
PHYSICAL REVIEW E 106, 035208 (2022)

Quantum-inspired method for solving the Vlasov-Poisson equations

Erika Ye * and Nuno F. G. Loureiro†

Plasma Science and Fusion Center, Massachusetts Institute of Technology, 77 Massachusetts Ave.,
Cambridge, Massachusetts 02139, USA

(Received 3 June 2022; revised 1 September 2022; accepted 8 September 2022; published 29 September 2022)

Kinetic simulations of collisionless (or weakly collisional) plasmas using the Vlasov equation are often
infeasible due to high-resolution requirements and the exponential scaling of computational cost with respect
to dimension. Recently, it has been proposed that matrix product state (MPS) methods, a quantum-inspired but
classical algorithm, can be used to solve partial differential equations with exponential speed-up, provided that
the solution can be compressed and efficiently represented as a MPS within some tolerable error threshold. In
this work, we explore the practicality of MPS methods for solving the Vlasov-Poisson equations for systems with
one coordinate in space and one coordinate in velocity, and find that important features of linear and nonlinear
dynamics, such as damping or growth rates and saturation amplitudes, can be captured while compressing the
solution significantly. Furthermore, by comparing the performance of different mappings of the distribution
functions onto the MPS, we develop an intuition of the MPS representation and its behavior in the context of
solving the Vlasov-Poisson equations, which will be useful for extending these methods to higher-dimensional
problems.

DOI: 10.1103/PhysRevE.106.035208

I. INTRODUCTION

Understanding the behavior of collisionless plasmas
would greatly further our research of astrophysical phe-
nomena and fusion energy systems. The Vlasov equation,
a six-dimensional (6-D) nonlinear partial differential equa-
tion (PDE), provides an ab initio description of the dynamics
of such plasmas and is deemed to be the gold standard in
plasma simulation. It can be solved deterministically using
Eulerian [1–5] or semi-Lagrangian [6–14] grid-based meth-
ods. Unlike the alternative particle-in-cell (PIC) approach
[15–22], these methods do not suffer from stochastic noise
issues; however, they are extremely computationally expen-
sive thanks to the exponential scaling of cost with respect
to dimensionality and the resolution requirements stemming
from the multiscale dynamics that characterizes the vast ma-
jority of nonlinear plasma behavior. These issues seriously
limit our ability to simulate collisionless plasma phenomena,
thus hindering progress in a wide range of fundamental and
applied problems.

In this paper, we investigate an alternative approach: the
use of matrix product states (MPS) to solve the Vlasov-
Poisson equation within a finite-difference scheme. Matrix
product states are a quantum-inspired computational frame-
work traditionally employed in the simulation of quantum
many-body systems, where they have been used with great
success [23–27]. However, it has recently been proposed that
the utility of MPS methods extends beyond quantum applica-

*erikaye@mit.edu
†nflour@psfc.mit.edu

tions, and that one can use MPS to solve PDEs with (formally)
exponential reduction in computational cost [28,29].

A MPS is an ansatz that provides an approximate but
systematically improvable low-rank representation of the data
of interest. Furthermore, the MPS framework also provides a
means of efficiently manipulating the data within this repre-
sentation. Formally, one choice of MPS ansatz is equivalent
to the tensor train representation, in which the data are de-
composed into a series of tensors each corresponding to one
of its dimensions, and then compressed by limiting the rank
(the correlations) between each dimension. Tensor trains have
been employed to solve PDEs in a variety of contexts rang-
ing from fluid dynamics to molecular electronic structure
[30–33], including the Vlasov-Poisson and Vlasov-Maxwell
equations in up to 6-D space [13,14,34–37]. However, the
intended MPS ansatz mirrors that of quantized tensor trains
[38–40], in which the data are decomposed into smaller com-
ponents such that one can limit the correlations within each
dimension as well. To the best of our knowledge, quantized
tensor trains have only been discussed in a limited number of
contexts including solving the Fokker-Planck equation [30],
the chemical master equation [41,42], and finite element
solvers of elliptic multiscale problems [43–45]. More rele-
vant is the recent work by Gourianov et al., in which they
demonstrate the efficiency of MPS methods for simulating
Navier-Stokes turbulence in two and three dimensions [46].
Still, the physics of the Navier-Stokes equation (a fluid equa-
tion) is fundamentally different from that of the more precise
Vlasov equation (a kinetic equation) discussed here. Thus, our
detailed investigation of MPS methods in the context of the
Vlasov equation is novel and warranted.

If the solution to a PDE can be efficiently represented
as a MPS, meaning that the rank required to represent the

2470-0045/2022/106(3)/035208(20) 035208-1 ©2022 American Physical Society

https://orcid.org/0000-0001-9694-568X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.106.035208&domain=pdf&date_stamp=2022-09-29
https://doi.org/10.1103/PhysRevE.106.035208

ERIKA YE AND NUNO F. G. LOUREIRO PHYSICAL REVIEW E 106, 035208 (2022)

solution within some tolerable error is roughly logarithmic
with respect to the size of the data, then the computational cost
of solving the PDE would also scale polylogarithmically with
respect to the size of the data, formally achieving exponential
speed-up over classical direct numerical simulation methods.
Our work serves as an exploratory investigation into the so-
called compressibility of the solutions to the Vlasov-Poisson
system and the practicality of using MPS methods to solve
for its dynamics. While we only consider systems with one
coordinate in space and one coordinate in velocity (1D1V),
we are able to draw conclusions about the efficiency of the
representation and discuss considerations for scaling up to
higher dimensions.

This paper is organized as follows: We first provide a
brief introduction to matrix product state (MPS) algorithms,
although we point the reader to Refs. [28] and [29] for a
more thorough introduction. We then present our results,
starting by first investigating the efficiency with which the
MPS ansatz can represent the solutions to the Vlasov-Poisson
equations. After verifying that the MPS ansatz is indeed an
efficient representation, we investigate the practicality of solv-
ing these equations completely within the MPS framework,
which involves performing compressions (i.e., low-rank ap-
proximations) of the state at each time step. We conclude with
an analysis of our results and a discussion of future work.

II. PROBLEM STATEMENT

The Vlasov equation describes the evolution of the distri-
bution function of particle species s, fs(x, v, t), over the phase
space defined by position (x), velocity (v), and time (t). In the
presence of electric forces only, it is given by

∂ fs

∂t
+ vs · ∇r fs + qs

ms
E · ∇v,s fs = C[fs], (1)

where qs and ms are the species charge and mass, respectively.
The operator ∇r denotes the gradient in spatial coordinates,
and ∇v,s denotes the gradient taken along the velocity co-
ordinates, which can be discretized differently for the ions
and electrons. The electric field E is only defined on spatial
coordinates; in the electrostatic case that we consider here, it
is computed from Poisson’s equation,

∇2φ = − 1

ε0

∑
s

qs

∫ ∞

−∞
fsdv, (2)

E = −∇φ, (3)

where φ is the scalar electric potential and ε0 is the per-
mittivity. The term C[fs] is the collision operator which,
strictly speaking, is neglected in the traditional definition of
the Vlasov equation. In this work, if not specified, we too take
this term to be zero. However, in some cases, for numerical-
noise mitigation purposes, we add weak collisions using the
Dougherty collision operator [47,48].

We choose to solve the Vlasov-Poisson equation using
finite differences on a uniform grid in real space and analyze
three paradigmatic test cases: nonlinear Landau damping, the
Buneman instability, and shock wave formation. Details on
the setup of these problems can be found in Appendix A.

III. METHOD OVERVIEW

A. Matrix product state representation of classical data

Suppose we can represent f , the solution to our K-
dimensional PDE, on a discretized grid with N = dL grid
points along each dimension, resulting in a total of dKL data
points. We can equivalently represent the data as a KL-legged
tensor for which the size of each dimension is d , or

f (x1, . . . , xK) ∼= f (i1, . . . , iKL),

where the set indices {i j} can take on integer values from 0 to
d − 1 and index the position of the element of interest along
the jth leg. [To avoid confusion with the dimensionality of
the PDE (K), we refer to the dimensionality of a tensor as its
number of legs; the origin is from tensor network diagrams, in
which an n-dimensional tensor is represented as a shape with
n legs sticking out of it.]

We then decompose this tensor into a MPS by performing
singular value decompositions (SVDs) in a iterative fashion,
yielding

f (i1, . . . , iKL) =
r1∑

α1=1

· · ·
rKL−1∑

αKL−1=1

M (1)
α1

(i1)

× M (2)
α1,α2

(i2) · · · M (KL)
αKL−1

(iKL), (4)

where M (j) are three-legged tensors (two-legged for j = 1 and
j = KL) and r j is the rank associated with the SVD decom-
position between tensors j and j + 1. This decomposition is
depicted in Fig. 1(a).

For an exact, full-rank representation, as one travels
towards the middle of the chain, the rank increases expo-
nentially, with r j = dmin(j,KL− j). However, one can obtain a
low-rank approximation of the original state by only retaining
components corresponding to the D largest singular values in
the decomposition at each bond. The truncation error arising
from compression at bond j, defined as the normalized Frobe-
nius norm of the difference between the original state f and
the compressed state fD, is

ε j = || f − fD||F
|| f ||F

=
[r j∑

i=D

(
σ̃

(j)
i

)2

]1/2

, (5)

where {σ̃ (j)} are the singular values at bond j, ordered from
largest to smallest, normalized such that

∑
i(σ̃

(j)
i)2 = 1. Note

that the singular values must be obtained when the MPS is
in the proper canonical form (see the Appendixes for details).
The parameter D, often referred to as the bond dimension, thus
determines both the accuracy of the representation and the
computational cost of the MPS algorithm. The compressibility
of the data, such that it can be represented as a MPS of some
small bond dimension (to be defined later) with tolerable error,
is the crux of MPS algorithms.

B. Time evolution using matrix product state

One advantage of the matrix product framework is that one
can perform linear operations on a MPS while remaining in
matrix product form, eliminating the need to convert it back
to its original vector form. Figure 1(b) depicts the procedure

035208-2

QUANTUM-INSPIRED METHOD FOR SOLVING THE … PHYSICAL REVIEW E 106, 035208 (2022)

(a) (b)

FIG. 1. Tensor network diagrams depicting (a) the conversion
of a vector into a MPS, and (b) solving the PDE using MPS. We
first compute the time derivative, assumed to be a function of our
state f (t), within the MPS framework. This involves applying the
desired operations [represented as matrix product operators (MPOs),
depicted as 1-D chains of square tensors] to the state and summing
all of the terms together. We then compute the state at the next time
step. At this point, the bond dimension of f (t + �t) is larger than
its original value due to the various operations applied to the MPS,
so the MPS needs to be recompressed. This is done by first canon-
icalizing the MPS using QR decompositions, and then performing
the compression via SVD and retaining only the D largest singular
values at each bond (see the Appendixes for details). In these dia-
grams, n-dimensional tensors are represented by shapes with n legs.
Legs that are connected to each other represent tensor contractions
along those dimensions. Tensors in canonical form are depicted using
triangles and obey the property denoted in the yellow box, or that∑

u,l Al,r (u)A∗
l,r′ (u) = δr,r′ .

of performing time evolution with MPS. Analogous to the rep-
resentation of vectors as MPS, operators that act on the state
f , such as the gradient, can also be written in matrix product
form (i.e., matrix product operators, or MPOs). Elemental
multiplication can be reframed as multiplication of the state
with a diagonal operator, and taking the dot product involves
taking the sum of those products. Details on these opera-
tions are in Appendix B. Solving the initial-value problem is
then no different from traditional matrix-vector multiplication
methods, except all the calculations are done with the vectors
and matrices in matrix product form.

However, as one performs operations on the state f , the
bond dimension will grow, eventually becoming unnecessarily
large and unmanageable. Thus, one needs to compress the
MPS back to the desired bond dimension. The compression
of the data is done by first putting the MPS into canonical
form via iterative QR decompositions and then performing the
low-rank approximation using iterative SVD decompositions
(see the Appendixes and Ref. [23] for details). Unfortunately,
the compression step does introduce computational overhead,
which we discuss in the next section.

C. Cost analysis

Assume that our state f is represented as a MPS with
bond dimension D, and that we operate on the state with a
MPO of bond dimension Dw using a naive contraction and
compression scheme. The cost of applying the MPO to the
MPS is simply the cost of tensor contraction, which scales like
O(KLD2

wD2d2). The resulting MPS now has a bond dimen-
sion of DDw, and it needs to be compressed to bond dimension
D. The cost of putting the MPS in canonical form via QR
decompositions scales like O(dD3D3

wKL), and the cost of the
actual SVD compression scales like O(d2D3DwKL). As such,
the cost of the MPS algorithm is dominated by the canonical-
ization and compression of the MPS at each time step. If Dw

is constant and independent of the number of grid points in
the discretization, which is the case for the linear finite dif-
ference operations on a uniform grid (see the Appendixes and
Ref. [28] for details), then one can say the algorithm formally
scales like O(D3K logd N). In comparison, traditional sparse
matrix-vector multiplication scales like O(NK). Thus, if D
scales logarithmically with vector size, the MPS framework
provides exponential speed-up.

One complication arises with the nonlinear term in the
Vlasov-Poisson equation. Because the force felt by the states
(i.e., the electric field) is determined from the distribution
functions themselves, the bond dimension of the MPS rep-
resentation of the electric field will depend on the problem of
interest and can also depend on grid size. If the bond dimen-
sion of the electric field is DF , then the cost of canonicalizing
the nonlinear term scales like O(D3D3

F). In the worst case,
DF will depend linearly with D. However, for the Vlasov
equation, we expect DF to be closer to

√
D since the electric

field only has coordinates in position space and not the full
phase space. In this case, the increase in cost mirrors that
of traditional methods, which exhibit a similarly increased
scaling of O(N3K/2). One potential advantage of the MPS
framework is that we may be able to approximate the force
term and represent it with smaller bond dimension without
significant loss of accuracy in the simulated dynamics. We
elaborate on this in Sec. IV B 3. Additionally, slightly more
advanced contraction and compression schemes, such as the
zip-up algorithm [49], may offer reduced scaling with respect
to DF .

In this work, we set d = 2. However, if we had chosen
d = N , L = 1, we would arrive at the more common tensor
train formalism, in which the data are decomposed in between
but not within each dimension. The dominant cost of tensor
train methods is also the canonicalization and compression
step, which scales like O(ND3D3

wK). Choosing a smaller d
and compressing the data within each dimension, as done
here, will lead to exponential speed-up with respect to N , the
number of grid points along each dimension. The proposed
MPS method will, however, have a larger prefactor scaling
the computational cost because of the bond dimensions of the
operators in MPO form. In the tensor train format, operators
are often separable along each dimension with Dw = 1. (The
primary exception lies in computing the nonlinear term.) For-
tunately, for finite difference methods on a uniform grid, the
MPO bond dimensions are independent of N and typically
relatively small, around two to five.

035208-3

ERIKA YE AND NUNO F. G. LOUREIRO PHYSICAL REVIEW E 106, 035208 (2022)

FIG. 2. Landau damping without compression of the distribution functions. (a) Plot of energy density of electric field, electron distribution,
and ion distribution over time for perturbation wave vector k = 0.75. Results from GKEYLL [5] are shown in dotted black as reference. (b) The
corresponding ion and electron distribution functions at t = 60.

Because the range of feasible simulation resolutions is
limited by feature size and time-stepping constraints, and
therefore is relatively small, it is difficult to show the log-
arithmic dependence of D with respect to system size with
only two-dimensional (1D1V) systems. Instead, since MPS
methods suffer from computational overhead due to the D3

scaling in the compression step despite formally showing
exponential reduction in cost; here, we compare the proposed
MPS method to traditional direct numerical simulation. By
direct comparison of computational costs, we can loosely
define Dcompete = NK/3, below which MPS methods might
be competitive against traditional direct numerical simulation
methods. (Note that this value by definition does not—and
should not—demonstrate logarithmic scaling of D; it is simply
a value dependent on the simulation grid defined to help
compare costs of MPS methods and traditional methods.) For
N = 29 and K = 2, this would correspond to Dcompete = 64,
or an eightfold reduction from the maximum possible bond
dimension. For the 1D1V systems that we consider here, we
do not expect MPS methods to significantly outperform direct
numerical simulation methods. Rather, this work serves as a
proof-of-principle investigation and a first step to considering
higher dimensional systems in the future.

As a brief side note, when solving the Vlasov equation, it
is not uncommon to save the distribution functions with the
intention of restarting the simulation from that point in time.
The amount of memory required for storing a MPS of bond
dimension D is O(K logd (N)D2d), which is exponentially
less than the O(NK) cost for storing the state in its vector
representation. Since solutions to the Vlasov equation can be
up to 6-D, saving them in MPS form can significantly reduce
storage costs, provided that they are sufficiently compressible.

IV. RESULTS

The results will be presented as follows: we start by com-
puting the dynamics of nonlinear Landau damping without
any compression (i.e., without low-rank approximations), and
then gauge the compressibility of the electron and ion dis-
tributions within the MPS representation. We also compare

results for different MPS constructions. After verifying that
the distribution functions can be efficiently represented as a
MPS, we then investigate solving the PDE by performing time
evolution with compression at each time step. We present re-
sults for nonlinear Landau damping, the Buneman instability,
and shock-wave formation in 1D1V. In all calculations, we use
MPS with d = 2.

A. State compressibility

Numerically exact simulations of the Vlasov-Poisson equa-
tion are performed within the MPS framework by enforcing
the truncation error ε j at each bond to be less than some small
threshold value (we use a threshold of 10−10). These calcula-
tions are referred to as simulations with no compression.

We first consider the case of nonlinear Landau damping. As
shown in Fig. 2, our code yields the anticipated dynamics, in
good agreement with results obtained from the code GKEYLL

[5] [small discrepancies are to be expected because GKEYLL

is a discontinuous Galerkin finite-element code whereas we
employ a (less accurate) finite-difference scheme and use a
larger time step].

To quantify the compressibility of the distribution func-
tions in the MPS representation, one can measure the von
Neumann entanglement entropy (EE) at each internal bond,
defined as

S(j)
MPS = −

r j∑
i=1

(
σ̃

(j)
i

)2
log2

(
σ̃

(j)
i

)2
, (6)

where σ̃ (j) are the normalized singular values associated with
bond j. The maximally entangled case is when all r j singular
values are equally weighted at

√
1/r j , yielding an entangle-

ment entropy of log2(r j). Generally speaking, the larger the
entanglement entropy, the less compressible the state and the
larger D needs to be in order to accurately represent it.

The interpretation of the entanglement entropy depends on
the mapping chosen during the initial reshaping of the vector
of data to the KL-dimensional tensor. For one-dimensional
(1-D) systems, the most straightforward choice is to have

035208-4

QUANTUM-INSPIRED METHOD FOR SOLVING THE … PHYSICAL REVIEW E 106, 035208 (2022)

FIG. 3. Entanglement entropy for solution to 1D1V Landau damping at t = 60.0. (top row) Different MPS orderings of a 2-D state. Arrows
correspond to ordering of tensors from coarse to fine grid resolution. (middle row) Entanglement entropy of the ion and electron distributions
for Landau damping with initial conditions A = 0.5 and k = 0.75 evolved to time t = 60 using 2L grid points per dimension. For the sequential
orderings, the EE at the center bond corresponds to the EE if using a tensor train format. (bottom row) Root-mean-square (rms) error of the
same distribution functions when compressed to bond dimension D with respect to the original uncompressed representation for each grid
resolution.

the nth data point be indexed in the MPS by the d-nary
representation of n. In this mapping, the MPS has a multigrid
representation, with the leftmost tensor corresponding to the
coarsest grid and subsequent tensors corresponding to increas-
ingly fine grid resolutions [28,29]. The entanglement entropy
thus measures the degree of correlations between grids of
different resolutions, which in turn suggests that systems with
scale separation can be efficiently represented by MPS.

For higher-dimensional data, a priori, there exist multiple
equally reasonable mappings one can consider. For example,
our two-dimensional (2-D) data can be mapped to the MPS
such that the tensors indexing a given dimension are appended
sequentially. Then, for each dimension, the tensors can be
ordered from coarse to fine grid resolution or the reverse. We
consider three variants in which the tensors of each dimension
both go from coarse to fine (S1), the first dimension is ordered
from fine to coarse while the second is ordered from coarse to
fine (S2), as well as the opposite (S3). Alternatively, the data
can be mapped such that tensors corresponding to similar grid
resolutions but different dimensions are adjacent to each other
(IF). This interleaved ordering is used by Gourianov et al.
[46], but they also contract tensors across different dimensions
together so that now d = 2K (IG). These different orderings
are shown in the top row of Fig. 3.

The remainder of Fig. 3 shows the entanglement entropy of
the MPS representations of the ion and electron distributions
for the nonlinear Landau damping test case at the normalized
time of t = 60, as well as the root-mean-square (rms) error
of the distribution function compressed to bond dimension D
with respect to the uncompressed result. We compare solu-
tions obtained from solving the Vlasov-Poisson equations on
grids with different resolutions (2L grid points per dimension
for a fixed domain with L ranging from 6 to 10), and also
compare results for different MPS orderings.

The shape of the EE curves describes the amount of cor-
relations between different grid resolutions at each bond. The
shapes change for the different MPS orderings because the
different tensor orderings affect the amount of information
that must be carried by each bond. However, we find that the
magnitudes and spread of the EEs along each bond remain
comparable for the different orderings, with the exception of
the electron distribution for S3 ordering, whose maximum EE
is roughly half of that of the others.

Let us first consider MPS in the S1 ordering. As shown
in Fig. 2(b), the ion distribution appears to approximately be
uniform in position space and Maxwellian in velocity space.
The EE at the center bond connecting the spatial dimension
and velocity dimension is on the order of 10−3 to 10−4,

035208-5

ERIKA YE AND NUNO F. G. LOUREIRO PHYSICAL REVIEW E 106, 035208 (2022)

meaning that the distribution function is close to separable.
The EE of the bonds connecting tensors corresponding to
the spatial dimension is of the same order of magnitude.
The small magnitude of the EE is to be expected given the
simplicity of a near-uniform distribution, since there would
only be negligible correlations between features of different
length scales along x. The plateau in the EE for spatial grid
tensors suggests that the EE is dominated by the correlation of
the coarsest grid in x to the velocity grid tensors; we verify this
using the result for S2 ordering, which shows that the EEs of
bonds connecting increasingly fine spatial grids to the rest of
the MPS drop off by about a factor of two. Because the MPS
must capture the Maxwellian distribution in velocity space,
the EE for bonds corresponding to the velocity dimension
are nonzero. We expect the EE at coarser grid resolutions
to be larger, such that it captures the general shape of the
distribution function, while the EE at finer grid resolutions are
smaller, since they are only responsible for adding smoothness
to the function. The visible drop in the EE for increasingly
fine velocity grid tensors again suggests that the dominant
correlations between the x and v dimensions are at the coarse
grid.

The electron distribution function is more interesting. The
EE at the center bond is about a value of 1, meaning that
the spatial and velocity dimensions are no longer separable.
However, we still see a plateau in EE at finer grid resolutions
in x, suggesting that the EE in the bonds is dominated by
the correlation of velocity space with the coarsest grids in x.
The jump in EE at the first bond from the center suggests
that the additional correlations between x and v are mostly
not with the coarse velocity grid. The smaller EE for the S3
ordering in this particular test case indicates that there are
instead strong correlations between the coarse grid of one di-
mension and the fine grid of the other. Indeed, consistent with
our expectations, the electron distribution [shown in Fig. 2(b)]
exhibits slightly skewed striations along x.

The same kind of analysis on the EE curves can be done
for the interleaved orderings. For the IF ordering, we observe
a step-like structure in the EE, in which the changes in the EE
occur predominantly at every even bond. This means that the
EE is dominated by correlations within the second dimension,
as was determined above. The EE for the IG ordering has
a similar shape to the IF result, meaning that there is little
entanglement between the x and v dimensions at the paired
grid scales.

We now compare the EE for simulation results obtained
using different grid resolutions (different L). If the distribution
function is sufficiently resolved, as is the case for the ion
distribution, the EE for each bond does not change when in-
creasing the grid resolution. The bond connecting MPS to the
additional tensor corresponding to the finest grid resolution
exhibits an EE that appears to scale with the grid spacing.
(This is because the values at these grid points can be ap-
proximated using a Taylor expansion, yielding singular values
proportional to 1 and �x at that bond). If the distribution func-
tion is not sufficiently resolved, as is the case for the electron
distribution, the EE at each bond can change. In the worst
case, doubling the resolution along both dimensions would
increase the EE by 1 at all bonds. However, the increase in
EE observed here is much less than that, suggesting that only

a small amount of information is added. For this particular test
case, the additional information is encoded very efficiently for
the S3 ordering, as we do not see a visible increase in EE for
any of the bonds.

The entanglement entropies measured are all relatively
small: the EE at the center bond has a theoretical maximum
value of L, but the maximum observed value is two. As such,
we expect the distribution functions to be very compressible.
We measure the error arising from the compression, which we
define as the rms error of the compressed distribution function
with respect to its uncompressed value for the specified grid
resolution. Note that this is not a measure of the error of the
distribution function with respect to the solution’s true value.

When compressing the MPS to D = 8, the rms errors are
only on the order of 10−3 to 10−4 for the ion distribution
and 10−2 for the electron distribution for all grid resolutions.
Compared with the ions, the rms error for the electrons decays
relatively slowly with increased bond dimension at small D;
increasing the accuracy in the electrons from 10−2 to 10−3

requires increasing the bond dimension by a factor of four. A
slower drop in rms error suggests that the distribution function
is dominated by a few modes but contains many weaker com-
ponents that will need to be included in order to achieve the
desired degree of accuracy. It also appears for this particular
test case that the sequential ordering performs marginally
better than the interleaved ordering, exhibiting smaller rms
error for a specified D.

Comparing the bond dimension required to achieve the
desired degree of accuracy provides insight on the scaling
of D with respect to the number of grid points along each
dimension, N = 2L. For the electron distribution, if one is
satisfied with relatively large compression errors on the or-
der 10−3, the bond dimension required generally converges
with increased grid resolution. However, with the exception
of the S3 ordering, the bond dimension required to achieve a
smaller compression error appears to increase with grid size;
for a compression error on the order of 10−6, the D required
appears to scale like dαL where α is some small constant.
Because no collisions are included in these calculations, some
of this additional information may be due to noise introduced
at the grid level by the finite difference time-stepping scheme.
However, as mentioned above, increasing the grid resolution
incorporates additional components weighted by coefficients
that scale with grid spacing. As a result, since the compression
error is measured with respect to the uncompressed solution
of the specified grid resolution, the lower resolution solutions
would appear more compressible since they contain less in-
formation and do not fully capture the features that can only
be resolved on a finer grid. The convergence of rms error
with respect to L for the S3 ordering is in part due to the
particularly low EE at all bonds for this specific test case, but
also suggests that the S3 ordering is able to more efficiently
represent the extra information within the higher resolution
state (along with any numerical noise), such that the bond
dimension required for a desired rms error converges to some
finite value as one increases grid resolution.

In summary, consistent with the fact that the true distribu-
tion function only contains a finite amount of information, the
EE only increases slightly as it quickly converges to that of
the maximum grid resolution. This suggests that the amount

035208-6

QUANTUM-INSPIRED METHOD FOR SOLVING THE … PHYSICAL REVIEW E 106, 035208 (2022)

of information in the distribution function can be described
by the entanglement entropy at each bond of its MPS rep-
resentation. As a result, the MPS ansatz should provide an
efficient representation of the distribution functions, since the
cost of manipulating the data is correlated to the amount of
information in the state itself and not on the number of grid
points in the discretization. Additionally, by comparing how
the EEs vary for different MPS orderings, one can provide
insight on the dominant correlations within the distribution
function.

In this nonlinear Landau damping test case, the species
distribution functions can be represented with rms error on
the order of 10−2 or less with small bond dimension of about
D = 8. While the rms error drops relatively slowly at small
values of D, the curve steepens at larger bond dimension. The
different MPS orderings appear to behave relatively similarly,
although the S3 ordering yields a particularly compressible
MPS representation for. The S3 ordering also exhibits the
best convergence in compression error with respect to bond
dimension for increasing grid resolution, such that the bond
dimension required for the desired compression error does not
grow linearly with the number of grid points used in the dis-
cretization. However, note that while knowing how the bond
dimension scales with respect to grid resolution is important
for cost arguments, in practice, the resolution is often set by
the physics.

B. Compressed time evolution

We now investigate the performance of MPS methods in
solving the Vlasov equation while compressing the distri-
bution functions and electric field to some prescribed bond
dimension D at each time step. For the sake of simplicity,
in the results presented here we only compress the MPS
representing the distribution function to the specified bond
dimension at each actual time step, as opposed to each in-
termediate time step in the standard fourth-order Runge-Kutta
procedure (RK4). This is the most expensive option but also
the most accurate. We refer the reader to Appendix C 2 for
further discussion on algorithmic variations one can consider.

To obtain dynamics accurate within O(�t4) of the uncom-
pressed results at all time steps, the tolerable truncation error
at each time step must be less than �t5 due to the accumu-
lation of errors in the time evolution scheme. However, if
one is less interested in the exact distribution function at a
given point in time but more interested in the general behavior
of the system, as is often the case, a larger truncation error
can be tolerated. Unfortunately, compression can introduce
numerical noise, potentially in the form of sharp features
that would cause numerical instabilities in finite difference
schemes. However, we find that when using the S3 and in-
terleaved orderings we often can capture important features
of the dynamics with remarkably robust performance, even
when compressing the state by more than a factor of eight.

1. Nonlinear Landau damping

We first revisit the same nonlinear Landau damping prob-
lem analyzed in previous sections. Results of solving the
Vlasov-Poisson equations with compressed time evolution are

shown in Fig. 4. The simulations are performed on a 26 × 28

grid, with grid spacings �x ≈ 0.13, �ve ≈ 0.047, and �vi ≈
0.0011. The MPS representation can have a maximum bond
dimension of 27.

As discussed in the Cost analysis section, MPS meth-
ods begin to be competitive with traditional matrix-vector
multiplication methods when the bond dimension is roughly
Dcompete ∼ (NxNv)1/3, where Nx and Nv are the number of grid
points used along the x and v dimensions. For this prob-
lem, Dcompete = 24, and is about a five-fold reduction from
the maximum bond dimension of 27. We find that this level
of compression is very manageable, as we are still able to
compute the electric-field energy density within 10% of the
result obtain from uncompressed time evolution for times less
than 40. For longer times, although the error grows, the energy
density of the field remains close to zero—the large relative
error is in part due to the small amplitude of the field. While
less accurate, higher levels of compression (smaller D) still
yield results with the correct damping and saturation behavior.
Furthermore, even for the aggressively compressed D = 16
case, the distribution functions at t = 60 are visually remark-
ably similar to those of the uncompressed result [Fig. 2(b)],
capturing the same horizontal striations with only some small
differences.

Out of the different MPS orderings considered, the S3
ordering yields the most accurate results when D = 24. This
is consistent with our previous analysis (Fig. 3) which showed
that the S3 ordering yields the lowest maximum entanglement
entropies and the smallest rms compression error. The perfor-
mance of the other MPS orderings are similar to each other.
Again, while these results exhibit larger error in the saturation
regime, they all still capture the main features of dynamics.

2. Buneman instability

We now consider the 1D1V Buneman instability [50], for
which the background configuration differs from the nonlinear
Landau damping case only in that the electron distribution is
now centered at v0,e = ωp,e/k in velocity space, where ωp,e

is the electron plasma frequency. To reduce numerical noise,
we also include collisions with a collision frequency of about
0.007ωp,s for each species (this is much smaller than the linear
growth rate of about 0.2ωp,e). The results for initial perturba-
tion strength A = 10−3 and wave vector k = 0.10 on a 5122

grid are shown in Fig. 5. We find that we can compress the data
to a bond dimension of 64, a factor of eight reduction from the
maximum value, and still obtain the anticipated dynamics of
the system, with the energy in the electric field accurate to
about 10%. Visually, the distribution function looks similar to
the uncompressed version, except for some noise in the ion
distribution at small velocities.

The complexity of the distribution functions is closely
correlated to the degree of nonlinearity in the dynamics. In
the linear regime at times less than about 40, the system is
extremely compressible, as evidenced by small compression
errors on the order of 10−10 in both the ion and electron
distributions and good convergence with respect to bond
dimension. However, in the nonlinear regime, the rms com-
pression errors are at about 10−2 for a bond dimension of D =
32. Consistent with our observations in the case of Landau

035208-7

ERIKA YE AND NUNO F. G. LOUREIRO PHYSICAL REVIEW E 106, 035208 (2022)

FIG. 4. Compressed time evolution for nonlinear Landau damping with k = 0.75 on a 26 × 28 grid. (a)–(c) Ion and electron distributions
(over one period in x) at t = 60 obtained from compressed time evolution with D = 24 and S3 ordering, with D = 16 and S3 ordering, and
with D = 16 and IG ordering, respectively. (d) Electric-field energy density for different levels of compression for MPS with S3 ordering. (e)
Relative error in the electric-field energy density of the compressed time evolution results with respect to the uncompressed case for different
levels of compression. S3 ordering is used. Results for D = 24 are within 10% of the uncompressed result for times less than t = 40. Results
for D = 64 are exact with respect to the uncompressed result, meaning that each truncation error at each bond ε j is less than 10−10, and thus no
blue line is shown in this plot. (f) Electric-field energy density of the compressed time evolution for different MPS orderings at bond dimension
D = 24. Results for S1 and S2 ordering appear to be identical and are closely overlapping.

damping, the MPS with sequential ordering perform better in
the linear regime, in which the distribution function remains
closer to a separable state; however, the interleaved orderings
perform slightly better for the nonlinear regime in which mul-
tiscale structures often dominate.

While the error in the electric-field energy density at a
given point in time for the D = 32 result is large, we are
still able to capture the general shape of the energy density
over time. In Fig. 5(d), we find that the energy density in the
electric field is of the correct order of magnitude and roughly
follows the shape of the expected results. Furthermore, as
shown in Fig. 5(c), we are still able to roughly see the same
swirling features in the electron distribution. Interestingly, it
appears as if collisions at a higher collision rate had been used
since many of the features in the distribution function and the
electric-field energy density have been smoothed out.

3. Approximation of the nonlinear term

As mentioned in the Cost analysis section, the cost of
computing and compressing the nonlinear term using the MPS
framework scales like O(D3

F D3), where DF is the bond dimen-
sion of the MPS representation of the electric field. Since the
electric field is obtained from the ion and electron distribution
functions, the bond dimension of its MPS representation (DF)
will vary depending on the problem of interest. As such,
computing the nonlinear term can potentially be significantly
more expensive than the linear terms. However, as shown
in Fig. 6, when performing time evolution with the electron

and ion distribution functions compressed to D = 64, we can
compress the electric field to just DF = 4 while still remain-
ing within 10% of the result obtained without compression
of the electric field. The compression error of the electric
field is on the order of 10−2. This shows that one is able to
compress the electric-field MPS aggressively without intro-
ducing significant error in the dynamics, thereby reducing the
cost associated with computing the nonlinear term. This will
need to be investigated more carefully for higher dimensional
problems, but it may be another source of speed up in MPS
calculations.

4. Collisionless shocks

Simulations of shock-wave formation in plasmas are per-
formed on a 5122 grid, and the results are shown in Fig. 7. We
are able to capture the dynamics with a bond dimension of
D = 64 within 10% accuracy of the energy density. However,
compared with the previous test cases, these calculations are
much more sensitive to further compression. For example,
even though the error when compressing the distribution func-
tions to D = 32 is less than 10−3 at early times, simulations
using S2, IF, and IG orderings fail drastically during that time.
MPS with S1 and S3 ordering perform better, although they
also fail at about t = 600 once the error in the ion distribution
becomes on the order of 10−1.

This unstable behavior is due to the accumulation of
compression errors over time as opposed to a numerical in-
stability. When the simulation fails, the electron distribution

035208-8

QUANTUM-INSPIRED METHOD FOR SOLVING THE … PHYSICAL REVIEW E 106, 035208 (2022)

FIG. 5. Buneman instability. (a)–(c) Distribution functions of the ions and electrons at normalized time t = 80 obtained without compres-
sion, a bond dimension of D = 64, and a bond dimension of D = 32, respectively, using the S3 ordering. (d) Electric-field energy density for
different levels of compression. The curve in dotted black is obtained using GKEYLL for an external reference. (e) Electric-field energy density
in the nonlinear regime for different MPS orderings (f), (g) Relative error in the electric field for different compression levels and different
MPS orderings. Note that the interleaved orderings have larger error in the linear growth regime but perform better in the nonlinear regime.
(h), (i) Rms error of the ion and electron distribution function after compression of the exact (uncompressed) results to D = 32 at each time
step, evaluated for different MPS orderings.

function develops an unphysical wiggle at around x = −150
[see Fig. 7(b)]. Reducing the time step does not improve
performance, and while adding collisions can delay the on-
set of the failure, the collision rates required for stability at
long times are too large as they would affect the observed
dynamics. This test case is likely more sensitive to compres-
sion errors than the previous tests because the error generates
a finite charge density in regions where it should be zero,
which can grow over time. Thus, while compression errors
of the ion and electron distribution functions may be of a
tolerable amount, the relative error of the charge density at
each point in space is much larger. Therefore, unsurprisingly,
the MPS algorithm as presented is less advantageous for
problems where high accuracy in the distribution functions
is required. However, we still are able to obtain stable and
reasonably accurate results with a bond dimension of D = 64,
which is just an eighth of the maximum possible bond
dimension.

Note that the observed results are specific to the RK4 time
evolution scheme used. Alternative time evolution schemes
might yield more compressible distribution functions if the

methods generate less numerical noise, and also may be more
robust to the introduced compression errors. Investigations on
this topic are ongoing.

V. DISCUSSION

The above results suggest that MPS methods can efficiently
represent solutions to the Vlasov-Poisson equation in 1D1V,
and that one can also use a compressed finite difference time
evolution scheme to solve for the dynamics of the plasma
with reduced cost while still capturing its important features.
In most cases, we find that one can generally compress the
MPS representation of the ion and electron distribution func-
tions to a bond dimension of about Dcompete = d (Lx+Lv)/3 and
still determine the energy of the electric field within 10%
of that obtained without any compression. We estimate this
amount of compression to be enough for MPS to begin to
be competitive with sparse matrix-vector multiplication meth-
ods. Meeting this benchmark now is encouraging, since we
expect MPS methods to exhibit more speed-up for higher-
dimensional systems. We also find that even smaller bond

035208-9

ERIKA YE AND NUNO F. G. LOUREIRO PHYSICAL REVIEW E 106, 035208 (2022)

FIG. 6. Approximate calculation of the nonlinear term for the
Buneman instability. Ion and electron distribution functions are com-
pressed to bond dimension D = 64. (a) Traces of the electric-field
energy in time with different levels of compression of the electric
field (DF). (b) Relative error in electric-field energy density with
respect to the D = 64 time evolution result but with no compression
of the electric field. (c) Error in the electric field after compression to
the specified DF for each time step.

dimensions can be used; though less accurate, main features
of the dynamics, such as growth rates and saturation energies,
as well as features in the distribution function itself, can be
captured.

The compressibility of the distribution function is perhaps
unsurprising, given the inefficiency inherent to finite differ-
ence methods; one needs a grid fine enough to accurately
compute the gradients in the distribution function, and thus
not all data points are providing significant information re-
garding its shape. However, the fact remains that the MPS
framework is able to provide a more efficient representa-

tion of the data, leading to (formally) exponentially reduced
computational costs. Analyzing the compressibility and en-
tanglement entropy of distribution functions when mapped
to different MPS orderings (as done in Fig. 3) can also help
provide physical insight on the dynamics, enabling us to un-
derstand how information between different grid scales and
different dimensions propagates over time.

While the choice of MPS ordering did not appear to sig-
nificantly affect the compressibility of a given distribution
function, their performance during compressed time evolution
varied significantly. For example, in the Buneman instability
test case, the MPS with S1 and S2 ordering are susceptible
to numerical instabilities generated by compression, whereas
the interleaved and S3 orderings appear to be much more
robust, even with aggressive compression. This suggests that
locality of tensors corresponding to fine grids is important for
the robustness of MPS methods in a finite difference scheme,
because the compression tends towards removing weak fea-
tures at the fine grid scales. However, robustness to noise also
suggests the tendency to remove weaker fine scale features, as
observed in Fig. 5(c).

The errors of compressed time evolution with the S3, IF,
and IG orderings were generally within an order of magni-
tude of each other (collisionless shocks being an exception).
Nonetheless, we found that the S3 ordering performed bet-
ter in the linear or weakly nonlinear regimes, in which the
distribution functions largely remain separable across the two
dimensions. In contrast, the interleaved orderings performed
better in regimes where nonlinear effects dominate. This is
within expectations, since nonlinear dynamics are known to
be multiscale and the interleaved MPS groups tensors of sim-
ilar grid scale together. The grouped version (IG) appeared
to yield marginally lower error than the factored version
(IF). However, the computational cost of this ansatz scales
like dK instead of Kd . While an unimportant difference for
the 1D1V case, this trade-off between performance and cost
would need to be investigated at higher dimensions (i.e.,
K = 6). Compared with the sequentially ordered MPS, the
interleaved ordering may feel less natural, particularly when
performing operations like derivatives and integrals along cer-
tain dimensions and when considering grids with different
resolutions along each dimension. However, carefully opti-
mized implementation aside, these are not particularly strong
reasons to avoid using an interwoven ordering. Although they
are less accurate than the sequentially ordered MPS in the
linear regime, such calculations often only require modest
bond dimension so the compression error is still relatively
small. Thus, this is a relatively small trade-off compared with
increased compressibility in the nonlinear regime. However,
while it is unclear how well a MPS with interleaved ordering
would perform for higher dimensional systems (Gourianov
et al. consider three-dimensional (3-D) simulations using the
grouped interwoven geometry, but they refrain from making
strong claims about its performance [46]), one might expect
it to outperform a MPS with sequential ordering. For one, it
is no longer possible to have a MPS with S3-like ordering in
which dimensions are separated sequentially while also hav-
ing tensors corresponding to fine grids be grouped together.
As such, any higher-dimensional sequentially ordered MPS
may be susceptible to numerical instability. Alternatively, as

035208-10

QUANTUM-INSPIRED METHOD FOR SOLVING THE … PHYSICAL REVIEW E 106, 035208 (2022)

FIG. 7. Compressed time evolution for shock-wave formation on a 5122 grid. (a) Distribution of ions and electrons at a time of 1000
obtained using S3 ordering and bond dimension D = 64. (b) Distributions at a time of 707 obtained using S3 ordering and bond dimension
D = 32. (c) Relative error in electric-field energy density and total-energy density obtained using the specified bond dimension and S3 ordering.
(d) Rms error generated by compressing the uncompressed ion and electron distributions to a bond dimension of D = 32 at each time step,
evaluated for different MPS orderings. (e) Electric-field energy density computed using compressed time evolution with D = 32 for different
MPS orderings. (f) Electric-field energy density computed using compressed time evolution, with the inclusion of various noise-mitigation
methods such as adding collisions and using a smaller time step, computed using MPS with D = 32 and S3 ordering.

mentioned by Refs. [29] and [46], one might consider repre-
senting the data using other tensor network ansatzë, such as
tree tensor networks or 2-D tensor networks (PEPS) [51,52].

As in the 1D1V case, using MPS methods for problems
of higher dimensions should still provide significant speed
up for systems that exhibit separability of dimensions and
length scales. However, numerical studies of various test cases
are required to make more informative claims and are an
obvious next step, particularly since MPS methods promise
exponential reduction in computation and storage costs
with respect to direct numerical simulation if the system is
compressible.

In addition to considering higher-dimensional systems,
there are many other potential directions for future work.
For example, our current implementation uses a basic finite
difference scheme to solve the Vlasov equation, and we use
explicit RK4 as our time stepping scheme. As a result, de-
spite the exponential speed-up obtained when using the MPS
representation to solve the PDE at each time step, the total
computational cost still has an exponential scaling due to
the Courant-Friedrichs-Lewy (CFL) time-step constraint. To
avoid this, we can consider using a semi-Lagrangian method
[6,11,13]. A more involved solution would be to investigate
implicit time stepping schemes. Implicit time evolution is of-
ten not done because it requires performing a matrix inversion,
outweighing the benefits of being able to use a larger time
step. However, in the MPS framework, because the solution to
the PDE is now represented as a network of smaller tensors,

one can consider performing iterative local optimizations to
implicitly solve for the next time step [28]. Alternatively, one
could consider using the MPS framework with other methods
for solving PDEs, such as spectral methods or finite element
methods. These methods may also be more robust to noise
introduced by the MPS compression methods.

Improving our time evolution scheme and altering the
MPS algorithm to conserve plasma properties like energy or
momentum, would also be of interest as it may yield more
desirable results in some cases. There already exist some al-
gorithms in the tensor train community that we could consider
[36,53]. Additionally, MPS methods are designed to minimize
the L2 norm of the compression error. In contrast, the relevant
norm for a distribution function is the L1 norm. Thus, it may
also be interesting to investigate how using MPS to represent
the square root of the distribution function would compare
with the results presented here.

Lastly, as mentioned in the introduction, the MPS methods
used here are not specific to the Vlasov-Poisson equation, and
extending these methods to solve the Vlasov-Maxwell equa-
tions or other kinetic formulations, such as the gyrokinetic
equations, is straightforward.

VI. CONCLUSION

MPS methods can efficiently represent and solve the 1D1V
Vlasov-Poisson equation using a finite-difference scheme.

035208-11

ERIKA YE AND NUNO F. G. LOUREIRO PHYSICAL REVIEW E 106, 035208 (2022)

We show this by measuring the entanglement entropy and
the error generated by compression for numerically exact
solutions to the Vlasov-Poisson equation. We also perform
time evolution with compression at each time step, inves-
tigating the behavior in both linear and nonlinear regimes.
The success of the MPS method varies depending on the
design of the MPS. However, we are ultimately able to com-
pute the dynamics within 10% accuracy while compressing
the distribution function by about a factor of eight. When
the solutions are compressed even further, while some details
are lost, we are still able to capture general features of the
plasma, including the approximate morphology of the elec-
tron and ion distribution functions; as well as the oscillation
frequencies, linear damping or growth rates, and saturation
energies of the electric field.

Code is available upon request [54].

ACKNOWLEDGMENTS

The authors were supported by Award No. DE-SC0020264
from the Department of Energy. The authors also thank Noah
Mandell for assisting us in getting started with GKEYLL, and
the GKEYLL team for their thorough documentation.

APPENDIX A: METHODS

1. Numerical experiments

We demonstrate the utility of the MPS algorithm for solv-
ing the Vlasov-Poisson equation through a few test cases. All
our simulations are done in units normalized to the Debye
length λD, electron plasma frequency ωp,e, and the electron
thermal velocity vth,e.

a. Nonlinear Landau damping

The initial distributions of the ions and electrons are given
by

fi(x, v) = 1√
2πv2

th,i

e−v2/2v2
th,i , (A1)

fe(x, v) = 1√
2πv2

th,e

e−v2/2v2
th,e [1 + A cos (kx)], (A2)

where v2
th,s = Ts/ms is the thermal velocity of particle

species s, with Ts the temperature and ms the mass. In
our simulations, we use a realistic mass ratio of mi/me =
1836, perturbation strength of A = 0.5, and wave vector
k = 0.75. Simulations are performed on a uniformly dis-
cretized grid with periodic boundary conditions in x and
zero-gradient boundary conditions in v. The bounds of the
spatial domain are ±aπ/k, where a is the number of peri-
ods to be included to ensure the grid spacing is as desired.
For the electron distribution, the bounds of the simulation
domain in v are ±6vth,s for the electron and ion distribu-
tions.

b. Buneman instability

The initial distributions of the ions and electrons are given
by

fi(x, v) = 1√
2πv2

th,i

e−v2/2v2
th,i , (A3)

fe(x, v) = 1√
2πv2

th,e

e−(v−v0)2/2v2
th,e [1 + A cos (kx)],

(A4)

with v0 = ωp,e/k. We use a mass ratio of mi/me = 25, and
perform simulations with perturbation strength of A = 10−3

and wave vector k = 0.10. We use a uniform discretization
in x from −π/k to π/k with periodic boundary conditions,
and a uniform discretization in v with zero-gradient boundary
conditions. For the electron distribution, the bounds of the
simulation domain in v are ±6ωp,e/k. For the ion distribution,
the bounds are ±50vth,i.

c. Shock-wave formation

The initial distributions of the ions and electrons are given
by

fi(x, v) = H (x) exp
[−(v − v0)2/2v2

th,i

]
+ [1 − H (x)] exp

[−(v + v0)2/2v2
th,i

]
, (A5)

fe(x, v) = H (x) exp
[−(v − v0)2/2v2

th,e

]
+ [1 − H (x)] exp

[−(v − v0)2/2v2
th,e

]
, (A6)

where H (x) is the Heaviside step function, we set v0 =
1.5(Te/mi), and we use a realistic mass ratio of mi/me =
1836. Our simulations are performed using a uniform dis-
cretization in x and v, both with zero-gradient boundary
conditions. The spatial simulation domain has bounds of
±250λD. For the electron distribution, the bounds of the sim-
ulation domain in v are ±6vth,e. For the ion distribution, the
simulation domain is from (−10vth,i − v0) to (10vth,i + v0).

2. Time evolution procedure

To solve the Vlasov-Poisson equations, we compute the
spatial advection term using an upwind finite-difference
scheme [55] and the gradient in velocity using a centered
finite-difference scheme, both with second-order accuracy.
Time evolution is performed using standard RK4. We use
an adaptive time-stepping scheme, in which the time step
is a specified fraction of the maximum allowed by the
Courant-Friedrichs-Lewy (CFL) limit [56]. We use a time
step that is 0.9 of the CFL limit. The maximum time step is
calculated as

�tmax =
(∑

s

|vs|max

�x
+ |qs||E |max

ms�vs
+ νs|vs|max

�vs
+ 2νsv

2
th,s

�v2
s

)−1

,

(A7)

where �x and �vs are the grid discretizations along x and
v, |vs|max is the maximum velocity magnitude, |E |max is the
maximum electric-field magnitude (measured at each time
step), vth,s is the thermal velocity, and νs is the collision rate.

035208-12

QUANTUM-INSPIRED METHOD FOR SOLVING THE … PHYSICAL REVIEW E 106, 035208 (2022)

3. Collision operator

When collisions are included in the simulations, we use the
Dougherty collision operator [47],

C[fs] = νs∇v,s · [
(v − v0,s) fs + v2

th,s∇v,s fs
]
, (A8)

where v0,s is the average velocity, vth,s is the thermal velocity,
and νs is the collision frequency.

APPENDIX B: COMMON MATRIX PRODUCT STATE
OPERATIONS

In this section we briefly describe the common opera-
tions performed on the matrix product states (MPS) when
solving the Vlasov-Poisson equation. For a more complete
introduction for MPS methods in the context of solving partial
differential equations, we direct readers to Refs. [29] and [28].
Ref. [23] also provides a good overview of MPS methods,
even though it is written for applications in quantum physics.

1. Matrix-vector multiplication

Assume that the vector is represented as a MPS

f (i1, . . . , iL) =
∑

α1,...,αL−1

A(1)
α1

(i1)A(2)
α1,α2

(i2) · · · A(L)
αL−1

(iL), (B1)

and the operator is represented as a MPO

O(o1, . . . , oL, i1, . . . , iL)

=
∑

β1,...,βL−1

B(1)
β1

(o1, i1)B(2)
β1,β2

(o2, i2) · · · B(L)
βL−1

(oL, iL).

(B2)

To perform a matrix-vector multiplication, we contract over
the indices {i1, . . . , iL}, yielding

g(o1, . . . , oL) =
∑

γ1,...,γL−1

C(1)
γ1

(o1)C(2)
γ1,γ2

(o2) · · ·C(L)
γL−1

(oL),

(B3)

where

C(n)
γn−1,γ

(on) =
∑

in

B(n)
βn−1,βn

(on, in)A(n)
αn−1,α

(in) (B4)

and γn = (αn, βn). Thus, the bond dimension of g = A f is the
product of the bond dimensions of f and A.

2. Addition

Suppose we have two MPSs,

f (i1, . . . , iL) =
∑

α1,...,αL−1

A(1)
α1

(i1)A(2)
α1,α2

(i2) · · · A(L)
αL−1

(iL), (B5)

g(i1, . . . , iL) =
∑

β1,...,βL−1

B(1)
β1

(i1)B(2)
β1,β2

(i2) · · · B(L)
βL−1

(iL). (B6)

The sum of h = f + g is given by

h(i1, . . . , iL) =
∑

δ1,...,δL−1

C(1)
δ1

(i1)C(2)
δ1,δ2

(i2) · · ·C(L)
δL−1

(iL), (B7)

where

C(n)(in) =
[

A(n)(in) 0
0 B(n)(in)

]
, (B8)

and δn is the concatenation of indices αn and βn. As such, the
bond dimension of h is the sum of the bond dimensions of f
and g.

3. Derivatives

We choose to solve the PDE using finite difference meth-
ods on a uniform grid with spacing �x. We also choose to
map our data onto the MPS with physical dimension d = 2
using a binary mapping, as described in the main text.

a. First derivative, centered, periodic boundary conditions

In this case, the first derivative along one axis, assuming
periodic boundary conditions and using a second-order cen-
tered finite difference scheme, is

∂

∂x
≈ 1

�x
[I S+ + S− S+ + S−]

⎡
⎣I S− S+

0 S+ 0
0 0 S−

⎤
⎦

⎡
⎣I S− S+

0 S+ 0
0 0 S−

⎤
⎦ · · ·

⎡
⎣I S− S+

0 S+ 0
0 0 S−

⎤
⎦

⎡
⎣c1(S− − S+)

c1S+
−c1S−

⎤
⎦, (B9)

where

S+ =
[

0 0
1 0

]
, S− =

[
0 1
0 0

]
,

and c1 = 1/2.

b. First derivative, forward, periodic boundary conditions

The second-order accurate forward finite difference MPO is given by

∂

∂x
≈ 1

�x
[I S− S+]

⎡
⎣I S− 0

0 S+ 0
0 0 S+

⎤
⎦ · · ·

⎡
⎣I S− 0

0 S+ 0
0 0 S+

⎤
⎦

⎡
⎣I S− 0

0 S+ 0
0 S+ I

⎤
⎦

⎡
⎣ c0I + c1S−

c1S+ + c2I + c3S−
c3S+

⎤
⎦, (B10)

where c0 = −3/2, c1 = 2, c2 = −1/2.

035208-13

ERIKA YE AND NUNO F. G. LOUREIRO PHYSICAL REVIEW E 106, 035208 (2022)

c. First derivative, backward, periodic boundary conditions

The second-order accurate backward finite difference MPO can be obtained by interchanging S+ and S− and using c0 = 3/2,
c1 = −2, c2 = 1/2.

d. First derivative, centered, zero gradient boundary conditions

For central finite difference first derivatives with nonperiodic boundary conditions, we compute the first derivative by first
building this backbone MPO:

∂

∂x
≈ 1

�x
[I S− S+]

⎡
⎣I S− S+

0 S+ 0
0 0 S−

⎤
⎦ · · ·

⎡
⎣I S− S+

0 S+ 0
0 0 S−

⎤
⎦

⎡
⎣c1(S− − S+)

c1S+
−c1S−

⎤
⎦, (B11)

where c1 = 1/2. We then add MPOs representing the desired boundary conditions. In the case of zero-gradient boundary
conditions, we utilize the ghost cell method and prescribe the next grid point outside the simulation boundary to have the
same value as the grid point immediately inside of the boundary. Thus, we add the matrices

Mleft =
[[

0 −c1

0 0

]]
⊗

[[
0 0
0 1

]]
⊗ · · · ⊗

[[
0 0
0 1

]]
, (B12)

Mright =
[[

0 0
0 1

]]
⊗ · · · ⊗

[[
0 0
0 1

]]
⊗

[[
0 0
c1 0

]]
, (B13)

where c1 = 1/2 and the MPOs have a total length of L.

e. Second derivative, centered, periodic boundary conditions

The MPO for the second-order central finite difference second derivative assuming periodic boundary conditions can be
written as

∂2

∂x2
≈ 1

�x2
[I S+ + S− S+ + S−]

⎡
⎣I S+ S−

0 S− 0
0 0 S+

⎤
⎦ · · ·

⎡
⎣I S+ S−

0 S− 0
0 0 S+

⎤
⎦

⎡
⎣c0I + c1(S− + S+)

c1S−
c1S+

⎤
⎦, (B14)

where c0 = −2, c1 = 1.

4. Dot product

To take the dot product between two MPS, we have to
“diagonalize” one of them into a MPO. An arbitrary MPS can
be written like

f (i1, . . . , iL) =
∑

α1,...,αL−1

M (1)
α1

(i1)M (2)
α1,α2

(i2) · · · M (L)
αL−1

(iL).

(B15)

Diagonalizing it yields the MPO:

f (o1, . . . , oL, i1, . . . , iL) =
∑

α1,...,αL−1

M (1)
α1

(o1, i1)

× M (2)
α1,α2

(o2, i2) · · · M (L)
αL−1

(oL, iL),
(B16)

where

Ml,r (o, i) = Ml,r (i)δi,o, (B17)

and δi j is the Kronecker delta. Diagrammatically, this would
look like

where the squiggly lines in blue represents the δ function.
(The blip as it crosses the horizontal bonds means that it does

not interact with it.) In this new tensor network, each tensor
now has two legs, and thus it has the form of a matrix product
operator.

5. Inverse Laplacian

Having a MPO for the second derivative and a method
with which to add MPOs together, we can obtain a MPO
representation of the Laplacian. To obtain the inverse, one
can use Newton’s method, which solely involves matrix
multiplications. Alternatively, we can use a density-matrix
renormalization-group style optimization.

However, because we only consider 1D1V systems in this
work, we obtain the operator by starting with a matrix rep-
resentation of the Laplacian operator, inverting it, and then
converting it into a MPO. For higher-dimensional systems,
this method still may be a viable option because even though
the computation is expensive, the inverse Laplacian can be
stored after it is computed and thus only needs to be computed
once.

For 1-D systems, we found that the MPO of the inverse
Laplacian (where the Laplacian is accurate to second order)
requires a bond dimension of about five if retaining singular
values up to 10−10.

6. Upwind time evolution

For the advection term in the Vlasov equation, we use an
upwind time evolution scheme, in which gradients multiplied

035208-14

QUANTUM-INSPIRED METHOD FOR SOLVING THE … PHYSICAL REVIEW E 106, 035208 (2022)

by positive velocities are computed using a backward finite
difference stencil while gradients multiplied by negative ve-
locities are computed using a forward finite difference stencil,
or

∂

∂x
≈

[
∂

∂x

]
forward

H (v) +
[

∂

∂x

]
backward

[1 − H (v)], (B18)

where H (v) is the Heaviside step function
MPOs of the derivatives using a forward and backward

finite difference stencil are described above. The MPO repre-
senting the Heaviside function can be obtained by numerically
solving for the MPS representation of H (v), and then di-
agonalizing into a MPO. For a discretized grid centered
at zero, the bond dimension of the MPO is two. If the
MPOs of the forward and backward time evolution derivative
have bond dimension D f and Db, respectively, then the new
MPO will have at most a bond dimension D f + Db. Thus,
while there is some overhead associated with performing
an upwind scheme, if it results in less noise in the time
evolved state, it is ultimately worthwhile, especially since the
noise can often artificially reduce the compressibility of the
MPS.

7. Integration

A first-order integration scheme (required for solving the
Poisson equation),∫ xN−1

x0

f (x)dx ≈
N−1∑
i=0

f (xi)�x (B19)

can be performed by contracting the MPS representing f (x)
with the MPS

I (i1, . . . , iL) = �x

[
1
1

]
⊗

[
1
1

]
⊗ · · · ⊗

[
1
1

]
. (B20)

APPENDIX C: CANONICALIZATION AND COMPRESSION

An important part of MPS algorithms is the compression of
the MPS to a smaller bond dimension. Doing the compression
accurately requires one to put the MPS in a canonical form.

A MPS has a left canonical form and a right canonical
form, respectively defined as

f (i1, . . . , iL) =
∑

α1,...,αL−1

L(1)
α1

(i1) · · · L(L−1)
αL−2,αL−1

(iL−1)M (L)
αL−1

(iL),

(C1)

f (i1, . . . , iL) =
∑

α1,...,αL−1

M (1)
α1

(i1)R(2)
α1,α2

(i2) · · · R(L)
αL−1

(iL),

(C2)

and a mixed canonical form where the tensors left of the nth
tensor are in left canonical form and tensors to the right are in
right canonical form:

f (i1, . . . , iL) =
∑

α1,...,αL−1

L(1)
α1

(i1) · · · L(n−1)
αn−2,αn−1

(in−1)M (n)
αn−1,αn

× (in)R(n+1)
αn,αn+1

(in+1) · · · R(L)
αL−1

(iL), (C3)

where the tensors Ll,r (u) and Rl,r (u) have the property

∑
l,u

Ll,r (u)L∗
l,r′ (u) = δr,r′ ,

∑
r,u

Rl,r (u)R∗
l ′,r (u) = δl,l ′ , (C4)

while the tensors Ml,r (u) have no constraints.
To canonicalize the MPS, one performs an iterative QR

decomposition procedure. For example, to put the MPS in left
canonical form, starting from the leftmost tensor in the chain,
we decompose the nth tensor into two using QR decomposi-
tion, and then contract the R matrix into the (n + 1)st tensor:

∑
α1,α2,...

M (1)
α1

(i1)M (2)
α1,α2

(i2) · · · =
∑

α1,α2,...

(∑
β1

Q(1)
β1

(i1)R(1)
β1,α1

)
M (2)

α1,α2
(i2) · · ·

=
∑

β1,α2,...

Q(1)
β1

(i1)

(∑
α1

R(1)
β1,α1

M (2)
α1,α2

(i2)

)
· · ·

=
∑

β1,α2,...

Q(1)
β1

(i1)M̃ (2)
β1,α2

(i2) · · · . (C5)

The orthonormal properties of Q ensures that it is of left canonical form, which we represent using a left-facing triangle. One
repeats this process with the following tensor until one reaches the end of the MPS.

Once the MPS is in canonical form, we can compress the MPS using a similar iterative scheme, except instead of performing
a QR decomposition one decomposes the tensor via singular value decomposition (SVD) and retains only the D largest singular
values. In the cartoon below, we assume the MPS is already in right canonical form. We decompose the nth tensor using SVD.
We reduce the size of the bonds between U , S, and V T by keeping only the D largest singular values and the corresponding

035208-15

ERIKA YE AND NUNO F. G. LOUREIRO PHYSICAL REVIEW E 106, 035208 (2022)

FIG. 8. Electric-field energy densities the for shock-wave formation test case using the different compressed time evolution schemes
detailed above. Results are for (a) S3 and (b) S1 orderings.

orthonormal vectors. Again, the U tensor by definition is in left canonical form, so we contract S and V T into the (n + 1)st
tensor in the MPS:

∑
α1,α2,...

M (1)
α1

(i1)R(2)
α1,α2

(i2) · · · =
∑

α1,α2,...

(∑
β1

U (1)
β1

(i1)Sβ1 (V T)(1)
β1,α1

)
R(2)

α1,α2
(i2) · · ·

=
∑

β1,α2,...

U (1)
β1

(i1)

(∑
α1

Sβ1 (V T)(1)
β1,α1

R(2)
α1,α2

(i2)

)
· · · (C6)

=
∑

β1,α2,...

U (1)
β1

(i1)M̃ (2)
β1,α2

(i2)R(3)
α2,α3

(i3) · · · . (C7)

Again, we represent the left (right) canonical tensors with
left-facing (right-facing) triangles. This procedure is repeated
for the (n + 1)st tensor until one reaches the right end of the
chain.

An alternative compression scheme (not used in this work)
is a local optimization scheme inspired by density-matrix
renormalization group (DMRG) methods. Here, one sweeps
through the tensors and updates them such that the error
between the original MPS f and the compressed result f ′
is minimized. For example, the optimal value of the nth
tensor (M (n)) of the compressed MPS is found by solv-
ing

arg min
M (n)

|| f − f ′||2, (C8)

which can be done using standard methods like conju-
gate gradient descent. Because the updates are local, one
typically has to sweep through the MPS at least a few
times to converge to the optimal solution. The advan-
tage of optimization-based compression is that one now
can impose constraints on the system (as is done in
Ref. [46]).

1. Modified compression scheme

The technical details of compression via SVD are outlined
above. We mention that one typically compresses the MPS by
performing SVD decompositions starting from one end and
ending at the other. However, in an effort to minimize the
introduction of unphysical noise as a result of state compres-
sion at each time step, we use an alternative truncation scheme
inspired by tensor train methods for the sequentially ordered
MPS.

In our 2-D system, the middle bond corresponds to entan-
glement between data along x and v. When bipartitioning the
MPS at this bond, we can write the distribution function as

f (x, v; t) =
∑

r

σr (t)gr (x; t)hr (v; t),

where gr (x; t) and hr (v; t) are orthonormal 1-D functions.
Keeping the D largest singular values is equivalent to retaining
only the terms in the sum corresponding to the largest coeffi-
cients σr . This low-rank approximation should not generate
unphysical noise within the functions gr (x; t) and hr (v; t)
themselves. In contrast, compressing the other bonds, which
carry information between coarser and finer grid resolutions

035208-16

QUANTUM-INSPIRED METHOD FOR SOLVING THE … PHYSICAL REVIEW E 106, 035208 (2022)

FIG. 9. Ion and electron distributions at specified times for the Buneman instability with initial perturbation of wave vector k = 0.10 and
amplitude A = 10−3. The different rows are results obtained with GKEYLL [5], our code with no compression, and our code with compression
to D = 64 and D = 32 at each time step (using S3 ordering).

within x and v, could result in numerical artifacts that cause
numerical instabilities.

So, in our modified compression scheme we first compress
the center bond joining the two halves corresponding to the
two different dimensions. After performing this compression
step and removing some information from our state, we then
continue to compress gr (x; t) and hr (v; t) by compressing the
remaining tensors in the MPS. The steps of the compression
are given below:

(1) Write the MPS in mixed canonical form with the with
tensors left of L + 1 in left canonical form and the tensor right
of L + 1 in right canonical form.

(2) Decompose the tensor via singular value decomposi-
tion M (L+1) → USV T .

(3) To avoid extra canonicalization steps, insert diagonal
matrices S−1 and S in between S and V T .

(4) Contract L(L)US → M (L).
(5) Contract SV T R(L+2) → M (L+2).

(6) Perform iterative SVD compression scheme for ten-
sors at positions L to 1.

(7) Perform iterative SVD compression scheme for ten-
sors at positions L + 1 to 2L.

(8) Absorb S−1 into a neighboring tensor.
Note that the compressed MPS is no longer in a canonical

form. However, this does not matter since we immediately
apply MPOs to the MPS, which also does not preserve canon-
icalization.

Interestingly, we found that this compression scheme can
improve performance for S1 or S2 ordering, but does not seem
to significantly affect S3 results.

2. Compressed time evolution algorithm

Given an initial-value problem ∂ f
∂t = y(f , t), the fourth-

order Runge-Kutta time evolution scheme is given as follows:

fn+1 = fn + 1
6�t (k1 + 2k2 + 2k3 + k4), (C9)

035208-17

ERIKA YE AND NUNO F. G. LOUREIRO PHYSICAL REVIEW E 106, 035208 (2022)

FIG. 10. Zeroth, first, and second moments of the distribution functions for the Buneman instability with initial perturbation of wave vector
k = 0.10 and amplitude A = 10−3 at the specified times. Plots compare results obtained without compression, with compression to D = 64 at
each time step, and from GKEYLL. MPS results are obtained using the S3 ordering. Plots on the top and bottom of each row correspond to the
ion and electron distributions, respectively.

where k1 = y(tn, fn), (C10)

k2 = y

(
tn + �t

2
, fn + �t

2
k1

)
, (C11)

k3 = y

(
tn + �t

2
, fn + �t

2
k2

)
, (C12)

k4 = y(tn + �t, fn + �tk3). (C13)

The most accurate way of computing the next time step would
be to perform no active compression until obtaining the state
at the next time step, fn+1. However, while this algorithm
formally still would scale like O(D3 log(N)), the constant
scaling factor may be large.

However, we could consider performing intermediate com-
pression steps, such as compressing the intermediate states

as well as the derivatives. We investigate different levels of
compression, defined as

(C1) Only compression of the state at the next time step
fn+1.

(C2) Additionally compress intermediate states, e.g., fn +
�t
2 k1.

(C3) Additionally compress the sum of derivatives (k1 +
2k2 + 2k3 + k4).

(C4) Additionally compress each of the derivatives.
(C5) Additionally compress terms that are added together

when computing the derivatives.
In general, as one goes down the list, we expect the com-

pression scheme to be cheaper but also less accurate. While
the latter schemes actively compress the MPS more times,
they are cheaper because (1) due to the O(D3) scaling of com-
putational costs, performing multiple compressions of MPS

035208-18

QUANTUM-INSPIRED METHOD FOR SOLVING THE … PHYSICAL REVIEW E 106, 035208 (2022)

with smaller bond dimension is often cheaper than performing
a single compression of a MPS with larger bond dimension,
and (2) even if the MPS is not actively compressed to the
specified bond dimension at the intermediate steps, we still
perform the MPS compression procedure and only truncate
singular values such that the truncation error at each bond
is less than 10−10 and one does not restrict the MPS bond
dimension. Otherwise, the bond dimension of our state would
quickly become unmanageable.

We find that in the case of shock-wave formation, com-
pression at each intermediate state in the RK4 time stepping
scheme performs comparably to only compressing the final
state of the next time step. In contrast, compressing the deriva-
tives introduces significantly more error. This is shown in
Fig. 8.

APPENDIX D: ADDITIONAL RESULTS FOR THE
BUNEMAN INSTABILITY

In Fig. 9, we compare the ion and electron distribution
functions obtained without compression, with compression to
bond dimension D = 64 at each time step, and with com-
pression to bond dimension D = 32. We also show results
obtained using GKEYLL for reference.

In Fig. 10, we plot the density, momentum, and energy
of the ion and electron distribution functions. The uncom-
pressed result and the D = 64 result show good agreement
with each other. They also show reasonable agreement with
results from GKEYLL at shorter simulation times, but the dif-
ferences become more significant at longer times, especially
for the measurement of electron momentum.

[1] F. Valentini, P. Trávínček, F. Califano, P. Hellinger, and A.
Mangeney, J. Comput. Phys. 225, 753 (2007).

[2] S. S. Cerri, S. Servidio, and F. Califano, Astrophys. J. Lett. 846,
L18 (2017).

[3] M. Palmroth, U. Ganse, Y. Pfau-Kempf, M. Battarbee, L. Turc,
T. Brito, M. Grandin, S. Hoilijoki, and A. Sandroos, Living Rev.
Comput. Astrophys. 4, 1 (2018).

[4] S. von Alfthan, D. Pokhotelov, Y. Kempf, S. Hoilijoki, I.
Honkonen, A. Sandroos, and M. Palmroth, J. Atmos. Sol.-Terr.
Phys. 120, 24 (2014).

[5] J. Juno, A. Hakim, J. TenBarge, E. Shi, and W. Dorland, J.
Comput. Phys. 353, 110 (2018).

[6] C. Z. Cheng and G. Knorr, J. Comput. Phys. 22, 330 (1976).
[7] E. Sonnendrücker, J. Roche, P. Bertrand, and A. Ghizzo, J.

Comput. Phys. 149, 201 (1999).
[8] N. Crouseilles, M. Mehrenberger, and E. Sonnondrücker, J.

Comput. Phys. 229, 1927 (2010).
[9] J.-M. Qiu and A. Christlieb, J. Comput. Phys. 229, 1130

(2010).
[10] H. Liu, X. Cai, G. Lapenta, and Y. Cao, Commun. Nonlinear

Sci. Numer. Simul. 102, 105941 (2021).
[11] L. Einkemmer, Comput. Phys. Commun. 254, 107351 (2020).
[12] K. Kormann, K. Reuter, and M. Rampp, Int. J. High Perform.

Comput. Appl. 33, 924 (2019).
[13] K. Kormann, SIAM J. Sci. Comput. 37, B613 (2015).
[14] F. Allmann-Rahn, R. Grauer, and K. Kormann, J. Comput.

Phys. 469, 111562 (2022).
[15] J. M. Dawson, Rev. Mod. Phys. 55, 403 (1983).
[16] R. A. Fonseca, L. O. Silva, F. S. Tsung, V. K. Decyk, W. Lu,

C. Ren, W. B. Mori, S. Deng, S. Lee, T. Katsouleas, and J. C.
Adam, Lecture Notes Comp. Sci. 2331, 342 (2002).

[17] L. Franci, P. Hellinger, M. Guarrasi, C. H. K. Chen, E. Papini,
A. Verdini, L. Matteini, and S. Landi, J. Phys.: Conf. Ser. 1031,
012002 (2018).

[18] L. Franci, S. Landi, A. Verdini, L. Matteini, and P. Hellinger,
Astrophys. J. Lett. 853, 26 (2018).

[19] H. Qin, J. Liu, J. Xiao, R. Zhang, Y. He, Y. Wang, Y. Sun,
J. W. Burby, L. Ellison, and Y. Zhou, Nucl. Fusion 56, 014001
(2016).

[20] J. Xiao and H. Qin, Plasma Sci. Technol. (Bristol, UK) 23,
055102 (2021).

[21] J. Xiao, J. Chen, J. Zheng, H. An, S. Huang, C. Yang, F. Li, Z.
Zhang et al., in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and
Analysis, SC ’21 (Association for Computing Machinery, St.
Louis, Missouri, 2021).

[22] J. Xiao, H. Qin, J. Liu, Y. He, R. Zhang, and Y. Sun, Phys.
Plasmas 22, 112504 (2015).

[23] U. Schollwöck, Ann. Phys. (NY) 326, 96 (2011).
[24] G. Vidal, Phys. Rev. Lett. 91, 147902 (2003).
[25] S. R. White, Phys. Rev. B 48, 10345 (1993).
[26] S. R. White, Phys. Rev. B 72, 180403(R) (2005).
[27] G. K.-L. Chan and M. Head-Gordon, J. Chem. Phys. 116, 4462

(2002).
[28] J. J. G. Ripoll, Quantum 5, 431 (2021).
[29] M. Lubasch, P. Moinier, and D. Jaksch, J. Comput. Phys. 372,

587 (2018).
[30] S. V. Dolgov, B. N. Khoromskij, and I. V. Oseledets, SIAM J.

Sci. Comput. 34, A3016 (2012).
[31] A. M. P. Boelens, D. Venturi, and D. M. Tartakovsky, J.

Comput. Phys. 421, 109744 (2020).
[32] L. Einkemmer, SIAM J. Sci. Comput. 41, A2795 (2019).
[33] M. V. Rakhuba and I. V. Oseledets, J. Comput. Phys. 312, 19

(2016).
[34] S. V. Dolgov, A. P. Smirnov, and E. E. Tyrtyshnikov, J. Comput.

Phys. 263, 268 (2014).
[35] V. Ehrlacher and D. Lombardi, J. Comput. Phys. 339, 285

(2017).
[36] L. Einkemmer and C. Lubich, SIAM J. Sci. Comput. 40, B1330

(2018).
[37] L. Einkemmer, A. Ostermann, and C. Piazzola, J. Comput.

Phys. 403, 109063 (2020).
[38] B. N. Khoromskij, Constr. Approx. 34, 257 (2011).
[39] I. V. Oseledets, Dokl. Math. 80, 653 (2009).
[40] I. V. Oseledets, SIAM J. Sci. Comput. 31, 2130 (2010).
[41] V. Kazeev, O. Reichmann, and C. Schwab, Lin. Alg. Appl. 438,

4204 (2013).
[42] V. Kazeev, M. Khammash, M. Nip, and C. Schwab, PLoS

Comput. Biol. 10, e1003359 (2014).
[43] V. Kazeev, I. Oseledets, M. Rakhuba, and C. Schwab, Adv.

Comput. Math. 43, 411 (2017).
[44] V. Kazeev and C. Schwab, Numer. Math. 138, 133 (2018).

035208-19

https://doi.org/10.1016/j.jcp.2007.01.001
https://doi.org/10.3847/2041-8213/aa87b0
https://doi.org/10.1007/s41115-018-0003-2
https://doi.org/10.1016/j.jastp.2014.08.012
https://doi.org/10.1016/j.jcp.2017.10.009
https://doi.org/10.1016/0021-9991(76)90053-X
https://doi.org/10.1006/jcph.1998.6148
https://doi.org/10.1016/j.jcp.2009.11.007
https://doi.org/10.1016/j.jcp.2009.10.016
https://doi.org/10.1016/j.cnsns.2021.105941
https://doi.org/10.1016/j.cpc.2020.107351
https://doi.org/10.1177/1094342019834644
https://doi.org/10.1137/140971270
https://doi.org/10.1016/j.jcp.2022.111562
https://doi.org/10.1103/RevModPhys.55.403
https://doi.org/10.1007/3-540-47789-636
https://doi.org/10.1088/1742-6596/1031/1/012002
https://doi.org/10.3847/1538-4357/aaa3e8
https://doi.org/10.1088/0029-5515/56/1/014001
https://doi.org/10.1088/2058-6272/abf125
https://doi.org/10.1063/1.4935904
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1103/PhysRevLett.91.147902
https://doi.org/10.1103/PhysRevB.48.10345
https://doi.org/10.1103/PhysRevB.72.180403
https://doi.org/10.1063/1.1449459
https://doi.org/10.22331/q-2021-04-15-431
https://doi.org/10.1016/j.jcp.2018.06.065
https://doi.org/10.1137/120864210
https://doi.org/10.1016/j.jcp.2020.109744
https://doi.org/10.1137/18M1185417
https://doi.org/10.1016/j.jcp.2016.02.023
https://doi.org/10.1016/j.jcp.2014.01.029
https://doi.org/10.1016/j.jcp.2017.03.015
https://doi.org/10.1137/18M116383X
https://doi.org/10.1016/j.jcp.2019.109063
https://doi.org/10.1007/s00365-011-9131-1
https://doi.org/10.1134/S1064562409050056
https://doi.org/10.1016/j.laa.2013.01.009
https://doi.org/10.1371/journal.pcbi.1003359
https://doi.org/10.1007/s10444-016-9491-y
https://doi.org/10.1007/s00211-017-0899-1

ERIKA YE AND NUNO F. G. LOUREIRO PHYSICAL REVIEW E 106, 035208 (2022)

[45] V. Kazeev, I. Oseledets, M. Rakhuba, and C. Schwab,
arXiv:2006.01455.

[46] N. Gourianov, M. Lubasch, S. Dolgov, Q. Y. van der Berg, H.
Babaee, P. Givi, M. Kiffner, and D. Jaksch, Nat. Comput. Sci.
2, 30 (2022).

[47] J. P. Dougherty, Phys. Fluids 7, 1788 (1964).
[48] A. Lenard and I. B. Bernstein, Phys. Rev. 112, 1456 (1958).
[49] E. M. Stoudenmire and S. R. White, New J. Phys. 12, 055026

(2010).
[50] O. Buneman, Phys. Rev. 115, 503 (1959).

[51] F. Verstraete and J. I. Cirac, arXiv:cond-mat/0407066.
[52] F. Verstraete, V. Murg, and J. Cirac, Adv. Phys. 57, 143 (2008).
[53] L. Einkemmer and I. Jospeh, J. Comput. Phys. 443, 110495

(2021).
[54] Data use for this work is available from the corresponding

author at erikaye@mit.edu.
[55] S. Jardin, Computational Methods in Plasma Physics (CRC

Press, 2010), p. 245.
[56] R. Courant, K. Friedrichs, and H. Lewy, IBM J. Res. Dev. 11,

215 (1967).

035208-20

http://arxiv.org/abs/arXiv:2006.01455
https://doi.org/10.1038/s43588-021-00181-1
https://doi.org/10.1063/1.2746779
https://doi.org/10.1103/PhysRev.112.1456
https://doi.org/10.1088/1367-2630/12/5/055026
https://doi.org/10.1103/PhysRev.115.503
http://arxiv.org/abs/arXiv:cond-mat/0407066
https://doi.org/10.1080/14789940801912366
https://doi.org/10.1016/j.jcp.2021.110495
https://doi.org/10.1147/rd.112.0215

