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Force balance of hydrogen bubbles growing and oscillating on a microelectrode
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Hydrogen evolution in acidic aqueous electrolytes was recently found to be characterized by a carpet of
microbubbles covering the microelectrode and feeding the growth of the main bubbles by coalescence. Besides
this, oscillatory behavior of the main bubbles was observed prior to departure. Extending earlier studies, this
work delivers the forces acting on the main bubble more accurately by taking into account further geometric and
electrochemical details measured during experiments. Combining simulation work and measurements makes it
possible to confirm the role of an attractive electrical (Coulomb) force caused by the adsorption of hydrogen ions
at the bubble interface and to obtain a better understanding of the bubble dynamics observed.
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I. INTRODUCTION

With the increasing urgency of a clean energy transition,
the use of H2 as an energy storage solution for renewable
sources is a subject of intense investigation and investment
[1–3]. One promising pathway is obtaining H2 from the elec-
trolysis of water [4–6]. Though this process has been known
for a long time and alkaline water electrolysis is a mature
technology [7], there is still a lack of understanding of the
details of the electrolytic evolution of gas bubbles, such as
precisely predicting the instant of departure from the electrode
or bubble coalescence. As these details are of importance with
respect to the efficiency of technical devices, there has been
increased activity in gaining an improved understanding of
electrolytic bubble dynamics.

In general, the dynamics of an electrolytic bubble is de-
termined by the magnitude, direction, and characteristics of
all forces acting on it. For an extensive review of forces and
bubble detachment models existing so far we refer to Thorn-
croft and Klausner [8]. When considering a bubble growing
on a horizontal electrode, the vertical force components deter-
mine the departure dynamics. As the radius Rb of the bubble
continuously grows during electrolysis, the buoyancy force
∼R3

b acting on the bubble in the upward direction strongly
increases. At a certain instant of time the upward forces will
then overcome the downward forces, and the bubble attempts
to detach. This typically happens without delay by continuous
bubble rise. However, recently at large negative potentials it
was observed at microelectrodes (see Fig. 1) that the bubbles
undergo a period of vertical position oscillations prior to de-
tachment. This new mode of departure dynamics was found to
be caused by forces originating from Marangoni and electric
effects that were only little considered before [9]. Therefore,
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Marangoni and electric forces have recently attracted great in-
terest to gain a deeper insight into the dynamics of electrolytic
gas bubbles [10–16].

Marangoni effects originate from a surface tension gradi-
ent along liquid or gaseous material interfaces [17]. When
this gradient is caused by a gradient in temperature, it is
also known as the thermocapillary effect. A brief overview
of studies on thermocapillary effects on bubbles in general
and in the context of electrolysis is provided in the follow-
ing. Young et al. [18] demonstrated the importance of the
thermocapillary effect on a bubble in a temperature field for
the first time by showing that a vertical temperature gradient
may be used to levitate a bubble against buoyancy. They also
obtained good agreement with the analytical prediction of
the required temperature gradient. By means of numerical
computation, Larkin [19] calculated the details of the ther-
mocapillary flow adjacent to a hemispherical bubble residing
on a heated solid wall. Kao and Kenning [20] extended the
computations of the thermocapillary flow around a bubble
residing on a heated wall to include a wider range of process
parameters that were expressed in dimensionless numbers,
namely the Marangoni number (Ma), Rayleigh number (Ra),
and Biot number (Bi). They also showed that the thermo-
capillary flow is highly sensitive to the presence of even
small amounts of surface-active contaminants. Kassemi and
Rashidnia [21] showed that the thermocapillary flow around
a pendant bubble attached to a heated wall exhibits oscilla-
tory and nonoscillatory behavior depending on Ma. They also
showed that the oscillatory nature of the thermocapillary flow
undergoes a transition from transverse to axial flow oscilla-
tions at an analytically predictable critical Ma. Later, Lubetkin
[22] also discussed the possible combined effect of soluto-
and thermocapillary forces and buoyancy on the oscillation
of a bubble levitated in a vertical thermal gradient. Guelcher
et al. [23] were the first to consider thermocapillary effects at
electrogenerated gas bubbles. They attributed the horizontal
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FIG. 1. (a) Sketch of the electrolysis cell (updated from Ref [12]). The central plane is shown in pink. (b) Zoomed view in the
central plane of an electrogenerated bubble growing on a carpet of microbubbles with associated interfacial phenomena and acting
forces.

bubble movement observed also earlier by Tobias and Sides
[24] to a possible thermocapillary effect by calculating the
thermocapillary flow around a bubble in the close vicinity
of a heated wall, similarly to Refs. [19,20]. However, direct
experimental evidence of the thermocapillary effect was still
lacking, as neither the temperature distribution nor the fluid
flow around the gas bubble were ever measured. By means
of particle tracking velocimetry (PTV), Yang et al. [11] were
the first to measure the fluid flow in the vicinity of H2 bubbles
grown on a Pt microelectrode. In order to clarify the relation to
thermocapillarity, Massing et al. [12] carried out simultaneous
measurements of temperature and electrolyte flow close to the
bubble and compared the observations with numerical com-
putation, which allowed them to confirm the thermocapillary
effect. As sketched in Fig. 1(b), the large current density at
the wetted outer edge of the microelectrode creates a lateral
temperature gradient along the bubble interface, which drives
a corresponding recirculating flow [11,12]. This flow struc-
ture is responsible for the hydrodynamic force experienced
by the bubble. Later, Hossain et al. [13] further extended
the study by investigating bubbles growing at electrodes of
varying sizes. Recently, Meulenbroek et al. [14] showed that
assuming the existence of surface-active contaminants that
might have been present during the measurements of Massing
et al. allows one to further improve the quantitative agree-
ment between the flow profiles obtained in experiments and
computations.

In addition to Marangoni effects, Lubetkin [25,26] hy-
pothesized that an electric force could affect the dynamics
of an electrogenerated bubble. It has been known for a long
time that bubble interfaces are electrically charged [27–29].
Multiple studies have quantified the electric nature of the
bubble interface by calculating the ζ potential based on
electrophoretic measurements [30–33]. Brandon et al. [34]
quantified the electric charge of a H2 bubble generated in a
water electrolysis cell. Recently, Bashkatov et al. [9] observed
a regime of oscillatory bubble growth above a carpet of mi-
crobubbles at microelectrodes which also relates to previous
observations [24,35]. They proposed and provided a working

mechanism for the oscillation as competition between the
electric and Marangoni force and the buoyancy force acting
on the bubble [9]. Since the electrogenerated bubble grows
in an electrolyte medium, the bubble interface is electrically
charged depending on the solution pH [31,34,36–40]. For
the strongly acidic electrolyte used it is therefore argued that
the electric force is caused by the adsorption of hydrogen
ions at the bubble interface [see Fig. 1(b)]. As the bubble
interface becomes positively charged, the bubble is attracted
in the electric field towards the cathode. Applying a simplified
modeling approach, an initial quantification of the interfacial
charge density was obtained utilizing the force balance at
equilibrium. The value obtained was found to be in good
agreement with literature values [30,41]. This made it possible
to quantify the electric force acting on an electrogenerated
bubble. Finally, the variation of the electric force with the
bubble position was used to explain the observed position
oscillations of the bubble.

For the potentiostatic growth mode studied in Ref [9],
Fig. 2 shows the typical temporal behavior of the cell current
(I) and bubble position during the life cycle of a single bubble,
where the bubble evolves with oscillations at a late stage. H∗
is the vertical distance between the top of the bubble and the
electrode surface normalized by the bubble diameter. Bashka-
tov et al. [9] showed that the oscillations in bubble position

FIG. 2. Example of an oscillatory bubble evolution at a micro-
electrode (reprinted from Ref. [9]).
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(a)

(b)

FIG. 3. (a) Representative image of the bubble captured during its position oscillations, at the instant of the last top position before
detachment, with Rb = 498 μm, δ = 16 μm, and ε = 37 μm. The experiment was performed in 0.5 M H2SO4 at −7 V. The instant of time is
marked in Fig. 5(b) with a blue vertical line at t = 2.486 s. (b) Setup for the axisymmetric simulations (not to scale). The vertical dotted line
denotes the axis of rotation.

and cell current are related to each other and are exactly out
of phase.

In the present study, we build on previous works, namely
Refs. [9,12,14], to provide an improved modeling and
understanding of the forces acting on H2 bubbles grown on
microelectrodes and their dynamics. In detail, the modeling
of the bubble dynamics now includes the pressure part of
the hydrodynamic force [14] neglected earlier [9,12]. Fur-
thermore, motivated by high-speed camera images of the
oscillatory bubble evolution, bubble deformation effects that
may become important at large potentials (see Fig. 3) will
first be taken into account in the advanced modeling approach.
The simulation methodology presented will also consider a
time-varying insulating effect of the gas carpet on the elec-
trode surface during the bubble dynamics. Both the stationary
and oscillatory growth regimes are taken into account when
estimating the surface charge density in force equilibrium
and comparing it with earlier work [9]. For the oscillatory
regime, the temporal variation of the different forces acting
on the bubble is investigated in detail during one oscillation
cycle. Beside the modeling work, flow velocities measured by
particle tracking velocimetry during the bubble oscillation are
presented, and a comparison is drawn between the experiment
and computation.

The paper is organized as follows: Section II contains a
quantitative description of the forces acting on the bubble.
Section III describes the simulation approach and the ex-
perimental method applied, emphasizing the improvements
compared to earlier work. The application of the force equi-
librium condition for a stationary bubble is discussed in
Sec. IV A, and the forces acting on an oscillating bubble

are discussed in Sec. IV B. Finally, in the Conclusion we
discuss the implications and possibilities of future work, and
additional information on the methods is provided in the Ap-
pendices.

II. FORCES ACTING ON THE BUBBLE

In general, the dynamics of an electrogenerated bubble can
be described by Newton’s law,

mb
−→a = −→

F =
∑

i

−→
Fi , (1)

where mb, −→a , and
−→
F denote the bubble mass, its acceleration

and the total force, which may in general consist of several
individual forces

−→
Fi . Overhead arrows are used to denote vec-

tor quantities. For a detailed review of the forces on bubbles
we refer to Thorncroft and Klausner [8]. In the following, we
consider and quantify the forces only that are applicable to our
electrolysis system sketched in Fig. 1 where a bubble grows on
a microelectrode. As our system possesses axisymmetry, only
the vertical force components are considered in the following
to analyze the detachment dynamics.

The buoyancy and the hydrodynamic force are obtained
from integrating the surface stress −→τ = T · n̂ over the bubble-
electrolyte interface S , where T = −pI + μ(∇−→u + ∇−→u T )
is the stress tensor and p is the total pressure. n̂ is the surface
normal unit vector and −→u is the flow velocity vector. The total
pressure, p, can be split into static (ps) and dynamic (ph) parts,
i.e., p = ps + ph. The integral of ps over the bubble interface
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gives the buoyancy force

Fb = Vb (ρl − ρg) g, (2)

where ρl , ρg, and Vb denote the densities of the liquid and gas
phases and the bubble volume, respectively. The remaining
hydrodynamic boundary stress [42],

−→τh = −phn̂ + μ
∂−→u
∂n

+ μ∇un, (3)

can be split into a pressure part and a viscous part. Thus we
obtain the pressure force,

−→
Fp = −

∫
S

phn̂ dA, (4)

originating from the variation in the hydrodynamic pressure
along the interface, and the viscous force,

−→
Fv = μ

∫
S

(
∂−→u
∂n

+ ∇un

)
dA. (5)

The total hydrodynamic force on the bubble is then given
given by

−→
Fh = −→

Fp + −→
Fv =

∫
S

−→τh dA. (6)

As we are dealing with an axisymmetric system, the integrals
only provide nonzero vertical components,

Fh = Fp + Fv. (7)

At the bubble interface between the gas and liquid phases, the
stress balance needs to be satisfied [17],

(Tl − Tg) · n̂ + ∇Sγ − γ n̂(∇ · n̂) = 0, (8)

where γ is the interfacial tension and ∇S ≡ ∇ − n̂(n̂ · ∇) is
the surface gradient operator. The superscripts l and g repre-
sent the liquid and gas phases, respectively. Taking the inner
product with the normal and tangential unit vectors, Eq. (8)
can further be divided into the normal stress balance,

pg − pl + 2μl ∂ul
n

∂n
= γ (∇ · n̂), (9)

and the tangential stress balance,

μl ∂ul
t

∂n
= −∇Sγ · t̂, (10)

where in the latter the gas viscosity was assumed to be
comparatively small. Since the surface tension γ in gen-
eral depends on temperature, thermocapillary stress τM =
∇Sγ · t̂ arises from temperature differences along the bubble
interface. For the cases considered in the following, the tem-
perature influence dominates, and the additional influence of
pH variations on the surface tension that may arise from the
electrochemical reaction can be safely neglected [43]. There-
fore, in our model a linear dependence of γ on temperature T
is assumed, i.e., γ (T ) = γ0 + βT , where β is the temperature
coefficient of the interfacial tension. The resulting force on
the bubble can be calculated as FM = − ∫

S τMdA and was
denoted as Marangoni force in Refs. [9,12,13] Taking the
inner product of Eq. (3) with t̂ , it can also be seen that the
left-hand side of Eq. (10) is the tangential component of −→τh .

Thus FM essentially captures the contribution from the tangen-
tial stress at the interface. The contribution from the normal
stress can be obtained by integrating the normal component of
the hydrodynamic boundary stress, Fn = ∫

S τh,ndA and τh,n =
−→τh · n̂ = −ph + 2μl ∂un

∂n . Thus, Fh = FM + Fn = Fv + Fp.
If the electrogenerated bubble grows in an electrolyte

medium, the bubble interface may become electrically
charged [31,34,36–40]. As the pH value of the electrolyte
used in our experiments is below the isoelectric point [30,41],
the surface charge density is positive, primarily due to H+ ion
adsorption at the interface. As can be expected from the elec-
tric current density vectors encasing the bubble [see Fig. 1(b)],
the resulting electric field in the bubble vicinity causes an
electric force Fe on the bubble, as recently discussed in [9].
It is given as

Fe =
∫
S

σEz dA. (11)

Ez is the vertical (z) component of the external electric field,
S is the interface between bubble and electrolyte, and σ is
the surface charge density of the bubble interface. As will be
shown below, both the electric force and the hydrodynamic
force depend on the vertical bubble position above the micro-
electrode (see also [44]).

For the time range and operational parameters investigated
in the following, the H2 bubble grows on a thin layer of con-
tinuously evolving gas and is not in contact with the electrode
[9]. Henceforth, the contact force acting on the three-phase
contact line by virtue of the surface tension and also the
contact pressure force due to an excess pressure acting on the
attached area of the bubble do not apply [8,25,45]. Instead,
a possible force contribution may result from the interaction
between the gas layer and the gas bubble, which could be
understood as a body force acting on the bubble. Since the
gas carpet is a collection of very small bubbles with thin
electrolyte films between them, the carpet-bubble interaction
can be described by the concept of disjoining pressure [46,47].
Though a detailed quantification is left for future studies,
we expect the carpet-bubble interaction to be small close to
detachment and therefore we neglect it in the following.

Finally, in general a further contribution to the hydrody-
namic force arises due to the growth of the bubble with time
[48]. However, as we are dealing with the late stage of bubble
evolution when the bubble growth rate is very small [12],
for the short periods of time considered in the simulations
below, such effects can be safely neglected. For completeness
we also note that if the water electrolysis is carried out in
an accelerating reference frame, e.g., during parabolic flights,
additionally corresponding fictitious forces need to included
in the equation of motion [49]. In summary, Eq. (1) can be
written as

mb a = F = Fb + Fh + Fe. (12)

As will be described in the following section, the computa-
tional approach for calculating the bubble dynamics consists
of considering a bubble at fixed position and performing
transient simulations from a resting electrolyte at ambient
temperature for a certain period of time to allow for the flow
and the temperature profiles at the bubble to reach a qua-
sistationary regime. As this approach neglects the effects of
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accelerated bubble motion, forces accounting for acceleration
need additionally to be considered: the added mass force and
the history force [50]. Thus, the equation of motion can be
further specified as

(mb + ma) a ≈ Fb + Fh + Fe + Fhs. (13)

The mass of the bubble mb = Vbρg results from the bubble
volume Vb and the density of the gas ρg. In the calculation, the
density of air at atmospheric pressure is used. The added mass
ma accounts for the effort of accelerating the nearby fluid and
essentially slows down a transient change of bubble velocity.
For a sphere moving in a large fluid media, the added mass
is half of the displaced fluid mass ma = 0.5Vbρ f [51], where
ρ f is the density of the fluid. Since ρg � ρ f , mb � ma. The
history force Fhs, also known as the Basset force, originates
from the unsteadiness of the fluid flow as well and additionally
accounts for the time history of the flow conditions nearby
[52]. A general formulation of the history force is given by
[52]

Fhs(t ) = 6πμRb

∫ t

−∞
K (t − s)

d (V − U )

ds
ds. (14)

Here, V is the flow velocity, U is the bubble velocity, and K
is the kernel function which depends on the exact flow con-
figuration. Various kernel functions and computation methods
have been proposed; for more detail see [52–54]. Combining
the discussion above, the equation of motion of the bubble can
be given by

ma a ≈ Fb + Fh + Fe + Fhs. (15)

When the bubble is at a force equilibrium, the acceleration of
the bubble is zero, i.e., a = 0, and Eq. (15) then becomes

Fb + Fh + Fe + Fhs ≈ 0. (16)

III. METHODS

A. Simulation

Figure 3(a) shows a representative shadowgraph image of
a H2 bubble on a Pt microelectrode, and Fig. 3(b) specifies the
corresponding computational domain (axisymmetric) used in
this study. It can be seen in Fig. 3(a) that the bubble is situated
on a layer of microbubbles that are continuously generated
by the hydrogen evolution reaction at the cathode. Depend-
ing on the experimental details, the layer thickness (denoted
by δ) and its radial extension (denoted by Rg) may vary. In
the simulations, the layer, as shown in green in Fig. 3(b),
is assumed to homogeneously consist of gas only. The gas
bubble growing on the gaseous carpet by coalescence with the
microbubbles is shown in blue in Fig. 3(b) and has the radius
Rb. A deformation from the circular shape can be observed
in the lower bubble part in Fig. 3(a). This deformation will
be denoted by ε in the following. As ε may become larger
than δ (see also [9]), this detail is important and will be
first considered in the simulations. The bubble deformation is
implemented in the model in a simplified manner by drawing
a tangent to the spherical bubble from the outer corner of the
gas layer. The gas coverage of the cathode can be defined as

� =
(Rg

Re

)2

× 100, (17)

where Re denotes the electrode radius. Varying the radius
of the gas layer can be expected to strongly affect the total
resistance of the cell to the electric current. We note here that
considering the gas carpet to be a uniform gas layer in the
model is an approximation, whereas in reality it consists of
a large number of microbubbles feeding the bigger “mother”
bubble. Therefore, � as defined and used in the model is
meant to capture the net insulating effect of the gas layer on
the microelectrode, even though the detailed description might
differ. Since the net electrode coverage is difficult to extract
with reasonable accuracy from the shadowgraph images, �

is implemented as a model parameter. Thus, Rb, δ and ε are
taken from measurements, and Rg is adjusted jointly with the
cell voltage in the simulations to match the cell current, as
described below. Finally, Rc denotes the inner radius of the
cell, and θ is the angular position along the bubble interface.

Next, the simulation methodology is briefly sketched. As
it closely resembles earlier work, for further details we refer
to [9,13]. The computational domain is shown in Fig. 3(b).
The bubble interface is assumed to be nondeformable, hence
the Navier-Stokes equation [Eq. (18c)] and the continuity
equation [Eq. (18b)] are only solved in the electrolyte. The
bubble is kept at a fixed position in both the stationary and
the oscillatory growth modes. The electric current in the cell
provides a source of heat in the electrolyte, which is convected
and conducted throughout the cell. Eq. (18d) is the heat equa-
tion solved in the electrolyte. The last term (|−→j |2/σe) captures
the Joule heating due to electric current. A Laplace equation of
the electric potential (φ) is solved in the electrolyte. The elec-
tric potential distribution is required to calculate the electric
current density distribution

−→
j = −σe∇φ in the cell, which

is used to calculate the nonuniform rate of heat generation in
the electrolyte. σe denotes the electrical conductivity of the
electrolyte. Thus, the governing equations to be solved in the
electrolyte are

∇2φ = 0, (18a)

∇ · −→u = 0, (18b)

ρ

(
∂−→u
∂t

+ (−→u · ∇)−→u
)

= −∇p + μ∇2−→u , (18c)

ρCp

(
∂T

∂t
+ (−→u · ∇)T

)
= k∇2T + |−→j |2

σe
, (18d)

where −→u is the flow velocity vector, p is the pressure, ρ is
the electrolyte density, μ is the viscosity of the fluid, Cp

is the specific heat of the fluid, T is the temperature, and k
is the thermal conductivity. In all other domains, namely the
electrodes, the glass cuvette, and the bubble, only the transient
heat diffusion equation is solved:

ρ Cp
∂T

∂t
= k∇2T . (19)

Next we discuss the boundary conditions. Temperature
boundary conditions are needed at the outer boundaries of
the entire computational domain and at the symmetry axis.
At the right edge of the computational domain, an adiabatic
boundary condition ∂T/∂n = 0 is applied, whereas the top
and bottom edges are maintained at ambient temperature
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TABLE I. Relevant timescales (see text below):.

ta (s) tm (s) tth (s) to (s)

0.01 0.3 2.1 0.01

T = Tamb. At the left side, for the symmetry axis ∂T/∂n = 0
applies.

Since the Eqs. (18) are solved only in the electrolyte
domain, the boundary conditions are needed only at the re-
spective boundaries. For Eq. (18a) the boundary conditions
are as follows: at the anode surface it holds that φ = �φsim,
and at the cathode surface exposed to the electrolyte it holds
that φ = 0. All other boundaries are insulating, i.e., ∂φ/∂n =
0. We note here that �φsim is varied with � such that the
cell current measured (Iexp) in the experiment matches the
simulation (Isim). Further details on the choices made will be
described below.

For the fluid flow, at the boundaries that represent the
interface between gas and electrolyte, the tangential stress
balance of Eq. (10) is applied along with a free slip boundary
condition. The surface tension is taken to be a linear function
of temperature. Since the temperature rise we deal with is
not too large (see below and Ref. [12]), this model gives a
realistic distribution of surface tension along the interface. At
the remaining boundaries, a no-slip condition applies.

Equations (18) along with the boundary conditions are
solved by using the finite element method (FEM) package
COMSOL 5.5. The electrolyte has the initial conditions of−→u = 0, p = 0, and φ = 0, and the whole domain is initially
at ambient temperature Tamb = 25 ◦C. The computations are
carried then out for a period of 1 s, until which a quasistation-
ary regime has built up in the vicinity of the bubble [12]. To
better motivate the computational approach, in the following
relevant timescales and nondimensional parameters are ana-
lyzed. The timescales of various transport mechanisms can
be obtained as follows: advection timescale ta = Rb/U , mo-
mentum diffusion timescale tm = R2

b/ν, and thermal diffusion
timescale tth = R2

bρc/k. When using a representative velocity
value of U = 50 mm/s, a bubble radius of Rb = 0.5 mm and
the material properties given in Appendix C, Table I sum-
marizes the relevant time scales. As can be seen, momentum
advection is much faster than momentum diffusion, but after
1 s a quasistationary regime can be assumed to be obtained. As
thermal diffusion will come into effect only later, the simula-
tions over 1 s are expected to capture the dominant transport
physics. However, in the case of bubble oscillations, a lateral
oscillation frequency of the bubble of about 100 Hz can be
assumed [9]. Thus, the oscillation timescale (to) is quite small,
and the results obtained should be interpreted with care, as
obviously the effect of oscillatory transients on the transport
physics is not fully resolved.

Important nondimensional parameters of the problem are
the Reynolds number characterizing the flow driven around
the gas bubble, the Péclet number characterizing the ratio
of heat advection and diffusion, and the Marangoni number
characterizing the importance of thermocapillary effect. As
known from the current and also earlier simulations, large cur-

FIG. 4. Time characteristics of the calculated forces for case
(a) of Table II.

rent density values of about |−→j | ∼ 107 A/m2 are found near
the outer edge of the cathode where the temperature hot spot
occurs [13]. When using �T = 20 K as a representative value
for the local temperature rise [12], we obtain Re = ρ URb

μ
≈

25, Pe = URb
α

≈ 180, and Ma = − β �T Rb

μα
≈ 104, where ν =

μ

ρ
is the kinematic viscosity and α = k

ρCp
is the thermal

diffusivity of the electrolyte. We see from the Reynolds num-
ber that the electrolyte flow can be expected to be laminar,
but since Re > 1 the inertia term can not be neglected in
Eq. (18c). The large Péclet number points to the dominant
nature of convective heat transfer in the electrolyte, and the
very large Marangoni number clearly emphasizes the thermo-
capillary effect as the primary driving factor of the electrolyte
flow. We finally mention that, for the short integration times
considered, the effect of solutal buoyancy may safely be ne-
glected [12].

In order to validate the computational approach, a charac-
teristic temporal behavior of the forces calculated is shown in
Fig. 4. As can be seen, the values quickly reach a plateau and
thus represent a quasistationary estimate of forces. We also
draw attention to the magnitudes of the forces. It can be seen
in Fig. 4 that Fh = Fn + FM = Fp + Fv , as already discussed
in Sec. II. We can also see that Fp is an important contributing
factor to Fh [14] and thus to the force balance of the bubble.

B. Experiment

The experiments were performed in an electrolysis cell
that is sketched and dimensioned in Fig. 1(a). The bub-
ble evolution and the electrolyte velocity were measured
using shadowgraphy and microparticle tracking velocimetry
(µPTV). The electrochemical setup is similar to [12,55]. A
Pt wire acts as a pseudoreference electrode [≈ 0.48 V vs
reversible hydrogen electrode (RHE) for 0.5 M H2SO4]. The

TABLE II. Simulation parameters for non- and preoscillating
cases (cf. Fig. 5): φc, Db, δ, ε, and Iexp were obtained by measure-
ment; � is a model parameter and was obtained by properly adjusting
the cell current Isim.

Case φc (V) Db (μm) δ (μm) ε (μm) � Iexp (mA) Isim (mA)

(a) −3 634 9 6 84.6 2 2
(b) −7 645 1 7 99.6 1.17 1.25
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(a) φc = −3 V (b) φc = −7 V

A. Nonoscillating bubble

FIG. 5. Transient behavior of the cell current during one bubble evolution cycle at (a) φc = −3 V and (b) φc = −7 V electrode potentials
for c = 0.5 M H2SO4 solution. The red lines correspond to the parameters given in Table II; the blue line corresponds to Fig. 3(a).

electric potential of the working electrode with respect to
the reference electrode is henceforth referred to as φc. The
cell voltage, given by the difference of anode and cathode
potential, is �φexp = φa − φc, where φa is the potential of the
anode with respect to the reference electrode. We also use the
subscripts exp and sim to draw attention to the difference in
the same quantity between measurement and simulation.

A Zahner electrochemical workstation is used to operate
the cell in potentiostatic mode, i.e., with constant electric
potential of the working electrode with respect to the reference
electrode. During the experiments, for a time period of 30 s,
the electric current was recorded with a sampling rate of 1 or
2 kHz when using either shadowgraphy or PTV, respectively.

The PTV setup consists of a green laser (Photonics,
Nd:YLF 527 nm, 20 mJ) and a high-speed camera (Phan-
tom, VEO 410L) connected to a stereo microscope (ZEISS,
SteREO Discovery.V8), closely resembling Refs. [11,12]. The
laser is connected to the microscope via a glass fiber. The
frame rate of the camera is 2 kHz and the spatial resolution
of the microscope system is 307 pixels/mm. A concentration
of 0.009% w/v monodisperse fluorescent polystyrene parti-
cles (microParticles GmbH, PS-FluoRed, 530 nm/607 nm) of
5 μm diameter were seeded into the electrolyte. The particles
have a density of ρPS = 1.05 g/cm3, making them neutrally
buoyant. The green laser light passes through the electrolysis
cell placed in front of the microscope, through the glass fiber
connected to the side of the microscope, i.e., providing a volu-
metric illumination. The fluorescent particles adsorb the green
light and re-emit red light, which goes back to the microscope
and to the camera sensor via a band-pass filter. The series of
images of the particles provided over a time interval are pro-
cessed by the commercial PTV software DaViS 10, yielding
a two-component velocity of each particle over time. Because
of the fast bubble oscillation frequency of about 100 Hz, the
resultant tracks of the particles were calculated over 5 to 10
images and then averaged over several bubbles.

Shadowgraphy was used to capture high-resolution images
of the bubble evolution with time. The shadowgraphy system
consists of the high-speed camera (IDT Os7–S3) connected
to a microscope (Thalheim SpezialOptik Pulsnitz, Germany),
providing a spatial resolution of 1000 pixels/mm. An LED
light illuminates the electrolysis cell, which is placed between
the camera and the light source. The image recording was

carried out at a frame rate of 1 kHz. A picture is shown by way
of example in Fig. 3(a). These images were analyzed to obtain
the geometric features of the bubble (Rb, δ, ε). To ensure that
conditions were similar between the shadowgraphy and µPTV
measurements, the same amount of fluorescent particles was
added to the solution for the shadowgraphy experiments.

IV. RESULTS AND DISCUSSION

In this section, we discuss specific time instants of two
characteristic bubble evolution regimes, applying the simu-
lation and measurement methods described in the previous
section. Depending on the electrolyte concentration (c) and
the electrode potential (φc) applied, different regimes of bub-
ble evolution are observed in the experiments. Generally, in
lower c and at lower φc, the bubble is observed to grow
steadily until it simply detaches, whereas at higher values of
c and φc it is seen to undergo position oscillations prior to de-
tachment [44]. These two regimes are reflected in the temporal
behavior of the cell current measured over the lifetime of the
bubble. Steady growth and departure can be seen in Fig. 5(a),
whereas in Fig. 5(b) the regime during growth changes from
stationary to oscillatory bubble dynamics, as seen from the
fact that the current oscillations grow with time in the second
half of the bubble cycle.

A. Nonoscillating bubble

At time instants when the bubble is steadily growing on
the electrode carpet and not undergoing additional motion, the
bubble is in a state of equilibrium of forces. If the instant is
in the later part of the growth cycle, the growth rate is small
enough that history effects (Fhs) can be safely neglected. Thus,
under the assumption of a uniform interfacial charge density
(σ ), Eq. (16) gives us

σ = −Fb + Fh

fe
, (20)

where, fe = ∫
E dA. Now we choose two instants of force

equilibrium when the bubble is not oscillating as shown in
Fig. 5, namely,
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TABLE III. Simulation results of forces and surface charge density for non- and preoscillating cases.

Case FM (μN) Fp (μN) Fv (μN) Fh (μN) Fb (μN) fe (Vm) σ (mC/m2)

(a) −0.21 −0.43 −0.16 −0.59 1.31 −3.3 × 10−4 2.18
(b) −0.17 −0.5 -0.14 −0.64 1.38 −3.38 × 10−4 2.19

(a) a time instant just before detachment for a scenario
when the bubble is not oscillating at all, henceforth referred
to as nonoscillating;

(b) a time instant before the bubble starts to oscillate,
henceforth referred to as preoscillating.

The parameters used in the simulations are given in Table II
and Appendix A. For the remaining small difference in the
current values in case (b) we also refer to the discussion
in Sec. IV B. The force components and the surface charge
density obtained from the simulations are shown in Table III.
The surface charge density, given in the rightmost column, is
calculated using Eq. (20). The two values are close to each
other and are furthermore in good agreement with the value
of σ = 1.98 mC/m2 reported earlier by Bashkatov et al. [9]
without the model improvements considered in this work.

B. Oscillating bubble

1. Correlation of simulations with measurements

Now we look in detail at the oscillatory bubble behavior
close to departure. Table IV shows the experimental and sim-
ulation data near the time instant marked blue in Fig. 5(b) for
the lowest and the highest bubble positions. Further details
on the choice of the potential ��sim and the gas coverage
� in the oscillatory regime are given in Appendix A. As
can be seen, at the highest bubble position, a perfect match
of the cell current in experiment and simulation is obtained
by adjusting the carpet size in the simulations to � = 54.76.
However, at the lowest bubble position, there is still a small
difference in the electric current values. Here, even when the
gas coverage of the electrode is close to 100, the cell current
in the simulation is still stronger than in the experiment. This
is due to the fact that, as mentioned in Sec. III A, the nature
of the gas carpet is not uniformly insulating as assumed in
the model. Hence, electric current can pass through films
of electrolyte between the small bubbles that constitute the
carpet, increasing the resistance to the current while the gas
coverage (�) of the electrode remains the same. This leads to
a smaller current in the experiment compared to the simulation
even when � > 99.

2. Electrolyte velocities in the vicinity of an oscillating bubble

Figures 6(a) and 6(b) show the flow velocity measured by
µPTV near the lower half of the bubble at the top and bottom

TABLE IV. Simulation parameters and experimental data near
the time instant marked blue in Fig. 5(b). φc = −7 V.

Position Db (μm) δ (μm) ε (μm) � Iexp (mA) Isim(mA)

Lowest 985 0 13.21 99.92 0.3 0.9
Highest 985 14.35 33.04 54.76 7 7.00

positions during one cycle of oscillation. Figures 6(c) and
6(d) show the flow velocity obtained from simulations. It can
be seen that the calculated flow velocities are in qualitative
agreement with the measured velocities. At first sight, the
electrolyte flow at both bubble positions is in good qualitative
agreement with the flow measurements in the stationary bub-
ble regime performed by Massing et al. [12]. As can be further
seen, the interfacial flow is stronger at the highest bubble
position [Fig. 6(a)] than at the lowest position [Fig. (6)]. This
correlates well with the higher current at the top position (see
Fig. 2) due to a lower Ohmic resistance, which then causes a
stronger thermocapillary effect. As the thermocapillary effect
decreases at the bottom position, the flow velocity is lower.
The proximity of the bottom wall during the lower half of the
oscillation may also be expected to exert a stronger damping
effect on the electrolyte flow in general.

Next, we discuss the flow velocity profiles at the interface
and to draw a more detailed comparison between the simula-
tions and measurements. The simulations were carried out for
one oscillation cycle and for the experimental and simulation
parameters given in Table IV. Figure 7 shows the velocity
profiles at the topmost (a) and the bottommost position (b)
of the bubble as a function of angular position (θ ). The exper-
imental profiles shown in Fig. 7 are extracted from Figs. 6(a)
and 6(b). Because of the finite size of the tracer particles, the
simulation results are shown at different distances from the
bubble interface [12].

In general, the nature of the velocity profiles is similar to
previous findings [12–14]. It can be seen in Fig. 7 that the
predicted velocity compares well with the measurement at
the upper oscillation position, whereas significant deviations
occur at the bottom position. At the upper bubble position,
the low gas coverage of the electrode, along with the large δ
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FIG. 6. Flow velocity as obtained from µPTV measurements
(top) and simulations (bottom) in the highest position (left) and the
lowest position (right) of the bubble oscillation during one cycle.
Please note the different velocity scales.
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(a) (b)

(deg) (deg)

FIG. 7. Comparison of the flow velocities between simulation and measurement at (a) highest position and (b) lowest position of the
bubble oscillation during one cycle. The simulation results are shown at various distances from the bubble interface, indicated by blue lines.
The red symbols capture the measurement points from µPTV and the red line represents the polynomial fit. The angular position θ is defined
in Fig. 3(b).

and ε, causes a comparably low electrical resistance, which
is then evident in a high cell current. This causes consider-
able Joule heating and, in turn, steep interfacial temperature
gradients, leading to a strong thermocapillary flow of about
70 mm/s near the bubble foot. As can be seen in Fig. 7(a),
this phenomenon is captured well in the simulation. Similarly
to Massing et al., an almost perfect match between the peak
velocity and the peak angle is obtained for the simulated
profile at 5 μm, which corresponds well with the size of the
tracer particles [12]. At larger angles of θ > 40◦, the measured
velocity amplitude seems to decrease faster than the velocity
simulated. This difference could be due to unaccounted-for
solutocapillary effects present in the experiment, as hypoth-
esized by Meulenbroek et al. [14]. However, we would also
like to note at this juncture that the presence of the particles
added to the electrolyte to perform the PTV experiments
may also alter the behavior of the interface. It is likely that
these particles reduce the mobility of the interface, which
points to the same qualitative difference seen between the
measurements and calculations. As the bubble moves down,
the cell current decreases and thus so does the driving force
of the thermocapillary flow. Indeed, for the quasistationary
simulation at the low position of the bubble, the predicted
amplitude of the thermocapillary flow is very weak, as seen
in Fig. 7(b). However, as the bubble rapidly sinks during
its fast oscillatory motion, though the cell current and thus
the heating decrease immediately, the thermocapillary flow
from the top position has not yet completely decayed (see
the timescales shown in Table I). Thus, a residual flow is also
captured in the measurement. The amplitude of the interfacial
flow measured is about half the amplitude measured at the top
position. Thus, the difference between the numerical predic-
tion and measurement seen in Fig. 7(b) originates from the fast
timescale of the bubble oscillation, which is not completely
taken into account considering the quasistationary nature of
our simulation approach. A further difference appears with
respect to the angular position at which the velocity is at a
maximum. Compared to the top position of the bubble, the
maximum at the low position appears at larger angles, in
both the measurement and simulation. Moreover, this angle
is now larger in the measurement than in the simulations
(5 μm). This points to the conclusion that this shift in the
maximum angle is caused partially by the geometric changes

between the bottom and top positions of the bubble, as can
be seen in the simulation result, and mainly by the decaying
thermocapillary flow originating from the top position, which
continues to move electrolyte upwards as the bubble moves
down.

3. Quantification of forces

In this section, we discuss the forces acting on the bubble
during one oscillation cycle. We start by obtaining an approx-
imation for the history force. As the bubble deformation is
small (ε � Rb), we use the expression for a sphere given by
[50]

Fhs = −6R2
b
√

πρμ

∫ t

0

U̇ (s)ds√
t − s

. (21)

Based on a harmonic bubble oscillation given by U (t ) =
U0 sin(ωt ), we also derive a simplified expression. Further
details of the derivation for the history force are given in
Appendix B. To quantify the history force, the values of the
parameters used in the calculation are U0 = 1 mm/s, ω =
200π , Rb = 0.5 mm, ρ = 1000 kg/m3, μ = 8.9 × 10−4 Pa s.
The force values obtained during about three bubble oscil-
lations are shown in Fig. 8, superimposed with the bubble
velocity U . As can be seen, the history force oscillates with the
same frequency as the bubble does, with maxima and minima
slightly ahead in time of the bubble velocity. The magnitude
of the history force amounts to about 0.1 μN only and hence
is much smaller than the buoyancy force [see Fig. 9(d)]. Thus,

FIG. 8. Temporal behavior of the history force and the bubble
velocity in the oscillatory mode.
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FIG. 9. (a) Consecutive frames from shadowgraphy showing position oscillations of the electrogenerated bubble during one cycle prior to
departure. (b) Measured cell current and the simulated cell current at seven instants of time. (c) Corresponding experimental and simulation
parameters. (d) The forces acting on the bubble. For details see text.

the influence of the history force due to position oscillations of
the bubble is neglected in the following, and the force balance,
Eq. (16), becomes

Fb + Fh + Fe = 0. (22)

Now, we focus on quantifying the hydrodynamic force
(Fh) and the electric force (Fe) during the bubble oscillations.
For this, one oscillation cycle just before the detachment of
the bubble is depicted. At seven instants of time within this
cycle, simulations as described in Sec. III A are performed
based on the geometric and current parameters obtained from
experimental data. Figure 9(a) shows the seven consecutive
frames of bubble images captured during the experiment using
high speed shadowgraphy. With the help of the horizontal red

line guiding the eyes, it can be seen that the bubble undergoes
position oscillations. One full cycle is shown. The bubble
diameter is 985 μm. The right- and leftmost frames depict the
bubble at the highest position, while the middle frame shows
the bubble at the lowest position. Figure 9(b) shows the cell
currents obtained from the simulation of each case (Isim) along
with the cell current measured (Iexp) during the experiment. In
Fig. 9(c), the carpet thickness (δ) and the bubble elongation
(ε) along with the values of � used in each simulation are
shown at each of the chosen instants.

From Figs. 9(a), 9(b), and 9(c), it can be seen that as the
bubble undergoes the position oscillation the associated phys-
ical parameters vary periodically in time during one cycle.
Around the highest position of the bubble, δ and ε attain
their maximum values. We also see that the cell current is
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largest at the highest position obtained in the experiment by
a small electrode gas coverage (�). During the course of the
oscillation cycle, as the bubble moves down, δ and ε decrease
and � increases. The cell current also drops as the resistance
to electric current increases at the bottom position. This trend
is then reversed as the bubble starts to move upward again.

Figure 9(d) shows the variation in the hydrodynamic force
(Fh), Marangoni force (FM), and electric force (Fe) as obtained
from the simulation, along with the buoyancy force (Fb) acting
upward. Since an estimation of the interfacial charge density
(σ ) is required to calculate Fe, one further calculation was
carried out at the instant of bubble detachment, marked with a
purple cross at t = 2.337 s in the Iexp(t ) curve in Fig. 9. The
parameters used in the simulation are as follows: Db = 2Rb =
985 μm, δ = 18.17 μm, ε = 32.83 μm, Iexp = −7.51 mA,
Isim = −7.4 mA, � = 54.76. We then use Eq. (20) to calcu-
late the surface charge density and obtain σ = 2.07 mC/m2,
which is in good correlation with the value we obtained for a
stationary bubble in Sec,tion IV A. This value is then used in
the Fe calculation plotted in the bottom panel of Fig. 9.

Since the bubble does not grow much during the one oscil-
lation period considered, the upward acting buoyancy force Fb

remains nearly constant. In contrast, FM , Fh, and Fe are acting
downward and vary during the oscillation cycle. Since FM is
part of Fh, FM < Fh. The downward forces act as a restoring
mechanism against the departing action of buoyancy and lead
to the oscillatory mode of the bubble dynamics. According to
Eq. (14),

FT = Fh + Fe + Fb (23)

is the total force acting on the bubble, which is also plotted
in Fig. 9(d) alongside all the other forces. The action of the
electric force Fe as an important part of the force balance was
first introduced by Bashkatov et al. [9] to explain the observed
position oscillations and to obtain good correlation between
the model prediction and observation in terms of oscillation
frequency and amplitude. Since the effect of flow physics on
the oscillatory dynamics was left for future study by Ref. [9],
the temporal behavior of FT shown in Fig. 9(d) captures a
first approximation of such effects. As can be seen, the total
force FT periodically changes its sign, which is in line with
the position oscillations observed, but the magnitudes of FT

near the bottom position are much greater than near the top
position of the bubble. It appears likely that this is at least
partly caused by the underestimation of the Marangoni force
FM and consequently the hydrodynamic force Fh in the lower
bubble positions. As already discussed in Sec. IV B 1, and
as can be seen in Fig. 7(b), the magnitude of the electrolyte
flow during the bottom half of the bubble oscillation is not
fully captured by the simulations conducted at fixed bubble
positions. Thus, we overestimate FT in the lower half of the
position oscillation, which may contribute to the observed
behavior of FT . Further asymmetric contributions may result
from the top-bottom asymmetry in the geometry, as seen
from the temporal behavior of, e.g., the bubble deformation
ε during the oscillation and possible additional details from
nonlinear dynamics. To examine the correlation of the total
force and the bubble motion in detail, at t = 2.32 s the bubble
is at the lowest position and the total force as calculated
reaches a maximum in the upward direction, which causes

the bubble to move up. Eventually, the bubble attains force
equilibrium at 2.322 < t < 2.324 s. Then the bubble deceler-
ates as FT becomes negative, and comes to a stop at 2.326 s.
FT = −0.025 μN in the highest position. A similar (mirror
image) trend is also expected in the left half of the FT (t ) curve
where the bubble moves downward. As FT = −0.006 μN at
t = 2.314 s, the FT curve crosses the zero line immediately
after the zero line, though this is not clearly visible in Fig. 9.
Even though our model contains simplifying assumptions
which do not fully account for rapid transient effects, the
calculated temporal behavior of total force provides a good
qualitative correlation with the observed oscillatory bubble
motion.

V. CONCLUSION

The present work provides a detailed investigation of the
complex dynamics of hydrogen bubbles growing above a
carpet of microbubbles at a microelectrode. The focus of
the work is on gaining an improved understanding on the
oscillatory bubble behavior prior to departure that occurs at
strongly negative electrode potentials in an acidic electrolyte.
Compared to earlier work [9], this is achieved by analyzing
the full set of relevant forces quantitatively, which are the
buoyancy force, the electric force, and the hydrodynamic
force caused by the thermocapillary effect. Besides, the minor
influence of history force effects and the bubble-carpet inter-
action is discussed. The numerical simulations of the bubble
dynamics performed now resemble the geometric aspects and
experimental conditions in more detail than before [9]. They
account for the bubble deformation, and, in order to match the
cell current measured in the experiments, the cell voltage and
the degree of gas coverage of the electrode are now adjusted
accordingly. This clearly advances the overall accuracy of
the simulations and allows a detailed quantitative analysis
of the bubble forces acting during the oscillations. Besides,
further support to an improved understanding is given by PTV
velocity data that characterize the electrolyte flow pattern at
time instants during the fast lateral bubble oscillation. These
were obtained by phase averaging over a number of oscillation
cycles.

In situations where the bubble is nearly resting, the force
balance can be used to estimate the electric charge density of
the bubble. We found that the results of the simulations for a
bubble either shortly before the lift-off in stationary mode or
shortly before the onset of oscillations deliver values close by
(σ = 2.1 ± 0.1 C/m2), which interestingly also nicely match
with the value obtained in earlier research [9]. This clearly
gives strong support for the role of the electric force in the dy-
namics of electrolytic bubbles that has been considered only
little so far. Whether the charge density is indeed spatially
constant along the bubble surface that is exposed to a strongly
inhomogeneous electric field near the microelectrode cannot
be answered by this work. In that sense, the value of σ might
more safely be considered as a mean charge density.

When analyzing the oscillatory regime, it is found that the
full set of forces considered delivers a total force on the bubble
that is oscillating with time accordingly. This confirms that
the oscillatory motion is enabled by the electrode-distance-

035105-11



SYED SAHIL HOSSAIN et al. PHYSICAL REVIEW E 106, 035105 (2022)

TABLE V. Values of �φsim and � for different simulation cases
at two cathode potentials φc.

Case φc (V) �φsim (V) �

Fig. 5(a) −3 2.5 84.6
Fig. 5(b) −7 3 99.6
Fig. 7(a) −7 4.5 54.76
Fig. 7(b) −7 4.5 99.92
Fig. 9 −7 4.5 Varied, cf. Fig. 9(c)

varying amplitude of the electric and the hydrodynamic forces
that act downward against buoyancy.

We have to admit that the results of the numerical anal-
ysis performed may partly be influenced by the remaining
approximations of the simulation model. As can be seen
from the comparison of the interfacial velocity profiles during
the bubble oscillation from measurement and simulation (see
Fig. 7), the thermocapillary motion of the bubble interface
is underestimated in the simulations at lower points of the
bubble position. This is due to the fact that the quasisteady
approach we take in the simulations cannot account for inertial
parts of the interfacial motion that are still visible here due to
the fast oscillatory bubble dynamics at about 100 Hz. In future
research, it would be therefore useful to directly take into
account the vertical bubble motion, e.g., by using a moving
mesh method. We have further to admit that the procedure
of picking a proper couple of potential and carpet size values
leaves some level of ambiguity. It would be therefore desirable
to perform future experiments that deliver data of the tem-
poral evolution of the geometry and also the inner structure
of the carpet of microbubbles at higher resolution, which
would allow for a further improved simulation model. Finally,
the interesting question how the experimental conditions, e.g.
potential and acid concentration, influence the arising of the
different bubble growth modes will be addressed in a future
work [44].
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APPENDIX A: CHOICE OF �φsim AND �

Here we discuss the choices of � in conjunction with the
potential difference between the cathode and anode (�φsim)
applied in the simulation. The values of the (�φsim,�) pair
for the simulation results presented in this study are given in
Table V.

We start with the case shown in Fig. 7(b). As we expect
almost full gas coverage of the electrode at the low oscillation
position, a large value of � is chosen. Then, �φsim is applied
such that a close match between the Isim and Iexp can be
obtained. This same value of �φ is then applied for the case
of Fig. 7(a) and the different instants of Fig. 9, and � is
adjusted to obtain a good correlation between the calculated

TABLE VI. Various combinations of (�φ,�) pairs for Fig. 5(a).

�φsim (V) � Isim (mA) Iexp (mA) σ (mC/m2)

a 2.4 54.76 2.09 2 2.30
b 2.5 84.6 2.01 2 2.18
c 3 98.8 2.08 2 1.52

and measured cell currents. For Fig. 5(b) a similar method is
applied, but since the time instant is different, i.e., the cell
current and the bubble size are different, a different value of
�φ is obtained when the gas coverage of the cathode is almost
full.

Next, we discuss the (�φsim,�) pair for Fig. 5(a). Since
�φsim and � jointly determine Isim, in this case it is possible to
choose different pairs that give the same cell current. Though
the result for one particular set of (�φsim,�) pairs is given
in Sec. IV A, in Table VI we show the calculated surface
charge density (σ ) values at various (�φsim,�) pair values
producing a good match between Isim and Iexp. The results of
row b in Table VI are shown in Sec. IV A. At values of �

which are less than the value given in Table VI row a, the
gas coverage is too low to be physically realistic, whereas
Table VI row c captures the upper limit, since � < 100. Thus,
within the limits of the model, the range of σ estimation lies
within 1.52–2.3 mC/m2; this correlates well with the range of
experimental measurements reported in the literature [9].

Next, we discuss the cell voltage from an electrochemi-
cal standpoint and how it relates to the potential difference
between the cathode and anode applied in the simulation,
namely �φsim. The cell voltage, as defined electrochemically,
is obtained as the difference in electric potential between the
anode and the cathode and is given by [56]

V = ηs,anode + ηc,anode + Ueq

+��ohm − ηs,cathode − ηc,cathode (A1)

Here, V is the cell voltage, ηs is the surface overpotential and
ηc is the concentration overpotential at the electrodes, Ueq is
the equilibrium potential, and ��ohm is the potential drop
due to Ohmic resistance. In our current model, we neglect the
effects of overpotential at the electrode-electrolyte junction,
thus �φsim attempts to capture the contribution Ueq + ��ohm

in Eq. (A1). Ueq = 1.23 V, from the thermodynamics of the
electrochemical reaction [57]; as a result, the potential distri-
bution in the cell as determined in the simulation (φ) deals
with the Ohmic losses.

In the electrochemical cell, the Ohmic resistance to the
cell current has multiple contributions, namely, the large H2

TABLE VII. Properties of the electrolyte and the interface used
in the simulations.

μ 10−3 Pa s
σe 20 S/m
ρ 103 kg/m3

Cp 4.182 kJ/kg K
k 0.58 W/m K
β −1.6 × 10−4 N/(m K)

035105-12



FORCE BALANCE OF HYDROGEN BUBBLES GROWING … PHYSICAL REVIEW E 106, 035105 (2022)

TABLE VIII. Material properties of the electrodes, the glass
cuvette, and the gas bubble.

Material ρ (kg/m3) Cp (kJ/kg K) k (W/m K)
Platinum 21450 0.13 72
Glass 2201 1.052 1.38
Hydrogen 0.09 14.32 0.186

bubble growing on the Pt microelectrode or the cathode, the
collection of smaller bubbles that covers the cathode, the O2

bubbles covering the anode and, finally, the resistance pro-
vided by the electrolyte. However, the largest contribution to
the total cell resistance comes from the H2 bubble. Thus it can
be written that

��ohm = ��H2 + ��carpet + ��electrolyte + ��O2 . (A2)

In the model, the geometric features of the large H2 bubble
(Rb and ε) are taken from the experiment. The resistance
provided by the bubble (��H2 ) is therefore captured well
in the model. The thickness of the carpet layer (δ) is also
measurable in experiment and is fed into the model. Since
it is not possible to directly resolve the gas coverage of the
cathode [Rg in Fig. 3(b)] accurately in the experiment, the Rg

value chosen and thus � represent a model parameter which in
turn determines the value of ��carpet captured by the model.
As the current path in the simulation does not exactly mimic
the placement of the anode in the experiment, we expect a dif-
ference in the ��electrolyte between the model and experiment.
Lastly, ��O2 is not present in the simulation since we ignore
the O2 bubbles in the model. Accordingly, the cell voltage
that can be measured during an electrochemical experiment
and the difference in potential between the cathode and the
anode that is applied in the model are not exactly the same.
Since the current distribution around the H2 bubble is the
major determining factor for the interfacial phenomena for
an electrolytic bubble growing on a microelectrode [12], we
match the cell current with the knowledge that the resistance
to the cell current close to the cathode is captured well in the
model.

APPENDIX B: CALCULATION OF HISTORY FORCE

Let us assume that the particle is executing a simple har-
monic motion given by U (t ) = U0 sin(ωt ). We now want to

evaluate the integral contained in the history force,

I =
∫ t

0

U̇ (s) ds√
t − s

. (B1)

Substituting the expression for particle velocity,

I = U0ω

∫ t

0

cos(ωs)√
t − s

ds. (B2)

Let us say that t − s = x2. Substituting in the above, we obtain

I0 = 2 sin(ωt )
∫ √

t

0
sin(ωx2) dx

+ 2 cos(ωt )
∫ √

t

0
cos(ωx2) dx, (B3)

where I0 = ∫ t
0

cos(ωs)√
t−s

ds. Now, we perform one more variable

transformation, namely ωx2 = π/2y2, and get

I0 =
√

2π

ω

[
2 sin(ωt )

∫ √
2ωt
π

0
sin

(
πy2

2

)
dy

+ 2 cos(ωt )
∫ √

2ωt
π

0
cos

(
πy2

2

)
dy

]
. (B4)

Here, we make use of Fresnel integrals, defined as Fc(τ ) =∫ τ

0 cos( πz2

2 )dz and Fs(τ ) = ∫ τ

0 sin( πz2

2 )dz, and thus we obtain
the history force acting on an oscillating particle at time t as

Fhs(t ) = −6πU0R2
b

√
2ρμω

[
sin(ωt )Fs

(√
2ωt

π

)

+ cos(ωt )Fc

(√
2ωt

π

)]
. (B5)

APPENDIX C: MATERIAL PROPERTIES

Properties of the electrolyte, as used in the simulations, are
given in Table VII. The properties of other materials are given
in Table VIII.
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