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We derive the coarse-graining (CG) equations of incompressible Hall magnetohydrodynamic (HMHD) tur-
bulence to investigate the local (in space) energy transfer rate as a function of the filtering scale €. First, the
CG equations are space averaged to obtain the analytical expression of the mean cascade rate. Its application to
three-dimensional simulations of (weakly compressible) HMHD shows a cascade rate consistent with the value
of the mean dissipation rate in the simulations and with the classical estimates based on the “third-order” law.
Furthermore, we developed an anisotropic version of CG that allows us to study the magnitude of the cascade
rate along different directions with respect to the mean magnetic field. Its implementation on the numerical
data with moderate background magnetic field shows a weaker cascade along the magnetic field than in the
perpendicular plane, while an isotropic cascade is recovered in the absence of a background field. The strength
of the CG approach is further revealed when considering the local-in-space energy transfer, which is shown
theoretically and numerically to match at a given position x, when locally averaged over a neighboring region,
the (quasi-)local dissipation. Prospects of exploiting this model to investigate local dissipation in spacecraft data

are discussed.
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I. INTRODUCTION

Turbulence plays a key role in space and astrophysical
plasmas; for instance, it mediates energy conversion stored on
large-scale fields into particle heating and/or acceleration at
smaller scales. The standard theory of turbulence for hydro-
dynamics predicts an energy cascade from large scales, where
it is injected, to the small scales where it is dissipated by
viscosity stemming from particle collisions at the microscopic
level [1-3]. On the other hand, the low-density and high-
temperature conditions of most heliospheric plasmas make
them nearly collisionless. In those plasmas a turbulent cas-
cade and particle heating are frequently observed; however,
the precise mechanisms by which the turbulent fluctuations of
the electromagnetic fields and plasma flow are damped still
elude our full understanding [4-7].

A key step in answering these fundamental questions is
to identify and characterize the regions of plasma involved
in intense cross-scale energy transfers. A popular tool that
has been widely used in turbulence studies, in particular
those based on spacecraft observations, is the so-called “third-
order” law: a statistical relation that links the mean energy
cascade rate (equal in the formalism to the rate of energy in-
jection and dissipation) to the turbulent fluctuations at a given
scale. The theoretical models used range from incompressible
magnetohydrodynamics (MHD) [8] to more complex systems
that involve density fluctuations and/or small (subion) scale
effects [9-14]. All these studies have greatly helped to gain
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deeper insight into the turbulence dynamics in a variety of
heliospheric plasmas, including the solar wind [15-23] and
planetary magnetospheres [24—26]. The third-order law, albeit
rigorous and derived under fairly nonrestrictive hypotheses,
does however require ensemble averages computed as time
and/or space average when applied to simulations or space-
craft data under the assumption of ergodicity [2]. As such,
those laws fail to describe cross-scale energy transfer in lo-
calized regions of space. To overcome this shortcoming some
heuristic tools have been proposed such as the local energy
transfer [26-28], which relaxes the statistical average used in
the third-order law, or the partial variance index [29,30] used
to localize regions of space with large magnetic shear, a proxy
to identify regions of strong electric current. However, those
tools lack a solid theoretical foundation, which is mandatory
to justify their use as a means to measure energy rates. The
present work fills this gap by providing a robust theoretical
model based on filtering (or coarse-graining) the Hall MHD
(HMHD) equations that retains spatial locality while allowing
one to recover results consistent with the third-order law once
spatially averaged. We furthermore show analytically and nu-
merically that the local (in space) energy transfer rate across
a scale £ is a good proxy to measure local dissipation within
limited regions of space.

Note that other local theories of turbulence based on the
concept of inertial dissipation have been proposed in recent
years to include the role of discontinuities in dissipating en-
ergy, which are not rigorously accounted for in the third-order
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law formalism [31,32]. Those models have been recently
used to compute dissipation within discontinuities observed
in spacecraft data [33,34]

II. COARSE-GRAINED INCOMPRESSIBLE HMHD
EQUATIONS

The spatial coarse-graining (CG) model that we build upon
in this work is inspired by the large eddy simulation approach
of hydrodynamics [35,36]. CG was first developed by Eyink
for hydrodynamic flows [37] and further refined and applied
in many works, in particular to address the scale locality
problem in turbulent flows [38,39]. In recent years this method
has been extended to compressible hydrodynamics turbulence
[40,41] and to incompressible MHD turbulence [42—44]. Here
we extend the CG method to incompressible HMHD to ad-
dress local transfer and dissipation at MHD and subion (Hall)
scales in direct numerical simulations (DNS). Before that we
briefly review the key concepts of spatial CG.

We introduce the notion of a CG measurement of a
field f with a scale resolution £. We choose a dimension-
less kernel function G normalized to one [d&G(§) =1,
centered [ d€EG(§) =0 and with variance of order unity
fd§|E|2G(§) =~ 1. For any given scale £ we define G,(x) =
£73G(x /L), a change of variables & = x/£ shows trivially how
the properties of G reflect on those of Gy, in particular nor-
malization is preserved while variance is now of order £2. The
CG operation is defined as

fe(x)=/ere(r)f(x + ). (D

It represents a local average of f on a spatial region of radius
~{ centered around the point x. This convolution smooths
out the fluctuations with scale smaller than ¢ and gives a
coarser representation of the field, hence the name. Coarse
graining a field f at a given scale ¢ individuates two dif-
ferent quantities: the large-scale field f;, which in virtue
of the smoothing operation retains only the scales > £ (in
k-space the wave vectors |k| < 1/¢) and the unresolved or
subscale field f' = f — f; which accounts for scales < £
(wave vectors |k| 2 1/£). The term “unresolved” comes from
the fact that when coarse graining the fields we choose to
resolve fluctuations down to the scale ¢ only. To keep the
notation simple we will omit the subscript (filtering scale) £
when not strictly necessary and denote f; simply as f. The
quality of the filtering in k space depends on the choice of
the filtering function G,. For instance, a sharp spectral filter
such as G/ = IT3_; sin(rx;/€)/(wx;) allows one to clearly
separate between scales but it looses the spatial locality,
while a box filter G0 = €73, |x;| < £/2, G =0, |x;| >
£/2 is local in space, but does not allow for unambiguous
separation between scales. Other filters with intermediate
properties can be defined such as the Gaussian filter G&* =
(2/m %)% exp(=2|x|?/£?) used in this work [36,38].

Note that the precise relation between the filtering scale ¢
and the cutoff wave vector in Fourier space is not determined
a priori but depends on the precise shape of G. This is the
reason why we do not impose the variance of G to be strictly
one but only of order unity: in particular, we empirically

fine-tune the variance of G (1/4 in this work) so that in the
power spectral density of f, given by |f|2|G¢|?, (X denotes
the Fourier transform of X) we resolve all the contributions
from wave vectors up to k = 1/¢.

We start from the incompressible Hall MHD (IHMHD)
equations normalized to Alfvén units:

ou=—w-Vu+®»-V)Yb—-VP+d,+ f,
b=V x(uxb)—dV x(jxb)+d,,
V-u=0, (2)
where b = B/ /[topo is the (scale-dependent) Alfvén speed,
po the mean plasma density, j = V X b, d; is the ion inertial
length, P = p/po + |b|?/2 is the total pressure, d.,, d, are the
velocity and magnetic field dissipation terms, respectively,
and f is an external force injecting energy at large scales. The
CG operation is a convolution and therefore commutes with
space and time derivatives. The equations filtered at scale £ are
readily obtained by convolving equations (2) with the filtering
kernel Gy:
dia=—@-Va+®-Vb—VP+d,—V -1+ f, (3a)
b=V x[@—dj)xb]+d,+V x (Exmp + diExan),
(3b)

where we introduced the notations 7(f, g) = fg — fg and, for
the sake of readability, we define the second order tensor 7;; =
‘L’(M,', Mj) — ‘L'(b,‘, b/) = Tu] — ﬁ,‘ﬁj — (Tbl — B,l_)j)

These equations describe the dynamics of the CG (large-
scale) fields and closely resemble the HMHD equations (2).
The difference lies in the presence of additional contributions
stemming from the filtering of the nonlinear terms. These
quantities represent the action of the “unresolved” scales
(<€) on the filtered fields. In particular, in Eq. (3a) we
find the divergence of the subscale Reynolds and Maxwell
stress tensors 7;; = t(u;, u;) — t(b;, b;), while in Eq. (3b) we
find the curl of the subscale electric field in the MHD limit
Eviup = u x b — @ x b and the correction due to the Hall
term Epan = —(j X b — J x b).

Multiplying Eq. (3a) by & and Eq. (3b) by b we obtain the
time evolution of the large-scale kinetic and magnetic energy
densities:

—12 —12
3,'"' :—V-[%'+Pﬁ—(ﬂ~l_))5+t~ﬁ}

2
~b-b-Vya+a-d,—n"+a-f, (42)
b2 b? .- _
0 = | ra i<y <

— (Emup + di€uan) X E]

+b-b-VYa+b- d‘}7 _ gbMHD _ g o b Hall

(4b)
where we introduced the quantities
m = =0Ty, wMP = —f - Emmp,
ph Al = —J - Enan- (%)
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These terms, the study of which is the main focus of this work,
are the local (in space) energy transfers across the scale £.
They appear as a sink in the large-scale energy equations (4)
and a source in the small scales ones (see Appendix B).
While these equations allow us to analyze separately the
magnetic and kinetic energy cascades, here we rather focus
on the study of the cascade of the total energy (note that in the
energy balance equation the internal energy is not included as
it is a conserved quantity in incompressible pressure-isotropic
flows [45]). Summing Eqgs. (4a) and (4b) and separating the
energy transfer rate into its MHD component, 7MHP = 7 +

7>MHD “and Hall component r>Hall hereafter denoted simply
as 7Hl we find
a2 4 1BI2
5, ( |i]” + |b] )
2
ERI A o .
+V.[M,-,+P,-,_(,-,.,,),,+di(,-xb>xb]

-I-V'[T'l_l—(g[—i-digH)XB]
—ddy—b-dy—a-f
— —T[MHD _d'T[Hall. (6)

This equation is the starting point of our study and the first
rigorous result of this paper, which extends previous results
[42] to IHMHD. Equation (6) shows that, at a given position x,
the time variation of the large-scale energy density is a balance
between the spatial advection due to large- and small-scale
fields (the second and third lines, respectively), the effects
of dissipation and forcing at large scales (fourth line) and,
last, the energy transfer across the scale £, namely, 7MHP and
d;rH¥ We recall that in Eq. (6) the filtering scale £ can be
varied to gauge the magnitude of each term as a function of
scale and its choice individuates two separate range of the
spectrum: the resolved large scales (corresponding to wave
vectors |k| < 1/£) and the “unresolved” small scales (|k| >

1/0).

II1. SPACE INTEGRATION AND THE CASCADE RATE

Equation (6) describes the temporal evolution of the large-
scale energy density. By performing a spatial average over
the whole domain, denoted (-), and assuming no net flux
at the boundaries, we recover the following expression for
the temporal evolution of the mean large-scale energy E =
(la|* + 161%)/2:

WE=-T+(@-d,+b-d,)+(@-f), @)

where we introduced IT = IT™HD L g ppHall — (7 IMHDy
di (nHall)'

All the quantities involved in Eq. (7) are functions of the
filtering scale ¢ only, as the spatial dependence is lost when
averaging over the spatial domain. We see that the large-scale
energy is affected by three processes: the forcing mechanism
that injects energy via the term (i - f), the effect of dissipation
at scales larger than the filtering scale £ given by the term
(@-d,+b-d,) and, last, the large-scale energy transfer due
to nonlinearities given by I1(£) = —,E|n., where we denote
with 0;(-)|nr the rate of change due to nonlinear processes.

[1(£) stands for the cross-scale energy transfer rate, that is,
the amount of energy flowing from the large-scale, resolved
quantities(> £) to the small-scale “unresolved” ones (< £). In
Fourier space it writes

9 a(k)> + b))\ -
M) = —ﬂ(znffdk(w)m(knz] ,
NL

®)

where the squared modulus of the filtering function |G, (k)|?
plays the role of a low-pass filter. Equation (8) shows that
IT closely resembles the formal definition of the cascade rate
across the wave vector K = 1/¢ [2],

9 [(27,)3 / dk('ﬁ(k)|2+|l;(k)|2>:| ©
ot k<K 2 NL

if one replaces the sharp cutoff in k space with a gentler slope
given by the shape of |Gy (k)|>. In line with this view, for
a given (short) interval Ar, the variation of the large-scale
energy due to nonlinear processes is —IT(£)Az. This energy
is directly transferred to small scales < £ so that a positive
I1(€) is the signature of a direct cascade with energy flowing
from large to small scales, while a negative value yields an
inverse cascade (i.e., from small to large scales).

It is our understanding that the CG quantity IT represents
an extension over the current state-of-the-art third-order laws
that, under a set of assumptions, provide an estimate of the
cascade rate, often denoted &. Indeed, third-order laws rely
heavily on the assumption of the existence of an inertial
range and on the ergodicity hypothesis to compute ensemble
averages as time and/or space averages, while Eq. (6) holds
without the need of those assumptions. Thus, it allows us to
estimate the transfer rate at any scale, i.e., not necessarily in
the inertial range, and regardless of how important is dissipa-
tion [46]. This remark might prove to be useful in particular
in collisionless plasmas where dissipation (via, e.g., Landau
damping) may occur at all scales, which would question the
very existence of the inertial range [47].

Nevertheless, if Kolmogorov hypotheses are satisfied we
expect the two quantities IT and € to converge to the same
value. This can be readily explained by recalling the formal
definition of ¢ as the time evolution of the autocorrelation
function due to nonlinear terms [2]:

e)=—30, (@) uCx+1)+bx) -bx+D)x, (10)

where (-) denotes an ensemble average, which is computed as
a space average under the assumption of ergodicity. Using the
Parseval theorem we can recover from the definition of ¢, the
expression

A )| + b\ s
s(l)——a[(ZN)/dq< - )e LL’
(1n

and performing a Fourier transform we obtain

lit(k)?| + |b(k)?|

, )
dke()e* = —(2 )3—[ ] . (12
/ e(l)e 4 ” > “
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Last, substitution of relation (12) in the definition of IT given
by Eq. (8) yields

) = / dAls )0, (13)

where the function ¢,(I') = (2n)’3fdk|Gg(k)|ze”‘"/ is di-
rectly related to the shape of the filtering function G,. For
the Gaussian filter used in this work, we have ¢,(I') =
(r?)=3/2 exp(—|I'|?>/£?) so that the two quantities IT and &
differ by a Gaussian smoothing operation. It appears therefore
that when Kolmogorov hypotheses are verified (and as such
¢ is constant in the inertial range) the two quantities have the
same value and ¢ is a good estimate of the cascade rate IT.

A. Numerical validation

In this section we will apply the theoretical results obtained
above to simulation data that feature 3D freely decaying
weakly compressible HMHD turbulence (see [48]). The two
simulations were performed using the Fourier pseudospectral
code GHOST [49,50] on a N = 1024% grid, spanning a real
space cubic domain of side Ly = 50 x 2nd; and a grid spacing
of A ~0.05 x 2rd;. The two simulations were performed
with two different values of the background field, By = 0
(hereafter run I) and By = 2 (run II), which is very convenient
to test the anisotropic CG approach that we introduce further
below. In both runs dissipation is implemented via viscous and
resistive terms (d, = vV?u,d » = nJj), and the dimensionless
viscosity and magnetic diffusivity are taken to be equal, v =
n =3 x 107*. The data cubes were taken when turbulence
was deemed to have reached a fully developed state.

First, we estimate all terms of Eq. (7) using the simulation
data of run I (By = 0). To improve the graphical representation
we add and subtract to the left side of Eq. (7) —d,E, which
by definition in freely decaying turbulence is 3, F = —&giss, SO
that we can write

etiss = —(E —E)+ T —(i-d, +b-d;), (14)

where we did not include the term (& - f) as there is no forcing
in our simulations. Note that the quantity E — E introduced
here is simply the energy contained at scales smaller than
¢ and as such, at large scales, —9,(E — E) coincides with
the total dissipation rate. The different terms of Eq. (14) are
shown in Fig. 1. We observe that the cascade rate (blue
curve) in the central region (0.3 < ¢ < 3) is representative
of the dissipation rate. As £ tends to zero the effects of dis-
sipation (red curve) on the large scales, i.e., larger than the
filtering scale ¢, become comparable to the total dissipation
rate. Furthermore, the contribution of the Hall term to the
energy cascade starts to increase around ¢ ~ d; however, it
remains negligible compared to the ideal MHD contribution.
This could be due to the small-scale separation between the
dissipative scales and d; [48]. The black line, which is the sum
of the four terms displayed, remains constant within 10% of
the total dissipation rate for all values of £.

B. Link with the third-order law of IHMHD

We now turn to the assertion that IT matches the classi-
cal third-order law theory of ¢ when the latter is applicable.

100 J——
0
3
g ><_\
= 10—1 4
I = h
g 10—2 ]
S i
=2 _HUMHD _*<171'd1,+

103 { ——¢,I1Hal —0,(FE —

0.2 06 1 3 10
t/d;

FIG. 1. Evaluation of the terms in Eq. (14) for run I (B = 0) nor-
malized to the mean dissipation rate. Dashed lines indicate negative
values, while the dotted horizontal line shows the reference value
&/e4iss = 1. The black line represents the sum of all the terms.

The standard approach to obtain an expression for & is
to derive a generalized von Karmédn-Howarth (vKH) equa-
tion for IHMHD turbulence [12,13,22], which describes the
time evolution of the spatial autocorrelation function Ry =
(u(x) -u(x+1)+b(x)-b(x +1))/2 where now the brackets
(-) denote formally an ensemble average. This dynamical
equation has contribution from both linear processes, such
as the forcing or dissipation mechanisms and nonlinear ones.
The latter are of particular interest as they provide the cross-
scale interactions needed to sustain the energy cascade. The
key quantity under study is the contribution to the rate of
change d;,Rg stemming from nonlinear processes. This quan-
tity is denoted as e(I) = —0;Rg (I)|nL. In the present work we
use the vKH equation of IHMHD turbulence derived in [22]
(hereafter BG17). Denoting quantities evaluated at x + [ with
aprime [e.g., u(x + 1) = u'] and defining the field increments
asdu =u(x +1) —u(x) = u — u, the BG17 law reads

WRe(l) = —1(8[u x w + j x b] - u)

3 (8l — dij) x b] - 5j)

+3(@ - dytu-d)+ @ -dy+u-d))

+ 3w f +u - f), (15)

where we can identify the effects of nonlinearities (second
line) which can be split into the MHD component from the
Hall one (proportional to d;), 9;Rg|nz = —[€mup + di€Hanl,
in addition to the dissipation and forcing terms (third and
fourth lines, respectively), which are simply denoted D, F in
the following.

We evaluated all the terms in Eq. (15) using the data from
run I, but the term F that does not apply here because of the
free-decay nature of our simulations. Furthermore to improve
the graphical representation we add and subtract to the left
side of (15) —d,E, which by definition, in freely decaying
turbulence simulations, corresponds to the total dissipation
rate ,E = —egiss. We can rewrite Eq. (15) in a more compact
form:

&diss = 0r(Rg — E) 4 emmup + dienan — D. (16)
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¢/d;

FIG. 2. Numerical verification of the BG17 law, the energy rates
normalized to the mean dissipation rate. Negative values are rep-
resented with dashed lines, while the dotted horizontal line signals
&/g4iss = 1. The black line represents the sum of all the terms.

The right-hand-side terms of this equation are plotted in
Fig. 2, where the spatial lag [ is directly related to the scale
£=1/2mn).

The results in Fig. 2 show that the sum of the different
terms remains constant at all scales. We observe a good re-
semblance between the cascade rates given by our CG model
(see Fig. 1) and those given by the third-order law of IHMHD
(Fig. 2). This is better emphasized when looking at Fig. 3,
where the various quantities are compared.

IV. ANISOTROPIC CASCADE RATE

In the presence of a background magnetic field By # 0
plasma turbulence becomes anisotropic [51-54], that is en-
ergy cascades preferentially in the direction perpendicular
to the mean magnetic field. Turbulence anisotropy has been
essentially investigated by looking at the energy spectra in
(ky, k1) or, equivalently, at the second-order structure func-
tions [55-59]. Here we are interested in analyzing directly
the anisotropy of the cascade rate. It is therefore mandatory
to extend the CG approach beyond an isotropic treatment.

100 N

© 107,

s /6/°°°°

2 ‘o

£102; .'
w 12
o IMHD [T/MHD !

10734 doeHall g qpHall i v/

0.2 0.6 1 3 10
2/d;

FIG. 3. Comparison between the cascade rates I1 and ¢ (BG17
law) for run I. The negative values are shown as dashed lines for &
and as empty markers for IT.

(a)BO—O
100_ ...................................................................................
S 101
ElO
(b) By =2 -
0.3 06 1 3 8 16

gz/dza ey/du éz/dz

FIG. 4. Anisotropic cascade rate for run I [By = 0, panel (a)] and
run II [By = 2, panel (b)] along the three space directions x, y, z. A
weaker cascade is evidenced in the z direction when By = 2.

Instead of using a spherically symmetric filtering kernel G (x)
we can define a more general filter G,(x) that has different
characteristic widths £, £,, £, in the three real space direc-
tions. The CG quantity f = f % Gy(x) is low-pass filtered in
an anisotropic way aimed at retaining mainly wave vectors
ke S1/8,, ky S 174y, k, S 1/€;. In this way we can highlight
possible presence of plasma anisotropy. In the limit case
when the filtering scales along two directions go to zero,
e.g., £y, £, = 0, computing the quantity IT allows one to re-
cover the rate of energy flowing from k, < 1/£, to ky, 2 1/¢,,
thus recovering the one-dimensional (1D) cascade rate in the
y direction. Continuing our example, we choose a filtering
function G,(x) = 8(x)8(2)V, (y), where § and v, are, respec-
tively, the Dirac and a 1D filtering kernel with a characteristic
width €. Then the quantity IT = —,E |nr, can be written as

d
M = _5[(%)3 / dk.dk, / dk,

Ak + b2\ -
» <|u( )| erl (k)| )|w[}.(ky)|2i|
NL

corresponding to the 1D cascade rate along direction y.

The designed scheme is implemented on the two sets of
simulations data obtained from run I and run II and the results
are shown in Fig. 4. We found that in the absence of a strong
mean field the cascade rate is almost isotropic at most scales,
with only weak predominance of the cascade in the direction
x at the smallest scales. In the presence of a background field
(run 1II, By = 2) the cascade rate in the parallel direction is
weaker in comparison with the two perpendicular directions,
which look overall similar (but at the largest scales). In both
runs, the violation of gyrotropy at the largest scales is likely to
be a residual effect of the initial modes used to inject energy
at largest scales of the simulation box.

A global picture of how energy flows in the (¢, £ ) plane
can be obtained by computing the cascade rate I1(¢, £)),
which measures the amount of energy that goes across wave
vectors |k | ~ 1/€,, ky = 1/¢. This is achieved by using the
filtering function Gy, ¢, = ¢, (x, ¥)¥¢, (z). Implementation of
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8 160.30.61 3 8 16
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FIG. 5. 2D Cascade rate I1(¢, £;) normalized to the dissipation
rate for run I [By = 0, panel (a)] and run II [By = 2, panel (b)].

this procedure on the same simulations data as above yields
the results plotted in Fig. 5. Run I [By = 0, Fig. 5(a)] shows an
almost isotropic behavior with only a slightly weaker cascade
rate in the z direction, while in run II [By = 2, Fig. 5(b)]
the cascade develops preferentially in the perpendicular plane
with a very weak dependence on €. The results of Fig. 5
showing the anisotropic energy transfers when By # 0, are in
agreement with theoretical expectation for MHD and HMHD
turbulence. However, to the best of our knowledge, this is the
first time that a full 3D anisotropic cascade rate is directly
revealed, while previous studies dealt with energy spectral
anisotropy [55,57], which is rather a consequence of the
anisotropic cascade shown in Fig. 5. It is worth noticing that a
similar plot of anisotropic cascade is obtained experimentally
in rotating fluid turbulence [60].

V. THE CASCADE EQUATION FOR THE
SMALL-SCALE ENERGY

It is possible to derive an equation complementary to
Eq. (6) that describes the time evolution of the energy den-
sity contained in scales smaller than the filtering scale £.
This subscale energy density is defined as h, = [ty (1, u;) +
7¢(b;, b;)]/2 (see [42]) and its time evolution is given by (see
Appendix B)

hhy ==V - J¥ -V .J5 v .
+ e 4+ Ty, dy i) + Te(ui, dy i) + Te(ui, i), (A7)

where all quantities are function of both the position x and the
scale .

In the first line we find V - J%5, V. J55 V. JP (whose
expressions are given in Appendix B), which describe the
spatial transport of /i, due to large- and small-scale fields and
pressure interactions, respectively. The local in space transfer
rate 7y (x) appears as a sink in the large-scale equation (6) and
as a source here; its full expression is given by

me(x) = — 0jiti[te(ui, uj) — te(bi, b)) — €apy jat (up, by)

+ digaﬂyjar(jﬁa by)»
(18)

where we introduced the Levi-Civita tensor &4, with the
usual summation rule over repeated indices. We stress here
that 7y (x) is the only term able to exchange energy between

the large and small scales at a given position x. The other
terms instead are associated either to spatial transport or to
forcing or dissipation. These last two processes enter the
small-scale energy equation as a difference of filtered terms,
e.g., Ty(u,dy;)=W-d,), — i -d,,. To aid in the physical
interpretation we show (see Appendix A) that by averaging
over a spatial region of characteristic size L >> ¢ we recover
the relation

(t(f, ) ~ (f'g )L,

where f'=f— f,g =g— g are the “unresolved” (sub-
scale) fluctuations. In this view, we can interpret the
forcing/dissipation terms in equation (17) as the contributions
to these processes coming from scales < £. For this reason we
can write

(te(ui, fi)) = (' - f')L ~ 0,
(te(ui, dy i) + te(ui, dp ) ~ (w' -d)) + b 'd;)L, (19)

where in the first line we stated that the forcing injects energy
at large scales only and in the second line we recover the
contribution of dissipation due to scales smaller than £.

VI. CASCADE AND LOCAL DISSIPATION

One of the main results of the Kolmogorov theory of tur-
bulence is that the mean cascade rate (i.e., averaged over the
whole simulation box) is representative of the dissipation rate.
We want to show that this holds even when averaging over
much smaller spatial regions. In particular, we will prove that
at small filtering scales ¢, and under some assumptions, the
local transfer rate and the local dissipation rate match quasilo-
cally. In other words, the amount of energy cascading across
the (small) scale ¢ at position x will be eventually dissipated
at close locations. Choosing a region of characteristic size L,
we will derive the smallest L for which the local transfer rate
and the local dissipation match when spatially averaged over
such region.

More precisely, we will prove that if the region size L
satisfies the two inequalities L > ¢, L > ¢B(/db (the latter
becoming redundant in strong turbulence with 6b/By > 1),
then the following relation holds:

()~ —(@ -d, +b -d), =(e55(),.  (20)

where on the right side of Eq. (20) we obtain the local dissipa-
tion due to scales smaller than £ averaged on a region of size
L. We stress that the size of the region is not fixed and can
be varied at will. In general we expect the agreement to get
better as L — Lyox, eventually recovering the “global” result
of Section III; however, we will show that this relation holds
for regions of smaller size, effectively allowing us to study
(quasi-)locally the processes of energy transfer and dissipa-
tion.

The starting point in deriving equation (20) is the small-
scale (< ¢) Eq. (17). For each position x, we average over a
region x (x, L), centered on x, of characteristic size L and of
volume V(L) ~ L>. For each quantity g we can write

(@ =V f q(r)dr.

x(x.L)
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This operation (de facto a new CG operation) is linear, and
as such it commutes with space and time derivatives. We can
therefore write

Olhe), = =V - (L + (o) + (te(ui, dyi) + Te(bi, dyi)) s
(2D
where J = J&5 + J55 4 JP. We can use this equation to study
the characteristic timescales associated with the different
terms.

We recall that there are two distinct scales: £ is the filtering
scale across which energy cascades; L is the size of the spatial
region upon which we compute the spatial average. The filter-
ing scale £ helps us to introduce two characteristic velocities:
the large (at scales > £) and small (< £) scale velocity i, i/,
respectively. The same filtering can be applied for the mag-
netic field with the only difference that the mean field cannot
be removed by a Galilean transformation. However, we can
decompose the characteristic large-scale field as b = By + 8b.
The small-scale field b’ is not affected by By. We furthermore
assume the following Alfvénic ordering:

a~38b, u~Vb
and denote these quantities as U, U’, which apply indistinctly
to u and b. Furthermore, we use j ~ 8b/¢, j' ~ b/ /£ and,
more importantly, t(f, g) ~ f'¢, t(f, g h) ~ f'gh (see Ap-
pendix A for the justification of the latter).

A. Nonlinear energy transfer

Let us consider my, the local in space energy transfer rate.
By spatially averaging 7, [see Eq. (18)] over a region of size
L we get

(e = — (0jit;(te (i, u) — Te(bi, b)) + €apy JaT(up, by))r

+ di(gaﬁyjaf(jﬂa by L.
(22)

It is straightforward to show that the order of (m,(x))., de-
noted [(m;).] is given by

[(me)L] Uy 40
b4 = — ——
R I

U/2

so that the two characteristic times of the energy transfer can
be found by computing [{h¢).]/[{me)L]:

NL = 7
U

(MHD _ ¢ (Hall _  MHD ¢
NLOT AL
1
These quantities describe how fast energy is transferred (cas-
cades) across scale £. In particular we recover the eddy
turnover time at scale £ as the characteristic time of nonlinear
transfer.

B. Large-scale spatial transport

The terms governing the spatial transport of (h;); due to
the large-scale fields read (see Appendix B)

V- JSy, =v. (heit; — T(ui, bbj) + d;iV - (bjT(bi, ji)

+ Jit(bi, b)) — jit(bi, bi) — bit(jj, bi))L.-
(23)

The divergence acts on quantities averaged over a region of
size L. Therefore the characteristic scale of the spatial deriva-
tives is 1/L as all fluctuations with smaller scales have been
removed. With this in mind we can proceed to derive the
characteristic time by which each of these processes extract
or bring energy inside this region of size L:

L L Hall

hs=—=, WA=—, 1
Bo LS

£
0 =4S, IHan =la—.

di ' dl
Alongside the characteristic time of energy advection by the
large-scale flow #g we recognize the linear Alfvén time z4
that represents the energy transport due to propagating Alfvén
waves at scale L. Additionally, faster modes that have a
timescale fi1a = #4€/d; exist as the scales approach d;, which
can be identified as whistler waves with a dispersion relation
w ™~ kaBodi [61]

C. Small-scale transport

The effect of the small-scale fluctuations in the spatial
transport of (h) is given by (see Appendix B)

(b, by, uj) + (i, u;, uj)
2
+d;V - (z(b;, bj, ji) — t(jj, bi, b)), . (24)

V(IS =V < —T(Mi,bi,bj)>
L

The corresponding characteristic timescales read

_ L Hall
tss = —, tss

£
U =lIss—-

d;
D. Pressure term

The last term that we need to analyze is the spatial transport
one, V - (t(u, P))r, involving the total plasma pressure. We
recall that in the incompressible HMHD model pressure is
completely determined by u, b: taking the divergence of (2),
pressure is found by solving the Poisson equation:

VZP = aiaj(u,-uj - bibj);

the equation for P’ = P — P is easily derived, whose ordering
is given by

[P1=U"+0U, (25)

which yields the following ordering of the transport term:

1 vru’ ou”?
\ ,P =-PU'~ 26
[V - (t(u, P))L] I .t (26)
and the corresponding characteristic timescales
tss = L s = L
ss= e ST g

both of which were already found in the analysis of the large-
and small-scale transport terms.
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E. The fastest dynamical process

We want to show that we can choose the region size L
so that the cross-scale energy transfer in the region is faster
than spatial transport across the region borders. To do so we
analyze the timescales associated with different processes.
For the sake of simplicity the comparison is limited to the
MHD range where the Hall term can be neglected. Including
the Hall term will not modify any of the conclusion of this
study based on the observation that the Hall term modifies the
timescales of the nonlinear cascade and transport by the same
(small-scale) factor £/d;. We consider the nonlinear timescale

tMHD a5 a reference to obtain

N P U i £By LB
s _L’ Iss _LU’ 7N _LU Lsb’
27
we notice that when ¢/L <« 1 and U’ < U (the latter is jus-
tified by a power-law decline of the fluctuations in MHD
turbulence) the first two conditions in relations (27) yield the
ordering tMP « 115, ss.

If we further assume high-amplitude fluctuations with re-
spect to the background field, i.e., 8b/By = 1, the condition
¢/L < 1 automatically implies the ordering 1> < 4. This
should not be confused with the critical balance ordering [53]
as the quantity #4 is the time that an Alfvén wave takes to
propagate over a distance L: as L can be varied at will, #4 can
be made as large or as small as needed. In the general case the
stronger the mean magnetic field compared to the fluctuations,
the larger we should choose L to maintain f\i1° < 1o — L >
£B /&b for a given £.

To summarize, under the conditions £/L < 1 and £/L <
8b/By, the latter becoming redundant in strong turbulence,
tNMHD becomes the fastest time of the averaged dynamics. The
interpretation is the following: considering a spatial region
of characteristic size L, a certain amount of energy cascades
across scale ¢ inside this region on timescales much faster than
what it takes for the same amount of energy to be spatially
transported across the region surface by large- and small-scale
processes including linear (Alfvén) waves.

For the aforementioned reason, in the averaged small-scale
equation the spatial transport terms are slower than the non-
linear cascade. At a small filtering scale ¢ we anticipate the
averaged cascade to be balanced by the averaged dissipation:
as energy cascades in a given region it does not have time to be
spatially transported outside the region before it is dissipated
(note that this would imply some kind of short-time stationar-
ity of the small-scale, averaged, energy (h¢)L).

Therefore, in Eq. (21) we can expect the two fast processes
to match:

(o)) ~ —(Te(ui, dy i) + e (bi, dy i)
N d,+b d) (28)

This equation shows, as stated at the beginning of this section,
that the (quasi-)local cascade matches the contribution to the
(quasi-)local dissipation coming from scales < £.

The result is general and does not require the existence of
an inertial range as it does not involve the total dissipation,
but only a part of it. However, if we assume the dissipation

(a) m(x) (b) (m(x))y,
m _?
454 —3 0 3 {1 -1 0 1

(¢)—u-d,—b- d,,
o — [ —
4541 -3 0 3 {1 -1 0 1
% 40| (2 .
5 2
S U ’
AN\ v
35 1 A 1
30 i ,
0 10 0 10
x/2md; x/2md;

FIG. 6. 2D plots of the local transfer rate m, across scale £ =
0.3d; (a) and dissipation (c) based on the data from run I. Panels (b)
and (d) are obtained by computing for each point x the average on a
cubic region of size L = 1.4d; centered on x.

rate due to the large scales (i.e., £) to be negligible, it can be
further refined to obtain

(meCe)~ W -d,+b -d) .~ —u-d, +b-d,),
(29)
which shows the approximate (quasi-)local balance between
the cascade rate and total dissipation. This result will now be
tested numerically.

F. Numerical validation

A first glimpse at the local (in space) behavior of the
transfer and dissipation at the filtering scale £ = 0.3d, is given
in Figs. 6(a) and 6(c) based on the data from run I. Over-
all the two quantities exhibit similar patterns, indicating an
approximate balance between them, although the extrema of
the cascade rate can be larger locally by a factor ~2. We
also observe that the energy transfer rate m,(x) presents both
positive and negative values. This is a clear sign that the non-
linear interactions work in both directions, bringing energy
from large to small scales and vice versa, albeit at this small
filtering scale £ = 0.3d; most of the energy is going towards
the small scales and 7 is mostly positive. Nevertheless, when
integrated over a cubic region of size L = 1.4d; centered on
each point x [Fig. 6(b)], we recover a nearly positive flux, i.e.,
(me(x))r > 0, a sign that on average the quasilocal turbulent
cascade is direct since energy is carried towards the small
scales. The same observations can be made about dissipation
[Figs. 6(c) and 6(d)], which is indeed positive definite only
when no energy leakage through the boundaries is assumed.

035202-8



LOCAL ENERGY TRANSFER AND DISSIPATION IN ...

PHYSICAL REVIEW E 106, 035202 (2022)

mo(z)
50 = ;
10! (9)By=0
(a) —— £=0.29d;, —— £=0.88d, (d) —— £=0.29d; —— £=0.88d; ) . ck
< —— £=0.59d; —e— £=0.59d, 401 xa) \
&) ; Y K
Na¥ b A
i 2
% ~& 1
N
\/
> \
)
T ' T
' (h)By=2

20 40
FIG. 7. Ratio R(x, L) = —(m,)/(u -d, + b -d,) between the local transfer rate and the local dissipation rate averaged on a cubic region

of size L centered around a given point x. The results for three different points on the plane z = 25 x 2w d; in run I (a—c) and run II (d—f) are

shown. The shaded region individuates the interval 0.5 < R < 2.

A thorough analysis can be done by pinpointing individual
locations in space x, that correspond to intense local transfers
on which we can test the balance between the energy cascade
and dissipation given by relation (29). The chosen locations
are indicated in Fig. 7 by labels (a)—(c) for run I and (d)—(f)
for run II. Varying L, the size of the region over which the inte-
gration is performed, we are able to gauge R(x¢, L), the ratio
between (), and —(u -d, + b -d,);. The results in Fig. 7
show that the ratio between the two terms is close to 1 not only
when L = 50d; = Lyox, but it remains constant for a very large
range of scales all the way down to £ ~ 8d;. This is consistent
with relation (29), which holds when £/L « 1. It is, however,
remarkable to notice that even for smaller values £ ~ L the
ratio between the two terms remains comparable with 1. In
particular, Fig. 7 shows that 0.5 < R < 2 at almost all scales
for all the three points under study in run I. The same study
for run II shows an overall good agreement between the local
transfer and dissipation magnitude. However, the matching is
less good than in run I, as the ratio R(xg, L) departs from the
reference value 1 (i.e., perfect balance) at larger size box L for
run II than run I. This is likely to be caused by the presence
of the mean magnetic field By = 2 in run II, which introduces
(large-scale) Alfvén waves that spatially transport energy on
comparable timescales than those of the nonlinear cascade and
dissipation as discussed in Sec. VIE. Said differently, for run
I the timescale ratio NP /ta ~ £Bo/(L(8b)) ~ 0 since By =
0 (i.e., t4 — o00) regardless of how large is the ratio /L. This
could explain the very good matching between the cascade
and dissipation rates in run I even for very small integrated
regions, i.e., £/L ~ 1 as observed in Figs. 7(a)-7(c). In run II,

with By = 2, the linear transport timescale z4 becomes finite
and can be comparable to NP even for small ratios of £/L.
In the limit case of a very strong mean field, §b/By < 1 the
linear Alfvén time will become faster than the nonlinear time
at all scales, and relation (29) would no longer hold.

To obtain a more complete picture of the balance between
the quasilocal cascade and dissipation we performed the same
study over a larger sample of locations shown in Fig 8. For
both runs we consider some of the local maxima of m,(x),
£ = 0.3d; in the plane z = 25 x 27 d;, for each of these points
the ratio R(x, L) is computed and its histogram is shown for
each size L of the integrated box. As expected, for both runs
we observe that as L decreases the width of the histogram
(i.e., dispersion) increases, and its mean tends to shift to larger
values. This indicates that, on average, the local transfer tends
to slightly dominate the local dissipation. We also observe
that dispersion around the reference value R(xq, L) ~ 1 (per-
fect balance) is more prominent in run II than run I, which
confirms the role of the background magnetic field By in
shortening the linear transport time, thus competing with the
pair cascade dissipation discussed above.

VII. CONCLUSIONS

In this paper we have derived the large- and small-scale
CG equations for incompressible HMHD and showed that
the quantity m,(x) is the local (at position x) energy transfer
across the scale £. This quantity, when averaged over the
simulation domain allows us to recover results consistent with
the so-called third-order laws. It represents an improvement
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FIG. 8. The normalized distributions of the ratio —(m,(x))./(u -d, + b - d,), (c—e) computed at scale £ = 0.3d; and plane z = 25 x 27 d;
in the regions of intense cross-scale transfer marked by crosses for runs I (a) and II (b). Three different sizes L of the integrated regions are
considered. Filled, colored values correspond to run I (By = 0), while black, hatched values to run I By = 2.

over the current state of the art in this field as it does not
rely on the assumptions of ergodicity or the existence of the
inertial range. The model is further generalized to account for
anisotropic cascade in the presence of a background magnetic
field. The major strength of this theory is to provide a means of
estimating local energy dissipation in turbulent plasmas. This
is shown to be achieved at a cost of fairly loose assumptions,
the main ones being the scale separation between the filtering
scale £ and the integration region size L and moderate-to-large
amplitude of the turbulent fluctuations with respect to the
background field By. This last condition is expected in strong
turbulence. These two assumptions are required to minimize
the role of the spatial transport across the region of integration,
enforcing thus the balance between local nonlinear cascade
and dissipation.

The theory was tested successfully on two simulations
featuring different intensities of the background field By.
In agreement with the timescale estimate of the various
processes, a very good local balance between transfer and
dissipation is found in run with By = 0 even when L ~ ¢,
while a moderate imbalance between the two is observed at
larger values L for run with By = 2. We conjecture that this
behavior is due to the role of Alfvén waves that spatially
transport energy across the integration region on timescales
comparable to those of the cascade and dissipation.

An immediate application of this theory is to estimate
energy dissipation in localized structures (e.g., reconnecting
current sheets) frequently reported in numerical simulations
[62] and spacecraft observations in the near-Earth space
[30,63]. Indeed, even if the theory is based on a fluid (HMHD)
model, the fact that 77,(x) is shown to reflect local dissipation
(within the aforementioned assumptions) regardless of the
explicit form of the dissipation operators makes it particularly
relevant to collisionless plasmas where the damping of the
fluid and electromagnetic fluctuations is believed to originate
from kinetic processes that would show up in the moment
equation as complex damping operators d,,, d,,. Note further-
more that the quantity 7, (x) allows us to diagnose the spatially
intermittent nature of the energy transfer rate (and therefore
that of the dissipation) as clearly highlighted in the two DNS
runs used in this study. This quality of 7, (x) could prove to be
relevant to other problems in astrophysics such as fostering of
chemical processes in turbulent molecular clouds [64].

The present theory can be extended in various directions,
for instance, to the two-fluid model where electron inertia
can be accounted for (particularly relevant in reconnection
studies and small-scale turbulence; see, for instance, [65] and
references therein) or by incorporating compressible effects
[41,46]. Notice that adding compressibility effects opens up
an energy channel: the transfer to thermal energy. This new
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term, particularly important when studying dissipative pro-
cesses, has been thoroughly studied using a CG approach in
[67,68].

Regarding its implementation on simulations and space-
craft data, an integration over an anisotropic domain L; <
L would be more appropriate to capture the difference in
timescale of the various processes along the two directions.
Last, in numerical simulation an integration over the actual
3D volume of the structures (e.g., current sheets, plasmoids)
would be a significant improvement with respect to the cubic
box adopted here.

ACKNOWLEDGMENTS

The authors thank Prof. P. Mininni and the developers
of the GHOST code for providing the code used to run the
simulations presented in this work. This work was granted
access to the HPC resources of CINES under allocation
2021 A0090407714 made by GENCI. It is supported by the
CNRS/CONICET Laboratoire International Associé (LIA)
MAGNETO under Project No. LIA2018-MAGNETO.

APPENDIX A: ON THE GENERALIZED CENTRAL
MOMENTS

When studying turbulence using the statistical approach
the original field u is decomposed into its (ensemble) average
part (u) and a fluctuation u’ whose sum gives the original
quantity u = (u) + u’. In this framework we can derive re-
lations concerning the central moments of the fluctuations
(u;u}), (ugu}u,’(),.... It can be shown [2,3] that

() = (wij) — (i) (u;),
() = (winjue) — (up) (W) — () (uiuy)
— () (i) — () uj) (),
(U wu)) = -+ . (A1)

J

When using the filtering approach (CG), we decompose the
field into its large-scale # and “unresolved” u — & contri-
butions, replacing the ensemble average (-) with the CG
operation. To recover a set of relations equivalent to (A1)
the seminal work of Germano [35] introduces the generalized
central moments t(u;, u;), T(u;, uj, ug), . . ., formally defined
as

T(uy, uj) = wu; — i,
T (Ui, uj, wy) = Winuy — u;T (g, i) — ;T (g, uy)
— ﬁkt(ui, btj) — L_tiﬁjﬁk,
T(uy, uj, U, ug) = -+, (A2)

which are employed in this work and allow us to recover
simple filtered equations. To aid in the physical interpretation
some useful relations can be derived to link the generalized

central moments to the field fluctuations [66]. We start with
w(f,8)=fe—fg=(fe—Fa) + (—fg+ /&
= / drGe(x +r)f(x +r)g(x +r)
— fx) / drGe(x +r)gx+r)
— &) / drGo(x +r)f(x +r) + f(x)g(x)
X / drGy(x +r)
=/wwu+nyu+ﬂ—ﬂﬁk@+n—gm
x/m@u+nyu+m—ﬂm

= /erg(x +r)[fx+r) — fx)]
x [gx+r) —g(x)] (A3)

Performing a second-order Taylor expansion,

7. 92
f(x+r)=f(x)+rj£+r'rj il

isj 2
ox; 2 0x0x; +olir®,

and denoting the turbulent, subscale fluctuations with f' =

f — f, we have

T(f,8) ~ f(x)gx)+[gVf+fVgl,- /drer(r)

3L 4 L2 [ arGuom,

8x,- 8xj 8Xj 8)6,‘

02 f 0%
! : ! arG iTi
+ |:g 23)6,'8)(]‘ f 28)(,‘an1| f d E(r)r T

Since [ drGy(r)r =0, and the second-order centered mo-
ments matrix [ drG,(r)ryr; ~ €*8;; (with the Gaussian filter
used), the relation 7(f, g) ~ f'¢ is valid up to the second
order in £/A. Here A~' ~ min{V f/f, Vg/g} is the charac-
teristic scale of the field gradients. The parameter £/A is,
however, not guaranteed to be small as the fields have a
Fourier spectrum that extends all the way down to the dissi-
pation scales. Therefore, an even more precise relation can be
obtained by performing another CG operation or, in general,
by averaging over a spatial region of size L > ¢:

(t(f, @ = (f'¢)h + O[(U/A)], (A4)

where A’, the gradient characteristic scale of the averaged
fields, is of order L since the spatial average removes fluc-
tuations at smaller scales.

A similar result can be derived for the third-order general-
ized moment defined as

t(f.g h) = fgh— fgh— fr(g. h)—gr(f.h) — ht(f.g);
(A5)

035202-11



MANZINI, SAHRAOUI, CALIFANO, AND FERRAND PHYSICAL REVIEW E 106, 035202 (2022)

a direct computation denoting x’ = x + r shows APPENDIX B: DERIVATION OF THE SMALL-SCALE
_ - EQUATIONS
/ drG(x)[f(x') — f(0)][g&") — A — h(x)] _ _ ,
The energy contained at subfiltering scales < £ is defined
— ﬁ — fah+ [—fdg_h + fahl + [—gf_h as hy = [to(u;, u;) + 7¢(b;, b;)]/2 and is a positive quantity at
_ _ every point in space in virtue of relation (A3), e.g., T(u;, u;) =
+gfhl +[—fgh — fghl [ drG(x + r)|u;(x + r) — it;(x)|* > 0. Furthermore when in-

e = _ - tegrating over the spatial domain we recover the total
=feh—fgh —frlgh) —gu(f.0) —ht(f.9) subscale energy [ d’xh(x) = [ d3x[(|u|?> — |@,|*) + (|b]> —

=1(f, g h), (A6)  |b,|?)]/2, (see [42]).
and, as for the second-order generalized central moment, a To compute the evolution of i, we ﬁlte? on a scale £ the
Taylor expansion followed by a spatial average leads to energy equation 2and -er subtract thg equation for Fhe 'large-
(t(f, g ) = (f'dH) + O[(E/L)2], (A7) scale energy (||~ + |b|~)/2. We readily obtain for kinetic and

L . . ) . magnetic energy densities:
which is precisely the relation used in the main text.

J
+ t(uj, P) — t(u;, by, by) — t(u;, bj)b; — t(u;, bi)l;ji|

T(u;, u;) T(u;, ui) _ T (i, uj, uj)

2 (BD)
+ 7" + (bibdi; — bib;dju;) + T(wi, dy i) + T(ui, f),
(b, by) ©(bi, b)) t(bi, b, uy) -
8, ) :—8]|: Mj+ ) J +b,~t(u,~,bj)
d . . = . - - oy (B2)
—didj[t by, by, ji) — T(j, b, b)) + bt by, i) + Jit(bi, by) — Jit(bi, bi) — bt (j;. by)]
+ 7+ (bibjdu; — bib;da;) + T(bi, dy;)-
Taking the sum of the two equations we obtain
(Ui, U; +'L'b,',b[ T\uU;, [—f-‘[b,‘,b,‘_ —
5, ( )2 ( )=—Bj[ (u u)2 ( )uj+f(uj,P)—f(ui,bi)bji|
T(bi,bi,ll')-'-f(“i,“i,lz[‘)
—3j|: ! > ! —T(Mi,bi,bj):|
—did;[t(bi, by, ji) — T(jjy bis bi) + biT(by, i) + Jit(bi by) — JiT(bi, bi) — bt (j;, by)]
+ 7 4 1+ b, dyi) + T, dy i) + T, ). (B3)

We can group the contribution of the spatial transport of the small-scale energy h, = [t (u;, u;) + t(b;, b;)]/2 due to the large-
scale fields:

\Y4 .JLS =V. [h[l,_{‘] — 'L'(Mi, bl)E]] + le . [Ejf(bi, ]1) + jjf(bi, bj) - J_.jt(bi’ bl) - Eif(jj’ bl)]
Similarly, the spatial transport of /, due to the subscale fields is given by

T(b;, by, uj) + T (u;, ui, uj)
2

and finally the spatial transport due to pressure interactions:

V-JP=V-t(u;,P)

V.J¥=V. [ — t(u;, b;, bj)] +d;V - [t(bi, by, ji) — T(jj, bi, bi)],

so that Eq. (B3) can be written in compact form as

dhe ==V IS + IS + I+ 0 + by, dy i) + (i dy ) + Ty, £). (B4)
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