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In this article we develop an algorithm for the efficient simulation of electrolytes in the presence of physical
boundaries. In previous work the discrete ion stochastic continuum overdamped solvent (DISCOS) algorithm
was derived for triply periodic domains, and was validated through ion-ion pair correlation functions and
Debye-Hückel-Onsager theory for conductivity, including the Wien effect for strong electric fields. In extending
this approach to include an accurate treatment of physical boundaries we must address several important issues.
First, the modifications to the spreading and interpolation operators necessary to incorporate interactions of
the ions with the boundary are described. Next we discuss the modifications to the electrostatic solver to
handle the influence of charges near either a fixed potential or dielectric boundary. An additional short-ranged
potential is also introduced to represent interaction of the ions with a solid wall. Finally, the dry diffusion
term is modified to account for the reduced mobility of ions near a boundary, which introduces an additional
stochastic drift correction. Several validation tests are presented confirming the correct equilibrium distribution
of ions in a channel. Additionally, the methodology is demonstrated using electro-osmosis and induced-charge
electro-osmosis, with comparison made to theory and other numerical methods. Notably, the DISCOS approach
achieves greater accuracy than a continuum electrostatic simulation method. We also examine the effect of
under-resolving hydrodynamic effects using a “dry diffusion” approach, and find that considerable computational
speedup can be achieved with a negligible impact on accuracy.
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I. INTRODUCTION

The ability to model electrolytes in confined systems
is fundamental to the understanding of processes such as
electrophoresis, electro-osmosis, and electrochemistry. These
arise in a wide range of circumstances, including biological
systems [1] and engineered devices [2,3] such as catalytic
micropumps [4,5], batteries [6,7], and fuel cells [8–10]. Many
of these phenomena occur at scales where thermal fluctuations
play a significant role, and the need to capture these fluctu-
ations has spurred the development of a range of different
numerical methods for mesoscale modeling of electrolytes.
These include purely continuum methods [11–13] based on
generalizations of fluctuating hydrodynamics (FHD) [14], as
well as molecular dynamics models that feature either an im-
plicit [15] or explicit [16] treatment of the solvent molecules.
Other methods combine these approaches by employing a
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discrete description of particles in a fluctuating, contin-
uum solvent. Some examples include the general geometry
Ewald-like method (GGEM) [17,18], the stochastic Eulerian
Lagrangian method (SELM) [19,20], the stochastic force cou-
pling method (SFCM) [21–24], and the fluctuating immersed
boundary (FIB) method [25]. Some discussion of the rela-
tionship between these methods is given in Refs. [25,26].
While GGEM employs Green’s functions in conjunction with
a Stokes solver to apply local corrections, the remaining meth-
ods apply some form of particle-grid coupling to maintain a
Lagrangian description of the particles and an Eulerian de-
scription of the solute solvent. In this vein, the FIB method
uses immersed boundary (IB) [27] kernels to couple particles
to an explicitly simulated fluctuating solvent, enabling Brow-
nian dynamics (BD) simulations without the use of Green’s
functions. In doing so many of the difficulties associated with
traditional BD methods, such as the need to construct and
invert the mobility matrix, are avoided.

More recently, we proposed an extension of the FIB
approach called the discrete ion stochastic continuum
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overdamped solvent (DISCOS) method [26]. This approach
models electrolytes by employing a discrete description of
the ions, while modeling the solvent using the overdamped
fluctuating Stokes equations. In the overdamped limit, ion
motion is computed by spreading the forces on the particles
to a grid via the IB method, solving the Stokes equation to
compute the velocity field induced by those forces, and then
interpolating those velocities back onto the particles. The FIB
approach is extended through the use of “dry diffusion” [28],
which yields improved computational speed by allowing some
under-resolution of the hydrodynamic grid without signifi-
cant loss of accuracy. An IB variant of the particle-particle,
particle-mesh (P3M) [16,29] approach is used to calculate
electrostatic interactions, and short-range particle interactions
are calculated directly using an interaction potential such
as the Weeks-Chandler-Andersen (WCA) potential [30]. In
Ref. [26] this approach was described for triply periodic
domains, and shown to accurately reproduce ion-ion pair
correlation functions, and Debye-Hückel-Onsager theory for
conductivity, including the Wien effect for strong electric
fields.

Although a range of properties of bulk electrolytes can
be studied using triply-periodic domains, as discussed above,
many physical systems of interest feature confining bound-
aries. Aside from those mentioned above, this also includes
metal electroplating [31], and systems utilizing electrodial-
ysis [32,33] such as desalinization [34] and the utilization
of solar energy to produce fuels [35,36]. In this article we
extend the DISCOS method to include flows in the presence
of confining boundaries, including slip and no-slip walls, and
where each location on a wall is held at a specified electric
potential or treated as weakly polarizable dielectric with a
specified surface charge density.

This requires a number of nontrivial modifications to the
approach described in Ref. [26]. First, the finite volume dis-
cretization of the Stokes and Poisson solvers must be modified
to treat Dirichlet or Neumann boundaries. In particular, care
must be taken to ensure the discretization near the bound-
ary satisfies a discrete version of the fluctuation-dissipation
theorem, as discussed in Ref. [37]. Second, the method of
images is employed when a particle gets sufficiently close to
a physical boundary to correct for the fact that the particle’s
immersed boundary kernel will overlap with the boundary.
This occurs both when computing an ion’s hydrodynamic
interaction with a solid boundary and when calculating the
particle-mesh portion of the P3M method. In the presence of
boundaries when the hydrodynamics is under-resolved, the
dry diffusion becomes a “dry” diffusion tensor to reflect the
anisotropic changes in particle mobility as the particle nears
the boundary. The dependence of the dry diffusion tensor on
particle positions leads to an additional Itô drift that is needed
to ensure the system achieves detailed balance. Finally, an ad-
ditional short-range potential is included to represent particle
interactions with the boundaries.

The layout of this paper is as follows. First in Sec. II
we describe the DISCOS approach with an emphasis on
the modifications needed for including physical boundaries.
In Sec. III we perform some numerical validation of DIS-
COS by comparison to theory and simulations that appear
in the literature. This includes a test of the methods we have

used to incorporate the stochastic drift correction. In Sec. IV
we demonstrate the application of DISCOS to electrokinetic
flows. First we examine electro-osmosis in a channel, with
comparison to theory, a deterministic continuum numerical
method, and molecular dynamics (MD) approach. Also in-
cluded is an analysis of the use of dry diffusion. This is
followed by a demonstration of the use of DISCOS to compute
the complex flow patterns of induced-charge electro-osmosis
(ICEO). Finally, Sec. V contains some discussion and con-
cluding remarks.

II. THE DISCOS METHOD

This section describes the DISCOS method, with an em-
phasis on the changes required for incorporating boundary
conditions. For a more detailed discussion of the periodic
case see Ref. [26]. First, in Sec. II A we describe the overall
fluctuating hydrodynamic framework followed by the com-
putation of forces on the particles in Sec. II C. In Sec. II D
we outline the incorporation of “dry diffusion,” an approach
that adds additional diffusion to the particles relative to the
coarse-grained velocity as discussed in Ref. [28]. Finally in
Sec. II E we combine each of these parts into the overall
DISCOS algorithm.

A. Brownian dynamics

For N ions with positions x(t ) =
{x1(t ), . . . , xi(t ), . . . , xN (t )} the Brownian dynamics
equation of motion, expressed in Itô form, is [38,39]

dx
dt

= MF + kBT ∇x · M +
√

2kBTM1/2W, (1)

where F(x) = {F1(x1), . . . , F i(xi ), . . . , FN (xN )} are the
forces on the particles, kB is Boltzmann’s constant, T is tem-
perature, ∇x is the gradient operator with respect to particle
positions, and W (t ) = {W (t )1, . . . ,W (t )i, . . . ,W (t )M} are
standard independent Gaussian white noise processes on R3.1

The symmetric positive-definite mobility matrix M(x) en-
codes the hydrodynamic interactions between particles. The
divergence of the mobility term on the right-hand side of
Eq. (1) is a stochastic drift term that arises from writing the
system in Itô form.

Similarly to the FIB algorithm discussed in Ref. [25],
DISCOS computes the hydrodynamic interactions between
particles using a finite volume fluctuating hydrodynamics
solver instead of Green’s functions. In this approach, forces
computed on the particles are spread to the finite volume
grid, the hydrodynamic equations are solved to compute the
velocity field induced by those forces, and, finally, the velocity
is interpolated back onto the particles so their positions can be
updated.

For the mapping between the Lagrangian particles and the
Eulerian fields we employ the IB method [27]. The spatial

1Note that M need not equal N , since the number of noise terms,
M, corresponds to the number of hydrodynamic grid points, not the
number of particles. The mobility matrix M = M1/2(M1/2)� is a
square matrix of size 3N × 3N ; however, M1/2 and its transpose
conjugate (M1/2)� are generally nonsquare.
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extent of each particle is defined by a compactly supported
kernel function, δhy(r); see Appendix B for several exam-
ples. Spreading and interpolation operators are then defined
in terms of these IB kernels.

The discrete spreading operator, Shy
h , maps the particle

forces, F, onto the grid such that

f s(r j ) = (
Shy

h F
)
(r j ) =

N∑
i=1

δhy(xi − r j )F i, (2)

where the vector f s(r j ) represents the spread force density
at discrete grid location r j . The interpolation operator, J hy

h ,
maps the fluid velocity on the grid, v, to particle locations as

V i = (
J hy

h v
)

i = �V
∑
j∈�Pe

i

δhy(xi − r j )v(r j ). (3)

Here, �V is the (constant) computational cell volume, V =
{V 1, . . . ,V i, . . .V N } denotes the velocity of the fluid interpo-
lated to particle locations x, and �Pe

i corresponds to the set of
mesh locations in the support of δhy centered at xi. Note that
these operators satisfy an adjointlike condition(

J hy
h v

) · F = �V
(
Shy

h F
) · v, (4)

which is required for the method to conserve energy and
satisfy fluctuation-dissipation balance.

DISCOS computes the hydrodynamic response to a force
on the immersed ion in the limit of asymptotically large
Schmidt number, Sc = η/ρD � 1; here D is the diffusion co-
efficient of a particle, and η and ρ are the viscosity and density
of the solvent, respectively. In this regime, the diffusion time
of the particles is large compared to the relaxation time of the
fluid, so the flow can be treated as quasisteady. The solvent,
which is also assumed to be isothermal and incompressible,
can therefore be modeled by the fluctuating Stokes equations2

∇r p − η∇2
r v = f +

√
2kBT η ∇r · Z, (5a)

∇r · v = 0, (5b)

where ∇r is the gradient operator with respect to the spatial
variable r, p(r) is the pressure, and f (r) is a force density
applied to the fluid (which includes f s). Finally, Z (r) is a
symmetric Gaussian white noise tensor field.

DISCOS uses a second-order finite volume discretization
of the Stokes equations, Eqs. (5),

∇h p − η∇2
hv = f +

√
2kBT η

�V ∇h · Z, (6a)

∇h · v = 0, (6b)

where the subscript h is used to indicate the discrete form of an
operator. Here, the term Z(t ) is a finite-dimensional collection
of white noise processes representing the spatial discretization
of Z on a regular grid with positions r j and spacing �r, with
the factor 1/

√
�V arising from the spatial coarse graining of

noise onto the mesh. We use a staggered grid system with
normal velocities and the associated force densities defined at

2Note that an Itô drift term like that in Eq. (1) arises after eliminat-
ing the momentum; this is not included in Eq. (5).

cell faces, and pressure defined in cell centers, i.e., a standard
marker-and-cell (MAC) discretization [40]. The form of these
discretizations is designed to preserve fluctuation-dissipation
balance, as discussed in Refs. [25,26].

For problems with confining boundaries we need to specify
boundary conditions for the Stokes equations. For a no-slip
hydrodynamic boundary, we apply a Dirichlet condition to
all components of the velocity. For example, for a stationary
wall v(rb) = 0, where rb is the coordinate of a point on the
boundary. For a slip boundary we apply this condition only to
the normal component, and a zero stress Neumann condition
to the parallel components, giving

v(rb) · n̂ = 0, τ̂ · ∇rv(r)|r=rb
· n̂ = 0, (7)

where n̂ is the unit inward normal vector for the boundary, and
τ̂ is any unit tangent vector to the boundary. Applying these
boundary conditions to the solution of Eqs. (6) is straightfor-
ward and is discussed in the context of FHD in Ref. [37].

We next define the discrete Stokes operator Lh with appro-
priate boundary conditions such that the solution of Eqs. (6)
is

v = L−1
h

(
f s + f th +

√
2kBT η

�V ∇h · Z

)
, (8)

where we have taken the forcing term f to consist of the
spread force and an additional “thermal forcing” term which
is described below. The particles’ hydrodynamic velocities in
terms of the particle forces are then

V =J hy
h L−1

h

(
Shy

h F + f th +
√

2kBT η

�V ∇h · Z

)
. (9)

We can now draw a correspondence with the first and third
terms on the right-hand side of Eq. (1) with

M ≡ J hy
h L−1

h Shy
h , (10)

and

M1/2W ≡
√

2kBT η

�V J hy
h L−1

h ∇h · Z. (11)

The second term on the right-hand side of Eq. (1), the stochas-
tic drift term, can be decomposed as

(kBT )∇x · M = (kBT )J hy
h L−1

h ∇x · Shy
h + (kBT )

(∇xJ hy
h

)
:

× (
L−1

h Shy
h

)
. (12)

The first term on the right-hand side of Eq. (12) is then
accounted for by defining

f th = (kBT )∇x · Shy
h . (13)

This thermal forcing term is discretized using the “random fi-
nite difference” (RFD) method described in Refs. [25,26]. The
second term on the right-hand side of Eq. (12) is accounted
for by the time stepping scheme described below in Sec. II E,
which is also discussed in detail in Refs. [25,26].

B. Spreading and interpolation at boundaries

The spreading and interpolation operators need to be mod-
ified when ions are close to a physical boundary, in particular
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no slip slip

FIG. 1. Illustration of the use of image particles when applying
the spreading operation near a boundary. On the left, an image parti-
cle spreading the opposite tangential force will result in the particle’s
tangential mobility going to zero as it approaches the boundary, the
desired result for a no-slip boundary. On the right, an image particle
spreading the same tangential force will result in the unchanged
tangential mobility expected from a full-slip boundary condition. A
separate spreading operation is performed for force normal to the
boundary; for both types of boundary condition [Eq. (7)] spreading
the opposite force normal to the wall will result in zero normal
mobility at the wall. As discussed later in Sec. II C 1, this approach is
also used when spreading charge for the electrostatic solution based
on the use of either fixed potential or dielectric walls.

when their support overlaps the boundary. In a physically real-
istic simulation setup we would expect that a particle does not
partially cross over a confining boundary; typically it would
be repelled by some short-range force such as those discussed
in Sec. II C 2. In particular, if the diameter of the support
of the kernel used in the hydrodynamic spreading (Shy

h ) and
interpolation (J hy

h ) operators is similar to the van der Waals
radius, we would expect that the kernels do not cross the
boundary. However, there are several situations where this is
not the case. First, larger kernels such as the six-point Peskin
kernel [41] may have support that exceeds the van der Waals
radius so the edge of a kernel can cross the boundary. Second,
when a DISCOS simulation is being run with some degree
of dry diffusion (see Sec. II D), the support of the kernels
grows relative to the true “size” of the particles, increasing
the amount of overlap that can occur at a boundary. In each of
these cases we must consider how to handle force spreading
and velocity interpolation outside of the domain in a way that
recovers physically realistic behavior.

We address this situation using a method of images. First,
consider the spreading operator. As the kernel representing
the “real” particle leaves the domain, the kernel from the
corresponding “image” particle will enter the domain as il-
lustrated in Fig. 1. For both boundary types discussed above,
we wish the normal mobility of a particle to approach zero
as it approaches the wall. Therefore, the image particle must
spread an equal and opposite value for the normal force com-
ponent. The same approach is used to recover zero tangential
mobility for a no-slip boundary. For the slip boundary we
want the tangential mobility to remain unchanged. In this case
the image particle must spread the same tangential force as
the real particle for that component. These two conditions
are illustrated on the left and right of Fig. 1, respectively. We
note that this approach is equivalent to that given in Ref. [42],

where it is described without the use of image particles. The
same image construction is also used in the force coupling
method for no-slip boundaries [43] and also for slip bound-
aries [24].

Analogously, to interpolate the fluid velocity on the grid
to particle locations that are near the wall, ghost cells are
included outside the domain filled such that the boundary
condition is satisfied. The interpolation operation for kernels
straddling the boundary may then be performed exactly as if
the kernel were entirely within the domain. This preserves the
adjoint condition in Eq. (4) in the presence of boundaries as
discussed in Ref. [25].

C. Particle forces

We consider two types of forces acting on the particles:
long-range electrostatic forces and short-range forces. The net
force on an ion is then

F i = FE
i +

∑
j∈�R

i

FR
i j +

∑
k∈�W

i

FW
ik + Fext

i . (14)

Here, FE
i is the electrostatic force and FR

i j is the short-range
force between particles i and j, where �R

i indicates all par-
ticles within a given range of the ith particle [see Eq. (24)
below]. Additionally, FW

ik is the short-range force between
particle i and wall k, and �W

i indicates all walls within a given
range of particle i. The term Fext

i indicates forces due to an
applied field, e.g., gravity or an external electric field.

1. Electrostatic forces

For the computation of the electrostatic force, we will
also use a particle and mesh approach. However, unlike the
hydrodynamics, in which the ions are represented as having
nonzero size, for the electrostatic force computation we view
the ions as point charges. The charge density is

�(r) =
N∑

i=1

δ(xi − r)qi, (15)

where δ is a Dirac delta function and q = {q1, . . . , qi, . . . , qN }
are the ion charges. Thus, the electrostatic force is found by
solving Poisson’s equation for the electrical potential φ,

−ε∇2
r φ = �, (16)

where ε is the electrical permittivity of the solvent.
For long-range electrostatic interactions with domain

boundaries, when solving Poisson’s equation [Eq. (16)] we
can specify a fixed potential Dirichlet condition,

φ(rb) = φb, (17)

where φb is the potential on the wall. A dielectric boundary
with surface charge density ς is represented by the Neumann
condition,

( ε∇rφ(r)|r→r+
b

− εb∇rφ(r)|r→r−
b

) = ς, (18)

where εb is the permittivity of the wall, and r → r+
b and r →

r−
b indicate the limit approaching the wall from the inward

and outward normal directions, respectively. However, in this
paper we take the wall to be weakly polarizable compared
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to the solvent inside the domain, i.e., ε � εb. This yields the
approximation

∇rφ(r) · n̂|r=rb
= ς/ε. (19)

This is typically a good approximation where the solvent is
water. For an approach not constrained by this condition, see
Ref. [44]. Recent MD simulations [45] have also shown that
in the case of water the simple model used here (treating the
dielectric constant as a property constant across the thickness
of the channel) is remarkably accurate in predicting the energy
stored in a parallel-plate capacitor down to nanometer-scale
thickness, as long as the dielectric boundary is properly placed
at the location where the density of hydrogen approximately
vanishes. Note that both φb and ς can be spatially varying,
and different regions on the same boundary can be specified
as either Dirichlet or Neumann. In a system with no Dirichlet
boundaries, i.e., all Neumann or mixed Neumann and peri-
odic, the total system must be electroneutral. That is, the total
surface charge and total charge within the domain must sum
to zero.

The electric field is obtained from the solution of Eq. (16)
with E = −∇rφ. An electrostatic kernel δes is used to define
electrostatic discrete spreading and interpolation operators
Ses

h and J es
h analogous to Eq. (2) and Eq. (3). In this case

the charges q are spread to the grid to give the charge density
�, and the resulting electric field is interpolated back to the
particle locations using

EP = J es
h

( − ∇h
( − ε∇2

h

)−1Ses
h q

)
, (20)

where EP = {EP
1 , . . . , EP

i , . . . EP
N } is the electric field at each

particle location. For particle i, the associated force is then
FP

i = qiEP
i . We note that the operators Ses

h and J es
h need not

use the same kernels as their hydrodynamic counterparts, and
Eq. (16) need not be solved on the same grid.

As was the case for the hydrodynamic interactions, when
ions are near physical boundaries, we need to modify the
computation of the electric field. Similar to the hydrodynamic
solution, the image construction is implemented to produce
the desired behavior as a particle approaches a wall. For a
Dirichlet (fixed normal derivative) boundary, spreading an
image of opposite charge leaves the potential constant on the
boundary. For a Neumann (fixed potential gradient) boundary,
spreading an image of like charge leaves the derivative of
the potential normal to the boundary unchanged. As with the
velocity in the hydrodynamic case, sufficient ghost cells for
the resulting electric field (EP) must be filled for the support
of the kernel used in the interpolation operator J es

h ; these are
filled such that the boundary condition on φ is satisfied.

As noted above, we wish to treat the ions as point parti-
cles. As a consequence the electric field, and therefore the
force, between particles with separation comparable to the
mesh spacing will not be accurately resolved. To address this
issue, we compute the overall electrostatic force using a P3M
method [16,29]. The above provides an accurate representa-
tion of the electrostatic force at ranges that are large with
respect to the mesh spacing. To resolve shorter ranges we use
the direct Coulomb force between charged particles,

FC
i j = 1

4πε

qiq j

x2
i j

x̂i j, (21)

where xi j = xi − x j , xi j = |xi j |, and x̂i j = xi j/xi j is the unit
vector. We introduce a local correction for nearby particles so
that

FE
i = FP

i +
∑
j∈�E

i

FLC
i j , (22)

where j ∈ �E
i represents all particles within short-range cut-

offf distance ψ of particle i, and

FLC
i j = FC

i j − FP
i j . (23)

Here FP
i j is the force computed on the grid for two nearby

particles in an unbounded domain, which can be efficiently
pretabulated as a function of particle separations as described
in Ref. [26].

For particles near the boundary, we perform the near-field
correction including the image particles described above when
a particle is within distance ψ/2 from the boundary, i.e.,
within the short-range cutoff distance ψ of its own image
charge. Note that the correction must also be applied for image
charges from other particles that fall within range ψ . For
simplicity, in the results given in the following section we
have set ψ to be equal to the kernel radius. Note that this is
not a requirement; the optimal choice of ψ is discussed in
Appendix 2 of Ref. [26].

2. Short-range forces

In addition to electrostatic forces, we incorporate a short-
range force to account for quantum effects, such as Fermi
exclusion, that prevent ions of opposite charge from getting
too close. The short-range interactions are specified using a
potential function U sr (x̃; σ, ξ ), where x̃ is the radial distance
from a particle, σ is the van der Waals diameter, and ξ is the
magnitude of the potential. In Ref. [26] we employed the re-
pulsive only WCA potential [29,30]; in Sec. III we also make
use of the complete Lennard-Jones (LJ) potential [16,46,47]

U sr (x̃; σ, ξ ) =
{

Û sr (x̃; σ, ξ ) − Û sr (x̃c; σ, ξ ), 0 < x̃ < x̃c

0, x̃c � x̃,
(24)

where

Û sr (x̃; σ, ξ ) = 4ξ
((σ

x̃

)12
−

(σ

x̃

)6)
. (25)

The WCA potential is recovered by setting the cutoff distance
x̃c = 21/6σ . When using the complete Lennard-Jones poten-
tial we have set x̃c = 2.5σ . Forces are then calculated pairwise
using

FR
i j = −x̂i j

d

dx̃
U sr

i j (xi j ; σi j, ξi j ), (26)

where σi j and ξi j are specified for each pair of particles i
and j.

Similarly, we include short-range forces for particle in-
teractions with walls. The treatment of short-range forces in
this case is straightforward; a potential function is defined for
particle interactions with a wall and the resulting force applied
to any particles within range of the wall. There are a number
of possible potential functions, the complex atomic structure
of a wall may, for example, be treated as a “soft” potential.
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The interaction of this structure with a hard sphere particle is
approximated by the 9-3 potential [48]

Û sr (x̃; σ, ξ ) = 33/2

2
ξ
((σ

x̃

)9
−

(σ

x̃

)3)
, (27)

from which FW
ik is computed. In the following sections where

we have employed the 9-3 potential, a cutoff of x̃c = 3.5σ is
used.

D. Dry diffusion

As discussed in Sec. II A, compact kernel functions are
used to define particle hydrodynamic interactions. Each of
these kernel functions (see Appendix B) depends on the cell
size, �r, which makes their effective hydrodynamic radius aw

vary with grid resolution. From the Stokes-Einstein relation,
this leads to a diffusion coefficient

Dwet = kBT

bηaw

(28)

that depends on both �r and the form of the kernel function.
Here, b is a constant given by the boundary condition on the
particle; we take b = 6π , corresponding to a no-slip boundary
condition on the surface of a spherical particle.

The superscript “wet” and subscript “w” are used to denote
the particle diffusion coefficient (and corresponding radius)
which arise from Eq. (9), i.e., the interpolation of the Stokes
equation solution. As this is dependent on the cell size, aw

may be larger than the intended hydrodynamic radius of the
particle, which we denote at . Correspondingly, Dwet may be
too small compared to the intended diffusion coefficient Dtot.
As a correction, we add a “dry” diffusion term

Ddry = kBT

bηad
, (29)

such that the total diffusion is

Dtot = Dwet + Ddry. (30)

The hydrodynamic radius corresponding to the dry diffusion
can be computed from at = (a−1

w + a−1
d )−1. This approach

makes it possible to use a coarser grid for the Stokes solver
than would be dictated by the hydrodynamic radius of the
ions, compensating for the lower resolution with the dry dif-
fusion. This yields improved computational performance by
allowing a coarser grid, at the cost of neglecting short-range
hydrodynamic interactions. The effect of this trade-off is ex-
amined in detail in Ref. [26], and below in Sec. IV A.

In the following we refer to the relative mix of wet and
dry diffusion by percentage. For example, a simulation where
Dtot = Dwet and Ddry = 0 would be referred to as 100% wet.
When Dtot = 2Dwet = 2Ddry we refer to the simulation as 50%
wet. Simulations employing only dry diffusion, Dtot = Ddry

and Dwet = 0, are referred to as 100% dry. Note that in the
molecular simulation literature [49] the 100% wet and 100%
dry cases are sometimes categorized as “explicit” and “im-
plicit” solvents, respectively.

When an ion gets close to a boundary, it mobility is re-
duced. The spreading and interpolation procedures described
above in Sec. II A produce the desired reduction of mobility in
the vicinity of a wall for the wet part of the particle diffusion.
However, we also need to account for the reduction in dry

mobility induced by the boundary. To incorporate this effect
we define a dry diffusion tensor, which is a function of particle
position,

Ddry
i = Ddry

i �i(xi ), (31)

where Ddry
i is the value for a single particle in an infinite

domain, and

�i(xi ) = γ tot
i (xi )Dtot

i − γwet
i (xi )Dwet

i

Ddry
i

(32)

is a vector quantity to allow for anisotropic mobility.
The functions γ i are vector quantities with elements be-

tween zero and one representing the modification to the free
diffusion. For example, the total diffusion of a freely diffusing
particle is Dtot

i , and when confined by boundaries it is given by
γ tot

i Dtot
i . A particle sufficiently far from any boundaries would

have γ tot
i = (1, 1, 1), and a particle where xi is coincident

with a no-slip boundary would have γ tot
i = (0, 0, 0). For a

given particle the functions γ i depend on the hydrodynamic
radius, which in turn depends on the kernel type and cell size.
Analytic expressions exist for γ i in the case of several simple
geometries and kernels [50–52]. However, here we take the
general approach of numerically precomputing by measuring
the particle diffusion at multiple locations from which the
functions can be interpolated or fit in subsequent simulations
employing that geometry. The function γ tot

i is measured using
a cell size corresponding to a 100% wet simulation, and γwet

i
is measured on a grid producing the wet percentage the simu-
lation will be run at. Broadly speaking, this is done by placing
a particle at a given location, setting kBT = 0 to remove ther-
mal noise, applying a force, and noting the resulting particle
velocity. Examples are given in Sec. III A.

Incorporating both the dry diffusion terms discussed here,
and the wet components discussed in Sec. II A, the total equa-
tion of motion for a particle is

(33)
where Wdry

i is a standard white noise process and ∇x · Ddry
i is

the Itô stochastic drift term corresponding to the dry diffusion.
If the functional form of Ddry

i is known this term may be
computed directly. Otherwise, it can be approximated using
finite differences, or by differentiating an interpolant of Ddry

i .

E. Temporal algorithm

The time step is defined by the following four stages:
(1) The charge density � is spread to the grid using the

spreading operation, Ses
h q. Poisson’s equation, Eq. (16), is

then solved using the geometric multigrid method to obtain
the coarse electric field, E = −∇rφ.

(2) This electric field is mapped to the particle locations
using the interpolation operation, EP = J es

h E, and the corre-
sponding force on the particles is computed using FP

i = qiEP
i .

For particles at close range, this force is corrected using the
P3M approach per Eqs. (21)–(23). Short-range forces are
computed using Eq. (26), and the total force on the particle
is calculated as per Eq. (14).
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(3) The force on the particles, F, is mapped to the grid
using the spreading operation defined in Eq. (2) to compute
f s. The resulting linear system,

∇h p − η∇2
hv = f s + f th +

√
2kBT η

�V�t
∇h · Ẑ, (34a)

∇h · v = 0, (34b)

is solved using the preconditioned generalized minimal resid-
ual (GMRES) method to compute [53] the velocity at time
step n, vn. The thermal forcing term f th is included using the
random finite difference method. Note that Ẑ is a collection of
independent Gaussian random numbers of variance one that
have been scaled by 1/

√
�t to represent the time discretiza-

tion of Z.
(4) The fluid velocity vn is mapped to particle locations

using the interpolation operator defined in Eq. (3) to obtain
the “wet” component of the particle velocities. The temporal
discretization of the particle location update is then given by
the midpoint update scheme,

xn+1/2,�
i = xn

i + �t

2

(
J hy

h (xn
i )vn

)
, (35a)

xn+1
i = xn

i + �t

[
J hy

h

(
xn+1/2,�

i

)
vn + Ddry

i

kBT
Fn

i + ∇x · Ddry
i

+
√

2Ddry
i

�t
W dry,n

i

]
, (35b)

where W dry,n
i are independent Gaussian random numbers of

variance one. As discussed in detail in Ref. [25], the midpoint
update incorporates the second part of the stochastic drift term
in Eq. (12) that is not accounted for by the random finite
difference force density f th. See Sec. II D and Appendix A
in Ref. [25].

III. NUMERICAL TESTS

In this section we perform several numerical validation
tests of the DISCOS algorithm for an electrolyte confined in a
channel. In Sec. III A we examine the approach described in
Sec. II D for incorporating changes to the dry mobility due to
the channel walls. In Sec. III B we test the method for imple-
menting electrostatic boundary conditions given in Sec. II C 1.
In Sec. III C we compare the ion distribution at equilibrium to
existing numerical results. In Sec. III D we use this example
to test the application of both the wet and dry stochastic
drift terms discussed in Sec. II D. Each of these test cases
involves a channel confined in the y direction, with periodic
boundary conditions in the x and z directions, as illustrated in
Fig. 2. In all cases a no-slip boundary condition is used for the
hydrodynamic solution. The electrostatic configuration, and
additional parameters specific to each problem, are described
in the corresponding section.

A. Particle mobility

As discussed in Sec. II D, in confined systems we need to
determine the correction to the dry mobility of the ions to ac-
count for the presence of no-slip walls that impart drag on the

FIG. 2. Problem geometry. Each of the test cases given below
utilizes a channel of height L, which is periodic with width and depth
Px and Pz, respectively; each of these parameters is specified in the
relevant section.

fluid. This requires finding the mobility reduction functions
γ i. As per Eq. (32), we must measure this function for both
the total and wet hydrodynamic radii, at and aw, giving γ total

i
and γwet

i , respectively. Note that these values may differ for
each species of ion in the electrolyte, in which case γ i must
be measured separately for each species. As mentioned above,
analytic formulas exist for some simple geometries. For an
infinite channel of height L, where L � a, we have [51]

γi(ỹ) ≈
{

1 +
∞∑

n=0

(−1)n

[
1

γ ∗(nL + ỹ, a)
− 1

]

+
∞∑

n=0

(−1)n

[
1

γ ∗((n + 1)L − ỹ, a)
− 1

]}
, (36)

where γi is defined for parallel, γ‖i, and perpendicular, γ⊥i, to
the channel wall, with ỹ giving the distance to the nearest wall.
In both cases γ ∗

i is given by the corresponding formula for a
single infinite plane,

γ ∗
‖i(ỹ) ≈ 1 − 9a

16ỹ
+ 2a

16ỹ3
− a

16ỹ5
,

γ ∗
⊥i(ỹ) ≈ 1 − 9a

8ỹ
+ 4a

8ỹ3
− a

8ỹ5
. (37)

Equation (36) is sufficiently accurate for our purposes so long
as the particle is at least approximately3 0.7 radii from the
wall. For a simulation that is completely wet, i.e., aw = at , this
would normally be the case due to short-range repulsion [see
Eq. (27)]. However, for a simulation featuring dry diffusion,
e.g., a 50% wet aw = ad = 2at , a particle can approach a
wall to within a distance less than aw. In this case Eq. (36)
cannot be used to find γwet

i , which we note again is required
to compute Eq. (32).

Due to this issue, and as in general more complex ge-
ometries will not have analytic approximations, we directly
measure the functions γ i for this channel; where possible we
use Eq. (36) for comparison. This is done by placing a particle

3This limitation arises from the order of expansion used to derive
Eq. (37).
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FIG. 3. Correction to mobility (or diffusion) as a function of distance to the nearest channel wall. The circles indicate the values measured
from a 100% wet simulation, i.e., Ddry = 0 or ad → ∞; note that the point (0,0) is also included in the set. The solid black line represents a
least-squares fit, Eq. (38), to these data; this is the function actually used in subsequent simulations. The dashed red line is given by Eq. (36);
note its divergence at distances less than approximately 0.7 radii, where 1 radius is marked with a dotted line.

at a given location, setting kBT = 0, applying a force, and not-
ing the resulting particle velocity. Figure 3 shows the values
measured for a channel with no-slip boundary conditions in
the y direction, for L = 3 nm, and periodic boundaries in x and
z, where Px = Pz = 12 nm. This is also the channel size used
Sec. III C. Note that increasing Px and Pz does not significantly
change any of the results given in this section; the interaction
with the walls dominates any periodic effect on the particle
mobility. The desired particle size is at = 0.157 nm, which is
achieved with the four-point Peskin kernel when �r = 0.25
nm (24 cells are used to represent the channel height). For
the region where Eq. (36) is valid we see good agreement
with theory. To represent the measured data in subsequent
simulations we use a fit function of the form

γ̂i(ỹ) = c1 + c2

(c3 + ỹ)
+ c4

(c5 + ỹ)3
+ c6

(c7 + ỹ)5
, (38)

where c1–c7 are the fit parameters. This is also shown in Fig. 3.
To perform simulations of a given wet percentage we are

required to determine γ tot
i and γwet

i and use those functions in
Eq. (32) to find the total particle diffusion. Taking the above
parameters to represent γ tot

i , we may obtain γwet
i for a 50%

wet simulation by making the same measurements with the
cell size doubled, or, alternatively, on a channel of height L/2
while keeping the cell size the same. In Fig. 4 the resulting �i

is compared between 50% and 100% wet (γwet
i = γ tot

i ) simu-
lations, and good agreement is observed; slight discrepancies
are the result of translational variance in the Peskin kernels.

An alternative approach (not used here) for simulating an
arbitrary channel is to employ Eq. (36) for the region ỹ > aw,
and Eq. (38) for ỹ < aw. As shown in Fig. 5, for a sufficiently
large channel, hydrodynamics in the region ỹ < a are domi-
nated by the nearest wall, removing the length scale L from

consideration. In this region a single measurement of Eq. (38)
can be applied to any sufficiently large channel (see Fig. 5).

B. Electrostatic boundary conditions

Here we test the P3M method described in Sec. II C 1 for
implementing electrostatic boundary conditions. We employ
a channel with L = 6 nm and Px = Pz = 48 nm, and a cell
size of �r = 0.09375 nm, i.e., 64 cells in the y direction.
Two ions with q = 1.6 × 10−19 C are placed at a distance
2�r from each other in the x-z plane. The absolute force on
each ion is then measured at varying distances from the wall.
For each distance the ions are placed at a fixed y, and one
hundred different measurements are averaged at random x and
z locations (while maintaining 2�r separation) to account for
the slight translational variance of the kernels. We note that a
small error will still be present due to keeping y fixed; see
Ref. [26] for further discussion. The four-point kernel was
used, so the ions are in the P3M correction range (ψ) of each
other, and when sufficiently close to the wall each ion will
be in the correction range of both its own image charge and
that of the other ion. Two cases were tested, homogeneous
Dirichlet and inhomogeneous Neumann, i.e.,

φ(y = 0)=φ(y = L) = 0 and
∂φ

∂y

∣∣∣∣
y=0

= −∂φ

∂y

∣∣∣∣
y=L

= ς/ε,

where ς = −6.94 × 10−9 C/cm2 to give an electroneutral
system. For both cases we have used εr = 66.3,4 where ε =
εrε0, and ε0 is the vacuum permittivity.

4This value of εr is used in electro-osmosis simulations in
Sec. IV A; for convenience we have used it here also.
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FIG. 4. Comparison of particle mobility in 100% and 50% wet simulations using the method described in Secs. II D and III A.

In Fig. 6 the absolute force on an ion is compared to
that calculated using the method of images; in each case 500
images were used ensuring convergence to a higher accuracy
than the P3M solution. In all cases good agreement is ob-
served.

C. Equilibrium in a confined channel

Here we test the DISCOS algorithm in reproducing the
correct equilibrium distributions of ions in a confined channel
by comparing with results given in Ref. [54]. In that paper a

channel height of L = 3 nm was examined, containing anions
and cations of equal total charge where the cation concentra-
tion was 0.5M; this corresponds to a Debye length of λD = 3.9
nm [see Eq. (40)]. In Ref. [54] the walls are taken to have
the same permittivity as the water inside the channel, and
external electric field corresponding to a potential difference
of 0.1 V was applied perpendicular to the channel, causing
an asymmetrical distribution of cations and anions. This is
equivalent to setting a boundary condition in the far field when
solving Eq. (16); however, for this problem it is feasible to
take the more straightforward approach of performing a direct

FIG. 5. Comparison of near-wall mobility for different channels, illustrating that for sufficiently large channels the near-wall mobility may
be described by a common function.
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FIG. 6. Absolute force on an ion in a two-particle system at varying distances from the channel wall. Left: Homogeneous Dirichlet
condition. Right: Inhomogeneous Neumann condition. Black circles indicate the forces calculated using the method of images; red crosses are
those found using the P3M method described in Sec. II C 1.

pairwise calculation of the electrostatic interactions (including
periodic images in the x and z directions) using the Coulomb
equation, Eq. (21). Following Ref. [54], we have used relative
permittivity εr = 80. The simulations in the referenced paper
employed an implicit solvent, so at equilibrium we expect
essentially identical results to those from the DISCOS sim-
ulations.

To perform 100% wet simulations 24 grid cells were used
in the y direction, with 96 cells in x and z (Px = Py = 12 nm).
Setting η = 0.01 g/(cm s), this corresponds to a diffusion
coefficient of 1.3915 × 10−5 cm2/s for the four-point Peskin
kernel. The 50% wet simulations were performed by halving
the number of cells in each dimension; for these simulations
we have used the functions γ i(at ) and γ i(aw ) measured in
the previous section. For systems at equilibrium we expect
the result to be independent of particle mobility, and therefore
insensitive to these numerical parameters. However, as we see
in Sec. III D, they provide a useful avenue to test the accuracy
of the stochastic drift implementation.

The diffusive timescale, a2
t /Dtot, for the ions is on the order

of 10 ps. The time step used in the DISCOS simulations is
constrained by this timescale, and also by the stiffness of
the short-range and electrostatic interactions. The importance
of these interactions is somewhat dependent on the local
concentrations of ions which are problem dependent. For sim-
plicity, rather than determining the optimal value in each case,
throughout this paper we have employed a conservative time
step of �t = 0.1 ps; in principle larger time steps could be
used in many of the cases examined, although these would
still need to be substantially below the diffusive timescale.

Two methods are used in Ref. [54] to determine the ion
distribution: solving the Ornstein-Zernike (OZ) equation with
the anisotropic hypernetted chain closure (AHNC) [55,56],
and an implicit solvent MD approach. The principal difference

between the two is that the OZ solution contains genuine
hard sphere interparticle potentials, while the MD simulations
employ purely repulsive Lennard-Jones (WCA) interactions
(see Sec. II C 2). In each case a van der Waals diameter of
σ = 0.714 nm is used. It is unclear what magnitude is used
for the LJ interactions in the MD simulations, so here we
have used a relatively large ξ = 4kBT ≈ 4 × 10−21 J; this is
sufficiently close to genuine hard sphere that we can compare
our results to the OZ/AHNC solution. Note that a purely
repulsive 12-6 Lennard-Jones potential is still used for wall
interactions; in this case we take σ = 0.357 nm.

The left panel of Fig. 7 shows the cation charge density in
a channel with a 1:1 electrolyte (130 cations and anions, each,
with q+ = −q− = 1.6 × 10−19 C). Each DISCOS simulation
was started from a random particle configuration and run
for 105 time steps to reach equilibrium. This was then time
averaged for at least 106 time steps to obtain the results in
Fig. 7. The right panel is for a 1:2 electrolyte, where q− =
−3.2 × 10−19 C and the number of anions has been halved
to 65. In both cases good agreement is observed, confirming
the accuracy of the DISCOS method in reproducing confined
equilibrium configurations.

D. Stochastic drift

As discussed above, for systems at equilibrium the spatial
distribution of particles is independent of particle mobility.
The particle equation of motion, Eq. (33), is dependent on
both particle mobility and its divergence, which specifies the
stochastic drift. The stochastic drift has three terms: the wet
term given by Eq. (13), the additional wet term captured
by the time stepping scheme given by Eqs. (35), and the
dry term needed to represent boundary effects. Although the
equilibrium result is independent of mobility, obtaining the
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FIG. 7. Comparison of the cation density from DISCOS to Ref. [54] for a 1:1 electrolyte (left) and for a 1:2 electrolyte (right). The solid
black lines are the DISCOS results using a 50% wet simulations, the red dashed line indicates a 100% wet simulation. The blue dotted lines
show the OZ/AHNC results from Ref. [54]. Note that slight discrepancies between the DISCOS results and those from Ref. [54] may be
attributed to the difference in interparticle potentials.

correct result still depends on correctly calculating the di-
vergence of whatever mobility is being used. In Ref. [25]
the effect of the wet stochastic drift was demonstrated by
measuring the equilibrium distribution in a periodic domain.
Although the divergence of the mobility would appear to be
zero in this case, there is a small translational variance in
the mobility of the Peskin kernels; it was shown that not
accounting for this produced a spurious nonuniformity in the
distribution of particles. This is demonstrated much more
starkly in a confined channel due to the large spatial variation
in mobility.

In Fig. 8, we have taken the 100% wet simulation from
Fig. 7 and re-run it with the stochastic drift correction turned
off. This is achieved by omitting the term f th from Eq. (34a)
and employing a simple single stage time stepping method
in place of the midpoint algorithm described in Sec. II E.
Additionally we have run a 0% wet simulation, where the drift
correction has been turned off by omitting the divergence of
the diffusion tensor from Eq. (33). The correct result (drift
correction on) is shown for comparison. In both the 100%
wet and 100% dry cases, neglecting the drift correction pro-
duces an identical result; i.e., they both differ from the correct
solution by the same amount. This indicates that the two
disparate methods (RFD plus midpoint time stepping for the
wet simulation, direct calculation for the dry) predict identical
corrections for the stochastic drift, allowing us to validate
them against each other.

IV. ELECTROKINETIC FLOW SIMULATIONS

This section presents results from DISCOS simulations
of several electrokinetic flows, and examines how they

FIG. 8. Comparison of error induced by turning off stochastic
drift correction. Black solid line: Benchmark solution (indepen-
dent of wet percentage), including stochastic drift correction, from
Sec. III C. Blue dashed line: 100% wet simulation without stochas-
tic drift correction. This is achieved by omitting the RFD term
and using a single stepping method in place of the midpoint
method; see Sec. II E. Red solid line: 100% dry simulation with-
out stochastic drift correction. This is achieved by omitting the
divergence of mobility term in the particle equation of motion;
see Eq. (33).
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differ from theory and other numerical methods. In Sec. IV A
we examine the nonequilibrium case of electro-osmotic flow
driven by an electric field. Comparisons are made to theory,
previous MD simulations, and results from a deterministic
continuum code. In Sec. IV B we examine the complex flow
patterns associated with induced charge electro-osmotic flow,
comparing DISCOS results with theory and a deterministic
continuum code.

A. Electro-osmotic channel flow

Electrolyte solutions are typically electroneutral in the
bulk; however, the presence of a surface charge leads to the
formation of a diffuse double layer [57]. In the presence of
an external electric field this double layer can result in an
electrokinetic flow, the most common being electrophoretic
and electro-osmotic flows. Here we consider the latter, using
the same parallel wall geometry as in the previous section to
simulate the fluid motion in an electrolyte due to a constant,
uniform electric field parallel to the walls.

1. Theory

The traditional model for the double layer assumes that the
ion concentrations obey a Boltzmann distribution which, com-
bined with the Poisson equation, gives the Poisson-Boltzmann
equation

∇2
r φ = −1

ε

Ns∑
j=1

�0
j exp(−q j (φ − φ0)/kBT ), (39)

where the subscript j = 1, . . . , Ns indicates the species and
�0

j = q jc0
j presents the charge density of species j where c0

j
is the species concentration. The superscript “0” indicates a
reference value, which in our geometry is the center of the
channel (y = L/2). In the following sections we consider two
regimes [58], characterized by two length scales, the Debye
length and the Gouy-Chapman length, given respectively by

λD =
(

Ns∑
j=1

q j�
0
j

εkBT

)−1/2

and λGC = 2kBT ε

e|ς | , (40)

where e is the elementary charge. We also consider two poten-
tials, the electrokinetic potential and thermal potential, given
by

φζ = λDς/ε and φT = kBT/e. (41)

As discussed further below, two separate ion concentrations
and surface charge densities are considered, where in all cases
λD  L, but where λGC may be smaller or larger than λD.

When λGC � λD, we are in the Debye-Hückel
regime [59,60]. Since λGC/λD = 2φT /|φζ | the potential
difference in the channel is small compared with the thermal
potential and we can linearize the Poisson-Boltzmann
equation,

∂2
y φ ≈ −�0

ε
+ φ − φ0

λ2
D

, (42)

where �0 = ∑Ns
j=1 �0

j . We now solve Eq. (42) on (0, L) with
−ε ∂yφ|y=0 = ς and −ε ∂yφ|y=L = −ς , to obtain

φ(y) = φ0 + φζ

[
1 − cosh

(
L − 2y

2λD

)]
csch

( L

2λD

)
. (43)

The fluid velocity can now be computed from the deter-
ministic Stokes equation,

−η∂2
y vx = −ε E ext

x ∂2
y φ, (44)

where we have taken the applied field to be in the x direction.
Solving this equation using no-slip conditions at y = 0 and
y = L then gives

vx(y) = − ε φζ E ext
x

η

[
coth

( L

2λD

)
− cosh

(
L − 2y

2λD

)
csch

( L

2λD

)]
. (45)

Note that when λGC < λD, we are in an “intermediate”
regime [58] where analytic approximation is difficult. In this
case we must resort to comparison with other numerical meth-
ods.

2. Numerical simulations

In this section we perform three analyses. In the first,
we compare DISCOS to high molarity MD simulations
performed in Ref. [61]. Second, we compare DISCOS simula-
tions of moderate molarity to a deterministic continuum code
and the above theory. Finally, using the same configuration,
we examine the effect of altering the wet/dry diffusion ratio.

For each simulation we use the general geometry shown in
Fig. 2 with L = Px = Pz = 6 nm. For the first analysis we have
set our simulation parameters to match the MD parameters as
closely as possible, noting that this is not always possible to
do exactly due to the continuum components of DISCOS. The
details of this are discussed in Appendix A.

All simulations are performed with an imbalance of anions
and cations in the channel combined with inhomogeneous
Neumann condition representing a constant surface charge
(the same on both walls), so that the overall electrostatic
system is charge neutral. In all simulations we have employed
the four-point Peskin kernel for electrostatic calculations. For
the hydrodynamic calculation we make use of the exponential
of a semicircle (ESC) kernel [62]. This generalized kernel
has several free parameters that allow small adjustments to
the hydrodynamic radius. Using this approach we are able to
match the desired anion and cation diffusion coefficients to
within 2% using a grid of 563 cells. An 85% wet simulation
can be performed with a 483 grid, and 50% with 283. The
ESC kernel is discussed further in Appendix B. Note that in all
cases we have used the same grid for the electrostatic solution.

High molarity. In Fig. 9 we show the results of a simulation
with a total ion concentration of 3.52M, corresponding to 269
Na+ ions and 189 Cl− ions, leading to a surface charge density
of ς = −1.45 × 10−5 C/cm2 so that the overall system is
electroneutral; this corresponds to one of the MD cases exam-
ined in Ref. [61], which is also shown. The simulation was run
for 105 time steps to reach steady state, and then time averaged
for a further 4 × 104 steps to obtain the results shown here.
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FIG. 9. Left: A comparison of the absolute charge distributions between DISCOS, PNP simulations, and the MD results for high molarity
from Ref. [61]. The MD simulations show a complex three-layered structure. DISCOS captures two of these layers, while the continuum
simulation displays a single-layer structure. Right: The fluid velocity profiles resulting from DISCOS, continuum, and MD simulations,
compared with Debye theory. For the DISCOS simulations the velocity field is sampled after step 3 in the algorithm given in Sec. II E.
Note that, unlike the following examples, the statistical error in the DISCOS results is negligible due to the high ion concentration.

For contrast we have also included results obtained using
the theory above, and with a continuum code for simulat-
ing electrolytes solving5 the nonlinear Poisson-Nernst-Planck
(PNP) equations [11]. Although one can include fluctuations
in this formulation, they are not valid at this scale because
of the small number of ions per computational cell. We there-
fore perform the continuum simulations deterministically, i.e.,
without thermal fluctuations. The relevant length scales are
λD/L = 0.038 and λGC/L = 0.028; as this is beyond the range
of validity for the Debye theory discussed above, we expect
a discrepancy between the DISCOS and MD results when
compared to the theory of Sec. IV A 1.

The increased importance of boundary effects is clearly
visible in the left plot of Fig. 9, with the charge distribution
simulated by DISCOS being closer to the MD result than the
continuum. The charge distribution from the MD simulations
shows a clear three-layered structure: closest to wall is a large
cation peak, followed by a smaller layer of anions, which
is followed in turn by an additional layer of cations. This
is discussed in detail in Ref. [61]. The DISCOS simulation
captures the inner two of these layers, although they are
somewhat more diffuse than those in the MD simulation. The
effect of the anion layer in the DISCOS simulation is visible
in the velocity profile shown in the right plot: the majority of
the flow is generated by the motion of the cation layer, but
the opposite motion of the anion layer reduces the fluid veloc-
ity somewhat in the center of the channel.

5In fact, the same underlying Stokes and Poisson solvers are used
by both codes.

In Ref. [61], it is shown that increasing the magnitude of
the surface charge can cause this effect to completely reverse
the flow. We note that in this regime of extremely high con-
centrations and surface charge densities the bulk properties
of the flow are extremely sensitive to the surface parameters,
and, when using the surface configuration shown in Fig. 15,
DISCOS does not achieve the same flow reversal effect.

As touched on in Appendix A, the most likely cause of
this discrepancy is the continuous nature of the hydrodynamic
and electrostatic boundary conditions in the DISCOS simu-
lations versus the discrete array of particles used in the MD
simulations; see Fig. 15 and Ref. [61]. An illustration of the
importance of this effect is given in Ref. [63]. In that arti-
cle, similarly to Ref. [61], electro-osmosis in a channel with
walls comprised of a silicon lattice is examined. Changing the
configuration of surface charge from being evenly distributed
among all the surface atoms (as in Ref. [61]) to being con-
centrated in a small subset of the surface atoms produced a
25% change in peak flow velocity. An interesting avenue of
investigation for DISCOS would be to construct the walls out
of particles in a similar manner to MD, allowing a discrete
representation of the surface charge.

Moderate molarity. In Fig. 10 we show the results of a
simulation with a total ion concentration of 0.354M, corre-
sponding to 24 Na+ ions and 22 Cl− ions, which leads to a
surface charge density of ς = −4.44 × 10−7 C/cm2. Again,
the simulation was run to steady state for 105 time steps,
and in this case averaged for 1.3 × 106 steps. Comparison is
made with the theory of Sec. IV A 1 and with the nonlinear
PNP code. Here, using the center channel charge density
we find λD/L = 0.094 and λGC/L = 1.1. As neither of these
approaches incorporates short-range effects, in order to make
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FIG. 10. Electro-osmosis simulations. Left: Comparison of charge distributions near the wall resulting from DISCOS and the PNP
code [11] at moderate molarity. As above, the DISCOS result differs substantially from the continuum prediction due to short-range interparticle
interactions. Right: Resulting flow velocity. Due to the differing charge profiles, the DISCOS simulation produces a flow velocity substantially
higher than Debye theory, and simulations using a continuum code. Note that the error bar denotes ± two standard errors.

a closer comparison we have modified the parameters of the
DISCOS simulation to remove the short-range boundary con-
dition described in Appendix A (all other parameters remain
the same). Instead, the centroids of ions encountering the
boundary are specularly reflected.

As can be seen in the charge distribution profiles, even in
the absence of short-range effects from the boundary, pack-
ing effects from particle interactions (including electrostatic
interactions with image charges) not accounted for in the PNP
equations cause very different charge profiles between DIS-
COS and the continuum simulations. Consequently, DISCOS
yields a noticeably higher flow velocity than the continuum
code and the theoretical prediction. Even though this simu-
lation is performed with λD and λGC values where we might
expect closer agreement with theory, the proportional differ-
ence in the results is similar to the case shown above; this
highlights the importance of short-range particle interactions
(not included in the theoretical or PNP results) when perform-
ing simulations at scales where the channel width, L, begins
to become comparable to the short-range interaction length,
σ . Note that it is not possible to turn off steric interactions
between particles in discrete ion simulations.

Dry diffusion. In Fig. 11 we examine the effect of dry
diffusion. The moderate molarity simulation has been re-run
with a grid of 483 cells, corresponding to 85% wet, and 283

cells, corresponding to 50% wet. The effect of the walls on
the dry mobility has been incorporated following the approach
of Secs. II D and III A. The 85% case shows a negligible
difference to the 100% wet simulation, in both the charge
distribution and velocity profile. In agreement with Ref. [26],
at moderate concentrations some degree of dry diffusion can
be used with little impact on accuracy, allowing a large com-
putational speedup. This approach is especially effective for

channel electro-osmosis as the dominant effect on particle
mobility is drag from the boundary, which has been fully ac-
counted for as shown in Sec. III A. The 50% wet simulation is
approximately eight times faster, while giving an error in peak
velocity of approximately 8%. This suggests that approximate
answers can be quickly obtained using larger amounts of dry
diffusion, again in agreement with Ref. [26].

B. Induced charge electro-osmosis

As a final demonstration that DISCOS captures micro-
scopic dynamics of an electrolyte, we perform simulations
of a more complicated electrokinetic flow: induced-charge
electro-osmosis (ICEO) [64]. One typical realization of ICEO
is a channel with walls composed of dielectric material, with
a metal strip placed on one of the boundaries as illustrated in
Fig. 12.

An external electric field is applied in the x direction,
tangential to the surface. This induces the ions to form an
electrical double layer on the metal strip with a charge density
gradient, i.e., with positive ions gathering at the right side of
the metal plate and negative ions at the left side. Consistent
with Eq. (45), the fluid velocity scales with the electrokinetic
potential, φζ , and the external field E ext

x . Note that the elec-
trokinetic potential represents the drop in electric potential
across the Debye layer [65], and scales as φζ ∼ E ext

x Lm (where
Lm is the length of the metal strip) due to the surface charge
gradient along the metal strip. As a result, the characteristic
fluid velocity scales quadratically with the applied field in
the small φζ regime. Overall, the fluid is pushed in oppo-
site directions toward the center of the metal plate because
φζ is positive on one side of the metal strip (where cations
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FIG. 11. Electro-osmosis simulations at different wet percentages. Left: Comparison of charge distributions near the wall. Right: Compar-
ison of velocity profiles. Using a moderate amount of dry diffusion, 15%, runs roughly twice as fast while having a negligible impact on the
results. Using 50% dry diffusion, the error in peak velocity is about 8%, with an eightfold computational speedup. Note that the error bars
denote ± two standard errors.

accumulate) and negative on the other side (where anions
accumulate), forming a counter-rotating vortex pair.

We conduct our ICEO simulation in a channel with L =
6.59 nm, and Px = Pz = 26.36 nm. The metal strip has
length Lm = 5.272 nm and is centered on the lower bound-
ary; see Fig. 12. The electrolyte is a 0.15M 1:1 solution
at temperature T = 300 K with cation and anion charges
q+ = −q− = 1.6 × 10−19 C, and diffusion coefficients Dtot

A =
Dtot

C = 1.89 × 10−5 cm2 s−1. The solvent is water with vis-
cosity η = 0.009 g/(cm s) and relative permittivity εr = 80.
Using a hydrodynamic grid of 192 × 48 × 192 cells with the
four-point Peskin kernel results in the simulation that is 75%
wet. The same grid and kernel are used for the Poisson solve;
as mentioned previously, the P3M radius is set to match the
radius of support of the kernel. Homogeneous Neumann con-
ditions are used for the dielectric parts of the boundary, and

fixed potential Dirichlet potential for the part representing the
metal strip. This is set such that the potential on the surface
of the metal is constant; see Fig. 9. In this study we present
results for an applied field of Ex = −108 V/m. For short-range
interactions with the walls we have used a Lennard-Jones 9-3
potential, with ξ = 7.95 × 10−21 J and σ = 0.426 nm. The
Lennard-Jones potential is also used for interparticle short-
range interactions, with ξ = 8.16 × 10−22 J and σ = 0.442
nm. Note that near the metal-dielectric transition points the
image charge construction is approximate, since the spreading
and interpolation operators might span into regions with a
different boundary condition. However, for these simulation
parameters σ is slightly larger than the radius of support of the
kernel, 2�r = 4.11 nm. This prevents ions from approaching
too close to the boundary and minimizes the error from the
image charge construction.

dielectric dielectric

dielectric

metal

FIG. 12. Left: ICEO geometry. Right: Illustration of electrostatic boundary condition. The solid lines represent dielectric regions of the
boundary where a homogeneous Neumann condition is applied when solving Eq. (16); the dashed line represents the metal strip where a fixed
potential is applied. The external electric field has a potential represented by φE . The fixed potential boundary condition used when solving
Eq. (16) is φm. This is set such that the total potential is constant on the metal strip.
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FIG. 13. Contour plots of charge density (left color bars) and flow field speed (right color bars) of ICEO at E = [−108, 0, 0] V/m. Top: A
snapshot of fluid velocity in a DISCOS simulation, averaged in the z direction. Middle: DISCOS simulation result, averaged in the z direction,
then time averaged after initial 40 000-step transient period and ensemble averaged across 20 independent runs. Each simulation has run for a
timescale on the order of 40 ns (O(400 000) steps), so overall averaged over 8 × 106 steps. Bottom: Deterministic continuum simulation using
the PNP equations.

The simulation results are shown in Figs. 13 and 14, where
once again we make a comparison to deterministic continuum
results that solve Poisson-Nernst-Planck (PNP) equations us-
ing the method outlined in Ref. [11]. To obtain the DISCOS
result, the simulations are averaged in the z direction, then
time averaged over 400 000 steps for each simulation (after
an initial equilibration time of 40 000 steps), and finally
ensemble averaged across 20 independent simulations. For
comparison the spanwise (z) average from a single step is also
shown. The expected counter-rotating vortices are clearly vis-
ible in the time-averaged data, as is the polarization of charge
on the surface of the metal plate. Once again differences are
observed between the DISCOS and PNP results, likely arising
from the lack of fluctuations and differences in steric effects
in the PNP simulations. As in the previous section, this is
most notable in the charge distribution close to the surface,
shown in Fig. 14. The PNP code allows charge to build up on
the boundary, while the steric effect in the DISCOS simula-
tions prevents this from occurring. Interestingly, despite the
difference in the charge distribution, the location of the peak
velocity, indicated by the dark red color on streamlines, is
roughly the same for both DISCOS and the PNP code, which
is probably due to the no-slip boundary condition for the fluid.
The PNP code also produces a velocity profile quite close

to the DISCOS result in this ICEO example, except for the
value of the peak velocity; the peak velocity in the DISCOS
simulations is about 50% higher, a larger discrepancy than that
seen the in electro-osmotic flows examined in Fig. 10 of the
previous section.

This configuration yields a Debye length λD = 1.15 nm,
and we find φζ = 122.5 mV. These two parameters give a
dimensionless Dukhin number [66] that indicates the effect
of surface conduction on the flow,

Du = λD

Lm
exp

(∣∣∣∣ φζ

2φT

∣∣∣∣) = λD

Lm
eλD/λGC . (46)

For our ICEO simulation, Du = 2.32, which is O(1), suggest-
ing that we are in the large electrokinetic potential regime
where the surface conduction becomes significant. As such,
the simple theoretical scalings of the electrokinetic potential
(φζ ∼ Ex) and flow velocity (vx ∼ φζ Ex ∼ E2

x ) with the elec-
tric field are expected to break down [67]. We will examine
this effect in a future paper.

V. SUMMARY AND CONCLUSIONS

In this paper, we have extended the DISCOS method for
electrolytic flows to account for the presence of confining
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FIG. 14. Left: Comparison of DISCOS and deterministic PNP simulations x velocity near the surface of the bottom plate (y = 0.515 nm).
Right: Charge density profiles in the y direction at the x locations where the absolute charge density is greatest (x = 11.64 and 14.72 nm). For
comparison we have included a 100% wet DISCOS simulation, with 192 × 48 × 192 cells. Both the 75% and 100% wet simulations predict
the same peak velocity.

boundaries. In Sec. III, the ion mobility and equilibrium distri-
butions were validated against theory and existing numerical
results. In Sec. IV, we examined the use of DISCOS for two
electrokinetic flows: electro-osmosis and ICEO. In all cases
DISCOS produced the expected features of the flow, with
results similar to those obtained using alternative methods.
The principle difference between DISCOS, continuum sim-
ulations, and theory arises from the presence of steric effects
in DISCOS.

The differences noted between molecular dynamics sim-
ulations and those obtained by DISCOS suggest a further
avenue of investigation. For systems with increasingly narrow
channels, and increasingly high surface charges, the details of
the short-range interaction of the ions and the walls becomes
increasingly important. As noted in Sec. IV A, the continuum
description of the hydrodynamic and electrostatic boundary
fails to account for the discrete nature of the charged particles
forming the wall. An alternative approach would be to use
DISCOS particles to form the channel walls. This would pro-
duce electrostatic and hydrodynamic behavior closer to that of
the MD simulations. Another possible avenue of development
would be to use a hybrid approach where DISCOS was used
for the bulk of the flow, and MD for the surface layer; such
an approach using the SELM method is examined in Ref. [68]
(see also Refs. [69,70]). As the inclusion of MD comes with
a large computational cost, examining the use DISCOS par-
ticles to capture as much of the wall dynamics as possible
would appear to be beneficial.

Conversely, in future work we would like to be able to
model electrokinetic flows at larger scales. Although the DIS-
COS methodology is considerably more efficient than MD, it
would be computationally expensive for micron-scale flows.
Furthermore, for larger-scale flows, the electric double layer

where fine-scale resolution is needed is confined to a very
small fraction of the domain so the bulk of the problem can
be modeled with continuum FHD electrolyte code [11,13] on
a coarser grid. These larger-scale problems could therefore be
addressed with a hybrid algorithm that couples DISCOS near
boundaries to the continuum FHD electrolyte model for the
bulk flow; this has some similarity to the adaptive mesh and
algorithm refinement (AMAR) approach [71]. One interesting
question that arises from this is how to correctly discretize the
fluctuating Stokes equations at the internal boundary where
we transition from the coarse grid used by the continuum
solver to the finer grid used by DISCOS. For stochastic
equations care must be taken to preserve the correct statisti-
cal properties (e.g., fluctuation-dissipation balance). This has
been examined in the context of SELM using a finite element
method in Ref. [72]; an equivalent approach would have to be
derived for the overdamped finite volume context of DISCOS.
Aside from its utility in developing a hybrid approach, this
would also enable mesh refinement to be employed in purely
DISCOS simulations.
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FIG. 15. Surface interactions for DISCOS simulations. The LJ interactions have been set to match those from the silicon lattice used in
the MD simulations of Ref. [61]. In the MD simulations, each innermost layer of silicon atoms is assigned a charge to give the desired surface
charge density. In the DISCOS simulations the surface charge is represented as being continuous, via the Neumann boundary condition to
Poisson’s equation. This contributes to some significant differences between DISCOS and MD simulations for higher surface charge densities.

APPENDIX A: ELECTRO-OSMOSIS SIMULATION
PARAMETERS

For the simulations in Sec. IV A 2 we have chosen to repli-
cate as closely as possible the conditions used in the MD
simulations of Ref. [61]. The anions were taken to be Cl−

(chloride), with qA = −1.6 × 10−19 C, and the cations Na+

(sodium), with qA = −qC (the subscripts A and C refer to
anion and cation). The diffusion coefficients of these ions have
been measured in water at 300 K as 2.03 × 10−5 cm2 s−1 and
1.33 × 10−5 cm2 s−1, respectively; however, Ref. [61] uses
the simple point charge (SPC) [73] water model. SPC water
has a viscosity of 0.004 g/(cm s) [74], compared to 0.0085
g/(cm s) for real water at 300 K. We have therefore adjusted
the diffusion coefficients to Dtot

A = 4.31 × 10−5 cm2/s and
Dtot

C = 2.94 × 10−5 cm2/s via the Einstein relation [Eq. (29)].
The relative permittivity is set to εr = 66.29, again to match
the SPC water model [74]. In all cases the flow is driven by an
external electric field in the x direction of 5.5 × 108 V/m.

Again following Ref. [61], we use a Lennard-Jones poten-
tial for short-range interactions with the following diameters:
σAA = 0.445 nm, σCC = 0.258 nm, and σAC = 0.339 nm.
The corresponding magnitudes are given by ξAA = 7.37 ×
10−22 J, ξCC = 1.02 × 10−22 J, and ξAC = 2.75 × 10−22 J. In
all cases the cutoff was set to 1.1 nm. In the referenced MD
simulations, the walls are formed using a lattice of four layers
of silicon atoms in the 111 orientation. To replicate this as
closely as possible, as an ion approaches a wall a Lennard-
Jones force is calculated from the arrangement of silicon
atoms depicted in Fig. 15. In this case the LJ parameters are
σAS = 0.388 nm, σCS = 0.296 nm, ξAS = 2.12 × 10−21 J, and
ξCS = 3.88 × 10−22 J, where the S subscript refers to a silicon
atom.

Using this approach, the LJ interactions with the bound-
ary are similar to those in the MD simulations. However,
electrostatic interactions are still with a uniform surface
charge; in the MD simulations charge is distributed dis-
cretely among surface atoms. Similarly, the hydrodynamic
boundary is a smooth surface rather than the “rough” silicon
lattice seen in the MD simulations. Both of these effects
contribute to some difference between the DISCOS and MD
simulations.

APPENDIX B: EXPONENTIAL OF A SEMICIRCLE
KERNELS

For spreading and interpolation, in this paper we have
made use of three IB kernels. In Secs. III C, III D, and IV B,
the four-point Peskin kernel [27] has been used for cations and
anions, for both hydrodynamic and electrostatic calculations.
It is defined using

δPe(ζk ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3−2|ζk |+

√
1+4|ζk |−4|ζk |2

8�r , 0 � |ζk| � 1

5−2|ζk |−
√

−7+12|ζk |−4|ζk |2
8�r , 1 < |ζk| � 2

0, 2 < |ζk|,
(B1)

where ζ = (xi − r)/�r, and ζk indicates a single Cartesian
component of ζ (ζx, ζy, or ζz). The hydrodynamic kernel is
then given by

δhy(ζ) = δPe(ζx )δPe(ζy)δPe(ζz ), (B2)

with the electrostatic kernel, δes, defined similarly.
To increase the range of hydrodynamic radii and expand

to more realistic electrolytes, DISCOS also uses a recently
developed kernel [62] called the “exponential of a semicircle”
(ESC) kernel. The functional form of this kernel is given by

δESC(z; α, β ) = 1∫ α

−α
exp

[
β
(√

1 − (
z
α

)2 − 1
)]

dz

×
{

exp
[
β
(√

1 − (
z
α

)2 − 1
)]

,
∣∣ z
α

∣∣ � 1
0,

∣∣ z
α

∣∣ > 1,

(B3)

where α = w�r/2, w is the number of points for spreading
or interpolation, and β is a tuning parameter that changes
the hydrodynamic radius. This is then used in place of δPe in
Eq. (B2). Section IV A makes use of the ESC kernel for hy-
drodynamic spreading and interpolation, with the parameters
w = 7 and β = 7 used for the cations, and w = 4 and β = 8
used for the anions. This allows us to match the hydrodynamic
radii of both sodium and chloride ions (in SPC water) on a
common hydrodynamic grid. The four-point Peskin kernel is
used for electrostatic interactions.
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[55] R. Kjellander and S. Marcělja, Correlation and image charge
effects in electric double layers, Chem. Phys. Lett. 112, 49
(1984).
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