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Thermodynamic nonequilibrium effects in bubble coalescence: A discrete Boltzmann study
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The thermodynamic nonequilibrium (TNE) effects in a coalescence process of two initially static bubbles
under thermal conditions are investigated by a discrete Boltzmann model. The spatial distributions of the typical
nonequilibrium quantity, i.e., nonorganized momentum fluxes (NOMFs), during evolutions are investigated in
detail. The density-weighted statistical method is used to highlight the relationship between the TNE effects and
the morphological and kinetics characteristics of bubble coalescence. The results show that the xx component and
yy component of NOMFs are antisymmetrical; the xy component changes from an antisymmetric internal and
external double quadrupole structure to an outer octupole structure during the coalescence process. Moreover,
the evolution of the averaged xx component of NOMFs provides two characteristic instants, which divide the
nonequilibrium process into three stages. The first instant, when the averaged xx component of the NOMFs
reaches its first local minimum, corresponds to the moment when the mean coalescence speed gets the maximum,
and at this time the ratio of minor and major axes is about 1/2. The second instant, when the averaged xx
component of the NOMFs gets its second local maximum, corresponds to the moment when the ratio of
minor and major axes becomes 1 for the first time. It is interesting to find that the three quantities, TNE
intensity, acceleration of coalescence, and the slope of boundary length, show a high degree of correlation
and attain their maxima simultaneously. The surface tension and the heat conduction accelerate the process of
bubble coalescence, while the viscosity delays it. Both the surface tension and the viscosity enhance the global
nonequilibrium intensity, whereas the heat conduction restrains it. These TNE features and findings present some
insights into the kinetics of bubble coalescence.
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I. INTRODUCTION

Bubble coalescence is frequently encountered in many ap-
plications such as two-phase electrochemical systems [1–3],
biological and pharmaceutical applications [4–7], and boil-
ing water-cooled packed bed reactors [8–10]. In some cases,
the coalescence of bubbles needs to be prevented, while in
other cases, it must be promoted. Therefore, it is necessary to
fundamentally understand the essence of bubble coalescence,
including its basic dynamics phenomena and morphological
characteristics, particularly the commonly neglected nonequi-
librium effects and behaviors of the system.

There have been many studies on the phenomenon
and mechanism of bubble coalescence through experiments
[11–31], theoretical analyses [12,32,33], and numerical simu-
lations [14,34–44]. Common experimental research methods
include observing bubble swarms under various conditions
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[20–22,31], using the bubbles growing from capillaries and
putting them side by side [13,16,17], using the underwater
electric discharge method [14,23,24], and studying the dy-
namic changing process of a thin liquid film and measuring
the nonequilibrium forces between two air phases by atomic
force microscopy [25–29] and interferometry [27,28,30].
Specifically, Vakarelski et al. [25] experimentally studied
microbubbles around 100 μm in size by using an atomic
force microscope. They directly measured the nonequilibrium
force between two bubbles in water under controlled collision.
Their experimental results together with detailed modeling
demonstrated that the coupling of hydrodynamic flow, attrac-
tive van der Waals–Lifshitz forces, and bubble deformation
plays a very important role during the coalescence process.
They revealed the physical essence of boundary conditions
at the air-water interface and mechanisms leading to bubble
coalescence. Liu et al. [30] investigated the rapid thinning
of a liquid film between two quickly colliding bubbles using
high-speed interferometry. They found that the Marangoni
stress can balance the shear stress and prevents the thin-
ning of the liquid film at a small film thickness. There is
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dynamic competition between various stresses. Once they
reach equilibrium, the interface becomes immobile. Stover
et al. [14] first investigated the oscillating characteristics of
the coalescence of bubbles with different sizes, viscosities,
and surface tensions. They found that surface waves, starting
at the onset of coalescence, were superimposed on the mo-
tion of the bubbles. These waves are likely to enhance the
mass transfer efficiency but have little effect on the overall
dynamics. Then they simulated the dynamics of coalescence
by solving the nonlinear Navier-Stokes equations, and their
results were partly consistent with the experiments due to
the failure to reflect the actual initial state. The approximate
analytic solution of the neck radius rn ∼ Bt1/2 was given in
Refs. [12,32,33,40]; the prefactor B was positively correlated
with the surface tension coefficient and negatively correlated
with the viscosity coefficient. Zheng et al. developed a free-
energy lattice Boltzmann method (LBM) to trace the bubble
coalescence at a high density ratio [36]. In their LBM, the
interface is naturally captured, and the Cahn-Hilliard equa-
tion can be recovered without any additional terms [35,36].
Chen et al. studied the coalescence of unequal-size and equal-
size bubbles [37–39,41] by developing an LBM to solve the
Navier-Stokes equations and Cahn-Hilliard equation. Power-
law relations between the global coalescence time and size
inequality and the effects of the Ohnesorge number (Oh) on
those power-law relations have been clarified [37–39]. They
further demonstrated that unequal bubbles coalesce faster than
equal bubbles and clarified the relations between characteris-
tic coefficients and Oh [39].

As mentioned above, the nonequilibrium forces between
two bubbles in the process of fluid film thinning, the slow
variables (density, temperature, pressure, the surface tension,
etc.), and the morphological characteristics during bubble
coalescence have been widely investigated by experimental,
theoretical, and numerical simulation methods from vari-
ous perspectives. Despite the significant progress to date,
the thermodynamic nonequilibrium (TNE) effects during the
whole process of bubble coalescence are rarely taken into
consideration, especially in experimental research due to the
inconvenience of the technical measurement. However, as
we will show in this paper, TNE behaviors are of great
importance for this dynamic and complex process because
there are stronger TNE effects from the onset of coalescence
to the formation of the first unsteady circular bubble, and
the TNE effects significantly influence the morphological
characteristic and determine the coalescence speed, macro-
scopic quantities, phase transformation rate, etc. A careful
study of these behaviors is beyond the physical capability
of the traditional hydrodynamic model. In this work, we re-
sort to the recently developed discrete Boltzmann method
(or model; DBM).

The DBM [45–52] is a mesoscopic kinetic model. In
2012, Xu et al. [45] pointed out that, under the framework
of the LBM and under the condition that does not use the
nonphysical Boltzmann equation and kinetic moments, the
nonconservative moments of ( fi − f eq

i ) can be used to de-
scribe how and how much the system deviates from the
thermodynamic equilibrium and to check the corresponding
effects due to the deviation from the thermodynamic equilib-
rium. This was the starting point of the current DBM study.

In 2015, Xu et al. [46] proposed opening a phase space using
the nonconservative moments of ( fi − f eq

i ) and described the
extent of TNE using the distance between a state point to
the origin in the phase space or its subspace. In 2018, Xu
et al. [47] further developed the nonconservative moment
phase space description methodology. They proposed using
the distance D between two state points to roughly describe
the difference between two states deviating from their ther-
modynamic equilibria, and the reciprocal of the distance 1/D
is defined as a similarity of deviating from thermodynamic
equilibrium. The mean distance during a time interval of D,
D̄, is used to roughly describe the difference between the
two corresponding kinetic processes, and the reciprocal of D̄,
1/D̄, is defined as a process similarity. In 2021, Xu et al. [52]
extended the phase space description methodology to any set
of system characteristics. They used a set of (independent)
characteristic quantities to open phase space and used this
space and its subspaces to describe the system properties. A
point in the phase space corresponds to a set of character-
istic behaviors of the system. Distance concepts in a phase
space or its subspaces are used to describe the difference and
similarity of behaviors. To date, the DBM has been used in
various multiphase flow systems, such as hydrodynamic insta-
bilities [49,53–57], compressible flows under impact [48–51],
nonequilibrium combustion [58–60], nonequilibrium phase
separation [61–65], and droplet collision [66]. For example,
Gan et al. [61] used a DBM to study the hydrodynamic
nonequilibrium and TNE effects in the phase separation pro-
cess. They defined TNE strength and discovered that the time
evolution of the TNE intensity provides a convenient and effi-
cient physical criterion to discriminate the stages of spinodal
decomposition and domain growth. Lai et al. [55] studied
the effects of compressibility on Rayleigh-Taylor instability
(RTI) by the DBM. They found that the local TNE can be
used to track the interfaces and discriminate between the two
stages of the RTI effectively. Zhang et al. [66] researched
droplet collisions using the DBM on the basis of a discrete
Enskog equation. They found that the mean strength of the
nonorganized momentum fluxes (NOMFs) D̄∗

2 was always
prominently greater than that of D̄∗

3, and D̄∗
2 can be used

to identify the different stages of the collision process and
to recognize different types of collisions. Zhang et al. [62]
analyzed entropy production associated with the TNE of the
thermal phase separation. They found that NOMFs and the
nonorganized energy fluxes (NOEFs) both directly contribute
to entropy production.

Compared with previous studies of phase separation
[61–65], in the bubble coalescence system, the spatial dis-
tributions of nonequilibrium behaviors are axisymmetric, and
the strengths of nonequilibrium effects are relatively strong.
In addition to the statistical properties, the spatiotemporal
evolution characteristics of NOMFs and the relations between
the thermodynamic nonequilibrium behaviors and the mor-
phological and kinematic characteristics describing bubble
coalescence are analyzed in detail via a compressible mul-
tiphase DBM. The physical model is presented in Sec. II;
simulations and an analysis of the nonequilibrium charac-
teristics during bubble coalescence and the effects of the
surface tension, viscosity, and heat conduction are presented
in Sec. III. The conclusions are made in Sec. IV.
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II. CONSTRUCTION OF THE DBM

According to molecular kinetic theory, the evolution equa-
tion of the molecular velocity distribution function reads

∂ f

∂t
+ v · ∂ f

∂r
+ a · ∂ f

∂v
= (

∂ f

∂t
)c, (1)

where f = f (r, v, t ) is the molecular velocity distribu-
tion function and r, v, and a are the position space
coordinate, the velocity space coordinate, and the accel-
eration generated by the total extra force, respectively.
(∂ f /∂t )c represents the collision term. If the constraint∫

�(∂ f /∂t )cdv = ∫ −�( f − f eq)/τdv is satisfied, the colli-
sion term can be linearized, (∂ f /∂t )c = −( f − f eq)/τ [67],
where � = [1, v, vv, vvv]T , τ is the relaxation time, and
f eq = ρ(1/2πT )D/2 exp[−(v − u)2/2T ] is the Maxwellian
distribution function in the Bhatnagar-Gross-Krook (BGK)
model. D is the spatial dimension, and D = 2 in this paper.

To describe the nonideal gas effects, Gonnella, Lamura,
and Sofonea (GLS) improved the Watari-Tsutahara model
[68] by introducing an appropriate force term on the
right-hand side of the Boltzmann-BGK equation. Then the
GLS-Boltzmann equation is extended as

∂ f

∂t
+ v · ∂ f

∂r
= − 1

τ
( f − f eq) + I, (2)

with

I = −[A + B · (v − u) + (C + Cq)(v − u)2] f eq. (3)

Here,

A = −2(C + Cq)T, (4)

B = 1

ρT
∇ · [(

PCS−ρT
)
I + �

]
, (5)

C = 1

2ρT 2

{(
PCS − ρT

)∇ · u + � : ∇u + aρ2∇ · u

− K

[
1

2
∇ρ · ∇ρ∇ · u + ρ∇ρ · ∇(∇ · u)

+∇ρ · ∇u · ∇ρ

]}
, (6)

Cq = 1

ρT 2
∇ · (qρT ∇T ). (7)

Here, ρ, u, and T are the local density, the velocity, and
the temperature, respectively. � = K∇ρ∇ρ − K (ρ∇2ρ +
|∇ρ|2/2)I − [ρT ∇ρ · ∇(K/T )]I is the contribution of the
density gradient to the pressure tensor, I is a unit tensor,
and K is the surface tension coefficient. PCS indicates the
Carnahan-Starling equation of state,

PCS = ρT
1 + η + η2 − η3

(1 − η)3 − aρ2, (8)

where η = bρ/4 and a and b are the attraction and repulsion
parameters, respectively. It should be pointed out that the
Prandtl number Pr = cpμ/κT = τ/(τ − q) can be adjusted by
modulating the parameter q in the term Cq. Here, μ = ρT τ ,
κT = cpρT (τ − q), and cp are the viscosity coefficient, the
heat conductivity, and the isobaric heat capacity, respectively.

Under the constraint of
∫

f eq�(v)dv = ∑
l fl

eq�(vl ),
Eq. (2) can be discretized in the velocity space by an appropri-
ate discrete velocity model (DVM). Here, the D2V33 model
[69] is used. The discrete GLS-Boltzmann equation is written
as

∂ fki

∂t
+ vki · ∂ fki

∂r
= − 1

τ
( fki − f eq

ki ) + Iki, (9)

where f eq
ki (see the Appendix) is the discrete version of the

local equilibrium distribution function; Iki takes the following
form:

Iki = −[A + B · (vki − u) + (C + Cq)(vki − u)2] f eq
ki . (10)

Taking the moments of Eq. (9) with the collision invari-
ant vector 1, vki, and v2

ki/2, the generalized Navier-Stokes
equations for nonideal fluid with the surface tension effect are
obtained [62]:

∂ρ

∂t
+ ∇ · (ρu) = 0, (11)

∂ (ρu)

∂t
+ ∇ · (ρuu + PCSI) + ∇ · (� + �∗

2 ) = 0, (12)

∂eT

∂t
+ ∇ · (eT u + PCSu) + ∇ · [

(� + �∗
2 ) · u

+ �∗
3,1 + 2ρT q∇T

] = 0, (13)

where ∇ · � is the surface tension [66] and eT = ρT − aρ2 +
K|∇ρ|2/2 + ρu2/2 is the total energy density.

More importantly, the DBM can quantitatively provide the
local TNE effects by defining thermodynamic nonequilibrium
moments �∗

m,n as

�∗
m,n = M∗

m,n − M∗eq
m,n (14)

and
M∗

m,n( fki )

=
∑

ki

fki

m︷ ︸︸ ︷
(vki − u)(vki − u) · · · (vki − u)︸ ︷︷ ︸

n

|(vki − u)|(m−n),

(15)

M∗eq
m,n( f eq

ki )

=
∑

ki

f eq
ki

m︷ ︸︸ ︷
(vki − u)(vki − u) · · · (vki − u)︸ ︷︷ ︸

n

|(vki − u)|(m−n),

(16)

where m is the number of velocities used in the moment and n
is the tensor order. If m = n, M∗

m,n = M∗
m. For example,

�∗
2 = M∗

2 − M∗eq
2 =

∑
ki

(vki − u)(vki − u)( fki − f eq
ki ), (17)

�∗
3 = M∗

3 − M∗eq
3

=
∑

ki

(vki − u)(vki − u)(vki − u)
(

fki − f eq
ki

)
, (18)

�∗
3,1 = M∗

3,1 − M∗eq
3,1 = 1

2

∑
ki

(vki − u)2(vki − u)
(

fki − f eq
ki

)
,

(19)
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FIG. 1. Maps of density in the process of bubble coalescence at t = 1.0, 2.0, 2.6, 3.5, 5.4, 8.4, 12.6, and 20.4 with K = 0.00015, τ = 0.001,
and Pr = 0.2. Here, the grid range of each panel is the whole computational domain Nx × Ny = 256 × 256, and the color bar at the bottom of
each panel refers to fluid density.

�∗
4,2 = M∗

4,2 − M∗eq
4,2

= 1

2

∑
ki

(vki − u)2(vki − u)(vki − u)
(

fki − f eq
ki

)
. (20)

�∗
2 and �∗

3,1 are referred to as nonorganized momentum
fluxes and nonorganized energy fluxes, respectively. The first-
order analytical solutions for those TNE effects are given in
Refs. [48,70]:

�
∗(1)
2 = −ρT τ [∇u + (∇u)T − I∇ · u], (21)

�
∗(1)
3,1 = −2ρT τ∇T . (22)

It should be pointed out that the external force term is in-
troduced into the model through f eq

ki [see Eq. (10)], so the
external force term does not introduce additional first-order
TNE effects compared with the ideal-gas system but will
introduce additional second-order TNE effects [71].

III. SIMULATIONS AND ANALYSIS

In the simulations, all the parameters are nondimensional-
ized by the actual physical quantities [62]. The actual physical
quantities can be recovered from the numerical results if the
parameters in the equation of state and the surface tension
coefficient of the real fluid can be provided. A fast Fourier
transform scheme with 16th order in precision is used to
discretize the spatial derivatives; the second-order Runge-
Kutta finite difference scheme is utilized to solve the temporal
derivative. The computational grids are Nx × Ny = 256 × 256
with space step �x = �y = 1/128; the time step is �t =
0.0001. The parameters a and b in the equation of state are
chosen to be a = 2.0 and b = 0.4, fixing the critical point at
Tc = 1.88657, ρc = 1.3044, and Pc = 0.8832.

To numerically study the physical mechanisms of bubble
coalescence, the initial state of two stationary bubbles being
horizontally abreast is set as

ρ(x, y) = ρg + (ρl −ρg)
2 tanh

[√
(x−x01 )2+(y−y01 )2−r0

0.5w

]

+ (ρl −ρg)
2 tanh

[√
(x−x02 )2+(y−y02 )2−r0

0.5w

]
.

(23)

Here, ρl = 2.0658 and ρg = 0.6894 are the densities of the
liquid and gas phases with T = 1.8; w = 6.0 is the width of
the boundary layer, r0 = 30 is the radius of the static bubble,
(x01, y01) is the center coordinate of the left bubble, and (x02,
y02) is the center coordinate of the right bubble. The tempera-
ture of the system is free to evolve during the simulations.

A. Nonequilibrium characteristics of bubble coalescence

Two bubbles that are close together will coalesce under the
action of the surface tension. Figure 1 shows density patterns
at eight characteristic instants with K = 0.00015, τ = 0.001,
and Pr = 0.2. Time evolutions of the ratio of minor and major
axes Ld (= Ly/Lx ), Lx, and Ly are displayed in Figs. 2(a) and
2(b), where Lx and Ly are the major axis and minor axis of
the new bubble, respectively. As shown in Fig. 1, the density
of the center point of the liquid film between two bubbles
is less than the mean density ρmean(t ) = [ρl (t ) + ρg(t )]/2 at
t = 2.0; then the shape of the coalescing bubble will go
through different states: (i) a dumbbell shape at t = 3.5,
(ii) a fusiform shape at t = 5.4, (iii) the first unsteady circle at
t = 8.4 with Ld = 1.0 for the first time [this instant is labeled
tl1, as shown in Fig. 2(a)], (iv) a vertical ellipse at t = 12.6
(the ratio of minor and major axes is maximum at this time),
and (v) an unsteady circle for the second time at t = 20.4 with
Ld = 1.0 again. From Fig. 2(b), it can be found that the first
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FIG. 2. Temporal evolutions of (a) the ratio of minor and major axes Ld = Ly/Lx and (b) the major axis Lx and the minor axis Ly for
K = 0.00015, τ = 0.001, and Pr = 0.2.

coalescence phase (t < tl1) can be divided into two substages:
(i) the fast growing stage of Ly, but Lx remains almost un-
changed (t � 5.4), and (ii) the rapidly decreasing stage of Lx

(5.4 < t < 8.4). Note that when t = 5.4, Ld = 1/2, and the
average coalescence velocity reaches the maximum, which
is displayed in Fig. 6 by a blue dashed line. We denote this
instant as tumax.

Although the coalescence regime and the damped oscilla-
tion in the bubble coalescence process have been extensively
studied using diverse experimental, theoretical, and numerical
simulation methods from different perspectives [12,14,16–
18,32,33,38–40], there are also a lot of valuable physical
problems which deserve attention during the first coalescence
phase (t < tl1). For example, various kinds of nonequi-
librium effects are generated and enhanced during this
stage.

After the instant of contact (t = 2.0), an interface with
negative curvature is formed at the saddle point, together with
a low temperature and pressure region near the middle liquid
film, which can drive mass flux from each bubble to the mid-
dle bridge. Therefore, the NOMFs or other nonequilibrium
behavior related to mass flux must be relatively strong in
the bubble. Equation (21) indicates that �∗

2αβ are all mainly
determined by the spatial distribution of the velocity gradient
computed assuming a constant value of the viscosity coeffi-
cient. As shown in Figs. 3(a) and 3(b), when the two bubbles
are close to each other, the intermediate liquid film is thinning.
The strong nonequilibrium effects first occur in the liquid film
between the two bubbles because of the formation of a local
relatively high velocity gradient. As displayed by the black
solid line and blue dashed line in Fig. 4, the velocity gradient
exhibits a higher value in the lattice nodes indexed from 119
to 137 along the x direction when t � 2.6. Moreover, four
small vortices appear on both sides of the central axis under
the combined influence of the pressure, the surface tension,
and the viscosity [see Figs. 5(a)–5(c)]. Thus, the spatial dis-
tribution of �∗

2xx is positive in the middle and negative on

both sides; the distribution of �∗
2yy is just the opposite; the

spatial distribution of �∗
2xy is an antisymmetric internal and

external double quadrupole structure, and the outside one is
dominant. The maximum of �∗

2xx is reached soon after the
merging of the two bubbles (t = 2.6) because the surface en-
ergy rapidly translates into kinetic energy [14], which results
in the largest velocity gradient being formed near the coales-
cence point, as shown in Fig. 4(b) by the blue dashed line.
When 2.6 < t � 5.4, the part inside the bubble is gradually
mobilized, and the average velocity increases gradually, which
can be illustrated by progressively wider profiles of ux and
∂ux/∂x [see the purple dotted lines in Figs. 4(a) and 4(b)].
Hence, the area where �∗

2 dominates progressively increases,
and the mean intensity of �∗

2 decreases simultaneously. When
5.4 < t < 8.4, Lx rapidly decreases [see the black dotted line
in Fig. 2(b)], causing the peak of the velocity to step to the
outside of the bubble [see Figs. 5(e) and 5(f)], and then �∗

2xx in
the bubble gradually becomes completely positive due to the
negative velocity gradient. �∗

2yy has similar evolvement rules.
For �∗

2xy, when t � 5.4, the relative intensity and major area
of the internal quadrupole structure slowly become large by
the gradual increasing of the average speed and area of vortex
flow [see the middle column in Figs. 3(a)–3(c)]. The internal
quadrupole structure also moves to the outside of the bubble,
which leads to the formation of an outer octupole structure
[see the middle column in Fig. 3(d)] because the centers of
the vortex move from the saddle position to outside the bubble
[see Figs. 5(b)–5(e)]. When t � tl1 = 8.4, the bubble coales-
cence enters the damping oscillation stage, and the spatial
distribution of the three components of �∗

2 will change with
the periodic variation of the vortex velocity. For example, the
value of Ld is 1.0 at both t = 8.4 and t = 20.4 [see Fig. 2(a)],
but the polarity of �∗

2αβ is the opposite [see Figs. 3(e) and
3(g)], and t = 12.6 is the transitional moment of alternation
of two polarities. To further study the relationships between
TNE and the morphological and kinetics characteristics of
bubble coalescence, the statistical averages of four quantities
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FIG. 3. The spatial distributions of �∗
2xx (first column), �∗

2xy

(second column), and �∗
2yy (third column), as captured at the same

characteristic times (except for t = 1.0) as in Fig. 1, with K =
0.00015, τ = 0.001, and Pr = 0.2. Here, the grid range of each
submap is the whole computational domain Nx × Ny = 256 × 256,
and the color bar at the bottom of each panel refers to the magnitude
of �∗

2αβ .

are defined as follows:

�̄∗
2αβ (t ) =

∑
ρ(x, y, t )�∗

2αβ (x, y, t )∑
ρ(x, y, t )

, (24)

-0.1

-0.05

0

0.05

0.1

0 66 86 128 170190 256
-1.5

-1

-0.5

0

0.5

t=1.0

t=2.6

t=3.5

t=5.4

t=8.4

119137

(b)

(a)

FIG. 4. Distributions of ux and ∂ux/∂x on the horizontal central
axis (y = 128) at t = 1.0, 2.6, 3.5, 5.4, and 8.4 with K = 0.00015,
τ = 0.001, and Pr = 0.2. Here, x = 66, 86, 170, and 190 are the
left and right coordinates of the gas-liquid boundary at t = 5.4 and
t = 8.4, respectively.

ū(t ) =
∑

ρ(x, y, t )ux (x, y, t )∑
ρ(x, y, t )

, (25)

D̄∗(t ) =
∑

ρ(x, y, t )
√

�∗2
2 + �∗2

3 + �∗2
3,1 + �∗2

4,2∑
ρ(x, y, t )

, (26)

(∇u : ∇u)0.5(t ) =
∑

ρ(x, y, t )(∇u : ∇u)0.5∑
ρ(x, y, t )

. (27)

There are two reasons why we use the density-weighted sta-
tistical method [36] to highlight the relationships between the
TNE effects and the morphological and kinetic characteristics
of bubble coalescence. First, the TNE effects mainly locate
in the vicinity of the boundary layer in the coalescing bubble
system. Second, we are concerned with the nonequilibrium
effects within the bubble, where the density and also the
density gradient adjacent to the inner boundary layer are larger
than those away from the inner boundary layer. The statistical
areas are all in the left half of the computational domain.
Equation (24) is the average of �∗

2αβ . Based on the analysis
of Fig. 3, �∗

2yy + �∗
2xx = 0, and �̄∗

2xy = 0 due to its spatial
antisymmetry, so it just remains to analyze the independent
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FIG. 5. The velocity vector fields, as captured at the same characteristic times as in Fig. 1, with K = 0.00015, τ = 0.001, and Pr = 0.2.
Here, the grid range of each panel is the partial simulated area N ′

x × N ′
y = 150 × 150, with N ′

x = N ′
y = 200 − 50, and the color bar at the

bottom of each panel refers to the magnitude of velocity.

one, �̄∗
2xx. Equations (25)–(27) are the average coalescence

velocity, the mean total TNE strength, and the spatial average
of the velocity gradient, respectively.

Figure 6 shows the time evolution of �̄∗
2xx(t ) and ū(t ) with

a black dotted line and a blue dashed line, respectively. The
evolution of �̄∗

2xx(t ) is consistent with the analysis of Fig. 3.
�̄∗

2xx increases due to the locally rapid growth of �∗
2xx when

t � 2.6, as displayed by the black solid and blue dashed lines
in Fig. 7. In the time interval 2.6 < t � 5.4, �̄∗

2xx(t ) decreases
because the peaks of �∗

2xx decrease and the areas where �∗
2xx

dominates increase, which can be understood by comparing
the blue dashed and purple dotted lines in Fig. 7. �̄∗

2xx(t )

2.6 5.4 8.4 12.6 20.4 25 30
-1

-0.5

0

0.5

1

1.5

2

2.5
10-4

-0.01

0

0.01

0.02

0.03

FIG. 6. The temporal profiles of �̄∗
2xx (t ) and ū(t ) for K =

0.00015, τ = 0.001, and Pr = 0.2.

gets the first local minimum at t = 5.4; that is, �̄∗
2xx(t ) gets

its first local minimum at t = tumax because at this instant,
the absolute values of the peak values of �∗

2xx are almost
equal and the region where the positive �∗

2xx dominates is
nearly equal to the area where the negative �∗

2xx dominates.
In the period 5.4 < t < 8.4, �̄∗

2xx(t ) increases again because

0 66 86 128 170190 256
-2

-1

0

1

2

3

4

5

6
10-3

t=1.0

t=2.6

t=3.5

t=5.4

t=8.4

FIG. 7. Distributions of �∗
2xx on the horizontal central axis (y =

128), as captured at the same characteristic times as in Fig. 4, for
K = 0.00015, τ = 0.001, and Pr = 0.2. Here, x = 66, 86, 170, and
190 are the left and right coordinates of the gas-liquid boundary at
t = 5.4 and t = 8.4, respectively.
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0 3.5 7.4 12.6 23 30
-5

0

5

10
10-3

-0.2

0

0.2

0.4

FIG. 8. The temporal profiles of D̄∗(t ), the mean acceleration
of bubble coalescence ā(t ) = dū/dt , the slope of boundary length

dL/dt , and (∇u : ∇u)0.5 for K = 0.00015, τ = 0.001, and Pr = 0.2.

of �∗
2xx in the bubble being completely positive, as shown in

Fig. 7 by the green line with squares. �̄∗
2xx(t ) reaches the local

maximum for the second time at t = tl1 = 8.4; after that, it
enters the damping oscillation stage (t � tl1).

The value of D̄∗(t ) mainly depends on the strength of
�∗

2 and �∗
4,2, especially �∗

4,2 because its strength is about
5 times �∗

2 [71]. According to the results of Ref. [66],

(∇u : ∇u)0.5 characterizes the strength of �∗
2 and �∗

4,2. Fig-
ure 8 demonstrates the evolutions of D̄∗(t ) as well as of the
mean acceleration ā(t ) = dū/dt of bubble coalescence, the

slope of boundary length dL/dt , and (∇u : ∇u)0.5(t ). It is

interesting to find that the trends of D̄∗(t ) and (∇u : ∇u)0.5(t )
are extraordinarily similar. Moreover, they are strongest at
t = 3.5; meanwhile, the mean coalescence acceleration is the
largest, and the boundary length has the fastest changing rate.
As shown in Fig. 2(b), Lx starts to decrease at t = 3.5, and the
morphology of the new big bubble depends on the evolution
of Lx and Ly thereafter, so the boundary length has the largest
slope at this instant. This generates the largest energy release

rate; thus, (∇u : ∇u)0.5(t ) and ā(t ) reach the maximum si-
multaneously.

B. Effects of surface tension and viscosity

The effects of the coefficient of surface tension and of
the viscosity coefficient on bubble coalescence are studied in

-0.7

0

1

2

3

10-4

(a) (d)

0.5

1

1.5

(b) (e)

0 5.4 8.4 20.4 30
-0.01

0

0.01

0.02

0.03
(c)

6.8 12.8 20  30  

(f)

0

4

8
10-3

(g)

0 3.5 10 20 30

-0.005

0

0.005

0.01
(i)

-0.1

0

(h)

4.7 10 20 30

(l)

(k)

(j)

FIG. 9. The influence of the coefficient of surface tension and the viscosity coefficient. (a), (b), and (c) are profiles of �̄∗
2xx (t ), Ld = Ly/Lx ,

and ū(t ) for K = 0.0008, 0.001, 0.0015, and 0.0023 with τ = 0.001. (d), (e), and (f) are profiles of τ = 0.0005, 0.001, 0.002, and 0.003 with
K = 0.00015. (g), (h), and (i) are profiles of D̄∗(t ), dL/dt , and ā(t ) = dū/dt with the same parameters as in (a)–(c). (j), (k), and (l) are profiles
of D̄∗(t ), dL/dt , and ā(t ) with the same parameters as in (d)–(f). Here, the heat conductivity is constant, with τ − q = 0.005.
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FIG. 10. Effects of the coefficient of surface tension and the viscosity coefficient on tumax. The relationship between tumax and the coefficient
of surface tension K is tumax ∼ K−nu , with nu = 143.86τ + 0.49(τ < 0.0015) and nu = 71.50τ + 0.58(τ � 0.0015). Moreover, nu ∼ 0.5 for
τ = 0.0001, which is consistent with the results of Ref. [14] under the condition of lower viscosity. And there is a linear relationship between
tumax and the viscosity coefficient tumax = kuτ + bu with ku = 0.0079K−1.29. Here, τ − q = 0.005 to keep heat conductivity constant.

this section. The viscosity coefficient μ = ρT τ is changed by
adjusting the relaxation time τ . Figures 9(a)–9(f) show the
evolution curves of �̄∗

2xx(t ), Ld , and ū(t ); Figs. 9(g)–9(l) show
the evolution profiles of D̄∗(t ), dL/dt , and ā(t ), respectively.
As indicated by the green double arrows, in all cases it is clear
that �̄∗

2xx(t ) reaches its first local minimum at time t = tumax,
when the average coalescence speed reaches its maximum.
As shown by the black double arrows, �̄∗

2xx(t ) reaches its
second local maximum at t = tl1, when the ratio between the
minor and major bubble axes is Ld = 1 for the first time. In
particular, when the surface tension is relatively small or when
the viscosity is relatively high, �̄∗

2xx(t ) reaches its second local
maximum earlier (i.e., at time t < tl1), as shown by the purple
double arrow. This happens because in these cases, the viscos-
ity, rather than the surface tension, dominates the evolution of
the system, which results in the relatively quick damping of
nonequilibrium strength and the slower coalescence process.

Comprehensive statistics demonstrate that the instant when
�̄∗

2xx(t ) reaches its second local maximum is always equal
to tl1 when Oh � 0.17. Here, the Ohnesorge number Oh =
μ/

√
ρl r0σ [13] is used to characterize bubble coalescence

with μ = ρlT τ , ρl , r0, and σ = K
∫ +∞
−∞ (∂ρ/∂rα )2drα [72]

being the viscosity coefficient, the liquid density, the initial
bubble radius, and the surface tension, respectively. In addi-
tion, for all Ld , they are about 1/2 at t = tumax, as illustrated
by the red double arrows.

There are three main mechanisms (the surface tension,
the viscosity, and the inertial force) influencing the process
of bubble coalescence, and they dominate at different time
periods [12,14]. As a whole, the surface tension is the original
driving force of bubble coalescence and determines the initial
velocity of the saddle point, so tumax decays in the form of a
power law with the increase of the surface tension coefficient
K , tumax ∼ K−nu [see Fig. 10(a)]; the viscosity impedes the
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FIG. 11. The effects of the coefficient of surface tension and the viscosity coefficient on tDmax with τ − q = 0.005.

coalescence progress, which is why tumax linearly in-
creases with the viscosity coefficient, tumax = kuτ + bu [see
Fig. 10(c)]. As shown in Fig. 10(b), the relationship between
nu and τ is linear with positive slopes knu1 = 143.86 (τ <

0.0015) and knu2 = 71.50 (τ � 0.0015). This suggests that
the fluid viscosity increases the value of tumax. For a larger
value of the fluid viscosity, the value of tumax increases, and
the growing prefactor of Ly is diminished [32,40]. This causes
a reduction of the growth rate of Ld [see Fig. 9(e)] and the
relatively large tumax when the surface tension coefficient is
lower [see Fig. 10(a)]. In the case of high viscosity, the hin-
dering effect of the viscosity on the growth of Ly becomes
stronger; as a result, knu1 > knu2. As exhibited in Fig. 10(d),
there is a power-law fitting for the slope ku = 0.0079K−1.29.
It is quite clear that the surface tension reduces the effect of the
viscosity because the higher the surface tension is, the smaller
Oh is, and the larger the growing prefactor of Ly is [32,33,40].
As shown by Figs. 9(g)–9(l), the mean total TNE strength, the
average coalescence acceleration, and the absolute value of

the changing rate of the boundary length reach their maxima
at the same time in all cases. The effects of the coefficient of
surface tension and of the viscosity coefficient on tDmax, which
is the instant when D̄∗(t ) reaches the maximum, are shown in
Fig. 11. On the basis of Figs. 11(a) and 11(b), the relation be-
tween tDmax and the surface tension coefficient K also presents
a power-law function: tDmax ∼ K−nd , with nd = 201.79τ +
0.56(τ < 0.0015) and nd = 47.50τ + 0.77(τ � 0.0015). As
shown in Figs. 11(c) and 11(d), there is a linear relation
between tDmax and the viscosity coefficient: tDmax = kdτ + bd ,
with kd = 0.0069K−1.29. Here, the variation rules of tDmax are
very similar to those of tumax.

The effects of the coefficient of surface tension and of the
viscosity coefficient on D̄∗

max, which is the maximum value
of D̄∗(t ), are displayed in Fig. 12. According to Figs. 12(a)
and 12(b), D̄∗

max and K show a linear relationship, D̄∗
max =

kDK + bD, with kD = 1386τ 0.67. From Figs. 12(c) and 12(d),
the relation between D̄∗

max and the viscosity coefficient is
a power-law function D̄∗

max ∼ τ h, with h = 372K + 0.53.
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FIG. 12. The effects of the coefficient of surface tension and the viscosity coefficient on D̄∗
max with τ − q = 0.005.

FIG. 13. The effects of the coefficient of surface tension and the viscosity coefficient on (∇u : ∇u)0.5 with τ − q = 0.005.
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FIG. 14. The effects of heat conductivity and Pr. (a) Effects of heat conductivity on tumax, tDmax, and D̄∗
max. (b) Effect of Pr on the evolution

of |∇T |. Here, K = 0.00008, τ = 0.001.

Obviously, the surface tension and the viscosity both con-
tribute to the growth of D̄∗

max because the surface tension

promotes the velocity gradient (∇u : ∇u)0.5 [see Fig. 13(a)]
and the viscosity is the primary driving force of TNE. As
shown in Fig. 13(b), τ has tripled, but the peak value of

(∇u : ∇u)0.5 decreases only 1.62 times. Although the pref-
actors of the first order of �∗

m,n are proportional to τ [71], our
result is D̄∗

max ∼ τ h(0 < h < 1) because the model we used
essentially considers not only the first order TNE but also the
second order TNE, and the second order one is always the
reverse of the first order one in a two-phase flow system.

C. Effects of heat conduction

The influence of heat conduction on tumax, tDmax, and
D̄∗

max is given in Fig. 14(a). Here, the heat conductivity is

5i

1i

2i

3i

4i

6i
7i

8 i
1v 2v 3v 4v0v

FIG. 15. Schematic diagram of the discrete velocity model.

changed by adjusting Pr with fixed τ = 0.001. It can be found
that tumax, tDmax, and D̄∗

max all decrease with τ/Pr. The re-
lations between tumax, tDmax, and D̄∗

max and τ/Pr are tumax =
0.024(τ/Pr)−0.66 + 7.1, tDmax = 0.017(τ/Pr)−0.75 + 4.1, and
D̄∗

max = 0.002(τ/Pr)−0.057 + 0.00035, respectively. It is ob-
vious that the effect of the heat conduction accelerates
bubble coalescence and restrains the growth of TNE. Be-
cause the heat flow is enhanced with the increase of the
heat conductivity, the temperature distribution in the sys-
tem is more uniform. The higher Pr is, the lower the heat
conductivity is. As shown in Fig. 14(b), the average |∇T |
increases with the enhancement of Pr; thus, the strengths of
the TNE effects positively associated with ∇T , such as �∗

3

and �∗
3,1, decrease with the increase of τ/Pr. Here, |∇T | =∑

ρ(x, y, t )
√

(∂T /∂x)2 + (∂T/∂y)2/
∑

ρ(x, y, t ).

IV. CONCLUSIONS

In this paper, we have studied the thermodynamic nonequi-
librium effects during the coalescence of two initially
motionless bubbles using a two-dimensional discrete Boltz-
mann model. Our study focused on two aspects: (i) the
relations between the thermodynamic nonequilibrium behav-
iors inside the bubble system and the characteristic quantities
describing the morphology and kinematic features of bubble
coalescence before the formation of the first unsteady circular
and (ii) the influence of the surface tension, the viscosity,
and the heat conduction on (a) the average value of the xx
component of nonorganized momentum flux, i.e., �̄∗

2xx, (b) the
characteristic time tumax when the average coalescence speed
reaches its maximum, (c) the characteristic time tDmax when
the average total thermodynamic nonequilibrium strength be-
comes the strongest, and (d) the peak value of the average
thermodynamic nonequilibrium strength D̄∗

max.
The dynamical and complex spatial distributions of �∗

2αβ

during bubble coalescence were investigated in detail. The
strong nonequilibrium effects first occur in the middle of
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two bubbles. Thereafter, the thermodynamic nonequilibrium
strengths increase rapidly in this local region and reach the
maximum soon after the merging of the two bubbles. After
that, the dominating regions of �∗

2αβ gradually become larger.
�∗

2xx and �∗
2yy have antisymmetrical spatial distributions. The

distribution of �∗
2xy changes from an antisymmetric internal

and external double quadrupole structure to an outer octupole
structure. Their polarities change with the variation of the
vortical direction of the velocity field periodically.

The mean value of �∗
2xx in the bubble, �̄∗

2xx, which
integrates kinematic, morphological, and nonequilibrium fea-
tures, can be used to calibrate the three stages of bubble
coalescence. In the first stage (before �̄∗

2xx reaches its first
local minimum), the minor axis (the neck radius) grows apace
until the ratio of minor and major axes is 1/2 and the average
coalescence speed gradually increases to the maximum. In the
second stage (before �̄∗

2xx reaches its second local maximum),
the decreasing rate of the major axis exceeds the increasing
rate of the minor axis until the ratio of minor and major
axes is 1. In the third stage, the system enters the damping
oscillation stage. Due to the major axis starting to decrease,
the absolute value of the slope of the boundary length reaches
the maximum at this time, which leads to the fastest release of
surface energy. Thus, both the average total TNE strength in
the bubble and the mean acceleration of bubble coalescence
reach the maximum simultaneously.

As mentioned in Refs. [12,14,32,33], the surface tension
enhances the growth of the minor axis, while the viscosity
inhibits it. The relations between the physical quantities that
we care about (tumax, tDmax, and D̄∗

max) and the surface tension

coefficient and the viscosity coefficient were revealed in de-
tail. The heat conduction accelerates the bubble coalescence
and restrains the growth of the thermodynamic nonequilib-
rium effects. This agrees with the results of Refs. [62,63] that
the heat conduction facilitates the merging of small domains
in the stage of domain growth. In addition, for any parameter
we focused on, the ratio of minor and major axes is always
about 1/2 when their average coalescence speeds reach the
maxima.

The thermodynamic nonequilibrium effects present some
insights into coalescence behavior. At the same time, the
current study presents a way to detect the progress of bubble
coalescence in engineering applications.
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APPENDIX

The D2V33 [69] model reads

v0 = 0, vki = vk

[
cos

(
i

4
π

)
, sin

(
i

4
π

)]
, (A1)

where k = 1, 2, 3, 4 indicates the kth group of particle velocities whose speed is vk and i = 1, . . . , 8 is the direction of vk , as
shown in Fig. 15. We stress that the DVM is selected according to modeling accuracy and stability of the model. The discrete
equilibrium distribution function f eq

ki is [69]

f eq
ki = ρFk

[(
1 − u2

2T
+ u4

8T 2

)
+ vki · u

T

(
1 − u2

2T

)
+ (vki · u)2

2T 2

(
1 − u2

2T

)
+ (vki · u)3

6T 3
+ (vki · u)4

24T 4

]
, (A2)

with

F1 = 48T 4 − 6
(
v2

2 + v2
3 + v2

4

)
T 3 + (
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2
3 + v2

2v
2
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2
4
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2
3v

2
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2

)(
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3
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) , (A3)

F2 = 48T 4 − 6
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2
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2
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F3 = 48T 4 − 6
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F0 = 1 − 8(F1 + F2 + F3 + F4). (A7)
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