
PHYSICAL REVIEW E 106, 035102 (2022)

Instabilities of the natural convection around a cone in thermally stratified medium
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In this paper, we provide a mathematical description of the onset of instability for buoyancy-driven flow
around a cone. The self-similar solutions of the basic flow are derived, where the ambient fluid and the cone have
independent temperature gradients. The linear instability properties are investigated by utilizing the Chebyshev
collocation method. It is demonstrated that the neutral curves have a two-lobed structure and that changing the
Grashof number has only quantitative influence on stability. The critical streamwise location increases when
the half-apex angle is increased, and the unstable range of the wave number diminishes. According to the
examination of eigenfunction profiles and the progression of the two spatial branches in the (αi, αr ) planes,
the primary instabilities on the surface of cone are identified as type-I mode and type-II mode. The energy
analysis is investigated for a typical situation to gain a physical insight, where it is demonstrated that besides
the viscous dissipation, the streamline curvature and buoyancy-driven effects are dominant for the type-I mode
while inviscid effect plays an essential role in type II. These encouraging results are expected to be conducive to
understanding buoyancy-driven systems.
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I. INTRODUCTION

Flows induced by buoyancy forces in the stratified ambient
fluid are very common in several industrial processes and
nature. When an inclined plate is heated or cooled in a stably
stratified fluid, a buoyancy-driven boundary layer flow will
be generated. Such layers representing a balance between
buoyancy and viscous force have been called buoyancy lay-
ers, and the inclined buoyancy layer is of particular interest
to atmospheric scientists. For example, katabatic winds are
formed when the mountain surface becomes colder than the
surrounding air, forcing the wind to rush down the slope.
This typical case was first investigated by Prandtl [1]. In his
study, by assuming a homogeneous boundary layer, a plane
parallel flow solution with a reversal velocity profile was
derived. The meteorological literature has focused on daily
and seasonal variations and the effects of actual topographies
on the mountain-valley winds—for a review, we refer to the
book by Stull [2]. Gill [3] simulated the vertical buoyancy
layers in a heated rectangular cavity, the wall of which has
the same linear temperature gradients as the ambient fluid.
An exact solution was provided and the corresponding flow
is parallel and simply one-dimensional both for velocity and
temperature fields. The stability of such flows with respect to
small disturbances has been of concern for many researchers.
Based on Gill’s solution, Gill and Davey [4] considered the
stability of a buoyancy layer developed over a heated vertical
plate and determined the neutral stability conditions for a wide
range of Prandtl numbers. Then, the neutral curve for various
angles of the inclined case was analyzed based on linear and
weakly nonlinear stability analysis [5,6], respectively. For the
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linear case, two types of instabilities have been studied: the
transverse traveling Tolmien-Schlichting waves (T-S waves)
and the longitudinal rolls. Both theoretical studies and exper-
iments for a boundary layer were introduced by Jaluria and
Gebhart [7]. In the boundary layer, the temperature difference
between the extensive medium and the wall varied down-
stream with a power law x0.2, and the exponent guarantees that
the wall will dissipate uniform heat flux. The results suggest
that a stable ambient stratification delays the early stages of
transition. Their velocity and temperature fields were verified
by Jaluria and Himasekhar [8] via a finite difference method.
In addition, a similarity solution describing the boundary layer
around an isothermally heated plate was obtained by Kulka-
rni et al. [9]. Based on this solution, linear instability was
analyzed later by Krizhevsky et al. [10]. The theoretical and
numerical studies of Prandtl’s buoyancy layer have made sub-
stantial progress [11–15], but mostly on transverse T-S waves.
Especially, according to three-dimensional stability analysis
[16], the oblique roll mode is found to be more unstable than
the transverse T-S wave mode at some inclination angles and
Prandtl numbers due to the ambient thermal stratification.

In some special circumstances in geography (e.g., pinna-
cle mountain or glaciers) and engineering applications (e.g.,
nuclear reactors, solar power collectors, power transformers,
and steam generators), an inclined or vertical plate will no
longer be appropriate and the geometric configuration with a
conical surface must be considered. The problem of nature
convection flow along a vertical cone has been treated in
many papers. For example, Merk and Prins [17–19] developed
the general relations for similar solutions with axisymmetric
forms for an isothermal vertical cone. For cones with pre-
scribed wall temperatures being a power-law function of the
distance from the apex along the generatrix, a number of
similarity solutions were obtained by Hering and Grosh [20],
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whereas Hering [21] extended these solutions to investigate
low-Prandtl-number fluids. Na and Chiou [22] presented the
laminar natural convection over a frustum of a cone without
transverse curvature effect. The effect of transverse curvature
on boundary layer flow of a thermomicropolar fluid past a
slender vertical cone was investigated by Gorla et al. [23].
It was observed that the heat transfer rate increases with the
increasing transverse curvature. Alamgir [24] investigated the
free convection on a slender vertical cone with power-law wall
temperature variations, and an integral method was used to
predict the overall heat transfer. The effect of uniform suction
or injection on free convection boundary layer over a cone was
investigated by Watanabe [25] theoretically. By assuming that
the thermophysical quantities vary with temperature, the lam-
inar steady flow over an isothermal vertical cone was obtained
[26,27]. The transient free convection flow past a vertical
cone with temperature varying as power function of distance
from the apex was studied numerically by Bapuji et al. [28].
In all the above-mentioned results of nature convection on a
cone, the authors mainly focused on the basic flow solution
and the heat transfer performance, but the research of stability
for natural-convection around a cone is still very scarce.

It is known that laminar-turbulent transition has a sig-
nificant effect on heat transfer efficiency, surface friction,
and flow control. Moreover, linear stability analysis has
been proven a powerful tool to describe the first stage to
turbulence. Different from previous studies, in this paper,
we propose a vertical cone model, where the cooled cone
surface and the ambient fluid have independent vertical tem-
perature gradients. After introducing a modified Grashof
number, we obtain a similarity solution and discuss the critical
instability. The dominant linear instability mechanisms which
cause the laminar-turbulent transition process are analyzed
as well. The remainder of this investigation is outlined as
follows. Section II describes the mathematical formulation of
the fluid problem and the governing equations. The basic flow
with similarity form and the local linear stability analysis are
described in Secs. III and IV, respectively. Section V discusses
the effects of main physical parameters on local instability
transition, while an energy analysis of the disturbance field
is also carried out in this section. Finally, conclusions are
presented in Sec. VI.

II. MATHEMATICAL FORMULATION

The three-dimensional boundary layer induced by buoy-
ancy in stratified fluid is studied, and the flow around an
axisymmetric cone with the half-apex angle ψ . A sketch of
the geometry and the reference frame is shown in Fig. 1.
An orthogonal curvilinear coordinate system with the origin
located at the apex of the cone was utilized to write the
governing equations, where η∗, θ , and ξ ∗ are the coordinates
along the generatrix of the cone, azimuthal, and wall-normal
direction, respectively. The local cross-sectional radius r∗ =
η∗sinψ + ξ ∗cosψ .

A stably stratified fluid with density ρr , kinematic viscosity
ν, coefficient of thermal expansion γ , and thermal diffusivity
κ fills the space far away from a cone, which is heated or
cooled with respect to the surroundings. The temperature in
ambient fluid T ∗

∞(s∗) varies linearly in the vertical direction,

FIG. 1. Schematic geometry of a buoyancy-driven boundary layer.

T ∗
∞(s∗) = T ∗

∞(0) + N∗
∞s∗, where s∗ has the same direction

with gravity g and N∗
∞ is the temperature gradient in the

medium. Different from previous work [16], the wall temper-
ature is decreased by a fixed amount �T ∗ below that of the
fluid outside the boundary layer, the temperature on cone sur-
face T ∗

w (s∗) also varies linearly but has different temperature
gradient N∗

w < N∗
∞, T ∗

w (s∗) = T ∗
∞(0) + N∗

ws∗. The subscript
∞ and the hyperscript ∗ denote the ambient condition and
dimensional quantities, respectively.

On the Boussinesq approximation, the governing equa-
tions are given by

∇ · v∗ = 0,

∂v∗

∂t∗ + v∗ · ∇v∗ = −∇
(

P∗

ρr

)
− gγ (T ∗ − T ∗

∞) + ν∇2v∗,

∂T ∗

∂t∗ + v∗ · ∇T ∗ = κ∇2T ∗. (1)

The dimensionless length, time, and temperature in the
present study are defined as

(η, ξ ) = (η∗, ξ ∗)

d
, t = t∗ν

d2
,

T = T ∗ − T ∗
∞

(N∗
w − N∗∞)s∗ , d =

(
4νκ

gγ cos2 ψN∗
w

)1/4

. (2)

The nondimensional parameter of the problem are the
Grashof number Gr and the Prandtl number Pr,

Gr = gγ cos2 ψ (N∗
∞ − N∗

w )d4

ν2
, Pr = ν

κ
. (3)

Considering the small boundary layer thickness, the radius r∗
along the ξ ∗ direction is assumed constant within the bound-
ary layer, i.e., r∗ ≈ η∗ sin ψ . Besides, terms of order O(η∗−2)
in Eq. (1) have been discarded in the following analysis with-
out significant deviations when considering the position far
away from the apex of the cone.
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III. BASIC FLOW ANALYSIS

In this section, we will derive the basic flow within the
boundary layer induced by buoyancy. The motion is assumed
to be steady and axisymmetric in the following analysis.
Under the boundary layer approximation, the continuity equa-
tion becomes

∂vη

∂η
+ ∂vξ

∂ξ
+ vη

η
= 0, (4)

with the condition of vη � vξ . Since ξ ∼ O(1) and η ∼
O(η0), we note from the continuity equation that there is a
possible order for velocity vξ ∼ O(1) and vη ∼ O(η0), where
η0 � 1 represents a nondimensional characteristic scale of the
streamwise flow. By comparing the order of each term in the
momentum and energy equation carefully, the smaller terms
have been omitted and the simplified equations are

vη

∂vη

∂η
+ vξ

∂vη

∂ξ
= ηGrT + ∂2vη

∂ξ 2
, (5a)

0 = −∂P

∂ξ
− η tan ψGrT + ∂2vξ

∂ξ 2
, (5b)

Pr

[
vξ

∂T

∂ξ
+ 1

η
vη(T − 1)

]
− 4

ηGr
vη = ∂2T

∂ξ 2
. (5c)

Now, we intend to seek a self-similar solution to reduce
the partial differential equations to the ordinary ones. In the
present problems Eqs. (4) and (5), one can postulate that

vη = f (η)F (ξ ), vξ = g(η)G(ξ ), T = T (ξ ). (6)

It is not difficult to show that the self-similar solution is
possible if we set f (η) = η and g(η) = 1. Substituting Eq. (6)
into Eqs. (4) and (5), we obtain

2F + G′ = 0, (7a)

F 2 + GF ′ = GrT + F ′′, (7b)

Pr[GT ′ + F (T − 1)] − 4

Gr
F = T ′′, (7c)

where the prime indicates d/dξ , and the boundary conditions
are

F (0) = G(0) = F (∞) = T (∞) = 0, T (0) = 1. (8)

Thus, the velocity profiles are fully specified by the Grashof
number Gr and the Prandtl number Pr. It is now seen that the
above equations and the boundary conditions share a similar
form in the von Kármán solution of the rotating disk (cone)
problem [29–31]. It is worth noting that there is no explicit
parameter ψ in Eqs. (7), which means the self-similar solution
is independent of ψ and the effect of ψ will not be considered
in this section.

Numerical solution of the system of Eqs. (7) is obtained
using the following procedure. The two velocity components
[F (ξ ) and G(ξ )] and temperature (T (ξ )) are defined on the
semi-infinite physical domain ξ ∈ [0,∞), and mapped onto
the Chebyshev domain y ∈ [−1,+1] for computation via the
coordinate transformation

y = 2

Lmax
ξ − 1,

(a)

(b)

FIG. 2. (a) Velocity profiles F (blue lines), G (black lines), and
T (red lines) as functions of the wall-normal direction, for fixed
Pr = 0.7 and different value of Gr. The solid lines, dashed lines,
and dash-dotted lines indicate the results for Gr = 10, 30, and 50,
respectively. (b) Numerical value of the basic flow field F ′, G′, and
T ′ lines represent the same parameters as shown in (a). The inset in
panel (b) shows a local enlarged view in the red box.

where Lmax is the distance from the ξ axis and a value of
Lmax = 15 is found to be sufficiently large for all unstable
modes discussed in this paper. Equations (7) are discretized
on Chebyshev points by utilizing Chebyshev differentiation
matrices and corresponding boundary conditions. Addition-
ally, it is worth noting that the problem is nonlinear, so an
iterative approach is adopted by adding a time-derivative term
into the last two equations of Eqs. (7). Then, all spatial terms
are treated explicitly via a predictor-corrector method for an
appropriate initial guess. In all subsequent numerical calcula-
tions, 100 Chebyshev points are used to accurately compute
the velocity and temperature. Several tests have been per-
formed for more Chebyshev points and larger computational
domain to ensure numerical convergence.

Figure 2(a) shows the two velocities (F and G) and tem-
perature (T ) as a function of the wall-normal coordinate for
different values of Gr, and Fig. 2(b) gives the numerical values
of the basic flow field F ′, G′, and T ′. It is shown that G and
T decrease monotonously with increasing values of ξ . The
negative sign of G suggests the flow outside the boundary
layer is pulled toward the cone surface and the wall-normal
velocity increases with increasing ξ for a given Gr. This is
to be expected physically, as the temperature near the surface
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is lower than the surroundings, the fluid descends to be re-
placed by a downward flow through the interaction between
gravity and buoyancy. It is also seen that, for a fixed wall-
normal position ξ , the increase of Gr results in a larger decay
rate for F and T , and higher value of wall-normal velocity
at infinity, indicating a thinning of the buoyancy boundary
layer.

IV. LOCAL LINEAR STABILITY ANALYSIS

The linear perturbation equations are solved in a parallel
framework at several η locations. The nondimensional vari-
ables are vη = vη0 + ṽη, vθ = vθ0 + ṽθ , vξ = vξ0 + ṽξ , and
T = T0 + T̃ , where ṽη, ṽθ , ṽξ , and T̃ are perturbations and
vη0, vθ0, vξ0, and T0 constitute the undisturbed basic flow
solution. Perturbations q̃(η, θ, ξ , t ) for modal analysis are
decomposed into the form

q̃(η, θ, ξ , t ) = q̂(ξ ) exp (i(αη + nθ − ωt )), (9)

where α = αr + iαi is the complex wave number in the
streamwise direction, while n ∈ N and ω ∈ R are the mode
numbers in circumferential direction and frequency, respec-
tively. The perturbation equations governing the stability of
basic state Eqs. (6) are

Dv̂ξ + iβv̂θ +
(

iα + 1

η

)
v̂η + 1

η tan ψ
v̂ξ = 0, (10a)

(
L1 + F + G

η tan ψ

)
v̂θ + iβ p̂ = 0, (10b)

(L1 + F )v̂η + ηDF v̂ξ − ηGrT̂ + iα p̂ = 0, (10c)

(L1 + DG)v̂ξ + η tan ψGrT̂ + Dp̂ = 0, (10d)

ηPr−1L2T̂ +
(

T − 1 − 4

PrGr

)
v̂η

+
[
ηDT − tan ψ (T − 1) + 4 tan ψ

PrGr

]
v̂ξ = 0, (10e)

where D ≡ d/dξ , L1, and L2 are linear operators

L1 = α2 + β2 + iα

(
ηF − 1

η

)
− iω

+
(

G − 1

η tan ψ

)
D − D2, (11a)

L2 = α2 + β2 + iα

(
ηPrF − 1

η

)
− iPrω

+
(

PrG − 1

η tan ψ

)
D − D2, (11b)

with β = n/(η sin ψ ), and the boundary conditions are given
by

v̂η(0) = v̂θ (0) = v̂ξ (0) = Dp̂(0) = T̂η(0) = 0,

v̂η(∞) = v̂θ (∞) = v̂ξ (∞) = Dp̂(∞) = T̂η(∞) = 0. (12)

Note that the Eqs. (10) have terms as function of η, because
the linear stability analysis of the flow applied at a particular
streamwise direction position. This procedure is commonly
used to analyze the stability of quasiparallel flow, such as the
problem of rotating disk [30]. The stability problem Eqs. (10)

and (12) constitute an eighth-order differential equation with
eight boundary conditions, given by the dispersion relation-
ship

F (ω, α; Gr, η, n, ψ ) = 0, (13)

which are solved by a spectral collocation method based
on Chebyshev polynomials. The eigenfunctions expanded in
Chebyshev series are substituted into Eqs. (10) and (12),
which are discretized at the Gauss-Lobatto points and solved
by the QZ method. The number of Chebyshev polynomials
and the computational domain are consistent with Sec. III.
For the spatial analysis, we mean to solve the set of equa-
tions for α given azimuthal mode number n and frequency
ω. However, we are still faced with a nonlinear generalized
eigenvalue problem, in which the eigenvalue α appears up to
second power in linear operators L1 and L2. Here, a trans-
formation of the independent variable ξ of the form [32]
q̂(ξ ) = Q̂(ξ ) exp(−αξ ) is utilized to reduce the order of the
nonlinear eigenvalue problem to a linear one.

V. RESULTS AND DISCUSSION

A. Convective instability

Spatial analysis of the dispersion relationship Eq. (13)
is based on the Grashof number Gr, streamwise location η,
azimuthal mode number n, and half-apex angle ψ . Since
critical value parameters play a significant role in the early
stages of laminar-turbulent transitions, the following analysis
is concentrated mainly on the neutral curve by setting the
complex-valued wave number αi = 0.

Figure 3 displays neutral stability curves for nonstationary
disturbances in both the (η, ω) and (η, αr ) planes, with the
Grashof number Gr = 10 in Figs. 3(a) and 3(b) and Gr = 50
in Figs. 3(c) and 3(d) for ψ = 40◦. Despite resulting from
different Grashof numbers, all collections of neutral curves
display the same qualitative behavior: First, it turns out that
the minimum of η for the most unstable modes does not
correspond to stationary modes (ω = 0) but to a definite fre-
quency. Unlike the situation in rotating disks [30] and cones
[31], where the stationary vortices can rotate with the surface,
there is no stationary mode in the current study. And the most
unstable modes correspond to n = 0, which is also quite dif-
ferent from the previous research on inclined buoyancy layers
with fixed temperature plates [16], where the oblique rolls are
more unstable than stationary longitudinal rolls. For a given
Gr, the critical η and frequency ω increase with increasing
values of n. The second interesting development is the two-
lobed structure on the curves. Nachtsheim [33] found a very
similar two-lobed structure (also known as the nose-shaped
piece) for the flux-plate problem with Pr = 0.733, which was
shown by him to disappear when buoyancy effects on the
instability were ignored. The same feature is mentioned in
rotating disks [30], where the neutral stability curves have a
two-lobed structure which corresponds to the crossflow in-
stability mode [31] and convectively unstable mode caused
by streamwise curvature and Coriolis effect [34]. Besides,
the absence of stationary instability modes and the bimodal
type of neutral curves are very similar to that obtained in the
problem of instability of stationary flow between two vertical
plates maintained at different temperatures in the presence of
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(a) (b)

(c) (d)

FIG. 3. Neutral stability diagrams for Gr = 10 (first row) and Gr = 50 (second row) with ψ = 40◦. The neutral curves are shown in (a),
(c) (ω, η) planes and (b), (d) (αr, η) planes.

uniformly distributed heat sources [35,36]. The mechanisms
indicated by lobe structures in the present study will be an-
alyzed in detail later. As can be seen from Fig. 3, although
Grashof numbers change by 5 times, the basic laws of the two

cases are consistent qualitatively. The similarity of all data at
different Gr suggests that different Gr only have a quantitative
difference in stability characteristics. Hence, a fixed value of
Gr = 30 will be used for analysis in the following discussion.

(a) (b)

(c) (d)

FIG. 4. Neutral stability diagrams for Gr = 30 and ψ = 40◦. The neutral curves are shown in the (a) (αr, η) plane, (b) (k, η) plane,
(c) (ω, η) plane, and (d) (ε, η) plane (ε is in degrees). Type-I and -II modes are marked with their respective numbers.
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(a) (b)

(c) (d)

FIG. 5. The progression of the two spatial branches in the (αi, αr ) planes given by several different values of η for Gr = 30, n = 0, and
ψ = 40◦: (a) η = 26, (b) η = 45, (c) η = 47, and (d) η = 60. Two neutral modes are marked with a circle (©) (ω, αr ) = (31.13, 0.52) in
(a) and triangle () (ω, αr ) = (83.51, 0.87) in (d). These two typical points are also shown in Fig. 4(c). The arrows on the spatial branches
indicate the direction of increasing ω.

The neutral curves arising from the analysis of Gr = 30
and ψ = 40◦ are shown in Fig. 4. The unstable region lies
inside the curves (right hand side). By comparison with Figs. 3
and 4, it can be seen that with the increase of Gr, the critical
location η for convective instability becomes smaller. This
is due to the fact that η and Gr appear as a product in
the dispersion relation. In addition, the critical η increases
with the increase of mode number n in the circumferential
direction, suggesting that modes with large n amplify less
rapidly. In Fig. 4(a), we observe that the neutral curves have
higher and lower wave-number parts, which is similar to the
natural convective boundary layers in a uniform medium. As
explained by Gill and Davey [4], the higher wave-number

part is a result of shear instability and apparently does not
change when the buoyancy effect is neglected. The lower
part is caused by the coupling between the Orr-Sommerfeld
equation and the energy equation which corresponds to a
buoyancy-driven instability. The basic flow here is three-
dimensional, so the competition between viscous, buoyancy,
and effect of streamline curvature will be shown in the energy
analysis.

Besides, Fig. 4 also illuminates neutral curves for the angle
of the vortex axis with respect to the downstream direction
ε = arctan(β/αr ) and wave number k = (α2

r + β2)
1
2 resolved

in the direction of ε. It is shown that the critical value of ε

rises significantly with the increase of n when n < 30 while k

(a) (b)

FIG. 6. Normalized amplitude profiles of eigenfunctions for (a) type-I mode and (b) type-II mode as functions of ξ . The dotted lines
indicated the results |v̂η|/|v̂η|max. The data |v̂ξ |/|v̂ξ |max and |T̂ |/|T̂ |max are given by the dashed and solid lines, respectively.
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does not change much. When n is greater than 30, k ≈ 1 and
ε increases as n increases. With n increasing from 0 to 50, the
dominant mode of the neutral curve changes from type I to
type II, implying that the critical parameters are controlled by
different mechanisms.

To investigate the spatial branches at a fixed half angle
(e.g., ψ = 40◦ shown in Fig. 5), we solve the dispersion
relation for α whilst marching through values of ω at fixed
Gr = 30. Two spatial branches are found to determine the
convective instability characteristics of the system. Figure 5
shows these two branches in the complex (αr, αi )-planes in the
range of η = 26 ∼ 60. An exchange of modes between branch
1 and branch 2 has occurred at η = 45, as shown in Fig. 5(b).
A branch lying below the αr axis indicates convective insta-
bility. The bulge on modified branch 1 move downward when
increasing the value of η further and causes the points at
which the growth rate αi = 0 to move apart [see Fig. 5(d)].
Thus, the two regions of instability map out two lobes on
the neutral curve, and we identify the lower lobe of the neu-
tral curve as type-I instability and the upper lobe as type-II
instability.

We first consider the eigenfunctions on the lower and
upper lobes of the neutral curve, which may also provide
some clues to help identify the mechanisms responsible.
Two typical eigenvalues corresponding to type-I -II modes
are marked with a circle (©) for parameters (η, ω, αr ) =
(26, 31.13, 0.52) in Fig. 5(a) and triangle () (η, ω, αr ) =
(60, 83.51, 0.87) in Fig. 5(d), respectively. These two neutral
modes are also shown in Fig. 4(c).

Eigenfunctions for type-I -II modes are illustrated in Fig. 6.
We make a comparison between the eigenfunctions and the
basic flow. First, it is noted that the temperature disturbances
are significantly confined to the boundary layer (ξ � 2)
while velocity disturbances spread over a much wider region
(ξ � 6). And the maximum amplitude position of pertur-
bation temperature coincides with that of the streamwise
velocity. The two types of modes also have different char-
acteristics. For the type-II mode, close examination reveals
that the largest amplitude of the streamwise velocity lies at
ξL = 0.87, which is almost in the same position as the in-
flection point ξI = 0.90 in the basic flow vη0. The critical
phase velocity cr = 96 at the point marked with a triangle in
Figs. 4(c) and 5(d) is approximately consistent with the ba-
sic streamwise velocity vη0(ξI ) = 103 at the inflection point.
For the type-I mode, the maximum amplitude position of
the streamwise velocity disturbance is close to that of vη0 in
basic flow. And the critical phase velocity cr = 59.9 and the
maximum streamwise velocity of the basic flow vη0 = 64.5
are almost identical. These two different characteristics were

explained by Gill [4] and Tao [14] as a result of buoyancy-
driven instability (type-I mode) and shear instability (type-II
mode), respectively. It is also reported that the proper-
ties of the absolute instability are dominated by the shear
instability [14].

The influence of half-angle ψ on stability is also analyzed
with four typical cases: ψ = 20◦, 40◦, 60◦, and 80◦. Neutral
stability curves are shown in Fig. 7 for various half-apex an-
gles ψ . The results show that increasing ψ causes an increase
of the critical streamwise location at the onset of convective
instability. It is also illustrated that, for a fixed n (e.g., n = 50),
the most unstable mode may be associated with type II when
ψ = 20◦. However, the dominant mode changes to type I with
the increase of ψ [see Fig. 7(d)]. The effect of half-angle ψ on
critical wave number is shown in the second column in Fig. 7.
For all values of calculated n, increasing the half angle reduces
the range of unstable wave number. Additionally, the critical
wave angle is always 0 (the line overlaps with the η axis),
because the critical streamwise location corresponds to n = 0.
For n = 10, ε decreases monotonically with the increase of ψ .
Table I summarizes the critical values of parameters shown
in Fig. 7, where we present the critical streamwise location
(η), the critical frequency (ωc), the critical wave number (αrc)
in the streamwise direction, and the phase velocity (c), as
well as the maximum streamwise velocity of the basic flow
vη0. By comparing the last two columns, we can observe
that c > vη0 for ψ � 60◦. It is well-known that the critical
wave velocity must be smaller than the maximum velocity of
the basic flow in the case of inviscid, homogeneous, parallel
shear flows. Therefore, the result of c > vη0 is due to the
influence of buoyancy arising from the basic flow temperature
field.

B. Energy analysis

The destabilization of fluid disturbance is usually affected
by the various energy transfer mechanisms. To extract pos-
sible underlying physical mechanisms behind the stability
of buoyancy layer, an integral energy equation for three-
dimensional disturbances ṽη, ṽθ , ṽξ , and T̃ to the undisturbed
three-dimensional basic flows vη0, vθ0, vξ0, and T0 is de-
rived. Following the procedure of Cooper et al. [37], the
energy equation is formulated by multiplying the three lin-
earized momentum equations by the respective perturbation
velocities ṽη, ṽθ , and ṽξ , and summing together to give
the following kinetic energy equation. By integrating across
the boundary layer from ξ = 0 to ξ = ∞, the resulting
equation is

∫ ∞

0

∂K

∂t
+ vη0

∂K

∂η︸ ︷︷ ︸
A

dξ =
∫ ∞

0

(
−ṽηṽξ

∂vη0

∂ξ
− ṽ2

ξ

∂vξ0

∂ξ

)
dξ

︸ ︷︷ ︸
I

+
∫ ∞

0

(
ṽθ

∂2ṽθ

∂η2
+ ṽη

∂2ṽη

∂η2
+ ṽξ

∂2ṽξ

∂η2

)
dξ

︸ ︷︷ ︸
II

+
∫ ∞

0

(
ṽθ

∂2ṽθ

∂ξ 2
+ ṽη

∂2ṽη

∂ξ 2
+ ṽξ

∂2ṽξ

∂ξ 2

)
+ 1

η2 sin2 ψ

(
ṽθ

∂2ṽθ

∂θ2
+ ṽη

∂2ṽη

∂θ2
+ ṽξ

∂2ṽξ

∂θ2

)
dξ

︸ ︷︷ ︸
II
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(a)

(b)

(c)

(d)

FIG. 7. Neutral stability diagrams for Gr = 30: (a) ψ = 20◦, (b) ψ = 40◦, (c) ψ = 60◦, (d) ψ = 80◦. In each case, the neutral curves are
shown in the (ω, η), (αr, η), and (ε, η) planes. (b) is equivalent to Fig. 4 and ε in the third column is in degrees.

−
∫ ∞

0

[
vξ0

∂K

∂ξ
+ (

ṽ2
η + ṽ2

θ

)vη0

η
+ ṽ2

θ

vξ0

η tan ψ

]
dξ

︸ ︷︷ ︸
III

+
∫ ∞

0
(ηGrṽηT̃ − η tan ψGrṽξ T̃ )dξ︸ ︷︷ ︸

IV

+
∫ ∞

0

(
1

η

∂K

∂η
+ 1

η tan ψ

∂K

∂ξ

)
dξ

︸ ︷︷ ︸
VI

−
∫ ∞

0

(
1

η sin ψ
ṽθ

∂P̃

∂θ
+ ṽη

∂P̃

∂η
+ ṽξ

∂P̃

∂ξ

)
dξ

︸ ︷︷ ︸
V

, (14)

where K = (ṽ2
η + ṽ2

θ + ṽ2
ξ )/2 represents the disturbance ki-

netic energy. On the left-hand side, (A) represents the kinetic
energy convected by the streamwise component of the basic

flow. On the right-hand side, (I) represents the energy produc-
tion by the shear of the basic flow. If (I) is positive, disturbance
energy is gained from the basic velocity field, (II) the viscous
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TABLE I. Critical values of parameters for Gr = 30 and ψ =
20◦ ∼ 80◦ in 20◦ increments by fixing n = 0.

ψ ηc ωc αrc c vη0max

20◦ 21.25 26.0 0.51 50.84 52.70
40◦ 25.11 27.0 0.44 61.28 62.27
60◦ 32.83 31.0 0.38 82.18 81.42
80◦ 65.83 43.5 0.25 174.76 163.26

dissipation energy removal, (III) the streamline curvature ef-
fects, (IV) as the gain of disturbance kinetic energy through
the action of buoyancy forces, (V) the pressure work. The
order of (VI) is far less than others; as a result, it could be
neglected.

Equation (14) is normalized by the integrated mechanical
energy, then we take the real part. When the energy pro-
duction exceeds the energy dissipation from the system, the
disturbance will be amplified, which corresponds to a negative
streamwise direction growth rate αi < 0:

− αi = (S1 + S2)︸ ︷︷ ︸
I

+ (D1 + D2)︸ ︷︷ ︸
II

+ (G1 + G2 + G3 + G4)︸ ︷︷ ︸
III

+ (B1 + B2)︸ ︷︷ ︸
IV

+ (PW1 + PW2 + PW3)︸ ︷︷ ︸
V

+ (N1 + N2)︸ ︷︷ ︸
VI

.

(15)
The full energy balance with the terms given in Eq. (15)

for parameters marked with the circle and triangle in Fig. 4(c)
is depicted in Fig. 8. For the type-I mode, it is elucidated that
the major production is related to the contribution of buoyancy
forces and the energy removal is dominated by viscous dissi-

(a)

(b)

FIG. 8. Energy balance terms in Eq. (15) for (a) type-I mode and
(b) type-II mode with the parameters marked with circle and triangle
in Fig. 5(c).

pation. So, branch 1 in Fig. 5 is mainly affected by buoyancy
forces (i.e., the buoyancy-driven instability). Though subdom-
inant, the shear production term I is still significant. Without
it, the mode would be damped. For the type-II mode, the
energy production (I) and reduction from viscous dissipation
(II) are the dominant terms. When buoyancy effects are ne-
glected, branch 2 in Fig. 5 apparently does not change, which
is consistent with the previous analysis for eigenfunctions (the
shear instability). The pressure work terms (V) are negligibly
small in energy production. Meanwhile, it is worth noting that
the action of the streamline curvature effect on both these two
modes is to bring energy reduction, which implied that the ac-
tion of streamline curvature effect stabilizes these two modes.
Furthermore, the streamline curvature effect is more obvious
in the type-I mode than the type-II mode (see Fig. 8). The
energy dissipation caused by streamline curvature accounts
for 34.95% of the total dissipation in the type-I mode, while
the value was 16.30% in the type-II mode. Only the energy
budget for specific parameters is shown in Fig. 8. In fact, in
the same mode family, the energy budget corresponding to
other critical parameters is also calculated. The results show
that although the specific values of each term can be different,
there is no qualitative change in the overall proportion. Con-
sequently, we conclude that the type-I mode arises from the
streamline curvature and buoyancy effects while the type-II
mode arises from the inviscid effect of shear.

VI. CONCLUSION

In this paper, we have studied the local linear instability
of the natural convection flow around a vertically cooled
cone, where the ambient fluid and the cone have indepen-
dent temperature gradients. First, a physical model of the
buoyancy-driven boundary layer has been proposed and a
self-similar solution of the basic flow has been obtained. It
is shown that when the Grashof number increases, the buoy-
ancy boundary layer becomes thinner. Based on the linear
instability analysis regime with the coupled Orr-Sommerfeld
equation and energy equation, the effects of typical physical
parameters, including the Grashof number Gr, streamwise
location η, and half-apex angle ψ on the onset of instability
have been investigated. Similar to the previous work [14], the
neutral curves have higher and lower wave-number parts and
present the two-lobed structure. It is also illustrated that there
is no stationary mode and varying Gr only has quantitative
effects on stability analysis. Additionally, the effect of varying
ψ on the neutral curves has been investigated. It is shown
that increasing the half angle causes the critical streamwise
location η to increase and reduces the range of unstable wave
number.

A typical case with Gr = 30 and ψ = 40◦ is utilized to
gain insight into mechanisms behind the buoyancy-driven
flow. According to the progression of the two spatial branches
in the (αi, αr ) planes, the primary instability on the surface of
the cone is identified as type-I and -II modes. By analyzing
the profiles of eigenfunctions and the energy budget of these
two modes, the instability mechanism of this kind of flow is
obtained. Apart from the viscous dissipation, the streamline
curvature and buoyancy-driven effects are dominant in the
type-I mode while inviscid shear instability effects play an
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essential role in the type-II mode. These encouraging results
are expected to be helpful in understanding the instability
characteristics for such a buoyancy-driven flow system.
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