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The superlubric-pinned transition in the depinning dynamics of a two-dimensional (2D) solid dusty plasma
modulated by 2D triangular periodic substrates is investigated using Langevin dynamical simulations. When
the lattice structure of the 2D solid dusty plasma perfectly matches the triangular substrate, two distinctive
pinned and moving ordered states are observed as the external uniform driving force gradually increases from
zero. When there is a mismatch between the lattice structure and the triangular substrate, however, on shallow
substrates, it is discovered that all of the particles can slide freely on the substrate even when the applied
driving force is tiny. This is a typical example of superlubricity, which is caused by the competition between
the substrate-particle and particle-particle interactions. If the substrate depth increases further, as the driving
force increases from zero, there are three dynamical states consisting of the pinned state, the disordered plastic
flow state, and the moving ordered state. In an underdense system, where there are fewer particles than potential
well minima, it is found that the occurrence of the three different dynamical states is controlled by the depth of
the substrate, which is quantitatively characterized using the average mobility.
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I. INTRODUCTION

Assemblies of collectively interacting particles modified
by substrates have been widely studied over the past decades
in various two-dimensional (2D) systems, including vor-
tices in type-II superconductors [1], colloidal monolayers [2],
pattern-forming systems [3,4], electron crystals on a liq-
uid helium surface [5], and dusty plasmas [6]. For these
physical systems modified by substrates, a variety of new
physical phenomena are discovered, such as directional lock-
ing [7], superlubricity or the Aubry transition [8], Shapiro
steps [9], anomalous transport [10], and pinning and depin-
ning dynamics [11]. In these studies, the external substrates
have various forms, including one-dimensional (1D) periodic
substrates [12], 2D periodic substrates [13], quasicrystalline
substrates [14], quasiperiodic substrates [15], and even ran-
dom substrates [16].

In the field of nanoscience, Aubry’s theoretical con-
cept [17] for achieving frictionless sliding is one of the most
challenging topics in nanotribology [18–20]. It is known that
the 1D Frenkel-Kontorova model [21] consisting of a chain of
interacting particles under a static sinusoidal potential exhibits
a remarkable dynamical phase transition, first described by
Aubry [17]. When the shallowness of the substrate is be-
low a critical value that depends on the precise parameters
and incommensurability [22], the 1D incommensurate chain-
substrate interface can no longer be pinned, indicating that
the static friction is zero. The absence of static friction is
termed superlubricity [23–26]. When the substrate depth is
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greater than the critical value, however, the static friction of
the studied system is no longer zero, leading to the appearance
of a superlubric-pinned transition [8], also called the Aubry
transition. Experimentally, the Aubry transition has been ob-
served in various 1D [27–29] and 2D [30–32] systems.

Dusty plasma [33–40], also called complex plasma, typ-
ically refers to a collection of highly charged micron-sized
particles of solid matter in a partially ionized gas. Under labo-
ratory conditions, these dust particles typically are charged to
a high negative charge of ≈ −10−4 e by absorbing free elec-
trons and ions in plasmas [41,42]. Their mutual interaction
can be described with the Yukawa repulsion [43], also called
the Debye-Hückel potential, where the shielding effect comes
from the free electrons and ions in plasmas. Due to their high
negative charges, these dust particles are confined by the elec-
tric field of the plasma sheath and can be self-organized into
a single layer [41,42], forming a so-called 2D dusty plasma.
In experiments, these negatively charged dust particles are
strongly coupled and exhibit typical solidlike [44,45] or liq-
uidlike [46,47] properties. As the dust particles move inside
the plasma gas environment, they always experience a weak
frictional gas damping force [48]. Individual particle tracking
capabilities have made it possible to study a variety of funda-
mental physics phenomena using dusty plasmas [49–54].

Recently, the collective behaviors of 2D dusty plasmas
modified by various periodic substrates have been studied
using Langevin dynamical simulations [6,55–60]. When the
interparticle interaction of these dust particles competes with a
1D periodic substrate, a variety of interesting new phenomena
are generated, such as splitting of the phonon spectra [6],
a structure transition [55], and oscillationlike diffusion [56].
If a gradually increasing external driving force is applied to
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these 1D substrate-modulated dust particles, three distinctive
dynamical states clearly appear [57], which are the pinned,
disordered plastic flow, and moving ordered states [58]. In
addition, for a 2D dusty plasma modulated by 2D periodic
substrates, various distinctive behaviors caused by the relative
motion of particles in each potential well [59] and a direction-
locking effect [60] are also studied.

A natural next question is whether the Aubry transition also
exists in dusty plasmas. The previous Aubry transitions were
mainly studied in overdamped colloidal systems [61–63];
however, for under underdamped conditions such as those
found in 2D dusty plasmas, it is still not clear whether the
properties of the Aubry transition or the superlubric-pinned
transition [8] might be modified. Without an investigation in
an underdamped system, the nature of the superlubric-pinned
transition cannot be fully understood. Thus, we study the
superlubric-pinned transition of a 2D dusty plasma under 2D
periodic triangular substrates using various structural and dy-
namical diagnostics.

In this paper, we report the superlubric-pinned transition
of a two-dimensional solid dusty plasma under a periodic
triangular substrate using Langevin simulations. In Sec. II, we
briefly introduce our Langevin simulation method. In Sec. III,
we present the obtained results of the superlubric-pinned
transition, mainly from various structural and dynamical di-
agnostics, including the collective drift velocity Vx, the 2D
distribution function g(x, y), the fraction of sixfold coordi-
nated particles P6, the averaged mobility μ, and the total
potential energy per particle Eparticle. Finally, we briefly give
our summary of findings in Sec. IV.

II. SIMULATION METHOD

Traditionally [33–40], 2D dusty plasmas can be character-
ized using two dimensionless parameters [64,65], which are
the coupling parameter � = Q2/(4πε0akBT ) and the screen-
ing parameter κ = a/λD. Here, T is the averaged kinetic
temperature for dust particles, Q is the charge of one single
particle, a = (πn)−1/2 is the Wigner-Seitz radius [66] with the
2D areal number n, and λD is the Debye screening length. To
normalize the length, we use either the Wigner-Seitz radius a
or the average distance between two nearest neighbors, called
the lattice constant b. For the 2D triangular lattice we study
here, b = 1.9046a.

Langevin dynamical simulations are performed to inves-
tigate the dynamics of a single-layer solid dusty plasma on
2D periodic triangular substrates. In our simulations, for each
particle i, the equation of motion [57] is

mr̈i = −∇�φi j − νmṙi + ξi(t ) + FS
i + Fd . (1)

Here, the particle-particle interaction −∇�φi j comes from
the binary Yukawa repulsion [48] with φi j = Q2 exp(−ri j/

λD)/4πε0ri j , where ri j is the distance between two dust
particles i and j. The terms −νmṙi and ξi(t ) represent the
frictional gas drag and the Langevin random kicks [67,68],
respectively. The latter two terms of FS

i and Fd come from
the substrate and the external driving, which are explained
in detail next. Note, we follow the traditional Langevin sim-
ulation method to choose the random kick term ξi(t ) from
the fluctuation-dissipation theorem [67,68] of 〈ξi(0)ξ (t )〉 =

2mνkBT δ(t ), where T is the simulated system temperature.
Here, the delta function δ(t ) indicates the random kick is local
in time. Clearly, this choice of the random kick ξi(t ) has a zero
mean and a Gaussian distribution with a width related to the
system temperature [67,68].

In our simulations, the substrate force FS
i is derived analyt-

ically from the expression of the substrate. Here, we assume
a periodic triangular substrate [62], which has the form
of W (x, y) = − 2

9U0[ 3
2 + 2 cos( 2πx

w
) cos( 2πy√

3w
) + cos( 4πy√

3w
)],

where U0 and w correspond to the depth and width of
the potential wells, in units of E0 = Q2/4πε0a and a,
respectively. As a result, the force from the periodic
triangular substrate is just Fs

i = − 8πU0
9w

sin( 2πx
w

) cos( 2πy√
3w

)x̂ −
8πU0

9
√

3w
[cos( 2πx

w
) sin( 2πy√

3w
) + sin( 4πy√

3w
)]ŷ, in units of F0 =

Q2/4πε0a2. The last term on the right-hand side of Eq. (1)
is just the external driving force Fd = Fd x̂, in units of F0.
Note that, to mimic the dynamics of a single layer solid dusty
plasma, in our simulations, all these forces, as well as the
particle motion, are completely constrained in a 2D plane.

Our simulation parameters are listed as follows. We specify
Np = 1024 particles constrained in a 61.1a × 52.9a rectangu-
lar box with the periodic boundary conditions. To reduce the
temperature effect on the depinning behavior, the conditions
of the 2D dusty plasma are fixed as � = 1000 and κ = 2, cor-
responding to a typical 2D Yukawa solid [69]. The frictional
drag coefficient is fixed to ν/ωpd = 0.027, close to the typical
experimental value [41], where ωpd = (Q2/2πε0ma3)1/2 is
the nominal dusty plasma frequency [66]. For each simulation
run, we integrate �107 steps with a time step of 0.005ω−1

pd to
obtain the positions and velocities of all particles.

To quantify the lattice mismatch between the particle num-
ber and the 2D substrate, we follow Ref. [22] and define
the mismatch ratio ρ = w/b. Due to the periodic boundary
conditions, the substrate width w is chosen so that there are
integer numbers of potential wells within the simulation box.
For comparison, we focus on three specified mismatch ratio
values [22], corresponding to the underdense regime with
ρ = 0.89, the ideally dense regime with ρ = 1.0, and the
overdense regime with ρ = 1.1. In these regimes, the particle
number Np is smaller than, exactly the same as, and larger than
the potential number Nw, respectively. For our simulations
with various values of the substrate depth U0 and the mismatch
ratio ρ, we gradually increase the external driving force Fd

along the x direction from zero. After the simulation system
reaches the steady state, we record the particle positions and
velocities to calculate various diagnostics of the 2D distribu-
tion function g(x, y), the collective drift velocity Vx, the frac-
tion of sixfold coordinated particles P6, the averaged mobility
μ, and the total potential energy per particle Eparticle. Note that,
in addition to the results of Np = 1024 reported here, we have
also performed a few test runs with Np = 4096 to confirm that
our reported results are system size independent.

III. RESULTS AND DISCUSSION

A. Superlubricity and Aubry transition

In Fig. 1, we calculate the collective drift velocity Vx for
all particles of our simulated 2D solid dusty plasma under
triangular substrates, for various values of the depth U0 and the
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FIG. 1. Variation of the collective drift velocity Vx for a 2D
Yukawa solid modulated by triangular substrates with various depths
U0 and mismatch ratios ρ, as the external driving force Fd increases
from zero. Here ρ is defined as ρ = w/b, the ratio of the distance
between the potential wells w to the lattice constant b. For ρ = 1 and
a small substrate depth of U0 = 0.001E0, the collective drift velocity
Vx is nearly zero at the small external driving force Fd , indicating
that all particles are pinned at the bottom of the potential well.
However, for the same depth U0 = 0.001E0, Vx increases linearly
with the increasing external driving force Fd when ρ = 0.89 and
1.1, suggesting that the particles slide freely due to the competition
between the substrate and the interaction between particles. As the
depth of the substrate increases to U0 = 0.01E0, Vx is nearly zero
when Fd is small, indicating that all particles are in the pinned
state. For comparison, the results of U0 = 0 indicate the response
for particles sliding freely without a substrate. Note, the conditions
of our simulated 2D Yukawa solid are always � = 1000 and κ = 2.

mismatch ratio ρ, while the driving force Fd increases mono-
tonically. Here, we calculate Vx using Vx = N−1

p 〈∑Np

i=1 vi · x̂〉
in units of aωpd, where vi is the velocity of the particle i.
Clearly, Vx is the drift velocity only along the direction of the
driving force Fd . Note that, for all of our reported results in
this paper, the conditions of the 2D Yukawa solid are always
unchanged with � = 1000 and κ = 2, while the conditions of
the substrate and the driving force vary.

For our obtained drift velocity Vx at a mismatch ratio of
ρ = 1 in Fig. 1, two distinctive states are observed, similar to
those found for the depinning of 2D dusty plasmas under 1D
periodic substrates [57,58]. At ρ = 1, the number of particles
is exactly the same as number of potential minima, indicating
perfect matching, as shown in Fig. 2(c) of Ref. [59]. As shown
in Fig. 1, for ρ = 1 at the small driving force Fd , the collective
drift velocity Vx is nearly zero, indicating that the system is
in the pinned state. As the driving force Fd increases further
to Fd = 0.0012F0, Vx suddenly jumps directly from 0 to a lin-
early increasing regime for a substrate depth of U0 = 0.001E0,
where 0.0012F0 is termed the depinning threshold [57]. The

linearly increasing regime of Vx completely overlaps with the
drift velocity for the 2D Yukawa solid with zero substrate
or U0 = 0, and the fixed slope of the linear increase is just
the frictional gas damping νm [57]. This clearly indicates
that all particles slide freely, independent of the 2D periodic
triangular substrate, agreeing well with the features of the
moving ordered state. We confirm that, when the substrate
depth increases for the perfect matching condition of ρ = 1,
these two states always exist, while the depinning threshold
increases monotonically.

Interestingly, in Fig. 1, we find that superlubricity oc-
curs [23–26] for mismatch ratios of ρ = 0.89 and 1.1 in
our simulated solid dusty plasma under a periodic triangular
substrate, where all particles slide freely under the substrate.
Clearly, when ρ = 0.89 or 1.1, the particle number is mis-
matched with the substrate structure. If the substrate depth is
small, such as U0 = 0.001E0, at mismatch ratios of ρ = 0.89
or 1.1 the drift velocity Vx always increases linearly with
the increasing external driving force Fd , suggesting that the
particles slide freely and that there is no depinning threshold.
In fact, this behavior of the drift velocity is almost identical
to the Vx curve for the zero substrate system U0 = 0 in Fig. 1.
The loss of the depinning threshold Fcrit for ρ = 0.89 and 1.1
at U0 = 0.001E0 reflects a typical property of superlubricity,
namely, the ability of the particles to slide under any finite
driving force Fd on a nonzero substrate due to the competition
between the substrate-particle and particle-particle interac-
tions.

If the substrate depth U0 increases further, as shown in
Fig. 1 for U0 = 0.01E0 at mismatch ratios of ρ = 0.89 and
1.1, the previously observed superlubricity disappears. Here,
when Fd is small, Vx is nearly zero, indicating that all par-
ticles are in the pinned state, as further confirmed by other
diagnostics later. As the driving force Fd increases, two differ-
ent dynamical states are observed, which are the disordered
plastic flow and the moving ordered states, similar to those in
Fig. 2 of Ref. [57].

In Fig. 1, for ρ = 0.89 or 1.1, when the substrate
depth increases from U0 = 0.001E0 to 0.01E0, we find a
superlubric-pinned transition, or the Aubry transition [17].
In fact, from the previous investigation in colloids [22] and
our results in Fig. 1, it is qualitatively expected that any
physical systems under 2D periodic triangular substrates with
either overdense (ρ > 1) or underdense (ρ < 1) conditions
undergo a similar superlubric-pinned transition as a function
of the increasing substrate depth U0. In the latter sections, we
mainly focus on the physics of the underdense condition of
our system.

B. Three dynamical states

To study the structure of our simulated dusty plasma solid
under 2D periodic triangular substrates in Fig. 1 for different
driving forces, we plot the particle arrangement using their
positions and then calculate the corresponding 2D distribution
function g(x, y) for our simulated 2D Yukawa solid with the
substrate conditions of U0 = 0.01E0 and ρ = 0.89, as shown
in Fig. 2. Here, the 2D distribution function [70] g(x, y) is
the static structural measure widely used for anisotropic sys-
tems such as the system studied here, and it provides the
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FIG. 2. Particle arrangement [panels (a), (c), and (e)] and the
corresponding 2D distribution functions g(x, y) [panels (b), (d), and
(f)] for our simulated 2D Yukawa solid under a triangular substrate
with U0 = 0.01E0 and ρ = 0.89 driven by different levels of the
external force Fd . When Fd = 0 in panels (a) and (b), the particles
form an ordered triangular lattice, agreeing well with the pinned
state. When Fd = 0.006F0 in panels (c) and (d), the particles form a
disordered structure, consistent with the disordered plastic flow state.
When Fd = 0.011F0 in panels (e) and (f), all particles are arranged in
a nearly perfect triangular lattice, independent of the locations of the
potential wells of the substrate, corresponding to the moving ordered
state.

probability density of finding a particle at a 2D position rel-
ative to a chosen central particle. Through comparison with
the drift velocity results in Fig. 1, there are clearly three
typical dynamical states consisting of the pinned state, the
disordered plastic flow state, and the moving ordered state
that appear during the depinning of a 2D solid dusty plasma
under a 2D periodic triangular substrate. Figure 2 confirms
these three states directly from the particle arrangements and
the corresponding 2D distribution function g(x, y).

When the external driving force Fd = 0, as in Figs. 2(a)
and 2(b), most of the particles have six nearest neighbors, with
only a few defects scattered randomly, and the corresponding
g(x, y) exhibits a highly ordered structure. These features
agree well with the properties of the pinned state. When

the driving force is larger, as at Fd = 0.006F0 in Figs. 2(c)
and 2(d), a large number of particles no longer have six neigh-
bors and the corresponding g(x, y) has disordered features,
suggesting that some particles escape from the cages formed
by their neighbors, leading to the disordered plastic flow state.
When the driving force is high enough to overcome the trian-
gular substrate, such as at Fd = 0.011F0 in Figs. 2(e) and 2(f),
almost all particles have six nearest neighbors and the cor-
responding g(x, y) exhibits a highly ordered structure again,
indicating that the system is in the moving ordered state, so
that all particles form a nearly perfect triangular lattice, inde-
pendent of the locations of the potential wells of the substrate.
Thus, the three different states inferred from Fig. 1 are further
confirmed by the structure measures in Fig. 2. Note, a similar
trio of typical dynamical states are also observed in a defective
flux-line lattice [71], skyrmions [72], superconducting vor-
tices [73], vortex lattices [74], and the depinning of 2D dusty
plasmas on 1D periodic substrates [57,58].

C. Superlubric-pinned transition

To focus on the dynamics of the underdense regime, we fix
the mismatch ratio to ρ = 0.89 and then calculate the collec-
tive drift velocity Vx and the corresponding fraction of sixfold
coordinated particles P6 as shown in Fig. 3 for our simulated
2D solid dusty plasma under triangular substrates with various
depths U0. Here, P6 [2] is defined as P6 = N−1

p 〈∑Np

i=1 δ(6 −
zi )〉, where zi is the coordination number of particle i obtained
from the Voronoi construction. For a perfect 2D triangular
lattice, P6 = 1, while the value of P6 is reduced for a more
disordered 2D system.

From our obtained drift velocity Vx and the corresponding
P6 at the mismatch ratio ρ = 0.89 in Fig. 3, we further confirm
the appearance of the three dynamical states described above.
For a shallow substrate depth of U0 = 0.001E0 in Fig. 3, the
collective drift velocity Vx always increases linearly with the
driving force Fd and the corresponding P6 is always P6 ≈ 1,
indicating that all of the particles slide freely and the lattice is
highly ordered. In fact, the results of Vx and P6 for ρ = 0.89
and U0 = 0.001E0 almost exactly match those found for U0 =
0, further suggesting that the system is in the moving ordered
state. For a deeper substrate of U0 = 0.004E0, the decay of P6

to a reduced value and the relatively steep increase of Vx over
the range Fd < 0.005F0 in Fig. 3 suggest that some particles
overcome the constraint of the substrate and the cages formed
by their neighboring particles, so that disordered plastic flow
occurs. However, for large driving forces Fd > 0.006F0, Vx

increases linearly with Fd and the corresponding P6 goes back
to 1 again, clearly indicating that the system reaches the mov-
ing ordered state. If the substrate depth increases further to
U0 = 0.0075E0 or even to U0 = 0.01E0, the Vx and P6 curves
in Fig. 3 indicate that all three of the distinctive dynamical
states occur. When Fd is small, Vx is nearly zero and P6 is
relatively high with P6 > 0.8, so that the system is in the
typical pinned state. When Fd increases to an intermediate
level of Fd < 0.009F0, we clearly observe that Vx increases
more steeply and the value of P6 decreases substantially,
corresponding to the disordered plastic flow state. As the
driving force increases further to Fd > 0.01F0, Vx increases
linearly with Fd and the corresponding P6 goes back to high
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FIG. 3. Variation of the collective drift velocity Vx (a) and the
corresponding fraction of sixfold coordinated particles P6 (b) for the
2D Yukawa solid modulated by triangular substrates with various
depths U0 as the external driving force Fd increases for a fixed
mismatch ratio ρ = 0.89. For small substrate depths of U0 = 0 and
U0 = 0.001E0, the linear increase of Vx with Fd and the unchanging
value of P6 = 1.0 both indicate that the system is always in the mov-
ing ordered state. When the substrate depth increases to a larger value
of U0 = 0.004E0, at lower driving forces Fd < 0.005F0 the values of
Vx and P6 are depressed below the values found at U0 = 0.001E0,
clearly indicating that disordered plastic flow occurs. However, at
higher driving forces Fd > 0.005F0, Vx and P6 rise to match the values
found at U0 = 0.001E0, clearly indicating that the moving ordered
state forms. As the depth of the substrate increases to U0 = 0.0075E0

or further to U0 = 0.01E0, the variations of Vx and P6 with Fd clearly
indicate that the three states of pinned, disordered plastic flow, and
moving ordered lattice all appear.

values close to 1, in good agreement with the moving ordered
state.

Based on the results in Fig. 3, we find that the occurrence
of three dynamical states depends not only on the value of
the driving force Fd but also on the depth of the substrate U0,
as shown in Fig. 3. If the substrate depth is shallow, such as

U0 = 0.001E0, the pinned state disappears completely, reflect-
ing the typical property of superlubricity, and the moving
ordered state always occurs even for the lowest driving force
Fd . From our interpretation, this superlubricity for the mis-
match ratio of ρ �= 1 is attributed to the increased repulsive
interaction between particles, which is able to overcome the
forces from the substrate on the particles. If the substrate
depth increases further to U0 = 0.004E0, the constraint from
the substrate is enhanced and the particle arrangement is mod-
ified to a more disordered structure, resulting in the observed
disordered plastic flow state. When the driving force Fd is
large enough to completely overcome the constraint from the
substrate, the moving ordered state emerges. If the substrate
depth increases further to U0 = 0.0075E0 or even to U0 =
0.01E0, the constraint from the substrate is large enough to
strongly confine all particles, leading to the pinned state. As
the driving force Fd gradually increases from zero to higher
values beyond the depinning threshold, the plastic flow state
occurs first, and then the moving ordered state occurs. Note,
we also calculate the kinetic temperatures of kBTx and kBTy in
our simulated 2D Yukawa system during the depinning proce-
dure, which exhibit significant synchronized peaks associated
with the disordered plastic flow state, very similar to those
found for the depinning of 2D Yukawa systems modulated by
1D substrates, such as in Fig. 5(a) of Ref. [58] and Fig. 6 of
Ref. [57].

As presented in Fig. 4, to better define the pinned state of
our simulated system, we calculate the averaged mobility μ of
our simulated system for the fixed mismatch ratio ρ = 0.89 at
various substrate depths U0, as the external force Fd increases
gradually. Here, μ [22] is defined as the ratio of the collective
drift velocity Vx to the driving force Fd ,

μ = νmVx

Fd
, (2)

where ν is the frictional drag coefficient. In the absence of
a substrate, the averaged mobility μ of our simulated system
should always be around unity, since the driving force Fd is
completely balanced by the frictional gas damping νmVx.

The averaged mobility μ at ρ = 0.89 in Fig. 4 indicates
that three distinctive states clearly appear. For a shallow
substrate depth of U0 = 0.001E0 in Fig. 4, we find that the
averaged mobility μ ≈ 1, indicating that the driving force Fd

equals the frictional gas damping νmVx. This suggests that all
particles slide freely under the confinement of the triangular
substrate, corresponding to the moving ordered state. If the
substrate depth U0 increases further to U0 = 0.005E0, μ de-
creases substantially when the driving force Fd is small due
to the enhancement of the confinement from the substrate.
However, when the driving force increases to Fd > 0.006F0,
μ goes back to μ ≈ 1, indicating that the system reaches
the moving ordered state. If the substrate depth U0 further
increases to U0 = 0.01E0, at small Fd there is a substantial
decrease in μ to much lower values very close to 0. Here
the value of Vx is nearly zero, corresponding to the pinned
state. As Fd increases to Fd ≈ 0.0009F0, the value of μ in-
creases sharply to a value μ ≈ 0.3 and remains in this range
even when the driving force increases to Fd = 0.006F0. The
nonzero value of μ that is substantially smaller than unity
indicates that the driving force Fd is higher than the frictional
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FIG. 4. Obtained averaged mobility μ of our simulated 2D
Yukawa solid under triangular substrates with varying substrate
depth U0 and fixed mismatch ratio ρ = 0.89 for increasing exter-
nal driving force Fd . Clearly, for the typical shallow substrate with
U0 = 0.001E0, when Fd gradually increases from zero, the averaged
mobility μ ≈ 1, suggesting that the system is always in the mov-
ing ordered state. As the substrate depth U0 increases, μ decreases
substantially, and a disordered plastic flow occurs. As the substrate
depth U0 further increases beyond the critical Aubry depth of Uc =
0.007E0, the particles are strongly pinned to the substrate while Fd is
small, clearly indicating the formation of a pinned state. Due to the
random motion of the particles, we follow Ref. [63] and define the
particles to be sliding freely until μ drops below 10% of the μ = 1
free sliding limit. The dashed line indicates the value of μ, below
which the system is defined to be pinned. The inset in the lower right
corner shows the depinning threshold Fcrit as the substrate depth U0

increases from zero.

gas damping νmVx, so that only a portion of particles are
able to move in response to the driving force, corresponding
to the plastic flow state. When Fd further increases beyond
this intermediate range, the value of μ increases abruptly to a
value close to unity, indicating that the system has entered the
moving ordered state. Note that, in comparison with the mo-
bility for overdamped colloidal systems, such as in Ref. [22],
although the general trend of the variations in mobility we
observe is almost the same, our mobility results for dusty
plasmas seem to be much more noisy. We attribute this noisy
feature of the mobility to the underdamping of the particle
motion, since the fluctuations of the particle velocity are much
more substantial than what is found for the overdamped col-
loids in Ref. [22].

Here we follow the criterion suggested in Ref. [63] to
distinguish the plastic flow state from the pinned state using
the obtained mobility results in Fig. 4. In Ref. [63], it is
suggested that a mobility of μ < 10% means that the particles
are pinned. As a result, a criterion of μ = 10% can be used to
divide the pinned and the disordered plastic flow states, as in-
dicated by the dashed line in Fig. 4. The intersection between

FIG. 5. Obtained total potential energy Eparticle per particle of our
simulated 2D Yukawa solid under triangular substrates with varying
substrate depth U0 and increasing mismatch ratio ρ. Here, Eparticle is
defined to be the sum of the averaged particle-particle repulsion Upp

and the averaged particle-substrate interaction energy Wsp. Clearly,
for each depth U0, when ρ is close to 1, Eparticle decreases sharply,
suggesting that all particles are strongly pinned at the bottom of the
substrate because the arrangement of particles is perfectly matched
with the substrate configuration. When the substrate depth U0 is
small, such as U0 = 0.001E0, the variation of Eparticle indicates that
the system undergoes a superlubric-pinned-superlubric transition
while ρ increases due to the competition between the substrate-
particle and particle-particle interactions. As the substrate depth U0

increases gradually, Eparticle decreases substantially, indicating that
the constraint of the substrate on the particles is enhanced, and the
pinned state occurs when ρ �= 1. Based on the criterion of the mo-
bility μ, as in Fig. 4, we draw a dashed line to indicate the boundary
between the pinned and unpinned states.

the obtained mobility results and μ = 10% corresponds to the
critical driving force Fcrit where the pinned and the disordered
plastic flow states both occur. The inset of Fig. 4 presents
our obtained Fcrit results for the varying substrate depth U0

when ρ = 0.89. Clearly, as the substrate depth increases, our
obtained Fcrit values increase from 0 to higher values. Here,
Uc is the critical substrate depth value, often called the critical
Aubry depth Uc [22,63], beyond which the corresponding Fcrit

is higher than 0; i.e., the pinned state starts to occur when the
substrate depth U0 > Uc. However, if U0 < Uc, then Fcrit is
always zero, indicating that the pinned state no longer occurs.
That is, the substrate is not able to confine particles even under
a very tiny driving force, and superlubricity occurs.

To study the transition of the static structure for our sim-
ulated 2D solid dusty plasma under a triangular substrate,
we calculate the potential energy per particle Eparticle in
Fig. 5 while the mismatch ratio ρ and the substrate depth
U0 both vary. Here, Eparticle is the summation of both the
averaged particle-particle repulsive potential Upp and the av-
eraged particle-substrate potential Wsp, both calculated from
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the obtained particle positions in simulations. In Fig. 5, to
distinguish between the pinned and unpinned states, we draw
a dashed line based on the criterion of the obtained mobility
of μ = 0.1, as described above. For all parameters above this
dashed line, the pinned state never occurs, so that superlubric-
ity always happens. However, as the depth of the substrate
increases to U0 = 0.0075E0 or further to U0 = 0.01E0, a
pinned state appears below this dashed line, leading to the
appearance of the plastic flow and the moving ordered states
as the driving force increases from zero.

The transition between the pinned state and the unpinned,
or superlubric, state for different conditions can be clearly
identified from Fig. 5. Regardless of the value of the sub-
strate depth U0, when the mismatch ratio ρ is close to unity,
Eparticle decreases sharply, suggesting that the particles are
strongly pinned at the bottom of the potential well. If the
substrate is shallow, such as for U0 = 0.001E0, the variation
of Eparticle indicates that, as the mismatch ratio ρ gradually
increases, the system undergoes a transition from the superlu-
bric to the pinned state and then to the superlubric state again.
We attribute this superlubric-pinned-superlubric transition to
the competition between the substrate-particle and particle-
particle interactions. If the substrate depth U0 increases further
to U0 = 0.01E0, Eparticle exhibits a much more pronounced
downward trend, suggesting that the confinement from the
substrate is greatly enhanced, even when ρ �= 1. In addition,
we also find that for a given substrate depth U0 it is more
difficult to achieve the pinned state when ρ � 1 or ρ � 1,
probably due to the extreme mismatch between the lattice
structure and the substrate.

IV. SUMMARY

In summary, using Langevin dynamical simulations, we
find a superlubric-pinned transition in the depinning dynam-
ics of a 2D solid dusty plasma modulated by 2D triangular
periodic substrates while the mismatch ratio varies. For a mis-
match ratio of unity, from the calculated overall drift velocity
we observe two distinctive states: the pinned state and the dis-
ordered plastic flow state. If the substrate is shallow, however,
then for mismatch ratios of ρ = 0.89 or ρ = 1.1, the pinned

state completely disappears and all particles are able to slide
freely on the substrate even when the applied driving force is
tiny, consistent with superlubricity. We attribute this superlu-
bricity to the competition between the substrate-particle and
particle-particle interactions. If the substrate depth increases
further, a gradual increase of the driving force from zero
produces three dynamical states: the pinned, the disordered
plastic flow, and the moving ordered states.

In the analysis of the dynamics in the underdense regime
with a mismatch ratio of ρ = 0.89, we find that the occur-
rence of three dynamical states is strongly controlled by the
substrate depth. The finding is obtained from various diag-
nostics, including the 2D distribution function, the collective
drift velocity, the fraction of sixfold coordinated particles, the
averaged mobility, and the total potential energy per particle.
If the substrate depth is shallow, the system is always in the
moving ordered state, leading to our observed superlubricity.
If the substrate depth increases further, the disordered plastic
flow state begins to appear at small driving forces and there
is a transition to a moving ordered state at larger driving
forces. If the substrate depth increases further, as the driving
force increases from zero, three dynamical states are clearly
observed. Previous studies of superlubric-pinned transitions
have focused on overdamped systems; however, our current
simulations clearly show that this transition also occurs in
underdamped systems. Our simulation results suggest that the
superlubric-pinned transition may be realized in future dusty
plasma experiments.
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