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Thermocapillary convection is a common flow in space. Experiments regarding thermocapillary convection
were previously carried out in a large-scale liquid bridge with a diameter of 20 mm on the Tiangong-2 space
station, and the transition process to chaos was systematically studied. Under microgravity conditions, gravity
is greatly weakened, and the transition process of the flow is very slow. This allows for the opportunity to
study the bifurcation process in detail. It has been found that there are abundant nonlinear physical phenomena
associated with the changing geometric parameters in thermocapillary convection systems. The transition
mechanisms interact with each other, leading to various transition routes. The phase space trajectories, the
Lyapunov exponents, and correlation dimensions are calculated to distinguish the chaotic state under a variety
of conditions. Through the chaotic dynamics analysis, the chaotic characteristics of the entire transition process
are quantitatively discussed.
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I. INTRODUCTION

Transitions are a significant characteristic of thermocap-
illary convection in liquid bridges. A liquid bridge refers
to some liquid which is kept between two coaxial disks by
surface tension. When there is a certain temperature differ-
ence between these two disks, thermocapillary convection
will emerge in the zone due to Marangoni effects [1]. The
flow state may transit from a steady axisymmetric flow to
an oscillatory flow if the temperature difference is beyond a
certain threshold and will eventually become chaotic under a
large temperature difference by successive bifurcations [2]. In
recent years, transitions have aroused a great deal of interest
due to their impact in high-quality single crystal growth [3].
Moreover, transitions are a good physical model for the non-
linear instability of hydrodynamics [4].

Previous studies have focused on the critical instability of
oscillatory flow in liquid bridges. Xu and Davis proposed
that the oscillation was caused by hydrothermal waves [5].
They predicted the critical conditions and oblique propagating
directions using a linear stability analysis method. However,
the height of the liquid bridge is limited under normal gravity,
which also confines the observation of the axial propagating
wave. Therefore, scientists actively carry out space exper-
iments under microgravity conditions. The experiments in
sounding rockets [6] and on the International Space Station
[7] have validated the existence of hydrothermal waves, and
neutral stability curves with different aspect ratio have been
obtained. Furthermore, Shevtsova et al. found a mode of
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hydrothermal wave with m = 0, which is an axial running
wave with an axial included angle of 0 [8–9].

Beyond the critical condition, thermocapillary convection
displays many nonlinear and chaotic characteristics, includ-
ing spatiotemporal chaos, flow mode transition, and pattern
dynamics [10–16]. The research revealed that the thermocap-
illary flow will experience multiple transitions and develop
into spatiotemporal chaos as temperature differences continue
to increase. However, the mechanism of the supercritical
transition remains an open question. It has been determined
that the thermocapillary flows in high supercritical states are
characterized by spatiotemporal chaos (also referred to as
“weak turbulence”), which is a stochastic time-dependent flow
state with a slow timescale [17]. Those perspectives could be
utilized to study nonlinear unsteady flow in liquid bridges.

The “routes to chaos” prescribe the transition process dur-
ing the supercritical condition, which is an important topic in
chaos theory. There are three typical routes to chaos: (1) sub-
harmonic bifurcation, which is also known as period doubling
bifurcation [18]. The most classic case is that the dominant
frequency f of the periodic oscillation changes to f , f /2, then
to f , f /4, 2 f /4, 3 f /4, …, and finally transits to chaos. The
ratio of critical parameters in that transition sequence approx-
imates the Feigenbaum constant. (2) Intermittency, which is a
saddle node bifurcation. The flow alternates between periodic
and chaotic motions, and then finally enters chaos. (3) The
Ruelle-Takens-Newhouse route [19]. Landau believed that a
system enters chaos only when there are infinite incommen-
surate fundamental frequencies [20]. Meanwhile, Ruelle et al.
pointed out that quasiperiodic oscillations will enter chaos
when three incommensurate frequencies appear [19].

Many transition routes are found in hydrodynamic sys-
tems. As early as 1980, Gollub and Benson experimentally
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studied the transition process of Rayleigh-Bénard convection
from laminar to turbulent flow and observed several transition
routes [18]. Those routes included double-periodic transition,
intermittent transition, and quasiperiodic transition. Smorodin
et al. [21] studied the pattern formation in a binary-mixture
layer with negative Soret coupling, which the chaotic regimes
involving transitions between the subharmonic modes and
the standing wave and traveling wave. In the electroconvec-
tion system, Smorodin and Taraut analyzed the nonlinear
interaction of the standing wave, traveling wave, and spa-
tiotemporal chaotic wave [22]. Kawamura et al. [23] and Li
et al. [24] researched that the aspect ratios and Prandtl num-
bers could lead to different quasiperiodic or double-periodic
transition routes. It has also been found that changes in the
spatial distributions of temperature and velocity fields may
cause abnormalities in transition routes, thereby leading to
chaos [25]. In 2013, Zhu et al. [26] discovered two transition
routes of double-periodic transition and quasiperiodic transi-
tion in experiments regarding thin layer flow and confirmed
the transition of thermocapillary convection from temporal
chaos to spatiotemporal chaos based on the fractal theory. The
relationship between the fundamental frequency of the tem-
perature oscillation and the Marangoni number was analyzed.
Then, based on the fractal theory, they performed analyses
of the chaotic dynamics of transition processes. In the ex-
periments conducted under microgravity conditions on the
SJ-10 satellite, the transition phenomena leading to chaos in
thermocapillary convection were observed [27]. It was found
that there were different transition routes in the transforming
process of the flowing mode [28].

In the thermocapillary convection of liquid bridges, the
transition routes in chaos theory have been observed, includ-
ing the double-periodic route and the quasiperiodic route. Hu
et al. theoretically studied that there was a double-periodic
route in small-scale liquid bridges, and its bifurcation con-
dition conformed to the universal Feigenbaum constant [29].
Based on analyzing the effects of environmental conditions
on the flow instability, Melnikov et al. [30] determined that
the flow usually took the quasiperiodic transition route under
different external airflow conditions. Through a spectrogram,
Yasnou et al. clearly observed the periodic oscillation and
quasiperiodic oscillation with two frequencies and quasiperi-
odic oscillation with three frequencies [16]. Gaponenko et al.
further discussed the effect of the gas temperature on the wave
mode selection and nonlinear evolution of the hydrothermal
wave [31]. Frank and Schwabe observed the transitions of
the spatiotemporal structures of thermocapillary convection
in half-floating zone liquid bridges with different working
fluids [13]. They also analyzed the quasiperiodic and double-
periodic transition routes in the spatial structure of the flow
field. Aa et al. [32] observed classic second transition pro-
cesses and jumping behaviors in the convection through
experimental and theoretical investigations. Wang et al. [33]
observed a variety of transition phenomena in large-scale
liquid bridges and identified a transition route in which the
double-periodic oscillation was coupled with the quasiperi-
odic oscillation.

Several advantages have been found in studying the transi-
tion processes of liquid bridge thermocapillary convection in
space experiments, as follows:

(1) Reducing the influence of gravity on thermocapillary
convection: First, buoyancy convection is excluded in experi-
ments conducted in space. Second, air convection and thermal
noise are restrained.

(2) Establishing various liquid bridges to enrich transition
routes: Experiments conducted on the ground are confined
to specific geometric parameters due to the height limita-
tions of liquid bridges. Experiments conducted in space can
greatly expand the range of the geometric parameters of liquid
bridges, which increases the opportunity to find more transi-
tion routes.

(3) Large Marangoni numbers: The Marangoni number of
a liquid bridge is directly proportional to the size of the liquid
bridge, and chaotic processes are easier to observe in large-
scale liquid bridges. Previous experiments conducted in space
regarding the transition of thermocapillary convection have
acquired fruitful achievements. For example, Japan has car-
ried out experiments on thermocapillary convection in liquid
bridges on the International Space Station in order to explore
the structures of flow fields, especially under the conditions
of large temperature differences [34]. From 2016 to 2019, the
Tiangong-2 (TG-2) Liquid Bridge Space Experiment Project
took the bifurcations of thermocapillary convection and tran-
sition routes to chaos as innovative research projects [35,36].

More than 740 groups of experiments have been carried
out in the Tiangong-2 space laboratory, and a large amount of
valuable data has been obtained. The results have confirmed
that the thermocapillary of liquid bridges displayed distinctive
flow patterns and significant nonlinear characteristics. The
transition routes were categorized by the temperature oscil-
lation signals obtained from the liquid bridge, and a variety of
characteristic transition phenomena under microgravity con-
ditions were observed. By introducing attractors, it was able to
describe the chaotic motion of the thermocapillary convection.
In addition, using the theory of chaotic dynamics, the cor-
relation dimension and Lyapunov exponent were calculated
based on the reconstruction of phase space for the purpose
of distinguishing the chaotic state and analyzing the entire
transition process.

II. EXPERIMENTAL EQUIPMENT

The experimental model was introduced by Kang et al. in
2019 [35], as shown in Fig. 1. Both of the bridge columns are
made of copper. One bridge column is heated by electrother-
mal film to TH, while the other column is maintained at TL by
a thermoelectric cooler. When a temperature difference �T
(�T = TH − TL) is applied, convection is observed to occur
inside the liquid zone. Once the temperature difference ex-
ceeds a certain threshold value (�Tc), the convection becomes
unstable and transfers into oscillatory flow. In addition, as
the temperature difference increases, it finally develops into
chaos or even turbulent flow. The temperature heating rate
involved here is 0.3 °C per minute, and the initial temperature
difference is 0 °C. When the �T reaches a predetermined
value, the system maintains the current high-temperature and
low-temperature values, as detailed in Fig. 2.

Five thermocouples (1 to 5) are used to measure the tem-
perature inside the liquid bridge, and the temperatures of the
cold column and the heat column are measured by two other
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FIG. 1. Liquid bridge model.

thermocouples, respectively. The thermocouples used in the
experiments are K-type, with diameters of 0.02 mm. The
successive included angles of the five thermocouples are 0 °,
90 °, 180 °, 270 °, and 315 °, respectively. The experiments
showed that the onset and transitions of each thermocouple
signals happened at the same time. Though there are phase
differences, the spectra of the thermocouples (1 to 5) are
consistent. Therefore, thermocouple no. 2 is chosen for further
discussion (Fig. 2).

KF96L 5cSt silicone oil (Pr = 67.29; thermal diffusion
coefficient κ = 0.12 m2s–1; surface tension coefficient σT =
6.58×10–5 N m–1 K–1; density ρ = 915 kg m–3; kinematic vis-
cosity ν = 5×10–6 m2s–1) is chosen as the experimental
working fluid. The silicone oil is stored in a liquid cylinder,
and a piston in the cylinder is used to inject or suck out the
silicon oil to build a liquid bridge. The movement of piston
is driven by a motor from power integrations (PI) company,

which allows for the precise control of the volume ratio of the
liquid bridge.

A number of dimensionless parameters, including the
geometric parameters A and V , along with some physical
properties of the fluid are introduced for the purpose of char-
acterizing the flow and examining their impacts on the flow.
The range of volume ratio V is [0.54 to 1.15], and the range
of the aspect ratio A was [0.3 to 1.1], as detailed below.

Aspect ratio: A = H
D , where H is the height of the liquid

bridge, and the diameter of the liquid bridge column is D =
20 mm.

Volume ratio: V = V1
V0

, where V0 represents the volume of
the gap between two cylinders, and V1 indicates the volume of
the experimental working fluid.

Marangoni number: Ma = |σT |�T H
ρvα

= Pr Re, which char-
acterizes the ratio of the heat transport caused by thermo-
capillary convection to the heat transport caused by heat
conduction. The critical Marangoni number corresponding to
the critical temperature difference �Tc is recorded as Mac.

The temperature dependency of the kinematic viscosity of
the working fluid is evaluated from the following equations:

v

v25
= exp

(
5.892

25 − T

273.15 + T

)
, (2.1)

v = v(TH ) + v(TL )

2
, (2.2)

where v25 and T are the kinematic viscosity at 25 ◦C and the
temperature considered, respectively.

The spectrogram and power spectra are used to analyze the
oscillation signals of thermocapillary convection. The long-
term trends of the signals are removed prior to conducting
the spectrum analysis, which can obtain the oscillatory signal
of the convention. The spectrogram, applying a sequence of
a widowed Fourier transform with sliding windows, gives a

FIG. 2. Time histories of the temperature oscillations (A = 0.8; V = 0.8).
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FIG. 3. RTN transition processes (A = 0.6; V = 0.84) including the temperature oscillation signals, power spectra, and corresponding
power spectra at different Marangoni numbers: (a) Maa = Mac, periodic oscillation; (b) Mab = 2.03 Mac, oscillation with two fundamental
frequencies, f1 and f2; (c) Mac = 2.21 Mac, oscillation with three fundamental frequencies, f1, f2, and f3.

two-dimensional graph of time vs the Fourier spectrum. A
hamming window can reduce the frequency spectrum leak-
age, and a properly increased window size can ensure the
resolution in both the frequency domain and the time domain.
The power spectral density can be estimated using the pWelch
method, and the window will be 2048, which is equivalent to
more than 100 sec.

III. EXPERIMENTAL RESULTS

A. Quasiperiodic transition process

The quasiperiodic transition route is caused by sev-
eral Hopf bifurcations. Three typical quasiperiodic transition
routes are concluded in the space experiments of thermocap-
illary convection in liquid bridges.

Type I: Ruelle-Takens-Newhouse route. The Ruelle-Takens-
Newhouse route is quasiperiodic oscillation with three in-
commensurate frequencies and phase locking coexisting [19].
Under the conditions of an aspect ratio of A = 0.60, and a
volume ratio of V = 0.84, the flow loses stability and trans-
ferred from a steady state to an oscillating state at Ma = Mac

(point a; t = 3791 sec). This is a periodic fluctuation with a
certain fundamental frequency of f0 = 0.054 Hz, as shown in
Fig. 3(a). Then it has been observed that with further increases
in the temperature difference, at Ma = 2.03 Mac (point b;
t = 7696 sec), the fundamental frequency has increased to
f1 = 0.078 Hz. The flow bifurcations exhibit the appearance
of a second fundamental frequency, f2 = 0.110 Hz [Fig. 3(b)].
It has been found that f1 and f2 are incommensurate, and
there is a relationship of fL = f1 − f2 = 0.032 Hz observed.
The remaining frequencies could all be linearly expressed by
those two fundamental frequencies. The ratio of f1/ f2 keeps
constant during the process, and this state is referred to as

frequency locking or phase locking [18], which is a classic
common phenomenon in the quasiperiodic transition process.
This frequency locking implies the nonlinear coupling be-
tween these two frequencies. In addition, the fundamental
frequency presents an increasing trend of linear and con-
tinuous change. This relationship will be broken until the
appearance of the third fundamental frequency in the tem-
perature field ( f1 = 0.080 Hz; f2 = 0.115 Hz; f3 = 0.047 Hz)
[Fig. 3(c); t = 8378 sec]. It has been confirmed that the classic
Ruelle-Takens-Newhouse (RTN) route exhibits a transition
process from quasiperiodic oscillation with three fundamental
frequencies, to a chaotic state. It has been previously observed
by Libchaber et al. [37] in mercury Bénard experiments in
a magnetic field and by Martin et al. in experiments re-
garding ferroelectric barium-sodium-niobate (BSN) crystals
[38]. However, it has been found that in many cases, includ-
ing in ground buoyancy-thermocapillary convection systems
[26,33], due to the instability of the flow, it is difficult to
observe the third incommensurate frequency in which the flow
becomes chaos from quasiperiodic oscillations with two fun-
damental frequencies. The route to chaos is similar to that in
the Curry-Yorke model, where chaos appears after quasiperi-
odicity and phase locking occurs [39]. That transformation
also belongs to the RTN route.

Type II: Quasiperiodic transition with two incommensu-
rate frequencies. The most obvious feature of this transition
route is beat phenomena. As shown in Fig. 4, the steady-
state flow first transits to a periodic oscillatory flow with the
frequency f0 = 0.098 Hz [Fig. 4(a); point a, t = 6061 sec].
Then, at Mac = 1.28 Mac, the spectrogram shows a split in
the frequencies and the appearance of another two incom-
mensurate fundamental frequencies, f1 = 0.111 Hz and f2 =
0.153 Hz [Fig. 4(b); point b, t = 7758 sec]. As can be seen
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FIG. 4. Quasiperiodic transition route coupled with beat phenomenon (A = 0.4; V = 0.45) including the temperature oscillation signals,
spectrogram, and segmented temperature signals, and corresponding energy spectra: (a) Maa = Mac, periodic oscillation; (b) Mab = 1.28 Mac,
oscillation with two fundamental frequencies; (c) Mac = 1.47 Mac, oscillation with two fundamental frequencies; (d) Mad = 1.66 Mac,
oscillation with two fundamental frequencies.

in the figure, f1 gradually increases to 0.132 Hz, while f2

remains constant. It has been observed that at Ma = 1.47 Mac,
another bifurcation occurs in the flow field causing dra-
matic changes in the frequencies, such as f1 = 0.149 Hz and
f2 = 0.157 Hz [Fig. 4(c); point c, t = 8898 sec]. However,
when Ma = 1.66 Mac [Fig. 4(d); point d , t = 10067 sec], it
has been found that f1 and f2 became two new frequencies
once again ( f1 = 0.161 Hz; and f2 = 0.184 Hz). When 1.47
Mac < Ma < 1.66 Mac, which is similar to the RTN route,
there is a certain gap observed between these two funda-
mental frequencies, fL = f1- f2. Meanwhile, with 1.28 Mac <

Ma < 1.47 Mac or Ma > 1.66 Mac, the flow presents a beat
phenomenon, and the amplitude point of the temperature os-
cillation signal forms envelopes. This is due to the fact that
those two fundamental frequencies are very close in the PSD
( f1 ≈ f2), and the oscillating signals are superimposed on
each other, thereby forming periodic fluctuations in amplitude
[40].

There are two competitive or stalemate mechanisms in the
aforementioned quasiperiodic transition routes. Bifurcation
will lead to a change in the oscillation frequency. When there
is a slight temperature disturbance in the heat dissipation
system, the bifurcation will break the balanced state and enter
another state, resulting in the evolution of the convection.

Type III: Quasiperiodic transition route with inverse bi-
furcation. As can be seen in Fig. 5, when the volume ratio
is 0.56 and the aspect ratio is 1.1, the flow alternatively ex-
hibits the motions of quasiperiodic oscillation and periodic
oscillation, and the flow presents an “inverted bifurcation phe-
nomenon.” In Fig. 5(a) it can be seen that when Ma = Mac

(point a, t = 2870 sec), the flow behaves as a periodic motion
( f1 = 0.034 Hz). However, when Ma = 1.37 Mac, the flow is

quasiperiodic motion, with the fundamental frequencies of
f1 = 0.059 Hz and f2 = 0.068 Hz, as illustrated in Fig. 5(b)
(point b, t = 3946 sec). Thereafter, when 1.64 Mac < Ma <

2.71 Mac or 2.71 Mac < Ma < 3.43 Mac, the periodic motion
with the main frequency f1 = 0.061 Hz [Fig. 5(c); point c, t =
4716 sec] and the quasiperiodic motion with the fundamen-
tal frequencies f1 = 0.093 Hz and f2 = 0.110 Hz [Fig. 5(d);
point d , t = 7790 sec] reappears. Then, when Ma = 3.43 Mac

(point e, t = 9844 sec), the flow finally enters chaos, as shown
in Fig. 5(e).

The flow alternatively exhibits a periodic oscillation,
quasiperiodic oscillation, and chaos with the increasing
Marangoni number, as detailed in Fig. 6. Then, at Ma =
1.73 Mac, the flow field displays a quasiperiodic oscillation
with the fundamental frequencies ( f1 = 0.041 Hz and f2 =
0.027 Hz, point b, t = 4100 sec) and became chaos at Ma =
2.28 Mac (point c, t = 5332 sec). At Ma = 3.67 Mac (point
d , t = 8698 sec), it transits to periodic motion once again
and eventually enters chaos at Ma = 4.50 Mac (point e; t =
10665 sec). In the Rayleigh-Bénard convection, Paul et al.
has regarded the conversion from triple-periodic motion to
periodic motion as “crisis” [41]. The phenomenon in which
the flow state transits into a less complicated flow is referred
to as “reverse bifurcation phenomenon.”

B. Double-periodic transition process

The double-periodic transition route is a subharmonic bi-
furcation model proposed by Feigenbaum [32]. In the space
experiments, the double-periodic transition routes are divided
into three categories.
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FIG. 5. Quasiperiodic transition route coupled with reverse bifurcation (A = 1.1; V = 0.56) including the temperature oscillation signals,
spectrogram, zoom of the temperature signals, and the corresponding energy spectra: (a) Maa = Mac, periodic oscillation; (b) Mab = 1.37 Mac,
quasiperiodic oscillation with two fundamental frequencies; (c) Mac = 1.64 Mac, periodic oscillation; (d) Mad = 2.71 Mac, quasiperiodic
oscillation with two fundamental frequencies; (e) Mae = 3.43 Mac, chaos.

Type I: Feigenbaum route. The Feigenbaum route means
that the periodic state transits by successive doubling period
bifurcations. In thermocapillary convection with an aspect
ratio of 0.65 and a volume ratio of 0.65, when Mac <

Ma < 1.89 Mac, the temperature in the time domain will per-
form a sine oscillation with a frequency of f0 = 0.068 Hz
[Fig. 7(a); t = 5022 sec; point a]. In the spectrogram, an in-
finitely narrow peak can be seen at the point corresponding

FIG. 6. Quasiperiodic transition route coupled with reverse bifurcation (A = 1.1; V = 0.66): (a) Maa = Mac, periodic oscillation; (b)
Mab = 1.73 Mac, quasiperiodic oscillation; (c) Mac = 2.28 Mac, chaos; (d) Mad = 3.67 Mac, periodic oscillation; (e) Mae = 4.50 Mac, chaos.
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FIG. 7. Feigenbaum transition route (A = 0.65; V = 0.65): (a) Maa = Mac, periodic oscillation; (b) Mab = 1.89 Mac, double-periodic
oscillation; (c) Mac = 1.98 Mac, quadruple-periodic oscillation; (d) Mad = 2.07 Mac, chaos.

to the independent variable f , and the height of the peak
represents the intensity (power) of the frequency component.
When Ma = 1.89 Mac [Fig. 7(b); t = 9482 sec; point b], in
addition to the original spectrum peak at f1 = 0.117 Hz, a
new spectrum peak component ( f1/2) appears. When Ma =
1.98 Mac (t = 9943 sec; point c), the flow bifurcates once
again, and two new spectrum peaks (corresponding to f1/4
and 3 f1/4) appear in the power spectrum. However, when
Ma > 1.98 Mac, the power spectrum transits from a separated
spectrum to a continuous indivisible spectrum. Meanwhile,
the flow enters a broadband chaotic motion with a noisy back-
ground, as shown in Fig. 7(d) (t = 10404 sec; point d). In the
current study, the critical temperature differences at which the
flow bifurcated are selected, and the corresponding Feigen-
baum constant δ1 = (�Tf 1/2 − �Tf 0)/(�Tf 1/4 − �Tf 1/2) =
(39.27−19.35)/(43.54−39.27) = 4.67 ± 0.02 is obtained,
which is close to the theoretical value and conforms to Feigen-
baum’s universal law as follows:

δ = lim
n→∞

an − an−1

an+1 − an
= 4.6692016. (3.1)

Type II: The multiple-periodic transition route. The bifur-
cation occurs in the above-mentioned Feigenbaum route with
the period being doubled, which means that the period (p) bi-
furcates into p × 2n (n = 1, 2, 3, …) in succession. Similarly,
bifurcations in which the period is tripled to p × 3n (Fig. 8),
quadrupled to p × 4n (Fig. 9) or multiplied to p × k (k = 2, 3,
4, 5, …), appearing in some specific bifurcation regions with
different Feigenbaum constants, which are also found to be
universal [29].

Due to the lack of gravity in space environments, a tiny
disturbance in the experimental system will affect convec-

tion systems dominated by surface tension. In this study, the
liquid bridge with an aspect ratio of A = 0.5, and a volume
ratio of V = 0.82, (Fig. 10), the flow transits from a steady
state to periodic oscillation when the Marangoni number ex-
ceeds the threshold (point a, t = 4561 sec). However, when
Ma = 2.19 Mac (point b, t = 9634 sec), quartered frequencies
n f1/4 (n = 1, 2, 3, …) appear in the spectrogram, which
indicates that the flow had entered quadruple-periodic mo-
tion. It is interesting to note that, differing from the previous
results shown in Figs. 7 to 9, k is no longer a constant
number in the subharmonic bifurcations transition process,
and it can change from an even number to an odd number.
When Ma = 2.36 Mac (point c, t = 10381 sec), quintuple fre-
quencies n f1/5 (n = 1, 2, 3, …) appear in the spectrogram,
and the flow behaves as quintuple-periodic motion. The con-
version between those two subharmonic periodic modes is
the flow transition caused by the bifurcations of the flow
field.

Type III: Subharmonic transition process with inverse
bifurcation. Under the conditions of a volume ratio V of
0.98 and an aspect ratio A of 0.95 (Fig. 11), it has been
found that the flow evolves following the route as fol-
lows: steady-state to periodic oscillation to triple-periodic
oscillation to sixfold-periodic oscillation (n = 1, 2, 3, …).
However, when Ma = 2.49 Mac (point d , t = 9172 sec), the
flow suddenly transits into triple-periodic oscillation from
sixfold-periodic oscillation, with the emergence of the inverse
period-doubling bifurcation. Then, when Ma = 2.63 Mac

(point e; t = 9688 sec), the flow no longer continues to bi-
furcate, suddenly loses its regularity, and enters chaos. When
the volume ratio V is 0.70 and aspect ratio A is 0.85 (Fig. 12),
the flow directly transits from periodic motion into sixfold-
periodic motion at Ma = 2.06 Mac (point b, t = 9274 sec).
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FIG. 8. Triple-periodic transition route (A = 0.95; V = 0.94): (a) Maa = Mac, periodic oscillation; (b) Mab = 2.38 Mac, triple-periodic
oscillation; (c) Mac = 2.61 Mac, chaos.

Then it transits into triple-periodic motion through the in-
verse bifurcation at Ma = 2.22 Mac (point c, t = 10008 sec)
and eventually becomes chaos at Ma = 2.34 Mac (point d ,
t = 10528 sec).

The mechanism of chaos is complicated, and a transition
route will reflect only one aspect. The three transition pro-
cesses shown in Figs. 13 to 15 are coupled with periodic

motion. As shown in Fig. 13, the flow transits from double-
periodic oscillation back into periodic motion with f = 0.088,
Hz at Ma = 2.01 Mac (point c, t = 6487 sec) and then main-
tains that state for a considerable length of time. The flow
transits into quadruple-periodic motion through a bifurcation
at Ma = 3.00 Mac (point d , t = 8475 sec) and finally enters a
chaotic state at Ma = 3.16 Mac (point e, t = 10201 sec).

FIG. 9. Quadruple-periodic transition route (A = 0.85; V = 0.78): (a) Maa = Mac, periodic oscillation; (b) Mab = 2.44 Mac, quadruple-
periodic oscillation; (c) Mac = 2.71 Mac, chaos.
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FIG. 10. Double-periodic transition route from quadruple-periodic oscillation to quintuple-periodic oscillation (A = 0.5; V = 0.82): (a)
Maa = Mac, periodic oscillation; (b) Mab = 2.19 Mac, quadruple-periodic oscillation; (c) Mac = 2.36 Mac, quintuple-periodic oscillation.

Similar to the transition route detailed in Fig. 10, the
double-periodic motion could potentially bifurcate into a
k-periodic oscillation (k �= 2) during the transition process.
As shown in Figs. 14 and 15, the periodic motion occurring
at a later regime can transition to triple- or quintuple-periodic

motion by bifurcations (n = 1, 2, 3, …), and the flow will
potentially alternate between periodic motion and k-periodic
motion (k = 2, 3, 4, …).

This inverse phenomenon includes the following pro-
cesses: periodic oscillation, double-periodic oscillation,

FIG. 11. Double-periodic transition route with inverse bifurcation I (A = 0.95; V = 0.98): (a) Maa = Mac, periodic oscillation; (b) Mab =
2.12 Mac, triple-periodic oscillation; (c) Mac = 2.33 Mac, sixfold-periodic oscillation; (d) Mad = 2.49 Mac, triple-periodic oscillation; (e)
Mae = 2.63 Mac, chaos.
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FIG. 12. Double-periodic transition route with inverse bifurcation II (A = 0.85; V = 0.70): (a) Maa = Mac, periodic oscillation; (b) Mab =
2.06 Mac, sixfold-periodic oscillation; (c) Mac = 2.22 Mac, triple-periodic oscillation; (d) Mad = 2.34 Mac, chaos.

periodic oscillation, and double-periodic oscillation, respec-
tively, and does not comply with Feigenbaum’s period-
doubling bifurcation model. Not all of the period-doubling
transition routes are included in the processes during which
the flow bifurcates with the period being continuously dou-
bled before entering chaos. Therefore, Feigenbaum’s period-
doubling bifurcation model is considered to be an ideal model.

C. Coupling transition processes

As can be seen in Fig. 16, the flow experiences quadruple-
periodic motion after two bifurcations. However, at Ma =
2.33 Mac (point c, t = 10409 sec), the flow transits once again
into quasiperiodic motion with two fundamental frequen-
cies, f1 and f2. The transition mechanism is based on the

FIG. 13. Double-periodic transition route with inverse bifurcation III (A = 1.1; V = 0.78): (a) Maa = Mac, periodic oscillation; (b)
Mab = 1.51 Mac, double-periodic oscillation; (c) Mac = 2.01 Mac, periodic oscillation; (d) Mad = 2.62 Mac, quadruple-periodic oscillation;
(e) Mae = 3.16 Mac, chaos.
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FIG. 14. Double-periodic transition route with inverse bifurcation VI (A = 1.1; V = 0.80): (a) Maa = Mac, periodic oscillation; (b) Mab =
1.63 Mac, double-periodic oscillation; (c) Mac = 1.93 Mac, periodic oscillation; (d) Mad = 2.39 Mac, triple-periodic oscillation; (e) Mae =
2.52 Mac, periodic oscillation; (f) Ma f = 2.56 Mac, quadruple-periodic oscillation.

Hopf bifurcation, with the flow gradually developing from
double-periodic motion into quasiperiodic motion. As shown
in Fig. 17, after two Hopf bifurcations, at Ma = 2.11 Mac

(point c, t = 7106 sec), the fluid experiences periodic motion
for a long period of time. Then, at Ma = 2.69 Mac (point

d , t = 9060 sec), the flow transforms into double-periodic
motion and then continues to bifurcate. In addition, at Ma =
2.96 Mac (point e, t = 9969 sec), the flow transits into sixfold-
periodic oscillation and eventually enters a chaos state at
Ma = 3.15 Mac (point f , t = 10609 sec).

FIG. 15. Double-periodic transition route with inverse bifurcation V (A = 1.1; V = 0.84): (a) Maa = Mac, periodic oscillation; (b)
Mab = 1.53 Mac, double-periodic oscillation; (c) Mac = 2.27 Mac, periodic oscillation; (d) Mad = 2.84 Mac, quintuple-periodic oscillation;
(e) Mae = 3.16 Mac, chaos.
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FIG. 16. Transition route coupled with quadruple-periodic oscillation and quasiperiodic oscillation (A = 0.5; V = 0.96): (a) Maa = Mac,
periodic oscillation; (b) Mab = 2.15 Mac, quadruple-periodic oscillation; (c) Mac = 2.33 Mac, quasiperiodic oscillation with two fundamental
frequencies, f1 and f2.

D. Intermittent transition processes

Intermittence is a widespread phenomenon observed in
nature. The transition process to chaos involving intermittency
is also a very typical transition route. In the time domain,
the regular oscillation is suddenly “impacted” to cause chaos,
and in the frequency domain, it appears as a broad band

that suddenly appears or disappears, which can be clearly
observed in the time-frequency diagram. Gollub and Benson
and Pomeau and Manneville [18,42] initially proposed an
intermittent chaos model. In the thermocapillary convection
of a liquid bridge, the intermittent transition route to chaos
can be commonly divided into the following three cases [42].

FIG. 17. Transition route coupled with double periodic oscillation, quasiperiodic oscillation and periodic oscillation (A = 0.85; V = 0.70):
(a) Maa = Mac, periodic oscillation; (b) Mab = 1.54 Mac, quasiperiodic oscillation with two fundamental frequencies, f1 and f2; (c) Mac =
2.11 Mac, periodic oscillation; (d) Mad = 2.69 Mac, double-periodic oscillation; (e) Mae = 2.96 Mac, sixfold-periodic oscillation; (f) Ma f =
3.15 Mac, chaos.
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FIG. 18. Type I intermittent transition route (A = 0.85; V = 0.98): (a) Maa = Mac, periodic oscillation; (b) Mab = 2.01 Mac, chaotic
oscillation; (c) Mac = 2.08 Mac, periodic oscillation.

Type I: Alternating state between periodic oscillation and
chaos. The intermittent transition process is coupled with
periodic oscillation and chaos. It can be seen in Fig. 18
that the flow loses stability to a regular periodic oscillation
at Ma = Mac (point a, t = 4657 sec). The original smooth
periodic oscillation is interrupted by suddenly emerging large-
amplitude chaotic fluctuations at Ma = 2.01 Mac (point b,
t = 9361 sec), and the fluid motion switches back and forth
between periodic motion and chaotic motion. With the in-
creasing temperature differences, disordered signals appear
more and more frequently, and the fluid motion becomes
increasingly chaotic [18,42].

Type II: Alternating state between double-periodic oscilla-
tion and chaos. Although the mechanism is the same as that
of the Type I intermittent route, chaos and period-doubling
motion appear intermittently in the flow of the Type II in-
termittent route. It has been found that as the temperature
differences increase, the subharmonic bifurcations motion
suddenly weakens and the chaotic motion suddenly increases.
As detailed in Fig. 19, when Ma = Mac (point a, t = 4102
sec), the flow periodically oscillates, and its temperature
oscillation amplitude gradually increases with the growing
Marangoni number. However, when Ma = 2.05 Mac (point b,
t = 8409 sec), the flow performs a quadruple-periodic motion,
and the temperature oscillation amplitude descends abruptly.
Meanwhile, the temperature oscillation amplitude also shows
a gradually increasing trend. When Ma = 2.50 Mac (point
c; t = 10255 sec), the flow field transits into chaos, and the
above-mentioned situation is repeated. Finally, when the tem-
perature oscillation amplitude reaches a very high value, the
flow loses its regularity, and chaotic oscillation appears. The
intermittent chaos and chaos caused by the period-doubling
bifurcations are considered to be twin phenomena. Therefore,

in principle, it is determined that in any system, if period-
doubling bifurcation is observed, intermittent chaos also will
be found [43].

Type III: Alternating state between quasiperiodic oscilla-
tion and chaos. This intermittent transition route is related
to the Hopf bifurcation, and the transition process switches
between periodic motion and quasiperiodic motion. Simi-
lar to the intermittent transition route mentioned above, its
chaotic characteristics become increasingly significant [44].
As shown in Fig. 20, the flow transits from periodic motion
to quasiperiodic motion because of a Hopf bifurcation. Then,
as the temperature differences increase, the amplitude of the
subharmonic frequency also increases. Meanwhile, the am-
plitude of the fundamental frequency decreases. When Ma =
2.11 Mac (point c, t = 5754 sec), the amplitude of the sub-
harmonic frequency reaches a very high value. Subsequently,
the signals lose regularity, and an intermittency of turbulence
appears. At Ma = 2.80 Mac (point d , t = 7636 sec), the flow
develops into a quasiperiodic state again through the Hopf
bifurcation.

E. Special transition processes to chaos

Disturbances will cause a transition from laminar flow to
chaos, and the disturbance can change with time and space.
The transition processes are sensitive to the initial disturbance.
For the flow with a small initial disturbance, the increasing
disturbance wave will develop both linearly and nonlinearly.
During the transition processes discussed in Secs. A to D,
the transitions begin with a small-amplitude disturbance, and
the amplitude of the disturbance gradually increases. When
the disturbance is large enough, obvious nonlinear effects
appear in the connection with more and more harmonics
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FIG. 19. Type II intermittent transition route (A = 0.5; V = 1.00): (a) Maa = Mac, periodic oscillation; (b) Mab = 2.05 Mac, quadruple-
periodic oscillation; (c) Mac = 2.50 Mac, chaos.

being generated. Consequently, the convection will become
increasingly complicated. Figures 21 and 22 show another
transition process with sudden chaotic state. In Fig. 21 it
can be seen that the fluid first experienced regular periodic
motion in the segments a-b. Then the flow loses stability at
the point b and directly enters chaos without any transitions
or bifurcations. This is similar to flow transition processes

driven by nonsurface tension in other flow systems, in which
without intermediate procedures, the flow directly enters a
chaotic state.

As detailed in Fig. 22, the flow transition is coupled with
the time-domain oscillations and frequency-domain oscilla-
tion. It is observed that at Ma = 2.26 Mac (point b; t =
24088 sec), an abrupt change in the amplitude of the tem-

FIG. 20. Type III intermittent transition route (A = 0.8; V = 0.60): (a) Maa = Mac, periodic oscillation; (b) Mab = 1.75 Mac, quasiperi-
odic oscillation with two fundamental frequencies, f1 and f2; (c) Mac = 2.11 Mac, quasiperiodic oscillation with two fundamental frequencies,
f1 and f2; (d) Mad = 2.80 Mac, chaos.
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FIG. 21. One step to chaos (A = 0.85; V = 0.94): (a) Maa = Mac, periodic oscillation; (b) Mab = 1.88 Mac, chaos.

perature signal occurred. Consequently, the flow frequency
fluctuates, and the frequency curve becomes distorted. How-
ever, the frequency fluctuations will not affect the transition of
the flow. At Ma = 2.62 Mac (point c; t = 27925 sec), subhar-
monic frequencies of n f /2, where n = 1, 2, 3, … emerges in
the flow field. As a result, characteristics of double-periodic
bifurcation are added into the flow. The two flow regimes
do not interfere with each other and coexist in the transition
process.

Whether the flow enters chaos from periodic motion
(Fig. 21) or a fluctuation state (Fig. 22), the entire transition

process of convection can be explained by the stability theory
and the dissipation structure theory [18,42]. At the initial state
of thermocapillary convection, since the temperature gradient
is small, the convection is in a laminar state without oscilla-
tions and the flow is still in a linear regime. As the Marangoni
number increases, the flow is disturbed, and the transition
of convection begins. Therefore, at the beginning of the
transition process, there are only simple periodic oscillations
in the convection, and the flow is located in a weak nonlinear
regime. With the further increase in the temperature differ-
ences �T , the disturbance intensifies, and the convection

FIG. 22. Frequency oscillation transition route (A = 0.60; V = 0.69): (a) Maa = Mac, periodic oscillation; (b) Mab = 2.26 Mac, wavy
phenomenon of dominant frequency; (c) Mab = 2.62 Mac, subharmonic frequencies of n f /2.
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FIG. 23. Summary of transition routes to chaos: (a) quasiperi-
odic transition routes to chaos; (b) double periodic transition routes
to chaos; (c) intermittent transition routes. P refers to the periodic
oscillations; Q indicates the quasiperiodic oscillations; L represents
the phase locking; kn, qn indicate the double-periodic oscillations,
k = 2, 3, 4, …, q = 3, 4, 5, …; and C refers to the chaotic state.

evolves into a complex periodic oscillation state. Different
frequencies will interfere with each other and also be strength-
ened or weakened by the weak nonlinear effects. As the
disturbance continues to be amplified under weak nonlinear
actions, the oscillations become chaotic and irregular, indicat-
ing that the convection has evolved into a strong nonlinear
regime or chaotic state.

IV. CHAOTIC ANALYSIS OF TRANSITION ROUTES

A. Transition process analysis

To summarize the transition processes, it has been found
that the flow always transitions from a steady state to pe-
riodic motion, and then evolves into a quasiperiodic motion
attributed to the Hopf bifurcation [Fig. 23(a)]. However, if the
quasiperiodic motion continues for a long period of time, a
frequency-locking phenomenon will appear. As the coupling
effects become stronger, the flow will display more obviously
chaotic characteristics. Consequently, following successive
bifurcation processes, it will eventually evolve into chaotic
motion (Type I), which is a relatively common transition
process. In these space experiments conducted in a liquid
bridge, Type II to III were found to correspond to more di-
versified and unique transition routes. In addition, after the
first Hopf bifurcation, the flow also transformed to periodic
motion. However, the flow could potentially transition into
quasiperiodic, periodic, or chaotic motion, and as the tempera-
ture difference increases eventually enter chaos by successive
Hopf bifurcations.

In accordance with the RTN theory, provided that there
are three unconventional frequencies appearing in succession,
the flow will enter a state of chaos. The quasiperiodic roads
involved here had not strictly met the conditions required by
the RTN route to chaos, and more detailed regimes in the
flow bifurcation processes were observed in the experiments.
For example, in Types II to III, the quasiperiodic oscillation
with two fundamental frequencies was observed to have the
potential to evolve into a chaotic state after several changes of
frequencies. In addition, the phenomena of frequency locking
and inversion bifurcation appeared in the transition processes.

Similar to the quasiperiodic transition route, during the
double-periodic bifurcation processes, a chaotic state could
be obtained after successive subharmonic bifurcations, or the
periodic motion or chaotic motion alternatively may continu-
ously evolve, as detailed in Fig. 23(b). In Type III, the flow
first transits from periodic motion with a fundamental fre-
quency f0 to a double-periodic motion with n f1/k harmonic
frequencies (k = 2; n = 1, 2, 3, …), and then degenerates
into a periodic motion with a new fundamental frequency
f1 through inverse bifurcation. At a later point, it bifurcates
into triple-periodic motion with n f /3 harmonic frequencies
(n f /5 harmonic frequencies; n = 1, 2, 3, …; q = 3 or 5; and
q �= k), or with f /4(k2) harmonic frequencies, which were
observed to change back and forth and eventually evolve into
chaos. It was also found that each bifurcation in Type III
was a triple-periodic motion with n f /3 harmonic frequencies,
which indicates that k = 3 in p × kn in those cases.

The intermittency mechanism is tangent bifurcations (for
example, saddle knot bifurcations). It was found that regard-
less of Type I, Type II, or Type III intermittent transition
routes, the flow transits from periodic motion to chaos owing
to bifurcations. The flow state switches between regular os-
cillations, such as periodic, double-periodic, or quasiperiodic
oscillations and irregular oscillations, and chaos. Eventually,
the convection system becomes dominant and the flow evolves
into complete chaos, as shown in Fig. 23(c). The fluid con-
verges near the stable node and flows outward near the saddle
point. With the increases in the Marangoni number, the fluid
motion appears intermittently as a periodic state or a chaotic
state, which reflects the tunnel effects of the trajectory near
the critical point. The periodic motion and chaotic motion of
the convection system were observed to be coupled together,
leading to chaos with intermittent transitions. Details of the
chaotic roads in Figs. 3–22 are summarized in Table I of the
Appendix.

B. Phase space reconstruction

Phase space reconstruction is the basis for the research on
chaotic time series. The nonlinear characteristics of the time
series are important factors which cause a system to present
chaotic phenomena. Although the time series of the ther-
mocapillary convection system displayed a one-dimensional
phenomenon in the data flow, its internal nonlinear dynamic
characteristics were found to be complex. The concept of
reconstruction can be introduced into the dynamic system
theory by recovering or approximately simulating its potential
high-dimensional dynamic environments [45]. Since the time
series of a single variable output by a system can be recon-
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FIG. 24. Phase space reconstructions of the RTN transition process (A = 0.6; V = 0.84): (a) Ma = 0.7 Mac; (b) Ma = Mac; (c) Ma =
2.03 Mac; (d) Ma = 2.21 Mac.

structed in phase space, many dynamic characteristics of the
thermocapillary convection system can be obtained [14].

The reconstruction of the pseudo-phase space (PPS) was
conducted from a single time series of the fully developed
surface temperature by applying the time-delayed coordinates
[45]. The m-dimensional coordinate was defined as follows:

vm(t ) = (T (t ), T (t + τ ), T (t + 2τ ), . . . , T [t + (m − 1)τ ]),
(4.1)

where T (t) represents the oscillation temperature at time t , and
τ indicates the delay time.

The emergence of strange attractors indicated that the sys-
tem had some instability issues. The directions of movements
inside and outside the attractor had varied. It was observed that
all the movements outside the singular attractor were toward
(attracted to) the attractor, and they were in a “stable” direc-
tion. However, all the movements which reached the singular
attractor repelled each other, and they were found to be in the
“not stable” direction. That is to say, when the fundamental
frequencies had close values, the movements of the attractor
were characterized by mutual attraction, showing a “stable”
form. However, when the fundamental frequencies had largely
different values, the repulsion of the movements aggravated
the “instability” of the flow system. As can be seen in Fig. 24,
in the classic RTN transition route, the flow bifurcated from
periodic motion to a state in which limited cycles appeared. In
addition, it can be seen in the figure that the flow was affected
by the bifurcation. Two-dimensional limit cycles continued to
evolve, and the inner diameter of the torus continued to shrink.
Meanwhile, the outer diameter and the position of the torus
remained almost unchanged. When the ability of repulsion in
the attractor exceeded the ability of proximity, the phase space
became extremely irregular and entered chaos.

It has been determined that the shape of the torus will
change with different specific flow patterns. Each Hopf bifur-
cation can be regarded as a change in the solution of the flow
equation. During the continuous evolution process of the flow,
the solution will continuously iterate in the interval. However,
different from the bifurcation process shown in Fig. 24, in the
bifurcation process shown in Fig. 25, due to the influencing
effects of external disturbances, the iteration interval of the
solution changed, which was manifested as the change in
the shape of the torus. Since its transition mechanism was
still the Hopf bifurcation, the entire motion trajectory still
presented an attractor state, due to the fact that the orbit was
never repeated and the tracking point infinitely approached the
initial point. Figure 25 also shows the phase space evolution
process of the transition process illustrated in Fig. 3. Its initial
state was same as in the RTN route. However, during the later
bifurcation process, with the further development of the flow,
although the torus of the limit cycle continued to expand, the
interval of the solution of the flow equation also changed. As a
result, the size and position of the limit cycle were also altered.
It was observed that when the two fundamental frequencies
were close to each other, the band-shaped inner track formed
by the torus was regular. When the two fundamental frequen-
cies were largely different, the internal structure of the torus
became more complicated due to the effects of continuous
expansion.

In phase space analysis (Fig. 24), the steady motion cor-
responded to a fixed point; periodic motion corresponded
to a limited circle; and quasiperiodic motion corresponded
to a limited torus (two-dimensional torus). A torus of three
dimensions or even higher dimensions (for example, a torus
with at least three frequencies) chaotic motion is easily
generated. According to the theory of Curry et al. [39],
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FIG. 25. Phase space reconstruction of the quasi-periodic transition process coupled with beat phenomena (A = 0.65; V = 0.65): (a)
Ma = Mac; (b) Ma = 1.28 Mac; (c) Ma = 1.52 Mac; (d) Ma = 1.70 Mac.

the three-dimensional torus model generated from the Hopf
bifurcation was not stable. Consequently, the third incom-
mensurate frequency could not be observed in many cases.
The flow had obviously changed from counterperiodic mo-

tion to a chaotic motion on the singular attractor from a
two-dimensional torus. In principle, the change also applied
to the Ruelle-Takens-Newhouse two-dimensional case [19].
The quasiperiodic transitions in the liquid bridge in this space

FIG. 26. Phase space reconstruction of the Feigenbaum transition process (A = 0.65; V = 0.65): (a) Ma = 1.10 Mac; (b) Ma = 2.03 Mac;
(c) Ma = 2.25 Mac; (d) Ma = 2.45 Mac.
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experiments had mainly taken this transition route, as shown
in Fig. 3.

During the period-doubling transition process, as the flow
evolved, following a bifurcation in the flow field, two similar
orbital tori appeared. These displayed double-periodic oscil-
lations at a frequency of n f /2 [Fig. 26(b); n = 1, 2, 3, …].
After more bifurcations, the number of orbital tori was dou-
bled again and again [Fig. 26(c)]. As numerous orbital tori
became stacked, the flow finally entered a state of chaos, as
shown in Fig. 26(d).

C. Lyapunov exponent analysis

The Lyapunov exponent is a parameter for evaluating the
mean separation rate of trajectories in the phase space. In a
continuous nonlinear dynamic system, the sphere will evolve
to an ellipsoid, and the principal axis in the i direction is
pi(t ). The Lyapunov exponent in the i direction is defined as
λi = lim

t→∞
1
t log2

pi (t )
pi (0) . If the Lyapunov exponent is larger than

0, it indicates that the system enters chaos. Many experiments
show that the thermocapillary convection is sensitivity to the
initial condition once the largest Lyapunov exponent λL > 0
[46,47].

In order to estimate the largest Lyapunov exponent from
time series, we adopt the Wolf algorithm [48] and the steps are
described as follows. (1) We reconstruct the one-dimensional
signal into an m-dimensional phase space sequence Y (t ) =
X (t ), X (t + τ ), X (t + 2τ ), …, X (t + (m − 1)τ ), which τ is
the delay and m is the embedding dimension. (2) A neighbor
of the point Y (ti ) at t = ti is searched in data set {Y (t), t =
1, …, N}, which is named as Y (t ′). Then the distance between
Y (ti) and its neighbor is obtained d (t ) = ||Y (t ′) − Y (t )||. (3)
According to the trajectories of Y (t ) and Y (t ′), we predict
the evolution points Y (t + 1) and Y (t ′ + 1) and calculate the
evolution distance d ′(t ) = ||Y (t + 1) − Y (t ′ + 1)||. (4) In the
next time step, a new neighbor Y (t ′) is selected if there exists
a point with a smaller distance and at the similar direction of
old neighbor. Then, repeat the step (3) to start a new evolution.
Finally, the largest Lyapunov exponent is estimated through
the formula

λL(t ) = 1

k�t

t∑
k=1

log2
d ′(k)

d (k)
. (4.2)

It should be noticed that the delay τ and embedding di-
mension m are important parameters when calculating the
largest Lyapunov exponent. The time delay τ is determined
by finding the local minimum of Average Mutual Information
between X (t) and X (t + τ ). It means that mutual dependence
between X (t ) and X (t + τ ) is the weakest, where the phase
space sequence Y (t ) contains the largest amount of infor-
mation. The embedding dimension is estimated by the False
Nearest Neighbor algorithm. This algorithm guarantees that
the points in phase space contain enough information with a
low dimension.

The correlation dimension can express the geometric prop-
erties of the trajectory in the phase space. A fraction of the
correlation dimension proves the fractal structure of the flow
system. The correlation integral is defined as

C(r) = lim
N→∞

1

N (N − 1)

N∑
i, j=1,i �= j

θ (r − |Y (ti ) − Y (t j )|), (4.3)

FIG. 27. Analysis of a periodic oscillation signal of Fig. 24(b)
(A = 0.85, V = 0.78, Ma = 2.44 Mac, 6000 data points): (a) Evo-
lution of the Lyapunov exponent; (b) relationship between C(r)
and r.

where θ (x) is the Heaviside function (θ = 1 if x � 0, θ = 0
if x < 0), and r is the neighborhood radius. The correlation
dimension is estimated by the slope of ln[C(r)] vs ln(r).

The largest Lyapunov exponent is evaluated as one im-
portant exponent to describe the chaotic characteristics.
Figure 27 shows the analysis of a periodic oscillation signal of
Fig. 24(b), in which we take 6000 sampling points for analysis
(300 sec). The time delay determined according to the average
mutual information method is 69 sampling points, which is
equal to 3.45 sec. When the calculated embedding dimension
is m = 4 according to the false neighbor point, the proportion
of the false neighbor point drops to 0.02%, which satisfies the
threshold and conditions we set, Pfnn < Pth (threshold 5%,).
Figure 27(a) shows the evolution of the Lyapunov exponent
calculated by the Wolf method. When the sampling points
are larger than 3000, the Lyapunov exponent calculated by
the Wolf method converges to the largest Lyapunov exponent
λL. We take the average of the last 2000 evolution points
(0.0232) as the largest Lyapunov exponent. Theoretically, the
phase space trajectory of periodic oscillation is a limit cycle,
so the maximum Lyapunov exponent is equal to zero. The
oscillation obtained in the experiment is not a completely
regular oscillation, as the temperature difference is slowly in-
creasing linearly, so the amplitude of the oscillation gradually
increases. Figure 27(b) indicates the relationship between the
correlation integral C(r) and r in double logarithmic coordi-
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FIG. 28. Changes of the largest Lyapunov exponent (λL) and correlation dimension (Dm) in the quadrupled periodic transition route (A =
0.85, V = 0.78).

nates. The range we selected is [0.2, 0.9], and the calculated
correlation dimension is 1.08, which is very close to the theo-
retical value of periodic oscillation.

As showed in Fig. 28 (corresponding to Fig. 9), the changes
in the correlation dimension and Lyapunov exponent in the
quadruple periodic oscillation transition road to chaos are

given. In the periodic oscillation stage, the correlation dimen-
sion of the system is 1, and the Lyapunov exponent is close
to 0 (≈0.05). It is worth noting that near the critical point, be-
cause the signal has a relative low signal-to-noise ratio (SNR),
the correlation dimension and Lyapunov exponent are overes-
timated due to the disturbance of the noise. In the quadruple

FIG. 29. Changes in characteristic quantities in different Hopf bifurcation processes: (a) RTN road to chaos; (b) one step to chaos.
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periodic oscillation stage, the correlation dimension of the
system jumps to 2.09, but the Lyapunov exponent is still
0.05, which is consistent with that of the periodic oscillation.
Though the change of the correlation dimension indicates
the transformation of the attractor’s topological structure, the
attractor has not entered the chaotic stage. This small positive
value is mainly due to the gradual change of the oscillation
state caused by the increase of the temperature difference. In
the chaotic stage, an obvious broadband can be noted from
the time-frequency diagram. The correlation dimension of the
system is estimated to be 2.214, and the fractional dimension
indicates the appearance of the strange attractor. The largest
Lyapunov exponent is 0.1783, which has increased by 3.5
times compared with the previous periodic quadruple oscil-
lation stage, and the system has entered chaos.

Figure 29(a) shows the evolution process of the correla-
tion dimension and Lyapunov exponent on the quasiperiodic
transition route (RTN route). In the periodic oscillation stage,
the correlation dimension is 1, and the Lyapunov exponent
is close to 0 (−0.016–0.057). When the flow becomes a
quasiperiodic oscillation, the correlation dimension is 2.223–
2.465, which means that the fractional dimension system
occurs. The Lyapunov exponent is 0.0963–0.1105, which is
double the periodic oscillation. It is demonstrated in Fig. 29(a)
that once the system enters the quasiperiodic oscillation, it
exhibits chaotic characteristics. Figure 29(b) shows a one-step
transition road to chaos (corresponding to Fig. 21), which the
system transits directly from periodic oscillation to chaos.
As the frequency spectrum cannot quantitatively describe
the chaotic characteristics of the system, the correlation di-
mension and Lyapunov exponent are helpful to detect the
evolution of the strange attractor. In the chaotic state, it shows
that the correlation dimension remains almost unchanged,
2.84–2.90, but the Lyapunov exponent gradually increases
with the increasing temperature difference. This indicates
that the topological structure of the strange attractor stays
consistent, but the attractor is stretched so that the oscillation
becomes more disordered.

V. CONCLUSIONS

In the present study, the transition process to chaos of
thermocapillary convection in a liquid bridge on Tiangong-
2 was systematically investigated. It was found that
there were abundant nonlinear physical phenomena in the
thermocapillary convection under microgravity conditions,
and the flow was observed to have various transition routes
to chaos with multiple bifurcation mechanisms.

The heat transfer process, coupled with the shear flow
driven by surface tension, was the basic characteristic of the
thermocapillary convection. Differing from the free surface
of the complex configurations in ground environments, the

liquid surface of the liquid bridge under microgravity condi-
tions exhibited excellent axial symmetry, showing unique flow
instability laws and oscillation characteristics. The classic
RTN route was discovered during the quasiperiodic transi-
tion process. The coupling of the beat phenomena and the
quasiperiodic oscillations resulted in the frequency of the flow
becoming no longer continuous, which was different from the
classic RTN route. The phenomena of the inverse bifurcations
caused the quasiperiodic transition process to display recipro-
cating fluctuations. For the double-periodic transition process,
this study not only discovered the classic Feigenbaum transi-
tion route, but also obtained other various transition routes,
such as triple-periodic routes, quadruple-periodic routes, and
so on, which constituted the Mandelbrot set of the thermo-
capillary convection transition routes [48]. The coupling of
the inverted bifurcation and the double-periodic oscillations
confirmed that the Feigenbaum route was an ideal model,
and the route from double-periodic bifurcation to chaos was
diversified. Meanwhile, it was found that the quasiperiodic
oscillations and the double-periodic oscillations could also
potentially coexist in a thermocapillary convection system
under microgravity conditions. The research results obtained
in this study successfully break through the typical bifur-
cation theory leading to chaos and enrich the diversity of
the transition and bifurcation mechanisms of thermocapillary
convection. It is determined that three types of intermittencies
exist in a fluid system, which confirms the universality of the
presented classification results.

It is known that bifurcation will cause sudden changes
in feature quantity, leading to the reconstruction of a flow
field. This study confirmed that the thermocapillary convec-
tion finally enters a chaotic state by introducing a classical
chaotic dynamics theory. By the combined analysis of the
largest Lyapunov exponent and the correlation dimension in
the transition to chaos, we find that the attractor stays periodic
during the quadrupled periodic transition while it changes to
the strange attractor during the quasiperiodic transition. It is
also found that the Lyapunov exponent increases while the
correlation dimension is almost unchanged during the chaotic
stage. It was concluded in this study that since thermocapillary
convection is a typical nonlinear system, examining its transi-
tion process is of major academic value for understanding the
nature of chaos.
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APPENDIX

Figure 30 is the distribution of the transition routes involved in the present work on the aspect ratio to volume ratio.
Figure 31(a) is a graph showing the relationship between the critical frequency and the aspect ratio, and Fig. 31(b) is a graph
showing the relationship between the critical frequency and the volume ratio. It can be seen from the figures that both the
aspect ratio and the volume ratio affect the transition route and the critical frequency. As the height of the liquid bridge
increases, the critical frequency decreases, which is consistent with previous work [35]. The fundamental critical frequency
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TABLE I. Details of Figs. 3–22.

Observed

Fig A V f0 f1, f2 ( f /n) … states

Mac: 2.03 Mac: 2.21 Mac: P
f0 = 0.054 Hz f1 = 0.078 Hz, f1 = 0.080 Hz, Q( f1, f2)

3 0.6 0.84 Q( f1, f2, f3)
f2 = 0.110 Hz f2 = 0.115 Hz,

f3 = 0.047 Hz
Mac: 1.28 Mac: 1.47 Mac: 1.66 Mac: P

f0 = 0.098 Hz f1 = 0.111 Hz, f1 = 0.149 Hz, f1 = 0.161 Hz, Q( f1, f2)
4 0.4 0.45 f2 = 0.153 Hz f2 = 0.157 Hz f2 = 0.184 Hz Q( f1, f2)

Q( f1, f2)
Mac: 1.37 Mac: 1.64 Mac: 2.71 Mac: 3.43 Mac: P

f0 = 0.034 Hz f1 = 0.059 Hz, f1 = 0.061 Hz f1 = 0.093 Hz, C Q( f1, f2)
5 1.1 6.6 f2 = 0.068 Hz f2 = 0.110 Hz P

Q( f1, f2)
C

Mac: 1.73 Mac: 2.28 Mac: 3.67Mac: 4.50 Mac: P
f0 = 0.027 Hz f1 = 0.041 Hz, C f1 = 0.056 Hz C Q( f1, f2)

6 1.1 0.56 f2 = 0.027 Hz C
P
C

Mac: 1.89 Mac: 1.98 Mac: 2.07Mac: P
f0 = 0.068 Hz f1 = 0.117 Hz, f1 = 0.117 Hz, Cs kn( f /2)

7 0.65 0.65 f1/2 = 0.059 Hz f1/4 = 0.029 Hz, kn( f /4)
3 f1/4 = 0.088 Hz C

Mac: 2.38Mac: 2.61Mac: P
f0 = 0.062 Hz f1 = 0.131 Hz, C qn( f /3)

8 0.95 0.94 f1/3 = 0.044 Hz, C
2 f1/3 = 0.087 Hz

Mac: 2.44Mac: 2.71Mac: P
f0 = 0.093 Hz f1 = 0.116 Hz, C qn( f /4)

9 0.85 0.78 f1/4 = 0.029 Hz, C
3 f1/4 = 0.087 Hz

Mac: 2.19Mac: 2.36Mac: P
f0 = 0.098 Hz f1 = 0.100 Hz, f1 = 0.103 Hz, qn( f /4)

10 0.5 0.70 f1/4 = 0.025 Hz, f1/5 = 0.021 Hz, qn( f /5)
3 f1/4 = 0.075 Hz 4 f1/5 = 0.082 Hz

Mac: 2.12Mac: 2.33Mac: 2.49Mac: 2.63Mac: P
f0 = 0.064 Hz f1 = 0.124 Hz, f1 = 0.129 Hz, f1 = 0.102 Hz, C qn( f /3)

11 0.95 0.98 f1/3 = 0.041 Hz, f1/6 = 0.022 Hz, f1/3 = 0.035 Hz, qn( f /6)
2 f1/3 = 0.083 Hz f1/3 = 0.043 Hz 2 f1/3 = 0.035 Hz qn( f /3)

C

Mac: 2.06Mac: 2.22Mac: 2.34Mac: P
f0 = 0.072 Hz f1 = 0.115 Hz, f1 = 0.123 Hz, C qn( f /6)

12 0.85 0.70 f1/3 = 0.038 Hz, f13 = 0.041 Hz, qn( f /3)
f1/2 = 0.057 Hz, 2 f1/3 = 0.082 Hz C
2 f1/3 = 0.077 Hz

Mac: 1.51Mac: 2.01Mac: 2.62Mac: 3.16Mac: P
f0 = 0.061 Hz f1 = 0.077 Hz, f1 = 0.088 Hz f1 = 0.111 Hz, C qn( f /2)

13 1.1 0.80 f1/2 = 0.038 Hz f1/4 = 0.027 Hz, qn( f /3)
3 f1/4 = 0.084 Hz C

Mac: 1.63Mac: 1.93Mac: 2.39Mac: 2.52Mac: 2.56Mac: P
f0 = 0.059 Hz f1 = 0.083 Hz, f1 = 0.093 Hz f1 = 0.112 Hz, f1 = 0.112 Hz f1 = 0.110, qn( f /2)

14 1.1 0.80 f1/2 = 0.041 Hz f1/3 = 0.037 Hz, f1/4 = 0.027 Hz, P
2 f1/3 = 0.075 Hz f1/2 = 0.055 Hz, qn( f /3)

3 f1/4 = 0.083 Hz P
qn( f /4)

Mac: 1.53Mac: 2.27Mac: 2.62Mac: 3.16Mac: P
f0 = 0.061 Hz f1 = 0.081 Hz, f1 = 0.101 Hz f1 = 0.126 Hz, C qn( f /2)

15 1.1 0.84 f1/2 = 0.041 Hz 2 f1/5 = 0.050 Hz, P
3 f1/5 = 0.076 Hz qn( f /5)

C
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TABLE I. (Continued.)

Observed
Fig A V f0 f1, f2 ( f /n) … states

Mac: 2.15Mac: 2.33Mac: P
f0 = 0.073 Hz f1 = 0.115 Hz, f1 = 0.123 Hz, qn( f /4)

16 0.5 0.96 f1/4 = 0.029 Hz, f2 = 0.156 Hz Q( f1, f2)
f1/2 = 0.057 Hz,
3 f1/4 = 0.86 Hz

Mac: 1.54Mac: 2.11Mac: 2.69Mac: 2.96Mac: 3.15Mac: P
f0 = 0.035 Hz f1 = 0.052 Hz, f1 = 0.101 Hz f1 = 0.123 Hz, f1 = 0.128 Hz, C Q( f1, f2)

17 0.85 0.70 f2 = 0.065 Hz f1/2 = 0.067 Hz f1/6 = 0.021 Hz, P
2 f1/3 = 0.085 Hz, kn( f /2)
5 f1/6 = 0.107 Hz qn( f /6)

C
Mac: 2.01Mac: 2.08Mac: P

18 0.85 9.58 f0 = 0.061 Hz C f1 = 0.095 Hz C
P
C
… …

Mac: 2.05Mac: 2.50Mac: P
f0 = 0.068 Hz f1 = 0.113 Hz, C qn( f /4)

19 0.5 1.00 f1/4 = 0.028 Hz, C
f1/2 = 0.057 Hz, qn( f /4)
3 f1/4 = 0.085 Hz C

Mac: 1.75Mac: 2.11Mac: 2.80Mac: P
f0 = 0.038 Hz f1 = 0.043 Hz, C f1 = 0.126 Hz, Q( f1, f2)

20 0.8 0.60 f2 = 0.023 Hz f2 = 0.105 Hz C
Q( f1, f2)
C

Mac: 1.88Mac: P
21 0.85 0.94

f0 = 0.068 Hz C C

Mac: 2.26Mac: 2.62Mac: P
22 0.6 0.69 f0 = 0.056 Hz Wavy phenomenon

of dominant
frequency(WF)

Subharmonic
frequencies of n f /2

WF

kn

For example: P: (a) of FIG. 3–22; Q: FIG. 3. (b-c) and FIG. 4. (b-d); kn: FIG. 7. (b-c); qn: FIG. 8. (b) and FIG. 11. (b-d).

FIG. 30. Distribution of transition route in aspect ratio and volume ratio.
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FIG. 31. Effect of geometric parameters on critical frequency, (a) the relationship between the critical frequency and the aspect ratio; (b)
relationship between the critical frequency and the volume ratio.

of the double-periodic road is higher, and the critical fundamental frequency of the quasiperiodic road is lower. One step to
chaos and type I of intermittent transition route are both transits from periodic oscillation to chaos, and their critical frequencies
are also at a higher level. The type III road of intermittent transition and coupling transition road is affected by the quasiperiod,
and the corresponding critical frequency is generally small.
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