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In this paper, a high-order solver combining the flux reconstruction (FR) method and the thermal lattice
Boltzmann flux solver (FRTLBFS) is developed for accurately and efficiently simulating incompressible thermal
flows. The conservative differential equations recovered from Chapman-Enskog analysis of the thermal lattice
Boltzmann equation are solved by the high-order FR method. The thermal lattice Boltzmann method is only
applied to reconstruct the local solution used for evaluating fluxes at the solution and flux points. Unlike the
traditional Navier-Stokes–Boussinesq (NSB) solvers where the inviscid and viscous terms are treated separately,
the inviscid and viscous fluxes in the current FRTLBFS are coupled and computed uniformly. In comparison with
the recently developed high-order flux reconstruction thermal lattice Boltzmann method, the FRTLBFS holds
advantages such as high-order accuracy, good stability, and compactness but is more efficient and low storage,
since only macroscopic flow variables including density, velocity, and temperature are stored and evolved. In
addition, the physical boundary conditions in FRTLBFS can be directly implemented by using the same method
as in conventional NSB solvers. Numerical validations of the proposed method are implemented by simulating
(a) the porous plate problem, (b) natural convection in a square cavity, (c) unsteady natural convection in a tall
cavity, and (d) thermal lid-driven cavity flow. Numerical results demonstrate that the present solver is an attractive
tool to simulate incompressible thermal flows due to its high-order accuracy, stability, and low memory cost.
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I. INTRODUCTION

Accurate and efficient simulation of thermal flows has al-
ways been an important topic in the numerical heat transfer
(NHT) community. The present popular high-order method is
able to reach the same accuracy with fewer degrees of freedom
(DOF) compared with a low-order method, or, in other words,
to obtain a result of higher accuracy with the same number of
DOF [1]. Several investigations have been reported to adopt
high-order schemes to solve the Navier-Stokes–Boussinesq
(NSB) system or compressible NS equations at low Mach
(Ma) numbers. Bassi et al. [2] applied the discontinuous
Galerkin (DG) method together with the artificial compress-
ibility (AC) method to solve natural convection problems.
Wakashima and Saitoh [3] used the high-order finite differ-
ence (FD) scheme to get the benchmark numerical solutions
for a three-dimensional natural convection heat transfer prob-
lem in a cubical cavity. Busto et al. [4] proposed a new
family of high-order staggered semi-implicit DG methods for
the simulations of natural convection problems. Zhao and
Tian [5] developed a high-order upwind compact scheme for
the solutions of time-dependent nature convection problems
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based on the stream function–vorticity form of NS equations.
Klein et al. [6] adopted the DG and semi-implicit method
for pressure-linked equation (SIMPLE) to simulate variable
density flows at low Ma numbers. Recently, the high-order
flux reconstruction (FR) or correction procedure via recon-
struction (CPR) methods have become appealing since they
unify several existing high-order schemes, including the nodal
DG and spectral difference (SD) methods, within a single
framework [7,8]. The FR scheme solves the governing equa-
tions in differential form, and no surface or volume integrals
are required. It is simpler and more efficient than DG, yet it
retains the advantages of DG, such as compactness and good
adaptability of complicated geometries [9]. At present, a num-
ber of compressible and incompressible flow solvers based
on the FR scheme have been proposed [10–13]. Recently, Yu
et al. [14] combined FR with the preconditioning method to
solve two-dimensional (2D) steady NS equations at low Ma
numbers, and vertical heated natural convection cases with
both small and large temperature differences are studied.

Apart from the macroscopic scale, other kinds of methods
are constructed on the mesoscopic scale; a typical represen-
tative is the lattice Boltzmann method (LBM), which has
developed quickly over the past two decades due to its sim-
plicity, kinetic nature, low numerical dissipation, and easy
parallel computing. Several thermal models presented in the
framework of LBM include the multispeed model [15,16], the
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double-distribution function (DDF) model [17–19], and the
hybrid model [20,21]. However, the standard LBM has some
restrictions, such as the use of uniform Cartesian grids, the tie-
up between time step and mesh spacing, and the poor stability
at high Reynolds number (Re) or Rayleigh number (Ra). In
addition, the standard LBM is a second-order scheme, and it
is quite tedious to construct a high-order scheme of LBM due
to its unique discretization form. These shortcomings greatly
limit the applications of this method to complex geometries
and flows. In order to be free of these constraints of standard
LBM, two types of off-lattice approaches were proposed in the
early years. One is the interpolation method [22,23] and the
other is directly solving the discrete velocity Boltzmann equa-
tion (DVBE) by some conventional discretization methods
[24–26]. Moreover, the corresponding high-order schemes of
the two off-lattice methods have also been developed [27,28].
However, off-lattice methods still suffer from high cost in
virtual memory and inconvenient implementation of phys-
ical boundary condition. To address the problems, without
the need to solve the discrete distribution functions sepa-
rately, two sorts of methods, which are called simplified LBM
(SLBM) [29] and lattice Boltzmann flux solver (LBFS) [30],
were proposed. In recent years, both of these methods have
been developed to simulate various types of flows and the
corresponding high-order schemes are constructed [31–33].
In this paper, the thermal LBFS (TLBFS) proposed by Wang
et al. [34] is adopted. The original TLBFS is based on a
second-order FV scheme and the fluxes at the cell interface
are evaluated by local reconstruction of the thermal LBM
(TLBM) solution. TLBFS overcomes the previously men-
tioned drawbacks of LBM, and it can be flexibly applied on
nonuniform grids with curved boundaries. Recently, Liu et al.
[35] have combined the least-square-based finite difference
(LSFD) scheme with the TLBFS to construct a high-order
FV thermal flow solver on unstructured grids. Their method
is accurate and efficient. Moreover, their method inherits the
advantages of the FV scheme, such as good adaptability of
complicated geometries and conservation. However, as a high-
order FV scheme, wide stencils are required to construct a
high-order polynomial of the solution variable. As a result,
the algorithm is relatively complex and not compact.

Since the TLBFS is actually a unique way to reconstruct
the local flux, besides the FV scheme, other schemes also
could be flexibly adopted in TLBFS to solve governing equa-
tions. From this motivation, the popular high-order FR scheme
is combined with the TLBFS in this work. With the help of
Chapman-Enskog (CE) analysis, an equivalent form of NSB
equations, containing both macroscopic flow variables and
microscopic particle distribution functions, has been derived
from the lattice Boltzmann equations (LBE). The present
governing equations have no second-order partial derivative
term, so no extra techniques, such as the second procedure
of Bassi and Rebay (BR2) [36], local DG (LDG) [37], hy-
bridizable DG (HDG) [38], and so on, for discretization of the
viscous terms are needed. In addition, no special techniques,
such as projection or the AC method, are conducted to solve
incompressible NS equations, since the present method is
actually a weakly compressible (WC) model. Compared with
the high-order off-lattice thermal flow solvers, the number of
governing equations in the present solver is much less than

that of off-lattice methods. Thus, the corresponding memory
and computational time cost are reduced. Furthermore, the
macroscopic physical boundaries rather than the kinematic
boundaries are imposed by directly calculating the fluxes at
the boundaries. In general, the present solver inherits the
advantages of FR and TLBFS, such as high-order accuracy,
low dissipation, well compactness, and low storage. For the
convenience of presentation, hereafter the present solver is
called FRTLBFS.

The remainder of this work is organized as follows. The
macroscopic governing equations evolved from the thermal
lattice Boltzmann model are given in Sec. II. A detailed de-
scription of the algorithm and remarks about FRTLBFS are
provided in Sec. III. Then Sec. IV shows the numerical results
and discussion of the present method. Conclusions can be
found in Sec. V.

II. GOVERNING EQUATIONS

A. Thermal lattice Boltzmann model

The double-distribution function based thermal lattice
Boltzmann model with the single relaxation time and the
collision term in BGK approximation can be written as

fα (r + eαδt , t + δt ) = fα (r, t ) + f eq
α (r, t ) − fα (r, t )

τ f
,

0 � α < q, (1)

gα (r + eαδt , t + δt ) = gα (r, t ) + geq
α (r, t ) − gα (r, t )

τg
,

0 � α < q, (2)

where r represents a physical location; fα and gα are the
particle distribution functions for the velocity and tempera-
ture fields, respectively; f eq

α and geq
α are their corresponding

equilibrium states; eα is the discrete velocity; τ f and τg are
the relaxation times for the velocity and temperature fields,
respectively; δt is the streaming time step; and q is the number
of discrete velocities. In this work, two-dimensional (2D)
problems are considered, and the D2Q9 lattice velocity model
is adopted:

eα =
⎧⎨
⎩

(0, 0), α = 0
(±1, 0), (0,±1), α = 1 − 4
(±1,±1), α = 5 − 8

. (3)

The equilibrium distribution function is defined as

f eq
α = ρωα

[
1 + eα · u

c2
s

+ (eα · u)2

2c4
s

− u · u
2c2

s

]
, (4)

geq
α = T ωα

[
1 + eα · u

c2
s

+ (eα · u)2

2c4
s

− u · u
2c2

s

]
, (5)

where cs = 1/
√

3 is the lattice sound speed in the LBM. The
weight coefficient ωα for the D2Q9 model is

ωα =
⎧⎨
⎩

1/9, α = 0
4/9, α = 1 − 4
1/36, α = 5 − 8

. (6)
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The macroscopic fluid density ρ, velocity u, and tempera-
ture T are obtained by

ρ =
∑

α

fα, ρu =
∑

α

eα fα, T =
∑

α

gα. (7)

The pressure can be calculated from the equation of state:

p = ρc2
s . (8)

B. Chapman-Enskog expansion analysis

By using the Chapman-Enskog expansion analysis [39],
the mass, momentum, and energy equations for incom-
pressible flows based on LBM evolution equations can be
recovered. First, by performing the Taylor-series expansion to
Eqs. (1) and (2), the corresponding equations can be written
as (

∂

∂t
+ eα · ∇

)
fα + δt

2

(
∂

∂t
+ eα · ∇

)2

fα

+ 1

τ f δt

(
fα − f eq

α

) + O
(
δ2

t

) = 0, (9)(
∂

∂t
+ eα · ∇

)
gα + δt

2

(
∂

∂t
+ eα · ∇

)2

gα

+ 1

τgδt

(
gα − geq

α

) + O
(
δ2

t

) = 0. (10)

Then applying the multiscale expansion, the density and
temperature distribution functions of fα and gα , the temporal
derivative, and the spatial derivative can be expanded, respec-
tively, as

fα = f (0)
α + ε f (1)

α + ε2 f (2)
α , (11a)

gα = g(0)
α + εg(1)

α + ε2g(2)
α , (11b)

∂

∂t
= ε

∂

∂t0
+ ε2 ∂

∂t1
, (11c)

∇r = ε∇r1, (11d)

where ε is a small parameter proportional to the Knudsen
number. Substituting Eq. (11) into Eqs. (9) and (10) and intro-
ducing conservation laws for mass, momentum, and energy,
the following equations can be obtained:

∂ρ

∂t
+ ∇ · P = 0, (12)

∂ρu
∂t

+ ∇ · 	 = 0, (13)

∂T

∂t
+ ∇ · Q = 0, (14)

where P is the mass flux vector, 	 is the momentum flux
tensor, and Q is the thermal flux vector. They are defined as

P =
q∑

α=0

eα f eq
α , (15)

	βγ =
q∑

α=0

(eα )β (eα )γ

[
f eq
α +

(
1 − 1

2τ f

)
f neq
α

]
, (16)

Q =
q∑

α=0

(
eα

[
geq

α +
(

1 − 1

2τg

)
gneq

α

])
. (17)

In the above equations, β and γ represent the x and y
directions, respectively. f neq

α and gneq
α represent the nonequi-

librium distribution function, and they can be computed by
the following equations:

f neq
α = fα − f eq

α ≈ ε f (1)
α = −τ f δt

(
∂

∂t
+ eα · ∇

)
f eq
α , (18)

gneq
α = gα − geq

α ≈ εg(1)
α = −τgδt

(
∂

∂t
+ eα · ∇

)
geq

α . (19)

Using relationships (3)–(7) and (15)–(19), Eqs. (12)–(14)
can recover the following differential equations, which are
identical to the macroscopic governing equations of incom-
pressible thermal flows in a weakly compressible form:

∂ρ

∂t
+ ∇ · (ρu) = 0, (20)

∂ρu
∂t

+ ∇ · (ρuu) = −∇ρ + ν∇ · [∇ρu + (∇ρu)T ], (21)

∂T

∂t
+ ∇ · (T u) = ∇ · (κ∇T ), (22)

where the kinematic viscosity coefficient ν and the thermal
diffusion coefficient κ are in connection with the relaxation
times correspondingly:

ν = (
τ f − 1

2

)
c2

s δt , (23)

κ = (
τg − 1

2

)
c2

s δt . (24)

One can refer to Ref. [30] for more detailed derivations.
Equations (12)–(14) can be regarded as other expressions of
Eqs. (20)–(22), respectively, and they can be written in the
following vector form:

∂W
∂t

+ ∂Fx

∂x
+ ∂Fy

∂y
= 0, (25)

W =

⎛
⎜⎝

ρ

ρu
ρv

T

⎞
⎟⎠, Fx =

⎛
⎜⎝

Px

	xx

	yx

Qx

⎞
⎟⎠, Fy =

⎛
⎜⎝

Py

	xy

	yy

Qy

⎞
⎟⎠, (26)

where u and v are the components of u in the x and y direc-
tions, respectively. Unlike the conventional NSB equations,
which only contain macroscopic variables, the convection
terms in Eqs. (12)–(14) consist of equilibrium and nonequi-
librium distribution functions. In addition, the second-order
viscous term in Eq. (21) disappears in Eq. (13), and it is
contained in the convection term. The buoyancy force FE can
be directly added to the right-hand side of Eq. (25). Using the
Boussinesq approximation, FE can be defined as

FE =

⎛
⎜⎝

0
0

−ρgβ(T − Tm)
0

⎞
⎟⎠, (27)

where g represents the acceleration due to gravity, β is the
thermal expansion coefficient, and Tm is the average tempera-
ture.

035301-3



CHAO MA, JIE WU, XIANGYU GU, AND LIMING YANG PHYSICAL REVIEW E 106, 035301 (2022)

III. FLUX RECONSTRUCTION THERMAL LATTICE
BOLTZMANN FLUX SOLVER

A. Flux reconstruction scheme

Since the multidimensional FR scheme can be extended
from the one-dimensional (1D) version by tensor production,
let us consider the one-dimensional conservation law,

∂u

∂t
+ ∂ f (u)

∂x
= 0, (28)

in domain �. Firstly, partition the domain into m nonoverlap-
ping elements,

� =
m⋃

n=1

�n, (29)

and �n = [xn, xn+1] for n = 1, . . . , m. In order to facilitate
the calculation, each element is mapped to a standard ele-
ment, I = [−1, 1]. According to a mapping function Mn(ξ ),
the coordinate transformation should be carried out between
the global coordinate system x in the physical domain and the
local coordinate system ξ of the standard element. This com-
putational space is discretized with (p + 1)d solution points,
and 2d (p + 1)d−1 flux points, placed at the edges of the
subdomain, where d represents the dimension. The solution
and flux point locations for multidimensional elements are
typically determined using a tensor grid of a 1D quadrature.
Thereafter, the evolution of u within each �n can be deter-
mined with the following transformed conservation equation,

∂ û

∂t
+ ∂ f̂

∂ξ
= 0, (30)

where û = Jnun(Mn(ξ ), t ) and f̂ = Jn fn(Mn(ξ ), t ); Jn denotes
the Jacobian of the mapping function Mn(ξ ). With this
domain set up, our task is to construct a continuous flux
polynomial from the discontinuous segments. At the first
stage, the flux interpolation polynomials can be constructed
by the approximation of the exact values,

f̂ δ =
N∑

i=1

f̂ δ
i li(ξ ), (31)

where N is the number of the solution points, and li(X ) is the
Lagrange interpolation basis, which is defined as

li(X ) =
N∏

s=1,s �=i

(
X − Xs

Xi − Xs

)
, i = 1, 2, . . . , N. (32)

The leap at each interface in the aforementioned flux con-
struction for each element is unreasonable. Revision of the
discontinuous flux polynomials and consideration of common
fluxes at element borders are necessary in order to reconstruct
continuous flux polynomials. The common fluxes at the left
and right boundaries of the element n in ξ direction are
( f̂ δ )com

i− 1
2

and ( f̂ δ )com
i+ 1

2
, respectively. Defining the polynomial

( f̂ δ )c
i (ξ ) as the continuous flux function of the element n in the

ξ direction, the correction to the discontinuous flux function

is made by

( f̂ δ )c
i (ξ ) = ( f̂ δ )i(ξ ) + [

( f̂ δ )com
i− 1

2
− ( f̂ δ )i(−1)

]
gL(ξ )

+ [
( f̂ δ )com

i+ 1
2
− ( f̂ δ )i(1)

]
gR(ξ ), (33)

where ( f̂ δ )i(−1) and ( f̂ δ )i(1), are respectively, the values of
the discontinuous flux polynomial at the left and right element
boundaries, and they can be determined by Eq. (31). gL and gR

are, respectively, the correction functions related to the left
and the right end points of the element, and the following
conditions should be satisfied:

gL(−1) = 1, gL(1) = 0, gR(−1) = 0, gR(1) = 1. (34)

The choice of correction function makes the FR scheme
have different properties on the accuracy and stability. In the
present study, we use the following expression for the right
and left Radau polynomials, respectively. Thus, following
the analysis of Huynh [7], a particular nodal DG scheme is
recovered.

gL = (−1)k

2
(Lk − Lk+1), (35)

gR = 1

2
(Lk + Lk+1), (36)

where Lk is the k degree Legendre polynomial and k is
the order of the solution polynomial within each element.
The present solver with the solution polynomial of degree
k (k = N−1) is called pk FRTLBFS.

Finally, the flux derivative can be discretized as

d ( f̂ δ )c
i

dξ
= d ( f̂ δ )i

dξ
+ [

( f̂ δ )com
i− 1

2
− ( f̂ δ )i(−1)

]dgLB

dξ

+ [
( f̂ δ )com

i+ 1
2
− ( f̂ δ )i(1)

]dgRB

dξ
. (37)

More details of the FR scheme can be found in Ref. [7].

B. Evaluation of fluxes at solution and flux points by TLBFS

According to Eqs. (12)–(17), the fluxes of the present
scheme should be calculated by f eq

α , geq
α , f neq

α , and gneq
α . It is

known that two types of flux are needed in the FR scheme.
One is the original fluxes stored at the solution points to
construct the discontinuous flux polynomials, and the other
is the common fluxes stored at the flux points to correct
the discontinuous flux polynomials. In the most previous FR
solvers based on conventional NS equations, the common
inviscid fluxes at an interface (F̂x )com

i± 1
2

are calculated by uti-

lizing the Riemann solver [40], which is constructed from
the mathematical approach. In the present work, both fluxes
are simultaneously calculated by LBFS, which is physical
evaluation of numerical fluxes. Following the work of Wang
et al. [34], the nonequilibrium distribution function f neq

α and
gneq

α in Eqs. (18) and (19), respectively, can be approximated
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by

f neq
α (r, t ) = −τ f

[
f eq
α (r, t ) − f eq

α (r − eαδt , t − δt )
] + O

(
δ2

t

)
,

(38)

gneq
α (r, t ) = −τg

[
geq

α (r, t ) − geq
α (r − eαδt , t − δt )

] + O
(
δ2

t

)
,

(39)

where r is the physical location and t is the physical time after
streaming. f eq

α (r, t ) and geq
α (r, t ) are the equilibrium distribu-

tion functions at the solution or flux points after streaming,
while f eq

α (r − eαδt , t − δt ) and geq
α (r − eαδt , t − δt ) are the

equilibrium distribution functions at its surrounding nodes
r − eαδt before streaming, respectively. The lattice spacing δx

is equal to the streaming time step δt .
Since the macroscopic variables at the solution points are

known at the time level t − δt , it is convenient to construct
a high-order macroscopic variable interpolation polynomial
similar to Eq. (31) directly in the FR framework:

ϕ(ξ, η) =
N∑

j=1

N∑
i=1

�i, j[li(ξ )l j (η)], (40)

where � can be fluid density ρ, velocity u, or temperature T .
Then the macroscopic variables at the surrounding nodes of
a solution or flux point are achieved. The process is briefly
depicted in Fig. 3. Note when the surrounding nodes of a
flux point are located at the cell interface, their macroscopic
variables ρ, u, or T can be obtained by averaging the values
on the left and right sides. Thereafter, f eq

α (r − eαδt , t − δt )
and geq

α (r − eαδt , t − δt ) can be calculated by Eqs. (4) and
(5), respectively. Furthermore, the macroscopic variables after
streaming are given by

ρ(r, t ) =
q∑

α=0

f eq
α (r − eαδt , t − δt ), (41)

ρ(r, t )u(r, t ) =
q∑

α=0

f eq
α (r − eαδt , t − δt )eα, (42)

T (r, t ) =
q∑

α=0

geq
α (r − eαδt , t − δt ). (43)

The derivation details of Eqs. (41)–(43) can be found in
Ref. [34]. Thereafter, f eq

α (r, t ) and geq
α (r, t ) can be determined

via Eqs. (4) and (5), respectively. Once f eq
α (r − eαδt , t − δt ),

geq
α (r − eαδt , t − δt ), f eq

α (r, t ), and geq
α (r, t ) are available,

f neq
α (r, t ) and gneq

α (r, t ) can be calculated via Eqs. (38) and
(39), respectively. Ultimately, the fluxes at the solution and
flux points are evaluated using Eqs. (15)–(17).

C. Implementation of boundary conditions

Since Eqs. (12)–(14) are a particular form of Eqs. (20)–
(22), the boundary fluxes can be obtained from the con-
ventional NSB equations. The following equivalence can be

established: ⎛
⎜⎝

Px

	xx

	yx

Qx

⎞
⎟⎠ =

⎛
⎜⎜⎝

ρu
ρu2 + p − τ11

ρuv − τ12

Tu − κ ∂T
∂x

⎞
⎟⎟⎠,

⎛
⎜⎝

Py

	xy

	yy

Qy

⎞
⎟⎠ =

⎛
⎜⎜⎝

ρv

ρuv − τ21

ρv2 + p − τ22

T v − κ ∂T
∂y

⎞
⎟⎟⎠, (44)

where the pressure p is computed by Eq. (9). τi j is the viscous
stress defined as

τi j =
⎧⎨
⎩

μ
(

∂ui
∂x j

+ ∂u j

∂xi

)
, i �= j

μ
(
2 ∂ui

∂xi
− 2

3∇ · u
)
, i = j

. (45)

For a no-slip isothermal wall, the velocity and temperature
are known. The density or pressure can be determined by
interpolation while the derivatives in Eq. (44) can be calcu-
lated by the FR method. For a no-slip adiabatic wall, the
only difference is ∂T/∂n = 0, and the temperature of the
boundary can be determined by interpolation. It is noted that
the transformation from computational space to physical
space is required when computing the derivatives. In this way,
the fluxes of the flux points located on the physical boundary
face are obtained from the macroscopic physical quantities.

D. Computational sequence

The computational sequence for the present high-order
FRTLBFS is summarized as follows:

(1) Specify a streaming distance δx (δt = δx), make sure
the virtual lattice velocity points of a solution point in the
D2Q9 model are located in their own cell, while those of a
flux point are within either the left cell or the right cell of
the interface. The single relaxation parameters τ f and τg are
then calculated using Eqs. (5) and (6), respectively. Transform
the physical location of the virtual lattice velocity point to
the computational location in a standard element. Calculate
the values of the Lagrangian interpolation basis at the virtual
lattice velocity points and flux points with Eq. (32).

(2) Reconstruct the macroscopic flow variables at
the surrounding positions r − eαδt of solution and flux
points with Eq. (40). Calculate f eq

α (r − eαδt , t − δt ) and
geq

α (r − eαδt , t − δt ) using Eqs. (4) and (5), respectively; then
calculate the macroscopic variables at the solution and flux
points after streaming via Eqs. (41)–(43). Calculate f eq

α (r, t )
and f neq

α (r, t ) using Eqs. (4) and (38), respectively. Calculate
geq

α (r, t ) and gneq
α (r, t ) using Eqs. (5) and (39), respectively.

The fluxes at the solution points and the common fluxes at the
flux points are obtained via Eqs. (15)–(17).

(3) Construct the discontinuous flux polynomials, i.e.,
Eq. (31), using the fluxes at the solution points. Reconstruct
discontinuous fluxes at the interfaces of the cells.

(4) Construct the continuous flux polynomial, i.e.,
Eq. (33), using the common fluxes at the flux points and
the correction functions gL and gR, i.e., Eqs. (35) and (36).
Then, the derivatives of the fluxes at the solution points can
be discretized by Eq. (37).
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(5) Calculate the external force FE , i.e., Eq. (27).
(6) Choose appropriate time integration shemes for time

marching. In the present work, the third-order explicit strong
stability preserving Runge-Kutta (SSPRK) scheme is adopted
for unsteady cases, while the first-order explicit Euler scheme
is adopted for steady cases. The time step of cell i is deter-
mined by the Courant-Friedrichs-Lewy (CFL) condition:

�ti = σ

√
Vi

�i
/(2N + 1), (46)

where σ , Vi, and �i are the CFL number, the volume of cell i,
and the convective spectral radius of cell i, respectively.

(7) Repeat steps (2)–(6) until the converged solution or the
specified time is reached.

E. Remarks

Recently, we reported the work using the FR scheme
to solve the double-distribution discrete velocity Boltzmann
equation (DVBE) for simulation of incompressible thermal
flow, named FRTLBM [41]. Except for the same spatial dis-
cretization scheme, i.e., FR, the present work is quite different
from our previous work in the following aspects:

(1) The governing equations in FRTLBM are DVBE while
those in FRTLBFS are the particular form of Navier-Stokes–
Boussinesq (NSB) equations. The convection term of DVBE
is linear while that of NSB equations is nonlinear. For the
2D problem and the D2Q9 model, the number of double-
distribution DVBE is 18 while that of NSB equations is
four. The DVBE will produce stiffness due to the right-side
collision term when Re or Ra is very large while the NSB
equations will not.

(2) The common flux in FRTLBM is the Roe scheme
while that in FRTLBFS is the lattice Boltzmann scheme. The
Roe scheme is a pure numerical flux while LBFS is more
physical since it involves the evolution of space and time and
the solution at the cell interface also satisfies the governing
equations.

(3) A particular time advance scheme should be adapted
in FRTLBFS in order to overcome the stiffness of DVBE,
e.g., the second-order implicit-explicit Runge-Kutta scheme
(IMEXRK). For FRTLBFS, any time integration scheme can
be adapted and the explicit Euler scheme is adequate which is
efficient for the steady problem.

(4) In the present method, only the macroscopic boundary
is considered while in FRTLBFS, the kinematic boundary
should be imposed. However, it is difficult to construct a high-
order and stable kinematic boundary implementation method.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, four typical incompressible thermal flow
problems, including the porous plate problem, natural con-
vection in a square cavity, unsteady natural convection in a
tall cavity, and thermal lid-driven cavity flow, are used to test
the comprehensive performance of the present FRTLBFS. In
these cases, two dimensionless characteristic parameters for
thermal flows, i.e., the Prandtl number Pr and the Rayleigh

FIG. 1. Local reconstruction of thermal lattice Boltzmann solu-
tion at solution and flux points.

number Ra, are defined as

Pr = ν

κ
, (47)

Ra = gβ�T L3

κν
, (48)

where L and �T are the characteristic length and the char-
acteristic temperature difference of the system, respectively.
The lattice spacing δx can be selected as γ dmin, where γ is
a control parameter with a value from 0 to 1, and dmin is
the smallest physical distance between the first solution point
and the corresponding left-side flux point among all the cells,
as presented in Fig. 1. Results obtained for these cases are
compared with those of the existing high-order thermal flow
solvers and also the available numerical and experimental
results. All the present computations are performed on a com-
puter with an Intel Xeon Platinum 8168 CPU, 2.70 GHz, with
a 64-bit operating system. In all the steady simulations, the
convergence criterion is set to be

Error = max (Verror, Terror ) < 1×10−8, (49)

where Verror and Terror are, respectively, the relative errors of
the velocity and temperature fields, which are defined as

Verror =
√∑

Ntotal

[(
ut+�t

x − ut
x

)2 + (
ut+�t

y − ut
y

)2]
√∑

Ntotal

[(
ut+�t

x

)2 + (
ut+�t

y

)2] , (50)

Terror =
√∑

Ntotal
(T t+�t − T t )2√∑

Ntotal
(T t+�t )2

, (51)

FIG. 2. Schematic of the porous plate problem.
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FIG. 3. The comparison of the x component of velocity vector (left) and temperature (right) profiles of the porous plate problem for Re = 5,
10, and 20.

where Ntotal is the total number of solution points. The inte-
gration quantities in all the test cases are approximated using
Gaussian numerical quadrature, and the solution points coin-
cide with the quadrature points.

A. Porous plate problem

First of all, the porous plate problem, which has analytical
solutions for both velocity and temperature, is solved here to
test the accuracy of the present high-order method [41,35]. As
depicted in Fig. 2, the flow is sheared between two porous
plates, while a similar fluid is injected normally from the
bottom plate to the upper plate and withdrawn at the same
rate. The steady-state governing equations can be given as

V
∂u

∂y
= ν

∂2u

∂y2
,

∂ p

∂y
= gβ(T − Tm), (52)

v0
∂T

∂y
= κ

∂2T

∂y2
,

where V is the injection velocity, Th is the temperature for
the upper plate, Tc is the temperature for the bottom plate,

TABLE I. Orders of accuracy and L2 errors of u and T on differ-
ent meshes for the porous plate problem at Re = 10 by the p2 and p3

FRTLBFS.

u T

Scheme Mesh size L2 Order L2 Order

p2 1/4 1.47×10–3 – 8.07×10–3 –
1/8 2.82×10–4 2.385 1.42×10–3 2.506
1/16 3.90×10–5 2.853 2.14×10–4 2.734
1/20 1.93×10–5 3.150 1.11×10–4 2.949

p3 1/2 1.68×10–3 – 7.74×10–3 –
1/4 2.08×10–4 3.014 7.53×10–4 3.361
1/6 4.78×10–5 3.625 1.67×10–4 3.721
1/8 1.64×10–5 3.714 5.07×10–5 4.137

and Tm = (Th + Tc)/2 is the average temperature. The exact
solutions for horizontal velocity and temperature field in a
steady state are obtained as

u∗ = U

(
eRe(y/H ) − 1

eRe − 1

)
,

T ∗ = Tc +
(

ePr Re(y/H ) − 1

ePr Re − 1

)
�T, (53)

where �T =Th − Tc is the temperature difference between the
upper and bottom plates, and Re = V H/ν is the Reynolds
number associated with the injected velocity V and the dis-
tance between the plates H .

The computation is on a rectangle domain, whose size is
L×H with L = 2 and H = 1 at Pr = 0.71 and Ra = 100.
Periodic boundary conditions are applied to the left and right
sides of the domain, while two constant isothermal temper-
ature boundaries Th = 1.0 and Tc = 0.0 are used at the top
and bottom plates, respectively. The horizontal velocity is
set to be 0.1 to satisfy the incompressible limit. Since the
TLBFS has a second-order local accuracy, to avoid polluting
the overall accuracy, the lattice spacing δx is set small enough

FIG. 4. Linearly fitted lines of L2 errors of u and T on different
meshes for the porous plate problem at Re = 10 by the p2 and p3

FRTLBFS (the base of log is 10).
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FIG. 5. Schematic of the natural convection in a square cavity.

and the control parameter γ is 0.1. All the meshes in this
case are uniform. The cases with Re = 5, 10, and 20 are

FIG. 6. Nonuniform mesh distribution with 20 × 20 (left) and
30 × 30 (right) for natural convection in a square cavity.

simulated first by the present p3 scheme (N = 4) with fixed
grids Nx×Ny = 2×4. The comparisons between the simulated
and the analytic results of the x component of velocity and
temperature profiles are shown in Fig. 3, respectively. From
the figure, it can be seen that good agreements are achieved
between the simulated and the analytic results.

FIG. 7. Streamlines for natural convection in a square cavity by the p3 FRTLBFS.
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FIG. 8. Isotherms for natural convection in a square cavity by the p3 FRTLBFS.

Then a h convergence study is performed to measure
the convergence order of the present high-order method at
Re = 10. The numerical error is quantified by using the L2

norm, which is defined as

L2error = ‖φ − φ∗‖2

=
√√√√ 1

NxNyN2

Nx∑
i=1

Ny∑
j=1

N∑
m=1

N∑
n=1

[(φ)i jmn − (φ∗)i jmn]2,

(54)

where Nx and Ny are the mesh numbers in the x and y
directions, respectively; φi jmn(u or T ) = φ(xi jmn, yi jmn) and
φ∗

i jmn = φ∗(xi jmn, yi jmn) are the numerical solution and the
analytical solution given by Eq. (53), respectively. xi jmn and
yi jmn are, respectively, the x and y coordinates of the solu-
tion point (m, n) in cell (i, j) corresponding to the solution
point (ξS

m, ηS
n ) in the [−1, 1]×[−1, 1] standard cell. In the

test, four regular quadrilateral grids with the mesh sizes of
h = 1/4, 1/8, 1/16, and 1/20 for the p2 scheme (N = 3) and

h = 1/2, 1/4, 1/6, and 1/8 for the p3 scheme (N = 4) are
used. The computed L2 errors of velocity component u and
temperature T and convergence orders are shown in Table I.
From the table, it can be found that the L2 errors of the p3

scheme with less mesh are much smaller than that of the p2

scheme. The slopes of the linearly fitted lines are presented in
Fig. 4. It can be seen that the p2 scheme can reach more than
second-order accuracy, while the p3 scheme can achieve more
than third-order accuracy for both u and T . The results prove
that the current method can expectedly achieve the designed
high-order accuracy for both flow field and temperature field.
The accuracy order can be easily adjusted by changing the
order of cell local polynomials, i.e., the number of solution
points.

B. Natural convection in a square cavity

Natural convection in a square cavity is frequently simu-
lated to demonstrate the efficacy of numerical methods for
thermal flows at a wide range of Rayleigh numbers [34,35].
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TABLE II. Comparisons of indicated quantities obtained from the present simulations with the data from the literature of natural convection
in a square cavity at Ra = 105, 106, 107, and 108.

Ra DOF umax y vmax x Nu Nu1/2 Nu0

105 Wang et al. [42] 3212 34.743 0.855 68.632 0.0659 4.521 4.521 4.522
Dixit and Babu [44] 2562 35.521 0.854 68.655 0.066 4.546 4.519 4.523
p2 FRTLBFS 902 34.666 0.853 68.529 0.0686 4.518 4.515 4.523
p3 FRTLBFS 802 34.650 0.854 68.696 0.0661 4.517 4.517 4.520
p2 error (%) 0.221 0.164 0.149 0.789 0.075 0.133 0.027
p3 error (%) 0.267 0.070 0.093 0.395 0.088 0.093 0.046

106 Wang et al. [42] 3212 64.828 0.850 220.551 0.0378 8.825 8.826 8.827
Dixit & Babu [44] 5122 64.186 0.850 219.866 0.0371 8.653 8.507 8.805
p2 FRTLBFS 902 65.197 0.850 221.205 0.0378 8.841 8.852 8.846
p3 FRTLBFS 802 64.877 0.854 220.705 0.0379 8.826 8.824 8.827
p2 error (%) 0.569 0.059 0.297 0.106 0.181 0.303 0.211
p3 error (%) 0.076 0.494 0.070 0.397 0.018 0.017 0.006

107 Xu et al. [43] 20482 148.572 0.879 699.339 0.0213 16.522 16.524 16.524
Ma et al. [41] 1202 148.457 0.884 673.499 0.0198 16.426 16.501 16.504
p2 FRTLBFS 902 149.485 0.881 701.641 0.0225 16.588 16.613 16.754
p3 FRTLBFS 802 148.681 0.866 698.866 0.0204 16.597 16.652 16.458
p2 error (%) 0.615 0.227 0.329 5.634 0.395 0.537 1.392
p3 error (%) 0.073 1.547 0.068 4.225 0.455 0.773 0.401

108 Xu et al. [43] 20482 320.988 0.928 2223.466 0.0119 30.227 30.230 30.231
Ma et al. [41] 1202 329.841 0.928 2223.010 0.0118 30.298 30.253 30.194
p2 FRTLBFS 902 333.143 0.940 2227.920 0.0124 30.542 30.911 30.789
p3 FRTLBFS 802 326.910 0.929 2221.651 0.0115 30.311 30.350 30.587
p2 error (%) 3.787 1.326 0.200 4.202 1.045 2.252 1.849
p3 error (%) 1.845 0.161 0.082 3.361 0.278 0.395 1.180

The configuration of the problem is shown in Fig. 5. To be
specific, the flow domain is a two-dimensional square cavity
with (x, y) ∈ [0, 1]×[0, 1], i.e., L = H = 1.0. The adiabatic
condition, i.e., ∂T/∂y = 0, is set on the top and bottom walls,
while isothermal conditions with fixed temperatures of Th = 1
and Tc = 0 are, respectively, applied to the left and right walls.
The no-slip boundary condition is applied on all the walls. In
addition, a gravitational body force exists in the y direction.
Initially, there is no velocity and the density is set as 1. The
initial temperature is set as the reference temperature, i.e.,
T0 = (Th + Tc)/2. The Prandtl number is set as Pr = 0.71, and
four typical Rayleigh numbers, i.e., 105, 106, 107, and 108,
are employed to investigate the proposed scheme. Ma = V0/cs

is taken as 0.1 for all the cases to satisfy the incompressible
limit, where V0 = √

gβ�T H is the characteristic velocity of

the flow. In order to capture the thin thermal boundary layer,
the nonuniform mesh is used, and it is generated by the fol-
lowing transformation:

x = 1

2a
[a + tanh(θξ )], y = 1

2a
[a + tanh(θη)], (55)

where a = tanh(θ ) and θ = 1.5. The p2 and p3 FRTLBFS are
tested in this subsection. The sizes of the mesh are 30×30
for the p2 scheme and 20×20 for the p3 scheme, and the
corresponding DOF that refers to the number of solution
points are 90×90 and 80×80, respectively. The nonuniform
mesh distributions for the sizes of 20×20 and 30×30 are
displayed in Fig. 6. The velocity field u is normalized by a
reference velocity U0 = κ/H . In the simulations, the Nusselt
number Nu is used to evaluate the heat transfer rate. The

TABLE III. Grid independence study for natural convection in a square cavity at Ra = 106.

Grids umax y vmax x Nu Nu1/2 Nu0

Wang et al. [42] 3212 64.828 0.8498 220.551 0.03779 8.8247 8.8256 8.8272
p2 FRTLBFS 252 64.897 0.8559 220.369 0.04000 8.8391 8.8484 8.8639

302 64.877 0.8540 220.705 0.03794 8.8407 8.8523 8.8458
352 64.750 0.8468 220.620 0.03788 8.8264 8.8148 8.8357

p3 FRTLBFS 152 65.607 0.8543 220.729 0.03515 8.8349 8.8426 8.7990
202 64.877 0.8540 220.705 0.03794 8.8263 8.8241 8.8267
252 64.903 0.8470 220.565 0.03745 8.8270 8.8266 8.8255
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TABLE IV. Comparisons of memory cost and computational time between FRTLBFS and FRTLBM in natural convection in a square
cavity at Ra = 105.

Schemes Grids DOF Nu Iteration steps Virtual memory (megabytes) Memory ratio CPU time (s) Time ratio

p2 FRTLBFS 302 8100 4.5177 885000 4.3 21.18% 4906.24 43.38%
p2 FRTLBM [41] 302 8100 4.5168 885000 20.3 – 11311 –
p3 FRTLBFS 202 6400 4.5173 725000 2.8 18.06% 3568.01 62.95%
p3 FRTLBM [41] 202 6400 4.5170 725000 15.5 – 5667.74 –

averaged Nusselt numbers over the whole computational do-
main and that along the line of x = 0 and x = L/2 are,
respectively, defined as

Nu = L

κ�T

1

L2

∫∫
©

�

(
uT − κ

∂T

∂x

)
d�, (56)

Nu0 = L

κ�T

1

L

∫
x=0

(
uT − κ

∂T

∂x

)
dl, (57)

Nu1/2 = L

κ�T

1

L

∫
x=L/2

(
uT − κ

∂T

∂x

)
dl. (58)

Figures 7 and 8, respectively, show the streamlines and
isotherms computed by the p3 scheme. It can be concluded
that as Ra increases, the isotherms in the cavity’s center
change from nearly vertical to horizontal, and the thermal
boundary layers around the hot and cold walls’ corners be-
come thinner. The temperature boundary layers get smaller
as Ra increases. All of these phenomena are consistent with
those reported in the literature [41,32,34] whereas the present
mesh size is smaller.

Table II shows the comparisons of the quantities Umax,
Vmax together with their corresponding locations y and x and
the averaged Nusselt numbers Nu, Nu1/2, Nu0 for the four
Ra. The quantity Umax indicates the maximum value of the
x component of velocity on the vertical central line, while
Vmax represents the maximum value of the y component of
velocity on the horizontal central line. The results of Wang
et al. [42] using multiple-relaxation-time LBM (MRTLBM)
with fine grids of 321×321 are chosen as the benchmark
solution for moderate Ra (105 and 106), while the MRTLBM
results of Xu et al. [43] obtained with extremely fine grids
of 2048×2048 are chosen as the benchmark solution for high
Ra (107 and 108). Additionally, the LBM results of Dixit and

TABLE V. Comparison of numerical stability between
FRTLBFS and FRTLBM in natural convection in a square cavity at
high Ra.

Schemes Ra Minimum grids DOF

p2 FRTLBFS 107 122 1296
108 252 5625

p2 FRTLBM [41] 107 142 1764
108 272 6561

p3 FRTLBFS 107 82 1024
108 162 4096

p3 FRTLBM [41] 107 102 1600
108 202 6400

Babu [44] at moderate Ra and the results of high Ra ob-
tained by the fourth-order flux reconstruction thermal lattice
Boltzmann method (FRTLBM) [41] are also listed. All the
quantities computed by the p2 and p3 FRTLBFS agree well
with the reference data reported by Wang et al. [42], Dixit and
Babu [44], Xu et al. [43], and our recently proposed FRTLBM
[41], although the present DOF are much less than those using
second-order methods in the references. Generally speaking,
the p3 scheme achieves less error than p2, despite the fact
that the p2 scheme uses more DOF. The superiority of the
high-order method is clearly presented from the comparisons.
Then, a grid-dependent study of the natural convection prob-
lem at Ra = 106 is conducted on three different grids for the
present p2 and p3 scheme, as listed in Table III. It can be
proven that the grid resolution used in the present simulations
is sufficient to obtain grid independence results.

Next, the computational efficiency, virtual memory cost,
and stability at high Ra of the present method are compared
with those of recently developed FRTLBM [41] with the
same hardware and system. The same grids and the same
CFL number 0.5 are fixed for the two methods. The compar-
isons of memory cost and computational time at Ra = 105

are given in Table IV. It is shown that the present third-
order method takes 21.18% of memory cost and 43.38% of
computational time needed by the third-order FRTLBM, and

FIG. 9. Schematic of the unsteady natural convection in a tall
cavity.
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FIG. 10. Nonuniform mesh distribution with 20×100 (left) and
30×150 (right) for unsteady natural convection in a tall cavity.

the present fourth-order method takes 18.06% of memory cost
and 62.95% of computational time needed by the fourth-order
FRTLBM. For the present method, the most time-consuming
procedure is the interpolation to obtain the macroscopic flow
variables at the surrounding positions r − eαδt of the solution
and flux points with Eq. (45). However, in FRTLBM, the
number of governing equations, i.e., DVBE and the stored
variables, i.e., macroscopic variables and particle distribution
functions, is a lot more. Thus, the high efficiency and low
memory storage of the present method is clearly demon-
strated. Furthermore, what can be expected is that the present
method extended to three dimensions is much more effi-
cient and low storage than methods based on DVBE, since
the number of three-dimensional (3D) DVBE and particle
distribution functions significantly increases, especially for
the DDF model. In order to compare the stability of the

TABLE VI. Coordinates for the time-history points shown in Fig. 9.

Point x coordinate y coordinate

1 0.1810 7.3700
2 0.8190 0.6300
3 0.1810 0.6300
4 0.8190 7.3700
5 0.1810 4.0000

present method and FRTLBM, the minimum uniform mesh
numbers required for each method to obtain a convergence
solution at high Ra are compared in Table V. It can be
seen that the two methods both can get a stable solution
with relatively coarse mesh, and the present method needs
fewer grids, which indicates that the present method is more
stable.

C. Unsteady natural convection in a tall cavity

Herein, unsteady natural convection in a tall cavity is cho-
sen to verify the accuracy of the present scheme for simulating
transient flow and the heat transfer problem. The problem is
based upon the geometry shown in Fig. 9, where W is the
width and H the height of the enclosure. The enclosure aspect
ratio is A = H/W and takes on the value A = 8. Boundary
and initial conditions are the same as those in the second ex-
ample. This case was presented at the MIT conference on the
computational fluid and solid dynamics [45] in 2001. It is an
important problem in the field of heat transfer and convection
flow phenomena. This challenging problem, as pointed out by
Christon et al. [45], serves as a mechanism to test the per-
formance of numerical methods to simulate complex physical
mechanisms, such as vertical and horizontal boundary layers,
several instability mechanisms, traveling waves in vertical
boundary layers, and thermal instabilities along horizontal
walls in particular, and all of them can interact strongly with
internal wave dynamics. Above a critical Rayleigh number
Rac ≈ 3.1×105, this model problem demonstrates oscillatory
transient flow behavior. In the following simulations, Pr =
0.71 and Ra = 3.4×105 are used, which are consistent with
the values in the literature. It is worth mentioning that a
low-order scheme may be not adequate to capture flow un-
steadiness, even on a very fine grid, as indicated by Bassi
et al. [2]. The present third-order scheme is adopted. As
suggested by Christon et al. [45], graded nonuniform meshes
with approximately a 1:5 x-to-y ratio of elements starting with
a grid of 20×100 and increasing the grid resolution to a size
of 30×150 are adopted, which are depicted in Fig. 10. A
third-order SSPRK time integration scheme is employed for
such unsteady flow problem, and the CFL number is set as
0.8. To the best of our knowledge, this challenging test case is
rarely simulated in the LBM community.

The data used in the transient and steady-state computa-
tions can be divided into three categories: point, wall, and
global data. For all the time-dependent computations, the
average value, peak-to-valley oscillation amplitude, and the
period of oscillation for all the mandatory data are tabulated.
The calculation of an average value is predicated on attaining
a statistically stationary state with virtually constant period
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FIG. 11. Variation of temperature contours (left) and streamlines (right) at time instants 980, 980.86, 981.61, 982.47, and 983.43 ND time
units during one total time period of 3.427 ND time units.

FIG. 12. Variation of u-velocity contours (left) and v-velocity contours (right) during one period at time instants 980, 980.86, 981.61,
982.47, and 983.43 ND time units.
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FIG. 13. Oscillation of ND x-component velocity values (left) and ND temperature values (right) at designated points 1–5 with reference
to the ND time.

and amplitude. Time-history data are requested at the time-
history points shown in Fig. 9, and they are identified in
Table VI. The wall Nusselt numbers are also tabulated, which
are defined as

Nu(t )|x=0,W = 1

H

∫ H

0

∣∣∣∣∂θ

∂x

∣∣∣∣
x=0,W

dy, (59)

where θ is the nondimensional (ND) temperature, which is
defined as

θ = T − T0

Th − Tc
. (60)

The measure of the global average velocity is defined as

û(t ) =
√

1

2�

∫
�

u · ud�, (61)

where � is the area of the enclosure. The velocity is normal-
ized by the reference velocity Vc = √

gβW �T .
Figure 11 presents the variation of temperature contours

and streamlines at time instants 980, 980.86, 981.61, 982.47,
and 983.43 ND time units during one period of 3.427 ND time
units. Variation of u-velocity contours and v-velocity contours
during one period is shown in Fig. 12. The transient behav-
ior of flow and temperature fields is clearly demonstrated,
which is compared with Arpino et al. [46] and Balam and

FIG. 14. Details of oscillation of ND x-component velocity values (left) and ND temperature values (right) at designated points 1 in 10
periods.
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TABLE VII. Comparisons of point data at reference point 1 with literature results.

Scheme ū u′ θ̄ θ ′

Present study with 20×100 mesh 0.056594 0.055131 0.267511 0.042829
Present study with 30×150 mesh 0.056237 0.054128 0.267425 0.042169
Paolucci from Christon et al. [45] 0.056453 0.051948 0.267803 0.040280
Xin and Le Quéré [48] 0.056345 0.054767 0.26548 0.042689
Bassi et al. [2] 0.056177 0.054505 0.26546 0.042443
Gjesdal et al. [49] 0.056356 0.054880 0.26561 0.042774
Arpino et al. [46] 0.058803 0.068647 0.266672 0.053328
Balam and Gupta [47] 0.057013 0.056342 0.265781 0.043944

Gupta [47] and shows an excellent match with their published
contour diagrams. The symmetric character of the periodic
flow behavior along the height of the cavity is another key
aspect. Figure 13 shows the ND x-velocity component and ND
temperature variation over time in correspondence to the ref-
erence points shown in Fig. 9, which indicates the oscillatory
behavior of the solution and the occurrence of convergence.
From these figures, it is observed that the stable oscillation
behaviour is obtained after 700 ND time units approximately.
In addition, the reference points 1 and 2, as well as points 3
and 4, behave symmetrically with respect to reference point
5. Correspondingly, the oscillation amplitude is much larger
in correspondence of the four corners of the cavity (reference
points from 1 to 4 in Fig. 9), but it is hardly appreciable at
reference point 5. These observations are in good agreement
with previous studies [45–47]. However, the time to obtain
a stable oscillation behavior by the present scheme is longer
than that achieved by the conventional macroscopic incom-
pressible methods. The reason may be that the present method
is a weakly compressible method and the divergence-free con-
dition cannot be strictly satisfied. The details of oscillation of
ND x-component velocity values and ND temperature values
at designated points 1 in 10 periods are given in Fig. 14.
Tables VII and VIII, respectively, summarize the point data
and the wall and global data at reference point 1, and they are
compared with the reference results obtained by high-order
methods [2,45–49]. The parameters compared in these tables
are the time averaged ND quantities including x-component
velocity ū; temperature θ̄ ; hot wall Nusselt number Nu; ve-
locity ¯̂u; and the corresponding fluctuating quantities u′, θ ′,
Nu′, and û′. It can be observed that the present results have
a quite small deviation from those of other high-order meth-
ods, which infers that the coarse grid density is sufficient

for the required accuracy. In addition, the p1 scheme, whose
theoretical accuracy should be second order, is also tested.
Unfortunately, the transient phenomenon cannot be achieved
even using a fine mesh with 40×200 elements. The superiority
of the present high-order method is clearly demonstrated.

D. Thermal lid-driven cavity flow

The test cases above are all natural convection. In the last
example, the present solver is validated by simulating mixed
convection in a lid-driven cavity. The flow behavior in this
problem is driven by both natural and forced convections. As
presented in Fig. 15, the problem consists of a 2D square
cavity, in which the top wall moves at a constant velocity
U0, while the other three walls remain stationary. The top
and bottom walls are kept at constant cold (Tc = 0) and hot
(Th = 1) temperatures, respectively. On the right and left walls,
a Neumann boundary condition for temperature with a nor-
mal gradient of zero is implemented. Apart from the Prandtl
number, three other typical nondimensional parameters, i.e.,
Reynolds number, Grashof number, and Richardson number,
are defined for this problem as follows:

Re = U0L

ν
, (62)

Gr = gβ(Th − Tc)L3

ν2
, (63)

Ri = Gr

Re2
. (64)

To keep in accordance with the setup in Refs. [32,50], the
Grashof number and Prandtl number are fixed at Gr = 106 and
Pr = 0.71, respectively. Cases with three groups of typical

TABLE VIII. Comparisons of wall and global data with literature results.

Scheme Nu Nu′ ¯̂u û′

Present study with 20×100 mesh 4.58182 0.007710 0.23999 3.900×10−5

Present study with 30×150 mesh 4.57843 0.007520 0.23982 4.182×10−5

Paolucci [45] 4.57942 0.007050 0.2395 3.460×10−5

Xin and Le Quéré [48] 4.57946 0.0070918 – –
Bassi et al. [2] 4.57939 0.007075 0.23949 3.4021×10−5

Gjesdal et al. [49] 4.57933 0.0071026 0.2395 3.354×10−5

Arpino et al. [46] 4.52497 0.00861 – –
Balam and Gupta [47] 4.565 0.00713 0.2397 4.1250×10−5
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FIG. 15. Schematic of the thermal lid-driven cavity flow.

Richardson numbers (Ri = 10, 1.0, and 0.1) and the cor-
responding Reynolds numbers (Re = 316, 1000, and 3162)
are simulated. It turns out that the problem of the combined
shear and buoyancy-driven convection can be classified into
three flow regimes: a pure natural convection for Ri 
 1, a
mixed convection for Ri = 1, and a pure forced convection
for Ri � 1. A uniform mesh size of 20×20 for p3 scheme is
adopted, which is much smaller than that in a previous study
using a second-order scheme [51].

Isotherms and streamlines obtained by the p3 scheme are
shown in Fig. 16. It can be seen that for the natural convection
dominant case (Ri = 10, Re = 316), two major counterclock-
wise vortices—one is driven by the moving top lid and the
other is driven by buoyancy—appear. This is caused by the
interaction of buoyancy and shear force. Owing to the fact
that the buoyancy effect outweighs the shear force effect, the
vortex is larger in the lower half of the cavity than in the upper
region. Furthermore, the hot and cold fluid mixing in these
locations leads to a higher temperature gradient between the
counterclockwise vortex and the top and bottom walls. For
the mixed convection case (Ri = 1, Re = 1000), the counter-
clockwise vortices become almost equal, and the appearance
of the vortex in the lower part of the cavity is related to the
opposite action of the moving lid. For the forced convection
dominant case (Ri = 0.1, Re = 3162), the flow pattern is ex-
tremely similar to the isothermal lid-driven cavity flow at the
same Reynolds number. All of these observations agree well
with the previous studies [32,50], which validates the physical
reliability of the method.

Table IX compares the average Nusselt number on the top
and bottom walls for the three values of Richardson number
with the reference data of Bettaibi et al. [50] using the second-
order hybrid MRTLBM and that of Chen et al. [32] using the
third-order simplified LBM. From the table, it is found that the

TABLE IX. Comparisons of average Nusselt number for 2D
thermal lid-driven cavity.

Ri Bettaibi et al. [50] Chen et al. [32] FRTLBFS

10 4.848 4.811 4.835
1 5.739 5.966 5.767
0.1 12.138 12.979 12.703

heat transmission at the hot wall increases as the Richardson
number (Ri) decreases due to the increasing buoyancy effect
in the lower half of the cavity. Despite a coarse mesh being
used, the present results are in good agreement with the ref-
erence data, which quantitatively validates the accuracy of the
present scheme for simulating mixed convection.

V. CONCLUSIONS

Based on the flux reconstruction method together with
the thermal lattice Boltzmann flux solver, this paper presents
a high-order solver (FRTLBFS) for effective and accurate
simulations of incompressible thermal flows. In this method,
a particular form of the Navier-Stokes–Boussinesq equation,
which is derived from the thermal lattice Boltzmann equation
and contains both macroscopic flow variables and micro-
scopic particle distribution function, is solved by a high-order
energy stable flux reconstruction scheme. The inviscid and
viscous fluxes of the solution and flux points are coupled
and computed uniformly and simultaneously by the thermal
lattice Boltzmann flux solver. As a result, there is no need
to discretize the second-order partial derivative term and to
deal with pressure-velocity coupling, which brings the present
scheme conciseness and compactness.

The proposed method is validated by simulating sev-
eral two-dimensional cases: (a) the porous plate problem,
(b) natural convection in a square cavity, (c) unsteady natural
convection in a tall cavity, and (d) thermal lid-driven cavity
flow. For both steady and unsteady flows and heat transfer,
the results obtained with the current scheme are in good
agreement with analytical or benchmark data. The high-order
accuracy for both flow and temperature fields is verified. Com-
pared with the recently developed flux reconstruction thermal
lattice Boltzmann method (FRTLBM), the present scheme is
more efficient and low storage since only the macroscopic
variables are stored and evolved. The present method also
inherits the good stability of the lattice Boltzmann flux solver.
Benefiting from high-order accuracy, the present solver can
accurately predict the transient natural convection when the
Rayleigh number is slightly larger than the critical value.
Apart from natural convection, the present solver can also
give an accurate result of mixed convection. Although not
displayed in this paper, the present method can be directly
extended to unstructured meshes. The obtained numerical re-
sults indicate that the current FRTLBFS is a promising tool
to simulate incompressible thermal flow problems due to its
accuracy, efficiency, and low memory cost.
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FIG. 16. Isotherms (left) and streamlines (right) of 2D thermal lid-driven cavity flow.
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