (κτ , σ ) = (1, 0.5), (1, 1), (1, 2), (0.5, 1), and
(2, 1). Figure 3(b) shows α̂E(ĉ) versus ĉz for (υ1, υ2, B) =
(6, 6, 0.2), (12, 3, 0.2), and (3, 12, 0.2) at ĉx = ĉy = 0 and
for (6, 6, 0.2) at ĉx = ĉy = 1. Although the direct comparison
between Figs. 3(a) and 3(b) does not make sense, one can see
the overall tendency of the functions α̂(ĉ2

z ) and α̂E(ĉ).
The Cercignani-Lampis model, which has widely been

used in numerical simulation of rarefied gas flows in recent

years, is a mathematical model constructed heuristically in
such a way that the probability density R(c, c∗) satisfies
the conditions (i)–(iii) in Sec. V B. Since its explicit form
is shown in [1,4], it is omitted here. One of the advantages
of this model is that it can reproduce the leaflike (or plume-
like) velocity distribution of the reflected molecules observed
experimentally when a molecular beam is incident on the
surface.

The models of the form (65), including our model and Ep-
stein’s model, are not able to describe the leaflike distribution
because the velocity distribution of the reflected molecules is
a superposition of the reflected beam and an isotropic dis-
tribution when a molecular beam is injected on the surface.
However, this drawback of our model is not important. It
is constructed for the purpose of application in general rar-
efied gas flows, and special situations such as molecular-beam
injection are beyond the aim of the model. Although the
Cercignani-Lampis model was originally proposed as a purely
mathematical model, the dynamics underlying the model has
been investigated recently in [19].

VI. BOUNDARY CONDITION FOR THE BOLTZMANN
EQUATION: NUMERICAL APPROACH

In this section, we analyze the inner layer problem formu-
lated in Secs. IV A and IV B numerically to obtain numerical
information on the boundary condition (41) for the Boltzmann
equation. Then, we compare the results with those obtained by
the approximate formula (65) constructed in Sec. V B.

A. Preliminaries

Let us define the marginal distribution functions φ± of f±
by

φ±(t̂, x̂‖, ζ , ε) =
∫∫ ∞

−∞
f±(t̂, x̂‖, ζ , ĉ‖, ε)dĉxdĉy, (72)

where all the arguments are shown for clarity. By integrating
Eq. (45a) with respect to ĉx and ĉy over R2, we obtain the
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following equations for φ±:

±
√

2
√

ε − Ŵ(ζ )
∂ φ±
∂ζ

= − 1

τ̂ph(ζ )
[φ± − n̂M̂m(ζ , ε)], (73a)

M̂m(ζ , ε) = (2π )−1/2 exp(−ε + Ŵ(ζ )), (73b)

n̂ = 1√
2

∫ ∞

Ŵ(ζ )
(φ− + φ+)

1√
ε − Ŵ(ζ )

dε.

(73c)

The boundary conditions for Eq. (73) are obtained from
Eqs. (46) and (47) by the same procedure, that is,

φ− → φ∞(−
√

2ε), as ζ → ∞, for ε > 0, (74a)

φ+(ζa(ε), ε) = φ−(ζa(ε), ε), for ε > Ŵmin, (74b)

φ−(ζb(ε), ε) = φ+(ζb(ε), ε), for Ŵmin < ε < 0, (74c)

where φ∞(−√
2ε) = ∫∫ ∞

−∞ f∞(−√
2ε)dĉxdĉy. Correspond-

ing to Eq. (48), we have∫ ∞

Ŵ(ζ )
(φ+ − φ−)dε = 0. (75)

Once the solution φ± is obtained from Eqs. (73) and (74),
the number density n̂ is known. Therefore, Eq. (45a) reduces
to an ODE, which can be solved immediately for any t̂ , x̂‖,

and ĉ‖ under the boundary conditions (46) and (47). In this
way, the full distributions f± can be reconstructed from the
marginals φ±.

Next, we try to reduce the half-space problem, Eqs. (73)
and (74), to a problem in a finite range. For this purpose, we
choose ζ in the admissible range (43) for each ε and define η

by

η =
∫ ζ

ζa (ε)

1

τ̂ph(s)
ds (76)

assuming that the integral is finite as ζ → ∞ for ε > 0. Since
the correspondence between η and ζ is one to one for each ε,
Eq. (76) determines η = η(ζ , ε) and its inverse ζ = ζ (η, ε)
uniquely. The range of η is η ∈ [0, ηb(ε)], and ηb(ε) is given
by

ηb(ε) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫ ∞

ζa(ε)

1

τ̂ph(s)
ds (ε � 0),

∫ ζb(ε)

ζa(ε)

1

τ̂ph(s)
ds (Ŵmin � ε < 0).

(77)

Now, using Eq. (76), we change the independent variables
from (ζ , ε) to (η, ε) and define

φ̃±(η, ε) = φ±(ζ (η, ε), ε). (78)

Then, Eq. (73) is transformed to

±
√

2
√

ε − W̃(η, ε)
∂ φ̃±
∂η

= −[φ̃± − ñ(η, ε)M̃m(η, ε)], (79a)

W̃(η, ε) = Ŵ(ζ (η, ε)), (79b)

M̃m(η, ε) = M̂m(ζ (η, ε), ε) = (2π )−1/2 exp(−ε + W̃(η, ε)), (79c)

ñ(η, ε) = n̂(ζ (η, ε)) = 1√
2

∫ ∞

W̃(η, ε)
[φ−(ζ (η, ε), E ) + φ+(ζ (η, ε), E )]

1√
E − W̃(η, ε)

dE, (79d)

and the boundary condition (74) becomes

φ̃+(0, ε) = φ̃−(0, ε), φ̃−(ηb(ε), ε) = φ∞(−
√

2ε), for ε > 0, (80a)

φ̃+(0, ε) = φ̃−(0, ε), φ̃−(ηb(ε), ε) = φ̃+(ηb(ε), ε), for Ŵmin < ε < 0, (80b)

because ζ (0, ε) = ζa(ε) for ε > Ŵmin, ζ (ηb(ε), ε) = ∞ for
ε > 0, and ζ (ηb(ε), ε) = ζb(ε) for Ŵmin < ε < 0. In this way,
the problem has seemingly been reduced to that in the finite
domain 0 � η � ηb(ε). However, since the integration of φ±
in Eq. (79d) is only with respect to the second argument
E , the integrands φ± cannot be expressed in terms of φ̃±.
Therefore, precisely speaking, Eqs. (79) and (80) do not form
a closed system for φ̃±. Nevertheless, they are useful for
numerical analysis because we can handle the finite range
0 � η � ηb(ε).

If we integrate Eq. (50) with respect to ĉx and ĉy over R2

and make use of φ+ and φ∞(−√
2ε), we obtain the following

expression for ε > 0:

φ+(∞, ε) = [θ (ζa(ε), ∞; ε)]2φ∞(−
√

2ε)

+ θ (ζa(ε), ∞; ε)√
2

×
∫ ∞

ζa (ε)
[θ (ζa(ε), s; ε) + θ (s, ζa(ε); ε)]

× n̂(s)M̂m(s, ε)

τ̂ph(s)
√

ε − Ŵ(s)
ds, (81)

where φ+(∞, ε) indicates φ+(t̂, x̂‖, ∞, ε). Then, Eq. (50) is
recast as

f+(∞, ε) = [θ (ζa(ε), ∞; ε)]2f∞(−
√

2ε)

+{φ+(∞, ε) − [θ (ζa(ε), ∞; ε)]2φ∞(−
√

2ε)}
× (2π )−1 exp(−|ĉ‖|2/2), (82)

where ε > 0. For given f∞(−√
2ε) [and thus φ∞(−√

2ε)],
f+(∞, ε) can be established immediately once φ+(∞, ε) is
obtained by solving Eqs. (73) and (74). If the independent
variables are changed back from (ζ , ε) to (ζ , ĉz ), Eq. (82)
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is transformed to the following form:

f(∞, ĉz ) = [
1 − α̂

(
ĉ2

z

)]
f(∞, −ĉz )

+ {
φ+(∞, ĉ2

z /2) − [
1 − α̂

(
ĉ2

z

)]
φ∞(−ĉz )

}
× (2π )−1 exp(−|ĉ‖|2/2), (ĉz > 0), (83)

where α̂(ĉ2
z ) is defined by Eq. (60), and f∞(−ĉz ) has been

replaced with the equivalent f(∞, −ĉz ) [see Eq. (39)]. Recall
that in Eqs. (82) and (83) the arguments t̂ , x̂‖, and ĉ‖ are
omitted in f+, f, and f∞, and t̂ and x̂‖ are omitted in φ+ and
φ∞.

B. Interaction potential and phonon relaxation time

For the numerical analysis of Eqs. (79) and (80), the inter-
action potential W and the phonon relaxation time τph should
be specified explicitly.

1. Interaction potential

We consider two different Lennard-Jones potentials, to be
more specific, the standard (12, 6) potential and the (9, 3)
potential. The latter may be more realistic as a potential of in-
teraction between a gas molecule and a solid surface [37–39].

(a) For the Lennard-Jones (12, 6) potential, the potential
W(z) is defined by

W(z) = 4κ̄

[(
δ

z

)12

−
(

δ

z

)6]
, (84)

where κ̄ (> 0) is a parameter, and the characteristic range δ

of the interaction potential is chosen in such a way that W(z)
vanishes at z = δ. If we let κ = κ̄/kBTw, the dimensionless
potential Ŵ(ζ ) is expressed as

Ŵ(ζ ) = 4κ

(
1

ζ 12
− 1

ζ 6

)
, (85)

where we should recall ζ = z/δ = ẑ/ε. Thus, Ŵ(1) = 0,
and Ŵ(ζ ) takes the minimum −κ at ζ = ζmin = 21/6, i.e.,
Ŵ(ζmin) = −κ (≡ Ŵmin). The solutions ζa(ε) and ζb(ε) of ε =
Ŵ(ζ ) (see Sec. IV B) are given by

ζa(ε) =
[

2κ

ε

(√
1 + ε

κ
− 1

)]1/6

(ε � −κ ), (86a)

ζb(ε) =
[

2κ

−ε

(√
1 + ε

κ
+ 1

)]1/6

(−κ � ε < 0). (86b)

Note that ζa(ε) = 1 for ε = 0.
(b) For the Lennard-Jones (9, 3) potential, let us define the

potential W(z) by

W(z) = 3
√

3

2
κ̄

[(
δ

z

)9

−
(

δ

z

)3]
. (87)

The meanings of κ̄ and δ are the same as Eq. (84).
Then, with κ = κ̄/kBTw, the dimensionless potential Ŵ(ζ ) is

given by

Ŵ(ζ ) = 3
√

3

2
κ

(
1

ζ 9
− 1

ζ 3

)
. (88)

Thus, Ŵ(1) = 0, and Ŵ(ζ ) takes the minimum −κ at ζ =
ζmin = 31/6, i.e., Ŵ(ζmin) = −κ (≡ Ŵmin). The solutions ζa(ε)
and ζb(ε) of ε = Ŵ(ζ ) (see Sec. IV B) are obtained, after some
algebra, as follows:

ζa(ε) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

[√
3κ

2ε
(−1 + u + u−1)

]1/3
(ε � κ ),[√

3κ
2ε

(−1 + 2 cos ϑ
3

)]1/3
(0 < ε < κ ),

1 (ε = 0),{√
3κ

2|ε|
[
1 + 2 cos

(
ϑ
3 + π

3

)]}1/3
(−κ � ε < 0),

(89a)

ζb(ε) =
{√

3κ

2|ε|
[

1 + 2 cos

(
ϑ

3
− π

3

)]}1/3

(−κ � ε < 0),

(89b)

where, with a = ε/κ (� −1), u and ϑ are defined by

u = (
2a2 − 1 + 2a

√
a2 − 1

)1/3
for a � 1 (or ε � κ ),

ϑ = arccos (2a2 − 1) (0 � ϑ � π )

for − 1 � a < 1 (or − κ � ε < κ ).

The Lennard-Jones (9, 3) potential (88) with κ = 1,
5, and 10 is shown in Fig. 4(a), the (12, 6) poten-
tial (85) with κ = 5 is shown in Fig. 4(b) together
with the (9, 3) potential with κ = 5 for comparison,
and the characteristic lines ĉ2

z /2 + Ŵ(ζ ) = ε with ε =
−0.99, −0.9, −0.8, . . . ,−0.1, 0, 0.1, . . . , 0.9, and 1 are
shown for the (9, 3) potential (88) with κ = 1 in Fig. 4(c).

2. Phonon relaxation time

For the phonon relaxation time τph(z), we consider two
different types: one is an algebraic function of z that increases
slowly as z → ∞, and the other is an exponential function that
increases rapidly as z → ∞.

(a) For the algebraic type, we define the relaxation time
τph(z) by

τph(z) = κ̄τ

(
1 + σ

z

nδ

)n
, (90)

where σ (> 0), κ̄τ (> 0), and n (> 1) are constants. With
κτ = κ̄τ /τ

�
ph, its dimensionless counterpart τ̂ph is given by

τ̂ph(ζ ) = κτ

(
1 + σ

n
ζ
)n

. (91)

Then, η(ζ , ε), determined by Eq. (76), is obtained as

η(ζ , ε) = n

(n − 1)κτσ

[(
1 + σ

n
ζa(ε)

)−(n−1)

−
(

1 + σ

n
ζ
)−(n−1)

]
. (92)
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FIG. 4. Lennard-Jones potentials: (a) the (9, 3) potential with κ = 1, 5, and 10; (b) the (12, 6) and (9, 3) potentials with κ = 5; and
(c) characteristic lines (1/2)ĉ2

z + Ŵ(ζ ) = ε with ε = −0.99, −0.9, −0.8, . . . , −0.1, 0, 0.1, . . . , 0.9, and 1 for the (9, 3) potential with
κ = 1.

Therefore, the end point ηb(ε) defined by Eq. (77) and the inverse function ζ (η, ε) of Eq. (92) are, respectively, obtained as
follows:

ηb(ε) =

⎧⎪⎪⎨⎪⎪⎩
n

(n − 1)κτσ

(
1 + σ

n
ζa(ε)

)−(n−1)
(ε � 0),

n

(n − 1)κτσ

[(
1 + σ

n
ζa(ε)

)−(n−1)
−

(
1 + σ

n
ζb(ε)

)−(n−1)]
(−κ � ε < 0),

(93a)

ζ (η, ε) = n

σ

[(
1 + σ

n
ζa(ε)

)−(n−1)
− (n − 1)κτσ

n
η

]−1/(n−1)

− n

σ
. (93b)

In particular, for ε � 0, Eq. (93b) can be expressed as

ζ (η, ε) = n

σ

[
n − 1

n
κτσ

(
ηb(ε) − η

)]−1/(n−1)

− n

σ
. (94)

(b) For the exponential type, let us define τph(z) by

τph(z) = κ̄τ exp(σ z/δ), (95)

where σ (> 0) and κ̄τ (> 0) are constants. With κτ = κ̄τ /τ
�
ph, its dimensionless form is given by

τ̂ph(ζ ) = κτ exp(σζ ). (96)

Then, Eq. (76) gives

η(ζ , ε) = 1

κτσ
[exp(−σζa(ε)) − exp(−σζ )]. (97)

Therefore, we obtain the following ηb(ε) and the inverse function ζ (η, ε):

ηb(ε) =

⎧⎪⎪⎨⎪⎪⎩
1

κτσ
exp(−σζa(ε)) (ε � 0),

1

κτσ
[exp(−σζa(ε)) − exp(−σζb(ε))] (−κ � ε < 0),

(98a)

ζ (η, ε) = − 1
σ

ln (exp(−σζa(ε)) − κτση). (98b)

For ε � 0, Eq. (98b) can be expressed as

ζ (η, ε) = − 1

σ
ln(κτσ (ηb(ε) − η)). (99)
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C. Numerical results

1. Velocity distribution for reflected molecules

In Sec. VI C 1, we show some numerical results of the
velocity distribution f(∞, ĉz ) for ĉz > 0 (the output dis-
tribution), in response to f(∞, ĉz ) for ĉz < 0 (the input
distribution), obtained by Eq. (40) with the albedo operator
� constructed by the numerical solution φ± to Eqs. (73) and
(74). We also compare the numerical results with the results
obtained by the approximate formula (59). The outline of the
numerical procedure is given in Appendix C.

In order to give a clear representation, we will concentrate
on the molecular velocity components ĉx and ĉz. For this
purpose, we consider the following marginal h∞:

h∞(t̂, x̂‖, ĉx, ĉz ) =
∫ ∞

−∞
f(t̂, x̂‖, ∞, ĉ‖, ĉz )dĉy. (100)

In the following, the arguments t̂ and x̂‖ will be omitted as in
the preceding sections.

Integration of Eq. (83) with respect to ĉy from −∞ to ∞
gives

h∞(ĉx, ĉz ) = [
1 − α̂

(
ĉ2

z

)]
h∞(ĉx, −ĉz )

+ {
φ+

(∞, ĉ2
z /2

) − [
1 − α̂

(
ĉ2

z

)]
φ∞(−ĉz )

}
× (2π )−1/2 exp

(−ĉ2
x/2

)
, (ĉz > 0). (101)

Similarly, the approximate formula (59), based on the first
iteration, leads to the following expression:

h∞(ĉx, ĉz ) = [1 − α̂(ĉ2
z )] h∞(ĉx, −ĉz ) + α̂(ĉ2

z )
β̂

2π

× exp

(
− ĉ2

x + ĉ2
z

2

)
, for ĉz > 0, (102)

where

β̂ = −
√

2π

[∫ ∞

0
ĉzα̂(ĉ2

z ) exp
(−ĉ2

z /2
)
dĉz

]−1

×
∫

ĉz<0
ĉzα̂(ĉ2

z )h∞(ĉx, ĉz )dĉxdĉz. (103)

In the following computation, we assume the marginal
Maxwellian of the form

h∞(ĉx, ĉz ) = 1

2π T̂∞
exp

(
− (ĉx − v̂x∞)2 + (ĉz − v̂z∞)2

2T̂∞

)
,

(ĉz < 0), (104)

for the molecules incident from infinity, where v̂x∞, v̂z∞, and
T̂∞ are the parameters to be specified. Correspondingly, we
have

φ∞(ĉz ) = 1

(2π T̂∞)1/2
exp

(
− (ĉz − v̂z∞)2

2T̂∞

)
,

(ĉz < 0). (105)

In addition, the parameters κ , κτ , and σ contained in the
potentials (85) and (88) and the phonon relaxation times (91)

FIG. 5. Contour lines of h∞(ĉx, ĉz ) for the Lennard-Jones (12, 6)
potential (85) and the relaxation time of algebraic type (91) (n = 7)
in the (ĉx, ĉz ) plane in the case of (T̂∞, v̂z∞, v̂x∞) = (1, −0.5, 0.5)
and (κ, κτ , σ ) = (1, 1, 1). (a) Numerical solution. (b) Approxi-
mate formula (102). The function h∞(ĉx, ĉz ) with ĉz < 0 indicates
the input, i.e., Eq. (104), and h∞(ĉx, ĉz ) with ĉz > 0 indicates the
output.

and (96) are set as

(κ, κτ , σ ) = (1, 1, 1). (106)

Figures 5–8 show the contour lines of the input h∞ (ĉz <

0), i.e., Eq. (104), and the output h∞ (ĉz > 0) in the (ĉx, ĉz )
plane for different potentials and phonon relaxation times in
the case of (T̂∞, v̂z∞, v̂x∞) = (1, −0.5, 0.5). More specif-
ically, Fig. 5 is for the LJ (12, 6) potential (85) and the
relaxation time of algebraic type (91) (n = 7); Fig. 6 is for
the LJ (12, 6) potential and the relaxation time of exponential
type (96); Fig. 7 is for the LJ (9, 3) potential (88) and the
relaxation time of algebraic type (91) (n = 4); and Fig. 8 is
for the LJ (9, 3) potential and the relaxation time of expo-
nential type (96). In each figure, panel (a) indicates the result
based on the numerical solution, i.e., Eq. (101), and panel (b)
indicates that based on the approximate formula (102). The
lower half (ĉz < 0) of each figure, which indicates the input,
is common.

Figures 9–12 show the profiles of h∞(ĉx, ĉz ) at ĉz = const
and at ĉx = const in the case of Figs. 5–8, respectively. In
each figure, panel (a) shows the profiles at ĉz = 0±, ±0.520,
±0.972, ±1.510, and ±2.132; panel (b) shows those at

FIG. 6. Contour lines of h∞(ĉx, ĉz ) for the Lennard-Jones (12, 6)
potential (85) and the relaxation time of exponential type (96) in
the (ĉx, ĉz ) plane in the case of (T̂∞, v̂z∞, v̂x∞) = (1, −0.5, 0.5)
and (κ, κτ , σ ) = (1, 1, 1). (a) Numerical solution. (b) Approximate
formula (102). See the caption of Fig. 5.
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FIG. 7. Contour lines of h∞(ĉx, ĉz ) for the Lennard-Jones (9, 3)
potential (88) and the relaxation time of algebraic type (91) (n = 4)
in the (ĉx, ĉz ) plane in the case of (T̂∞, v̂z∞, v̂x∞) = (1, −0.5, 0.5)
and (κ, κτ , σ ) = (1, 1, 1). (a) Numerical solution. (b) Approximate
formula (102). See the caption of Fig. 5.

ĉx = 0, 0.515, 1.008, 1.600, and 2.185; and panel (c) shows
those at ĉx = 0, −0.515, −1.008, −1.600, and −2.185. In
the figures, the green (light gray in grayscale) lines indicate
the input distribution h∞(ĉx, ĉz ) (ĉz < 0), the (thick) red lines
indicate the output distribution h∞(ĉx, ĉz ) (ĉz > 0) based on
the numerical solution [see panels (a) in Figs. 5–8], and the
(thin) black lines indicate that based on the approximate for-
mula (102) [see panels (b) in Figs. 5–8]. The same types of
lines are used for different positions; for example, the dashed
line shows the profiles at ĉz = ±0.520 and ±1.510 in panels
(a) in Figs. 9–12; however, no confusion is expected.

It is seen from Figs. 5–12 that the approximate formula
(102) is sufficiently accurate on the whole. It predicts slightly
higher values for |ĉx| � 1 and |ĉz| � 0.2. The numerical so-
lution [the (thick) red curves] in panels (b) and (c) in Figs. 9
and 11 (the relaxation time of algebraic type) exhibits a peak
at small ĉz (> 0), which is not reproduced by the approximate
formula.

Since the input distribution h∞ with ĉz < 0 is centered at
(ĉx, ĉz ) = (0.5, −0.5), there are many high-speed molecules.
The interaction of these molecules with the surface phonons
slows them down and produces slow molecules. As the re-
sult, the output distribution h∞ with ĉz > 0 contains many
slow molecules, i.e., the molecules with small |ĉx| and small

FIG. 8. Contour lines of h∞(ĉx, ĉz ) for the Lennard-Jones (9, 3)
potential (88) and the relaxation time of exponential type (96) in
the (ĉx, ĉz ) plane in the case of (T̂∞, v̂z∞, v̂x∞) = (1, −0.5, 0.5)
and (κ, κτ , σ ) = (1, 1, 1). (a) Numerical solution. (b) Approximate
formula (102). See the caption of Fig. 5.

ĉz (> 0). This interaction takes place over a longer distance
for the phonon relaxation time of algebraic type than for that
of exponential type. Therefore, the curves of h∞ with ĉz > 0
in Fig. 9 are slightly higher than those in Fig. 10 for slow
molecules. The difference is more eminent between Figs. 11
and 12.

Restricting ourselves to the LJ (9, 3) potential (88) and
the phonon relaxation time of algebraic type (91) (n = 4)
[recall Eq. (106)], we will show some more results. In
Figs. 13–15, we show the contour lines of the input h∞
(ĉz < 0) [Eq. (104)] and the output h∞ (ĉz > 0) in the (ĉx, ĉz )
plane: Fig. 13 is for (T̂∞, v̂z∞, v̂x∞) = (1, 0.5, 0.5), Fig. 14
is for (T̂∞, v̂z∞, v̂x∞) = (0.6, 0, 0.5), and Fig. 15 is for
(T̂∞, v̂z∞, v̂x∞) = (0.6, −0.5, 0.5). In each figure, panel (a)
indicates the result based on the numerical solution, i.e.,
Eq. (101), and panel (b) indicates that based on the approx-
imate formula (102).

Figures 16–18 show the profiles of h∞(ĉx, ĉz ) at ĉz =
const and at ĉx = const in the case of Figs. 13–15, respec-
tively. In each figure, panel (a) shows the profiles at ĉz = 0±,
±0.520, ±0.972, ±1.510, and ±2.132; panel (b) shows those
at ĉx = 0, 0.515, 1.008, 1.600, and 2.185; and panel (c) shows
those at ĉx = 0, −0.515, −1.008, −1.600, and −2.185. As in
Figs. 9–12, the green (light gray in grayscale) lines indicate
the input distribution h∞(ĉx, ĉz ) (ĉz < 0), the (thick) red lines
indicate the output distribution h∞(ĉx, ĉz ) (ĉz > 0) based on
the numerical solution [see panels (a) in Figs. 13–15], and
the (thin) black lines indicate that based on the approximate
formula (102) [see panels (b) in Figs. 13–15]. Note that, as
in Figs. 9–12, the same types of lines are used for different
positions.

The input distribution in Figs. 15 and 18 is slightly nar-
rower and centered at (ĉx, ĉz ) = (0.5, −0.5), so that it has
a beamlike nature. However, the output distribution is more
or less centered at (ĉx, ĉz ) = (0, 0) because the interaction
with the phonons tends to equilibrate the molecules to the wall
Maxwellian.

The approximate formula (102) gives sufficiently good re-
sults also in Figs. 13–18. Therefore, we may expect that the
original three-dimensional version, Eq. (59), and its dimen-
sional counterpart, Eq. (65), provide a reasonably good model
as the boundary condition for the Boltzmann equation.

2. Density distribution in the adsorbate layer

So far, we have shown the velocity distribution for the
reflected molecules skipping the details of the inner adsor-
bate layer. Leaving the behavior of the velocity distribution
function in the layer to Sec. VII, we briefly show the behavior
of the number density there. Figure 19 shows the dimension-
less number density n̂ versus the scaled normal coordinate
ζ (= z/δ) in the case of Figs. 7 and 13–15 obtained from
the numerical solution φ± to Eqs. (73) and (74). Note that
n̂ is equal to n/n� at the level of the zeroth approximation
in ε. As ζ increases from zero to ∞, each curve increases
from zero to the peak, then decreases, and finally approaches
a constant. The high-density zone, which corresponds to the
adsorbate layer, appears because of the trapped molecules in
the potential wall.
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FIG. 9. Profiles of h∞ (ĉz < 0 and ĉz > 0) at ĉz = const and ĉx = const in the case of Fig. 5: (a) profiles at ĉz = const, (b) those at
ĉx = const > 0, and (c) those at ĉx = const < 0. The green (light gray in grayscale) lines indicate the input distribution h∞ (ĉz < 0), the
(thick) red lines indicate the output distribution h∞ (ĉz > 0) based on the numerical solution, and the (thin) black lines indicate that based on
the approximate formula (102).

VII. VELOCITY DISTRIBUTION FUNCTION INSIDE
THE ADSORBATE LAYER

In the preceding section, we have solved numerically the
inner layer problem, which has been reduced to Eq. (73), to es-
tablish the boundary condition (40) or (41) for the Boltzmann
equation. Although the problem (73) is seemingly simple, it
contains some nontrivial features that may attract mathemat-
ical interest. Therefore, we choose the case of Figs. 8 and 12
as an example and show the detailed behavior of the solution.
To be more specific, we assume the Lennard-Jones (9, 3)
potential (88) with κ = 1 and the phonon relaxation time of
exponential type (96) with κτ = σ = 1 and consider the input
distribution (105) with T̂∞ = 1 and v̂z∞ = −0.5. The choice
of Eq. (96) for the relaxation time enhances the singular nature
of the problem (73).

In accordance with the figures in Sec. VI C, the result will
be shown in terms of the molecular velocity ĉz rather than the
energy variable ε. Therefore, we introduce the following φ

corresponding to φ±:

φ(t̂, x̂‖, ζ , ĉz ) =
∫∫ ∞

−∞
f(t̂, x̂‖, ζ , ĉ‖, ĉz )dĉxdĉy. (107)

In fact, φ is related to φ± as

φ(t̂, x̂‖, ζ , ĉz ) =
{
φ−

(
t̂, x̂‖, ζ , ĉ2

z /2 + Ŵ(ζ )
)
, (ĉz < 0),

φ+
(
t̂, x̂‖, ζ , ĉ2

z /2 + Ŵ(ζ )
)
, (ĉz > 0).

(108)

Since the input distribution (105) with T̂∞ = 1 and v̂z∞ =
−0.5 is independent of t̂ and x̂‖, φ is the function of ζ and
ĉz only.

In Fig. 20, the marginal velocity distribution φ(ζ , ĉz ) is
shown versus ĉz at various positions ζ . Figure 20(a) shows the
result for the far field, Figs. 20(b) and 20(c) show that for the
substantial part of ζ with Ŵ(ζ ) < 0, and Fig. 20(d) shows that
for the part with Ŵ(ζ ) > 0 near the wall [see Fig. 4(b)].

Because the interaction with phonons vanishes at infinity,
the gas molecules make free transport there. Therefore, the
distribution of the incident molecules (ĉz < 0) and that of the
outgoing molecules (ĉz > 0) do not interact there and thus
exhibit a discontinuity at ĉz = 0 [Fig. 20(a)]. It is seen from
Figs. 20(a)–(c) that φ for 1 < ζ < ∞ has two discontinuities
at the positions symmetric with respect to ĉz = 0. The two
discontinuities move outward as ζ changes from ∞ to 1.201
[Figs. 20(a) and 20(b)], move inward as ζ changes from 1.201
to 1 [Fig. 20(c)], and merge into a single line at ζ = 1. In

FIG. 10. Profiles of h∞ (ĉz < 0 and ĉz > 0) at ĉz = const and ĉx = const in the case of Fig. 6: (a) profiles at ĉz = const, (b) those at
ĉx = const > 0, and (c) those at ĉx = const < 0. See the caption of Fig. 9 about the color and thickness of the lines.
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FIG. 11. Profiles of h∞ (ĉz < 0 and ĉz > 0) at ĉz = const and ĉx = const in the case of Fig. 7: (a) profiles at ĉz = const, (b) those at
ĉx = const > 0, and (c) those at ĉx = const < 0. See the caption of Fig. 9 about the color and thickness of the lines.

order to see the details of the behavior of the discontinuities,
we show some magnified figures around the discontinuities in
Fig. 21. It turns out that the two discontinuities are located
on the characteristic line ĉ2

z /2 + Ŵ(ζ ) = 0. Figures 21(c) and
21(d) show that the gradient ∂φ/∂ ĉz is steep on the outer side
of the discontinuity. The formal differentiation, with respect
to ζ , of the equation for φ± corresponding to Eqs. (49a) and
(49b) suggests that ∂φ/∂ ĉz diverges on the outer side of the
discontinuity for the present choices of the potential and the
phonon relaxation time.

Let us consider the characteristic line ε = ĉ2
z /2 + Ŵ(ζ ) =

0 with ĉz < 0 [see Fig. 4(c)], along which the molecules are
moving toward the wall. The line with ε = 0+ extends to
infinity, and the value of φ on this line at infinity is given by
the boundary condition, i.e., φ∞(0−). On the other hand, the
line with ε = 0−, which also extends to infinity, is a part of
a loop line and is connected to the line ε = 0− with ĉz > 0
at infinity. Therefore, the value of φ on the line ε = 0− at
infinity is given by the boundary condition (74c) with ε = 0−
or equivalently φ(∞, 0−) = φ(∞, 0+). For this reason, the
value of φ is discontinuous, having different values on ε = 0+
and 0−, at infinity. This discontinuity is expressed by the
vertical dashed line, spanning 0.35 � φ � 0.63, at ĉz = 0 in
Fig. 21(a). The discontinuity propagates toward the wall along
the characteristic line ε = 0 decaying because of the interac-
tion through the phonon collision term. However, the decay

is very slow in the present case, and the discontinuity reaches
the turning point ζ = 1. Then, it starts to propagate toward
infinity along the line ε = 0 with ĉz > 0. The discontinuity
continues to decay very slowly and has a finite size even when
it reaches infinity, as indicated by the vertical dashed line
spanning 0.53 � φ � 0.63 at ĉz = 0 in Fig. 21(a). If the po-
tential is weaker and the interaction with phonons is stronger
in the far field, such as in the case of the Lennard-Jones (12, 6)
potential with the phonon relaxation time of algebraic type,
the discontinuity decays faster and cannot be seen in the near
field.

VIII. CONCLUDING REMARKS

In the present paper, we proposed a kinetic model for
gas-surface interaction that takes into account physisorbed
molecules interacting with a surface potential and with sur-
face phonons (Sec. II). The surface potential, consisting of
the repulsive and attractive parts, as well as the interaction
with surface phonons, was assumed to vanish away from
the surface. Under the assumption that the interaction (or
physisorbate) layer is thinner than the mean free path of the
molecules, we derived the kinetic equation for the interaction
layer, which forms a half-space problem with respect to the
length scale of the potential (Sec. III). This kinetic equa-
tion has such a structure that its solution is determined by

FIG. 12. Profiles of h∞ (ĉz < 0 and ĉz > 0) at ĉz = const and ĉx = const in the case of Fig. 8: (a) profiles at ĉz = const, (b) those at
ĉx = const > 0, and (c) those at ĉx = const < 0. See the caption of Fig. 9 about the color and thickness of the lines.
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FIG. 13. Contour lines of h∞(ĉx, ĉz ) for the Lennard-Jones (9, 3)
potential (88) and the relaxation time of algebraic type (91) (n = 4)
in the (ĉx, ĉz ) plane in the case of (T̂∞, v̂z∞, v̂x∞) = (1, 0.5, 0.5)
and (κ, κτ , σ ) = (1, 1, 1). (a) Numerical solution. (b) Approximate
formula (102). See the caption of Fig. 5.

specifying the velocity distribution for the incident molecules,
i.e., the molecules toward the surface, at infinity. This means
that the solution determines the velocity distribution for the
outgoing molecules, i.e., the molecules toward infinity, at
infinity in response to that for the incident molecules there.
In other words, the solution of the kinetic equation for the
interaction layer provides the boundary condition for the
Boltzmann equation that is assumed to hold outside the in-
teraction layer (Sec. IV).

We first derived a model of the boundary condition for the
Boltzmann equation by obtaining an approximate solution,
based on the first iteration of an iteration scheme, of the
half-space problem for the interaction layer. It is of the form
of Maxwell’s diffuse-specular reflection condition with an ac-
commodation coefficient depending on the normal component
of the molecular velocity (Sec. V). Then, we solved the inner
layer problem numerically, for several sets of values of the
parameters, to observe the velocity distribution of the outgo-
ing molecules for a given velocity distribution of the incoming
molecules at infinity. The comparison between the numerical
result and the model based on the approximate solution shows
good agreement on the whole though there are slight discrep-
ancies for the outgoing molecules with low speed (Sec. VI).
Therefore, it is concluded that the latter model gives a rea-

FIG. 14. Contour lines of h∞(ĉx, ĉz ) for the Lennard-Jones (9, 3)
potential (88) and the relaxation time of algebraic type (91) (n = 4)
in the (ĉx, ĉz ) plane in the case of (T̂∞, v̂z∞, v̂x∞) = (0.6, 0, 0.5)
and (κ, κτ , σ ) = (1, 1, 1). (a) Numerical solution. (b) Approximate
formula (102). See the caption of Fig. 5.

FIG. 15. Contour lines of h∞(ĉx, ĉz ) for the Lennard-Jones
(9, 3) potential (88) and the relaxation time of algebraic type
(91) (n = 4) in the (ĉx, ĉz ) plane in the case of (T̂∞, v̂z∞, v̂x∞) =
(0.6, −0.5, 0.5) and (κ, κτ , σ ) = (1, 1, 1). (a) Numerical solution.
(b) Approximate formula (102). See the caption of Fig. 5.

sonable model of the boundary condition for the Boltzmann
equation. The numerical solution also revealed some interest-
ing properties of the inner layer half-space problem (Sec. VII).

Applications of the model to some fundamental problems
of rarefied gas flows would be of high interest. The model is
based only on the first iteration of the scheme. It would also be
interesting to make an assessment of the second iteration that
was mentioned in Sec. V A. Another limitation of the present
approach is that the surface roughness in the molecular scale
is neglected. It can be taken into account by considering a
surface potential varying also in the tangential direction, for
example, a potential periodic in that direction [17,18]. In this
paper, we considered only physisorbed molecules. It would
be of importance and of interest to consider also chemisorbed
species [23–26]. This approach may give a possibility to de-
rive the boundary condition for the Boltzmann equation that
takes into account chemical reactions on the surface.

APPENDIX A: PHONON COLLISION OPERATORS

The collision term Jph between molecules and phonons
involves operators in the general form [11,20–22]

Jph =
∫ {

[ fph(q) + 1] f (c′) − fph(q) f (c)
}
Wph dc′dq, (A1)

where fph(q) denotes the phonon distribution function, q de-
notes the phonon wave vector or quasimomentum, c and c′
denote the molecular velocities before and after the interac-
tion, and Wph denotes the transition probability. The dilute
approximation has been used for f in deriving the simplified
form (A1), and the appearance of the additional factor 1 in
the gain term is a typical quantum effect [11,20–22]. The
operator (A1) corresponds to collisions such that mc + q =
mc′ + b where b is a vector of the reciprocal crystal lattice.
There is another operator associated with collisions such that
mc = mc′ + q + b that leads to the same type of simplified
source term and the corresponding details are omitted.

The equilibrium relation between distribution func-
tions corresponding to Eq. (A1) reads [ f e

ph(q) + 1] f e(c′) =
f e
ph(q) f e(c) where the superscript e stands for physical equi-

librium. The equilibrium distribution for the phonons f e
ph is

the Bose-Einstein distribution, f e is the wall Maxwellian and
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FIG. 16. Profiles of h∞ (ĉz < 0 and ĉz > 0) at ĉz = const and ĉx = const in the case of Fig. 13: (a) profiles at ĉz = const, (b) those at
ĉx = const > 0, and (c) those at ĉx = const < 0. See the caption of Fig. 9 about the color and thickness of the lines.

the equilibrium relation may be rewritten for convenience in
the form [ f e

ph(q) + 1]m(c′) = f e
ph(q)m(c). Dividing then the

integrands in the collision term (A1) by the factor [ f e
ph(q) +

1]m(c′) = f e
ph(q)m(c) and further assuming that phonons are

at equilibrium f e
ph = fph, it is obtained that

Jph( f ) =
∫ [

f (c′)
m(c′)

− f (c)

m(c)

]
Wphdc′, (A2)

where Wph = m(c)
∫

f e
ph(q)Wphdq denotes the resulting tran-

sition probability. This assumption of phonons at equilibrium
is frequently introduced in the literature and eliminates the
phonon distribution function fph that is governed by kinetic
equations [12]. The transition probability Wph satisfies the
reciprocity relation Wph(c, c′) = Wph(c′, c) and is nonzero
only in the neighborhood of the surface [11,12]. This term
Jph may further be simplified as −( f − nM)/τph where τph

denotes a relaxation time independent of c [12].

APPENDIX B: EXPLICIT FORM OF n̂(1) IN EQ. (64)

The number density n̂(1)(ζ ) included in Eq. (64) can be
obtained by using Eqs. (56) and (63) in Eq. (51a) with n =
1. To complete the second iteration (64), we summarize the
resulting n̂(1)(ζ ) below.

Let us put

�(ζ , ε) = θ (ζ , ∞; ε) + θ (ζa(ε), ζ ; ε) θ (ζa(ε), ∞; ε)

= θ (ζ , ∞; ε){1 + [θ (ζa(ε), ζ ; ε)]2}, (B1)

where the function θ is defined by Eq. (49c). Then, n̂(1)(ζ ) is
obtained as follows.

(a) For 0 < ζ � 1, where Ŵ(ζ ) � 0,

n̂(1)(ζ ) = 1√
2

∫ ∞

Ŵ(ζ )

{
�(ζ , ε)

∫∫ ∞

−∞
f∞(−

√
2ε)dĉxdĉy

+ 1√
2π

β̂[2 − �(ζ , ε)]e−ε

}
dε√

ε − Ŵ(ζ )
. (B2)

(b) For ζ > 1, where Ŵ(ζ ) < 0,

n̂(1)(ζ ) = 1√
2

∫ ∞

0

{
�(ζ , ε)

∫∫ ∞

−∞
f∞(−

√
2ε)dĉxdĉy

+ 1√
2π

β̂[2 − �(ζ , ε)]e−ε

}
dε√

ε − Ŵ(ζ )

+ β̂e−Ŵ(ζ )erf
(√

−Ŵ(ζ )
)
, (B3)

where erf(x) is the error function, i.e.,

erf(x) = 2√
π

∫ x

0
e−t2

dt .

FIG. 17. Profiles of h∞ (ĉz < 0 and ĉz > 0) at ĉz = const and ĉx = const in the case of Fig. 14: (a) profiles at ĉz = const, (b) those at
ĉx = const > 0, and (c) those at ĉx = const < 0. See the caption of Fig. 9 about the color and thickness of the lines.
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FIG. 18. Profiles of h∞ (ĉz < 0 and ĉz > 0) at ĉz = const and ĉx = const in the case of Fig. 15: (a) profiles at ĉz = const, (b) those at
ĉx = const > 0, and (c) those at ĉx = const < 0. See the caption of Fig. 9 about the color and thickness of the lines.

APPENDIX C: OUTLINE OF THE NUMERICAL METHOD

In this Appendix, we summarize the numerical procedure
that has been used in Secs. VI C and VII. In order to simplify
the description, we restrict ourselves to the case of Lennard-
Jones (9, 3) potential (88) and the algebraic phonon relaxation
time (91) here.

1. Grid systems

For the computation of the number density n̂, we use
Eq. (73c) in the (ζ , ε) system. Therefore, we first define the
grid points in the (ζ , ε) plane.

Let us choose sufficiently large E and E0, where 1 
 E0 

E , in such a way that

| exp(−E0)| 
 1, |ζa(E ) − ζa(E + E0)| 
 1.

This is possible because of the behavior of the potential for
ζ 
 1. The reason why the two large numbers E and E0 are
necessary will become clear soon. Restricting the range of

FIG. 19. Dimensionless number density n̂ vs the scaled normal
coordinate ζ (= z/δ) in the case of Figs. 7 and 13–15 obtained by
the numerical solution (see the captions of Figs. 7 and 13–15).

ε to Ŵmin � ε � E + E0, we define the grid points ε( j) ( j =
−N0, −N0 + 1, . . . , 0, . . . , N1, . . . , N2) in ε as (see Fig. 22)

ε(−N0 ) = Ŵmin < ε(−N0+1) < · · · < ε(0) = 0

< · · · < ε(N1 ) = E < · · · < ε(N2 ) = E + E0.

Then, the grid points ζ (i) (i = −N2, −N2 +
1, . . . , 0, . . . , 2N0 − 1) are defined by the use of ε( j) as
follows (see Fig. 22):

ζ (i) =
{
ζa(ε(−i) ) (i = −N2, −N2 + 1, . . . , N0),
ζb(ε(i−2N0 ) ) (i = N0 + 1, N0 + 2, . . . , 2N0 − 1).

We also let ζ (2N0 ) = ∞. Thus, the following relation
holds:

ζ (−N2 ) = ζa(E + E0) < ζ (−N2+1) < · · · < ζ (−N1 ) = ζa(E )

< · · · < ζ (0) = 1 < · · · < ζ (N0 ) = ζmin

< · · · < ζ (2N0−1) = ζb(ε(−1)) ≡ Z,

where ε(−1) is chosen to be close to zero in such a manner that
Z [i.e., ζb(ε(−1))] is sufficiently large and satisfies∣∣∣∣ηb(ε) −

∫ Z

ζa (ε)

1

τ̂ph(s)
ds

∣∣∣∣ =
∣∣∣∣∫ ∞

Z

1

τ̂ph(s)
ds

∣∣∣∣ 
 1, (ε � 0).

The range of ε at ζ = ζ (i) (i = −N2, −N2 + 1, . . . , 2N0 −
1) is Ŵ(ζ (i) ) [= ε(max{−i, i−2N0})] � ε � E + E0 [= ε(N2 )]. The
range of ζ at ε = ε( j) < 0 ( j = −N0, −N0 + 1, . . . , −1) is
ζa(ε( j) ) [= ζ (− j)] � ζ � ζb(ε( j) ) [= ζ (2N0+ j)], while that at
ε = ε( j) � 0 ( j = 0, 1, . . . , N2) is ζa(ε( j) ) [= ζ (− j)] � ζ �
Z [= ζ (2N0−1)]. The number density n̂(ζ ) is computed down
to ζ = ζ (−N1 ), at which the integration range in Eq. (73c) be-
comes Ŵ(ζ (−N1 ) ) = E < ε < ∞. This range is approximated
by E < ε < E + E0 with sufficiently large E0. This is the
reason why we need the grid points also in the range E <

ε < E + E0.
In order to solve Eq. (79a) numerically, we need to

set the grid points η(i, j) in η on the basis of (ζ (i), ε( j) )
constructed above. Let us define the following η(i, j) and
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FIG. 20. Profiles of φ(ζ , ĉz ) (ĉz < 0 and ĉz > 0) at various positions ζ in the case of Fig. 8: (a) profiles for 2.293 � ζ � ∞, (b) for
1.201 � ζ � 2.293, (c) for 1 � ζ � 1.201, and (d) for 0.901 � ζ � 1. The dashed line indicates the jump between the values at ε = 0− and
0+.

�η(i):

η(i, j) =
∫ ζ (i)

ζa (ε( j) )

1

τ̂ph(s)
ds,

�η(i) =η(i, j) − η(i−1, j) =
∫ ζ (i)

ζ (i−1)

1

τ̂ph(s)
ds.

Then, η(i, j) = η(ζ (i), ε( j) ) and ζ (i) = ζ (η(i, j), ε( j) ) hold.

2. Finite-difference scheme

a. Preliminaries

If we divide both sides of Eq. (79a) by
√

2
√

ε − W̃(η, ε)
and integrate the resulting equation with respect to η over a

small interval [η0, η1] (η0 < η1), we obtain

±[φ̃±(η1, ε) − φ̃±(η0, ε)]

=
∫ η1

η0

ñ(η, ε)M̃m(η, ε) − φ̃±(η, ε)√
2
√

ε − W̃(η, ε)
dη. (C1)

Let ζ0 and ζ1 correspond to η0 and η1, respectively, i.e., ζ0 =
ζ (η0, ε) and ζ1 = ζ (η1, ε). If η0 = 0, then ζ0 = ζa(ε), so
that W̃(0, ε) = Ŵ(ζa(ε)) = ε holds. Similarly, if η1 = ηb(ε)
(ε < 0), then W̃(ηb(ε), ε) = Ŵ(ζb(ε)) = ε holds. Therefore,
the integral in the right-hand side (RHS) of Eq. (C1) becomes
a singular integral. Keeping this in mind, we approximate the
RHS as follows:

RHS ≈

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[ ñ(η1, ε)M̃m(η1, ε) − φ̃±(η1, ε)]I, (when η0 = 0),

[ ñ(η0, ε)M̃m(η0, ε) − φ̃±(η0, ε)]J, [when η1 = ηb(ε)],

η1 − η0

2
√

2

(
ñ(η1, ε)M̃m(η1, ε) − φ̃±(η1, ε)√

ε − W̃(η1, ε)
+ ñ(η0, ε)M̃m(η0, ε) − φ̃±(η0, ε)√

ε − W̃(η0, ε)

)
,

(otherwise),

(C2)
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FIG. 21. Magnified figures of some of the profiles in Fig. 20 around the discontinuities. See the caption of Fig. 20.

where

I = 1√
2

∫ η1

0

dη√
ε − W̃(η, ε)

= 1√
2

∫ ζ1

ζa (ε)

dζ

τ̂ph(ζ )
√

ε − Ŵ(ζ )
, (C3a)

J = 1√
2

∫ ηb(ε)

η0

dη√
ε − W̃(η, ε)

= 1√
2

∫ ζb(ε)

ζ0

dζ

τ̂ph(ζ )
√

ε − Ŵ(ζ )
. (C3b)

In the last terms of Eq. (C3), the integration variable has been
changed from η to ζ [see Eq. (76)]. Since ζ1 and ζ0 in Eq. (C3)
should be sufficiently close to ζa(ε) and ζb(ε), respectively, I
and J can be calculated approximately by using appropriate
Taylor expansions of τ̂ph(ζ ) and Ŵ(ζ ). As the result, the fol-
lowing approximate formulas are obtained for Eqs. (88) and
(91):

I ≈ 1

τ̂ph(ζa)

√
2ζa

A(ζa)B(ζa)
arctan

√
A(ζa)(ζ1 − ζa), (C4a)

J ≈ 1

τ̂ph(ζb)

√
ζb

2A(ζb)B(ζb)
log

1 + √
A(ζb)(ζb − ζ0)

1 − √
A(ζb)(ζb − ζ0)

,

(C4b)

A(ζ ) = nσ

n + σζ
, B(ζ ) = 3

√
3

2
κ

∣∣∣∣ 9

ζ 9
− 3

ζ 3

∣∣∣∣, (C4c)

where ζa and ζb indicate ζa(ε) and ζb(ε), respectively, and the
explicit forms of Eqs. (88) and (91) have been used. For ε = 0,
Eq. (C3b) reduces to

J = 1√
2

∫ ηb(0)

η0

dη√
−W̃(η, 0)

= 1√
2

∫ ∞

ζ0

dζ

τ̂ph(ζ )
√

−Ŵ(ζ )
.

(C5)

This requires a special treatment, which is omitted here.

b. Difference scheme

Noting that ζ (i) = ζ (η(i, j), ε( j) ), we express the values of
relevant functions at the grid points in the following way:

φ
[m]
±(i, j) = {φ̃±(η(i, j), ε( j) ) = φ±(ζ (i), ε( j) )

at the mth step of iteration},
n[m]

(i) = {̃n(η(i, j), ε( j) ) = n̂(ζ (i) ) at the mth step of iteration},
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M(i, j) = M̃m(η(i, j), ε( j) ) = M̂m(ζ (i), ε( j) )

= 1√
2π

exp(−ε( j) + Ŵ(ζ (i) )),

W(i) = ŵ(ζ (i) ) = ε(max{−i, i−2N0}), τ(i) = τ̂ph(ζ (i) ),

A(i) = A(ζ (i) ), B(i) = B(ζ (i) ).

We solve Eqs. (C1) and (C2) with respect to φ̃±(η0, ε) or φ̃±(η1, ε), apply the results to the grid points suitably, and regard
φ̃± and ñ as the value at the (m + 1)th step and that at the mth step, respectively. Then, we obtain the following equations for
φ

[m+1]
±(i, j) .

(a) For φ
[m+1]
−(i, j) ,

φ
[m+1]
−(i, j) = (

n[m]
(i+1)M(i+1, j) − φ

[m+1]
−(i+1, j)

)
I(i) + φ

[m+1]
−(i+1, j), (ε( j) = W(i) ), (C6a)

φ
[m+1]
−(i, j) = (

n[m]
(i) M(i, j)J(i+1) + φ

[m+1]
−(i+1, j)

)/
(J(i+1) + 1), (ε( j) = W(i+1)), (C6b)

φ
[m+1]
−(i, j) =

[
�η(i+1)

23/2

(√
ε( j) − W(i)

n[m]
(i+1)M(i+1, j) − φ

[m+1]
−(i+1, j)√

ε( j) − W(i+1)

+ n[m]
(i) M(i, j)

)

+
√

ε( j) − W(i) φ
[m+1]
−(i+1, j)

]/(√
ε( j) − W(i) + �η(i+1)

23/2

)
, (otherwise). (C6c)

(b) For φ
[m+1]
+(i, j) ,

φ
[m+1]
+(i, j) = (

n[m]
(i) M(i, j)I(i−1) + φ

[m+1]
+(i−1, j)

)/
(I(i−1) + 1), (ε( j) = W(i−1)), (C7a)

φ
[m+1]
+(i, j) = (

n[m]
(i−1)M(i−1, j) − φ

[m+1]
+(i−1, j)

)
J(i) + φ

[m+1]
+(i−1, j), (ε( j) = W(i) ), (C7b)

φ
[m+1]
+(i, j) =

[
�η(i)

23/2

(
n[m]

(i) M(i, j) +
√

ε( j) − W(i)

n[m]
(i−1)M(i−1, j) − φ

[m+1]
+(i−1, j)√

ε( j) − W(i−1)

)

+
√

ε( j) − W(i) φ
[m+1]
+(i−1, j)

]/(√
ε( j) − W(i) + �η(i)

23/2

)
, (otherwise). (C7c)

Here,

I(i) = 1

τ(i)

√
2ζ (i)

A(i)B(i)
arctan

√
A(i)(ζ (i+1) − ζ (i) ), (i = −N1, −N1 + 1, . . . , N0 − 1), (C8a)

J(i) = 1

τ(i)

√
ζ (i)

2A(i)B(i)
log

1 + √
A(i)(ζ (i) − ζ (i−1))

1 − √
A(i)(ζ (i) − ζ (i−1))

, (i = N0 + 1, N0 + 2, . . . , 2N0 − 1), (C8b)

J(2N0 ) = 1

κτσ 5/2

1√
3
√

3κ

nn

(σζ (2N0−1))n−5/2

[
2

2n − 5
− 2n2

(2n − 3)σζ (2N0−1)
+ n3(n + 1)

(2n − 1)(σζ (2N0−1))2

]
, (C8c)

where J(2N0 ) corresponds to the value of J at ε = 0 and has
been obtained on the basis of Eq. (C5).

c. Process of computation

Let us assume that n[m]
(i) (i = −N1, −N1 + 1, . . . , 2N0) and

φ
[m]
+(i,i−2N0 ) (i = N0 + 1, N0 + 2, . . . , 2N0 − 1), which are the

values of φ at the grid points on the curve ε = Ŵ(ζ ) in Fig. 22,
at the mth step have been known. Here, n[m]

(2N0 ) indicates the
value as ζ → ∞. In the following, we set

�η(2N0 ) = ηb(ε( j) ) − η(2N0−1, j) =
∫ ∞

ζ (2N0−1)

1

τ̂ph(s)
ds,

(ε( j) � 0), (C9)

M(2N0, j) = (2π )−1/2 exp(−ε( j) ), and W(2N0 ) = 0.

(i) From the boundary conditions, we let φ
[m+1]
−(2N0, j) =

φ∞(−√
2ε( j) ) ( j = 0, 1, . . . , N2) and φ

[m+1]
−(i,i−2N0 ) =

φ
[m]
+(i,i−2N0 ) (i = N0 + 1, N0 + 2, . . . , 2N0 − 1). In addition,

we set φ
[m+1]
−(N0,−N0 ) = n[m]

(N0 )M(N0,−N0 ).
(iia) For the case of ε( j) < 0, for each j of j = −N0 +

1, −N0 + 2, . . . , −1, we obtain φ
[m+1]
−(i, j) with i = 2N0 + j −

1, 2N0 + j − 2, . . . , − j successively using Eq. (C6).
(iib) For the case of 0 � ε( j) � E , for each

j of j = 0, 1, . . . , N1, we obtain φ
[m+1]
−(i, j) with

i = 2N0 − 1, 2N0 − 2, . . . , − j successively using
Eq. (C6).

(iic) For the case of E < ε( j) � E + E0, for each j
of j = N1 + 1, N1 + 2, . . . , N2, we obtain φ

[m+1]
−(i, j) with i =

2N0 − 1, 2N0 − 2, . . . , −N1 successively using Eq. (C6). In
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FIG. 22. Grid points (ζ (i), ε( j) ) in the (ζ , ε) plane.

addition, we determine φ
[m+1]
−(− j, j) by

φ
[m+1]
−(− j, j) = (

n[m]
(−N1 )M(−N1, j) − φ

[m+1]
−(−N1, j)

)
Ĩ(− j) + φ

[m+1]
−(−N1, j),

(C10a)

Ĩ(− j) = 1

τ(− j)

√
2ζ (− j)

A(− j)B(− j)
arctan

√
A(− j)(ζ (−N1 ) − ζ (− j) ).

(C10b)

(iii) From the boundary conditions, we let φ
[m+1]
+(i,−i) =

φ
[m+1]
−(i,−i) (i = −N2, −N2 + 1, . . . , N0).

(iva) For the case of ε( j) < 0, for each j of j =
−N0 + 1, −N0 + 2, . . . , −1, we obtain φ

[m+1]
+(i, j) with i =

− j + 1, − j + 2, . . . , 2N0 + j successively using Eq. (C7).
(ivb) For the case of 0 � ε( j) � E , for each j of j =

0, 1, . . . , N1, we obtain φ
[m+1]
+(i, j) with i = − j + 1, − j +

2, . . . , 2N0 successively using Eq. (C7).
(ivc) For the case of E < ε( j) � E + E0, for each j of j =

N1 + 1, N1 + 2, . . . , N2, we first obtain φ
[m+1]
+(−N1, j) from

φ
[m+1]
+(−N1, j) = (

n[m]
(−N1 )M(−N1, j) Ĩ(− j) + φ

[m+1]
+(− j, j)

)/
(Ĩ(− j) + 1),

(C11)

and then φ
[m+1]
+(i, j) with i = −N1 + 1, −N1 + 2, . . . , 2N0 suc-

cessively using Eq. (C7).
(v) We carry out the integration in Eq. (73c) by the Simp-

son rule to obtain n[m+1]
(i) (i = −N1, −N1 + 1, . . . , 2N0).

We repeat the processes (i)–(v) until

max
−N1�i�2N0

|n[m+1]
(i) − n[m]

(i) | < δ0 (C12)

holds, where δ0 is a sufficiently small positive number.
The φ

[m+1]
±(i,0) (i = 0, 1, . . . , 2N0) obtained by the process

described above originate from the boundary condition (74a)
[or the second condition in Eq. (80a)]. Thus, they indicate the
values at ε = 0+. Instead, if we let

φ
[m+1]
−(2N0,0) = φ

[m]
+(2N0,0),

following the boundary condition (74c) [or the second
condition in Eq. (80b)], then the obtained φ

[m+1]
±(i,0) (i =

0, 1, . . . , 2N0) indicate the values at ε = 0−. In the actual
computation, we obtain the values both at ε = 0+ and 0−.
In this way, we are able to describe the discontinuity in φ±
propagating along the characteristic line ε = 0 in the (ζ , ε)
plane or ĉ2

z /2 + Ŵ(ζ ) = 0 in the (ζ , ĉz ) plane, as shown in
Figs. 20 and 21.

Because of the discontinuity in φ± at ε = 0, care should be
taken in the numerical integration of the integral in Eq. (73c)
in the process (v). For i = 1, 2, . . . , 2N0 − 1, the integral
is split into the part for ε < 0 and that for ε > 0, and the
Simpson rule is applied to each part: the values at ε = 0−
are used in the former part, whereas those at ε = 0+ are used
in the latter.

d. Data for actual computation

In the actual computation, the distributions of the grid
points ζ (i) and ε( j) are chosen carefully and tuned manually.
Since its description is cumbersome, the details are omitted
here. However, in order to give a rough idea, we will provide
some pieces of information about the grid points in the case
of Fig. 7.

The large numbers E0, E , and Z are chosen as E0 = 25,
E = 300, and Z = 6000. Concerning the grid points ε( j),
about 8400 nonuniformly distributed points are set in the
interval [Ŵmin, 0) = [−1, 0) (the minimum interval is about
7.7 × 10−14 around ε = 0−, and the maximum is about 1.1 ×
10−3 around ε = −0.54); about 800 nonuniformly distributed
points are set in the interval [0, E0) (the minimum interval
is about 6.3 × 10−6 around ε = 0+, and the maximum is
about 0.1 around ε = E0); and about 3000 uniformly dis-
tributed points are set in the interval [E0, E0 + E ] (the grid
interval is about 0.1). As for the grid points ζ (i), about
3800 nonuniformly distributed points are set in the interval
[ζa(E0 + E ), 1) ≈ [0.58, 1) (the minimum interval is about
4.0 × 10−7 around ζ = 1−, and the maximum is about 4.0 ×
10−4 around ζ = 0.90); about 8400 nonuniformly distributed
points are set in the interval [1, ζmin] ≈ [1, 1.20] (the min-
imum interval is about 5.0 × 10−15 around ζ = 1+ and the
maximum is about 9.5 × 10−4 around ζ = ζmin); and about
8400 nonuniformly distributed points are set in the inter-
val [ζmin, Z] ≈ [1.20, 6000] (the minimum interval is about
2.7 × 10−4 around ζ = 1.40, and the maximum is about 12.8
around ζ = Z). The accuracy is confirmed by poor resolution
tests using a smaller number of grid points and smaller com-
putational domains.

It is a good accuracy test to check if the vanishing of the
molecular flux in the normal direction, i.e., Eq. (38), (48), or
(75), is satisfied numerically. In the present case, the maxi-
mum of the numerical values of the left-hand side of Eq. (38)
in the computational domain of ζ is less than 2.2 × 10−6. Note
that the incident flux at infinity, i.e., | ∫ĉz<0 ĉzf∞(ĉ)d ĉ|, is equal
to 0.6978 in this case. The accuracy of the same level has been
confirmed for the cases in the other figures.
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