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Nonlinear excitation of zonal flows by turbulent energy flux
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The nonlinear excitation of zonal flows (ZFs) generated by the ion-temperature-gradient turbulence in a toka-
mak plasma is investigated by using the global gyrokinetic code NLT. It is found that ZFs are initially driven by
the nonlinear self-interaction of the eigenmode. In the nonlinear saturation, the modulational instability becomes
important, and its contribution to ZFs can finally be comparable to that of the self-interaction mechanism. More
importantly, both types of nonlinear wave-wave interactions can be well described by the turbulent energy flux

model.
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Zonal Flows (ZFs) [1,2] are crucially important in mag-
netic fusion plasma physics [3] because they regulate drift
waves (DWs) [4,5] turbulence to improve the plasma con-
finement; it’s also important in the solar atmosphere [6] and
the planetary atmosphere, such as Jupiter’s great red spot [7].
Many experiments [8—11] and numerical simulations [3,12]
have demonstrated that ZFs can be generated spontaneously
by the ion-temperature-gradient (ITG) turbulence. Under-
standing the nonlinear generation of ZFs is a crucial topic in
fusion plasma physics and nonlinear physics.

The poloidal Reynolds stress (PRS) model [13,14] is
widely used to explain the generation of the flows, which
relates the poloidal flow to the nonlinear drive of PRS,

11
0 8ug = ———0,(rllyp),
where the poloidal flow duy = E,/Br with E, as the zonal
radial electric field (REF) and By the toroidal magnetic field.
,0 = nm;(V,Vy),, is the radial component of the nonlinear
turbulent PRS; V, and Vj are the fluctuating components of
the radial and poloidal velocities of fluid, respectively; (-).
denotes the turbulence ensemble average. n and m; are the ion
density and ion mass, respectively; r is the radial position.
Many experimental observations have been reported [15-21]
to confirm the PRS model, especially regarding the corre-
lation between the PRS and the flows. Recent experiments
on HL-2A [22] and JFT-2M [23,24] have indicated that it
is the ion-pressure gradient effect rather than the PRS effect
that drives the flows. The reason why the PRS effect is not
important may be attributed to the neoclassical shielding of
poloidal flow [25]; Rosenbluth and Hinton [26,27] found that
the shielding factor €, ~ 1+ 1.6¢%/ /€ for a collisionless
toroidal plasma, with g as the safety factor, and € = r/R as the
inverse aspect ratio; R is the major radius. This has led to the
recent development of gyrokinetic theory, which predicts that
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zonal REF can be driven by the turbulent energy flux (TEF)
(28],

1 1 2 11
0B, = ——20,;[ -0, r 0> _BP__ar(rnrg’)v (1)
ne r 3 nm; r
where e and Bp denote the ion charge and the poloidal mag-
netic field. The TEF (Q,) and the toroidal momentum flux
(IT,;) can be defined in the conventional way,

0, = /d3v(8f6F)e,,w, (2a)
385 Br
Hr; = d v<878F>enmivHE9 (2b)

where 67 is the perturbation ion radial velocity and w =
%mivﬁ + uB is the ion kinetic energy. Here, vj and u are the
parallel velocity and magnetic moment, respectively.

The above two models are from the point view of
mesoscale transport. From the point view of nonlinear
wave-wave interactions, the nonlinear gyrokinetic theory of
modulational instability [29,30] predicts that ZFs can be read-
ily excited via secondary modulations in the radial envelope of
a single-n coherent DW (here, n is the toroidal mode number)
in toroidal plasmas. The predicted modulational instability
features also have been observed in three-dimensional (3D)
global gyrokinetic toroidal simulations [3] of ITG modes.
There, the well-developed formalism of ITG modes in toroidal
geometry is given by the ballooning representation [31] with
a single-n value associated with multiple-m (here, m is the
poloidal mode number) harmonics due to toroidicity-induced
coupling effect. Note that fluctuating fields in Ref. [29] in-
dicate the existence of two characteristic scales for high-n
DWs, namely, the eigenmode and sidebands produced by the
modulation in the radial envelope. The importance of modu-
lational instability for zonal flow excitation in the steady-state
turbulence stage has been confirmed by Ref. [32]. Recent
local flux-tube simulations [33] indicate that in addition to
the ZF driven by modulational instability (ZFM), one can
also find the ZF driven by the nonlinear self-interaction of a
single-n eigenmode (ZFE). However, it is worth pointing out
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that such self-interaction is regarded to be a process by which
an eigenmode extended along the direction parallel to the
magnetic field interacts with itself nonlinearly and generate
significant local ZF shear layers at radial locations near the
low-order mode rational surfaces [34]. Note that these results
are obtained in local simulations.

Therefore, it is of significant interest to further investi-
gate the nonlinear generation mechanism of ZFs in global
simulations. Which interaction mechanism, ZFM or ZFE, is
important in the nonlinear driving of ZFs? And whether these
two nonlinear wave-wave interactions are consistent with the
TEF driving model?

In this article, we investigate the nonlinear excitation
mechanism of ZFs through global nonlinear gyrokinetic sim-
ulations. It is found that in the quasilinear stage, it is the
ZFE rather than the ZFM that is dominant; in the nonlinear
saturation, the ZFM becomes important, and its contribution
is eventually comparable to that of the ZFE. More importantly,
ZFs either the ZFE or the ZFM can be well described by the
TEF model [28].

We will focus on ITG turbulence with adiabatic electrons.
The nonlinear gyrokinetic Vlasov-Poisson system is solved by
using the global nonlinear gyrokinetic code NLT [35], which
is based on the I-transform method [36-38]. A general and
widely investigated “Cyclone DIII-D base case parameter set”
[39] without collision and source is used with Ry = 1.6714,
a = 0.6043 m, and By = 1.9 T. Here a is the minor radius of
plasmas; By is the magnetic field at the magnetic axis. The
safety factor profile is set as

r r\2
q00==086-016—-+245(_)_
a a

The temperature and density profile are set as

T(r) = %exp[—KTRiOATtanh<(r_A—rO)/a>j|,

T

N(r) = Noexp [—KNRiOANtanh<%)i|,

with Ty = 1.9693 keV, Ny = 10"?/m3, k7 = 6.9589, ky =
2.232, Ar = Ay = 0.3, ry = 0.5a, and the normalizations
of space in units of a and time in units of Ry/Cs. p. =
a/p; = 179, where p; is the ion thermal gyroradius. Here, t =
T./T; = 1 is assumed with T; and T, as the ion temperature
and electron temperature, respectively. In these simulations,
the ITG instability and ZFs evolved from a linear phase of
growth to a nonlinear saturation and finally to the relaxation
phase that is insensitive to initial conditions. The results are
shown in Fig. 1.

The dynamic equation of zonal REF, Eq. (1), is examined
for the above full-n simulations. Different contributions of Q,
and IT,, to zonal REF in the early nonlinear saturation and in
the steady-state turbulence stage are shown in Figs. 2(a) and
2(b), respectively. It can be clearly seen that in both stages,
the turbulent energy flux is quite important for the nonlinear
drive of ZFs. The radial structure of TEF, determined by the
turbulent morphology, is in agreement with the structure of
zonal REF, in terms of both the mesoscopic scale and the
amplitude. Zonal REF presented in Fig. 2(b) shown in typical
mesoscale radial structure, which is larger than the spacial
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FIG. 1. Time history of turbulent ion thermal conductivities x;
at r = 0.45a with (solid) and without (dashed) zonal flows by using
NLT with plasma parameters in Ref. [39]. Ry and C; = /T;/m; are the
major radius in the magnetic axis and ion sound speed, respectively.

scale of turbulence but smaller than the equilibrium scale.
However, the scale of zonal REF shown in Fig. 2(a) is not well
separated from the equilibrium scale. This will be discussed
further later.

The full-n simulation shown in Fig. 1 demonstrates that
ZFs, which are already excited in the quasilinear stage, sig-
nificantly reduce the turbulent ion thermal conductivity y; in
nonlinear saturation. This result is consistent with the obser-
vation of Lin’s early 3D global gyrokinetic simulations [3].
This indicates that in the quasilinear stage, ZFs have reduced
DWs and influenced its saturation process. Therefore, it is

FIG. 2. Test of Eq. (1) for the nonlinear full-n case at (a) the
early nonlinear saturation (¢#; = 40Ry/C;) and (b) the steady-state
turbulence stage (f, = 90R,/C, marked in Fig. 1). The zonal REF
term (solid), TEF term (dotted), and toroidal momentum flux term
(dashed) are normalized by kV /(R /C5).
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important to analyze the excitation mechanism of ZFs driven
by nonlinear wave-wave interactions in the quasilinear stage.

Following the two types of interaction models in
Refs. [29,33], we consider a single-n (the most unstable mode
n = +18) DW and ZFs system. The perturbation distribution
function is written as

8f = 5f+neinc + Sffne_in{ + 481 3)

where the subscript z denotes the n = 0 Fourier component; ¢
is the toroidal angle. The equilibrium distribution Fj is chosen
as a local Maxwellian.

First, we have carried out the standard nonlinear case,
which is described as follows. Define

LGf)=,8f +Xo - VSf +1),00,5f, 4)

where X and v),0 are unperturbed guiding-center velocity and
parallel acceleration, respectively. The evolution equations de-
scribing the perturbation distribution function can be written
as

LG fn) +{8¢n, Fo} + (8¢, 8/} +{8¢:, 8/} =05 (5)
—

linear response N.F. modulation
L(8f:) +{8¢:. Fo} +{8¢:, 8/} + {8¢—n, 8 fu} + {8, 8-}
————
linear response N.F. nonlinear driving
=0, (6)

where {, } denotes the unperturbed Poisson’s bracket; “N. E.”’
denotes the nonlinear flattening effects. The Fourier compo-
nent 8¢, in Eq. (5) contains both the eigenmode and the
sidebands discussed in Ref. [29]. Thus, the nonlinear driving
term in Eq. (6) contains both envelope modulation interac-
tions (if the two subscripts are viewed as eigenmodes and
sidebands, respectively) and eigenmode self-interactions (if
both subscripts are viewed as eigenmodes). On the other hand,
the nonlinear driving term in Eq. (6) clearly represents the
ensemble averaged turbulent transport flux which has been
discussed in Ref. [28].

In order to separate out the modulational instability and the
self-interaction of the eigenmode, we have carried out another
case: the modulation-off case. We only retain the linear term
in Eq. (5), but Eq. (6) for ZFs is unchanged. Clearly, the DW
in the second case is simply the eigenmode; it does not contain
the sidebands, hence, the ZFE is well separated out by closing
the feedback loop of ZFs to the DW.

The modulational instability in the standard nonlinear case
is obtained by the Gram-Schmidt orthogonal method. Specif-
ically, the radial envelope of DW takes

8@y (r) = (y/8¢1n(r, 0)8¢_, (1, 0))p. (7)

Thus, the radial envelope of sidebands § ®,(r) is found by us-
ing the radial envelope of eigenmode § ®,(r) derived from the
modulation-off case and the radial envelope of DWs §¢,(r) in
the standard nonlinear case,

8Ds(r) = 8¢a(r) — 8Pc(r)(8¢a, 8Pe)ip/ (8 Pe, §Pe)ip.  (8)
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FIG. 3. (a) The orthogonal decomposed radial structure of the
DWs envelope and ZFs at the early nonlinear saturation t, = 40R,/C;
[marked in Fig. 3(b)], normalized by the equilibrium temperature.
(b) The temporal evolution of the potential of four components: §¢,
(solid line), 6¢; (dashed line), 6¢., (dotted line), and ¢, (dashed-
dot line) in the quasilinear phase and nonlinear saturation.

Using these functional bases to orthogonalize the DWs enve-
lope in the standard nonlinear case, we found

8¢d(rs t) = ke(t)aq)e(r) + ks(t)aq)s(r)s (9a)
ke(t) = (8¢a, 8Pe)ip/(8Pe, Pe)ip, (9b)
ky(t) = (8¢ba, 8q)s>ip/<8<bss 8q>s)ip' (9¢)

The inner product is defined as (f, g)ip = fab f(r)g(r)dr
with a and b as the lower and upper bounds of integral deter-
mined by the turbulence development region.

The same orthogonal decomposition can be performed to
ZFs in the standard nonlinear case ¢, to separate the ZFE
8P, from the ZFM 6P,

82 (r, 1) = ke (1) Qe (r) + kem ()5 P (r).  (10)

Note that §&,.(r) is derived from the modulation-off case.
The decomposition results of the DWs envelope and radial
structure of ZFs in early nonlinear saturation t4 = 40R/C;
are shown in Fig. 3(a). And the temporal evolution of differ-
ent components [k.(t), ks(t), k,.(t), and k,,(¢)] is shown in
Fig. 3(b).

We find that the radial structure of ZFs in Fig. 3(a) is
similar to that (i.e., d;E,) in Fig. 2(a). The reason is that the
n = 18 mode picked in the above single-n simulation is the
most unstable one in the full-n simulation; it is dominant in
the early nonlinear saturation in the full-n simulation. Note
that the scale of turbulence envelope of the n = 18 mode is
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usually taken as mesoscale. However, in realistic simulations,
as is shown in Fig 3(a), the scale of the turbulence envelope is
not well separated from the equilibrium scale. This explains
why the scale of ZFs shown in Figs. 2(a) and 3(a) is not well
separated from the equilibrium scale.

Growth rates of the eigencomponent of DW (y,), the ZFE
(¥z¢), the sidebands (y;), and the ZFM (y,,,) can be readily
found from Fig. 3(b). In the quasilinear stage, one finds the
following simple relations: y, = y;, &~ 0.218C; /Ry,

Ve = Ve+7e=2)/ev (11)
Vs = Vet Yee = 3Ve, (12)
Vamn = Ve + Vs = 4)/6- (13)

These simple relations reflect the usual nonlinear coupling
physics and can be easily understood by examining the non-
linearity in Egs. (5) and (6). If the eigenmode is taken as a
first-order perturbation, then it can be found that the ZFE is a
second-order nonlinear effect and the sidebands and the ZFM
can be further viewed as third- and fourth-order effects; this
explains the simple Ny, relations. These hierarchical wave-
wave interactions can also be “felt” in their progressively
finer radial structure, such as the number of peaks and valleys
shown in Fig. 3(a).

Equations (12) and (13) indicate that the growth rates of
the sidebands and ZFM are independent of the amplitude
of the eigenmode, which is different from the modulational
instability discussed in Ref. [29]; here the sidebands is excited
by the modulation of ZFE rather than ZFM itself [29]. Clearly,
the ZFM here is indeed driven by the envelope modulation, but
it is not driven by the modulational instability [29].

The above simple multiplicity relations is maintained until
t4 = 40R,/C;, i.e., the early nonlinear saturation. After that,
the simple relations that apply to quasilinear stage are bro-
ken. In the nonlinear saturation, such as ts ~ 45R,/C; from
Fig. 3(b), one can find that y, =~ 0, y,, &~ 0, thus, the ZFE
(black dotted line) is no longer growing. On the other hand,
Ye ~ 0leads to ys = Ve + Vom = Veom a0d Yo = Ve + Vs = Vs,
which can be clearly seen from the slope or growth rate of
sidebands and of ZFM after ¢+ > 42R,/Cs in Fig. 3(b); this
indicates that in the nonlinear saturation, the ZFM is driven by
the modulational instability [29,32] as the eigencomponent of
DWs stops growing, which is consistent with Ref. [29].

It should be emphasized that in Fig. 3(b), when
t < 40Ry/Cs, Yom = Ye + Vs > Vs, thus, the ZFM is not driven
by the modulational instability [29,32], which has been exten-
sively discussed above. However, when ¢ >42Ry/Cs, V.n=YVs,
the ZFM is indeed driven by the modulational instability
[29,32].

As can be seen in Fig. 3(b), the intensity of ZFE is clearly
much larger than that of ZFM from the quasilinear stage
to the early nonlinear saturation. This clearly demonstrated
that the ZFE, which is excited by the self-interaction of the
eigenmode, is dominant in the quasilinear stage. Although
the growth rate of ZFM is large, the envelope modulation
is not important in quasilinear stage. Therefore, the growth
behavior of ZFs in the quasilinear stage can be described by
the self-interaction of the eigenmode.
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FIG. 4. The test of Eq. (1) for the nonlinear single-n case at
(a) the quasilinear stage (t; = 35R/C;) and (b) the nonlinear satura-
tion [ts = 45R,/C, marked in Fig. 3(b)]. The zonal REF term (solid),
TEF term (dotted), and toroidal momentum flux term (dashed) are
normalized by kV/(Ry/Cs).

However, an important observation from Fig. 3(b) is that
the amplitudes of ZFE and ZFM are comparable to each
other in the nonlinear saturation, so neither can be neglected.
This result was obtained in our global simulations, which is
different from the local flux-tube simulations [33]. It should
be particularly noted that the self-interaction of the eigen-
mode discussed in this paper is the nonlinear self-interaction
of the global microinstability eigenmode rather than local.
This self-interaction treats n of the eigenmode as the unique
quantum number without distinguishing the specific m, and is,
therefore, not the same as the self-interaction in Ref. [33] that
needs to distinguish different harmonics.

It should be pointed out that the above discussion on the
relative importance of the ZFE and ZFM is based on single-n
simulations. Note that it is shown in Fig. 3(b) when the single-
n ITG mode is saturated (t > 42R,/C;), and the modulational
instability [29,32] is important. This observation is based on
Gram-Schmidt orthogonalization decomposition. It’s difficult
to extend this decomposition method to the steady-state turbu-
lence stage especially for the full-n case. We note that in the
steady-stage turbulence stage, the importance of modulational
instability has been clearly confirmed in Ref. [32].

Test of the TEF model for the single-n DW-ZFs system is
shown in Fig. 4, which indicates that the contribution of TEF
to ZFs is significant in both the quasilinear stage and the non-
linear saturation. This finding does not differ much from the
full-n condition. Therefore, the TEF model can well describe
the evolution of ZFs from the linear stage of turbulence to the
nonlinear saturation.

In conclusion, the nonlinear excitation of ZFs by the ITG
turbulence in a tokamak plasma is investigated by using the
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global gyrokinetic code NLT. We find that the ZFE, or the
self-interaction of the eigenmode, dominates in the quasilinear
stage; the ZFM, or modulational instability [29,32], becomes
important and eventually comparable to the ZFE in the non-
linear saturation stage. Furthermore, we point out that ZFs
both the ZFE and the ZFM, are well described by the TEF
model [28] in both the quasilinear stage and the steady-state
stage, which is consistent with recent experiments [22-24].

The debate on the driving of ZFs by poloidal Reynolds stress
in different experiments and simulations is subject to further
work.

This work was supported by the National Natural Science
Foundation of China (Grants Nos. 12075240 and 11875254),
and the National MCF Energy R&D Program of China (Grant
No. 2019YFE03060000).
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