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Scaling to zero of compressive modulus in disordered isostatic cubic networks
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Networks with as many mechanical constraints as degrees of freedom and no redundant constraints are
minimally rigid or isostatic. Isostatic networks are relevant in the study of network glasses, soft matter, and
sphere packings. Because of being at the verge of mechanical collapse, they have anomalous elastic and
dynamical properties not found in the more commonly occurring hyperstatic networks. In particular, while
hyperstatic networks are only slightly affected by geometric disorder, the elastic properties of isostatic networks
are dramatically altered by it. In this paper, we show how disorder and system size strongly affect the ability
of isostatic networks to sustain a compressive load. We develop an analytic method to calculate the bulk
compressive modulus B for various boundary conditions as a function of disorder strength and system size. For
simplicity, we consider square and cubic lattices with Ld sites, each having d mechanical degrees of freedom,
and dLd rotatable springs in the presence of hot-solid disorder of magnitude ε. Additionally, ∼Lθ sites may
be fixed, thus introducing a nonextensive number of redundancies, either in the bulk or on the boundaries of
the system. In all cases, B is analytically and numerically shown to decay as L−μ with μlarge = d − θ for

large disorder and μsmall = max{(d − θ − 1), 0} for small disorder. Furthermore B(L, ε)L
μsmall = g(λ) with

λ = L
(μlarge−μsmall)

ε2 a scaling variable such that λ << 1 is small disorder and λ > 1 is large disorder. The
faster decay to zero of B in the large disorder regime results from a broad distribution of spring tensions, including
tensions of both signs in equal proportions, which is remarkable since the system is under a purely compressive
load. Notably, the bulk modulus is discontinuous at ε = 0, a consequence of the fact that the regular network sits
at an unstable degenerate configuration.
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I. INTRODUCTION

The balance [1] between numbers of degrees of free-
dom and mechanical constraints is a central keystone in the
analysis of structural rigidity [2]. Rigid properties are also
important at the atomic scale in several fields of physics such
as glasses, soft matter, sphere packings, protein folding, etc.
[3,4]. Balanced, or isostatic, networks are minimally rigid and
thus at the verge of mechanical collapse. Their elastic and dy-
namical properties are not well understood [5]. In particular,
there is a scarcity of studies discussing the effects of size and
disorder strength [6,7] on isostatic networks. Here we present
an analytical method that sheds light on such questions for the
case of cubic networks and admits easy generalization to other
kinds of isostatic lattices. Our analytical results are validated
through extensive numerical simulations.

The elastic properties of network-forming systems can be
modeled for simplicity using spring-joint networks in d di-
mensions. In these simplified models, each pointlike node has
d positional degrees of freedom, while each rotatable spring
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determines the distance between two joints, thus providing
one constraint [8–10]. In general, however, the counting of
degrees of freedom and constraints depends upon the interac-
tions between nodes. In covalently bonded three-dimensional
atomic systems, each atom has six degrees of freedom, while
each covalent bond provides five constraints. Similarly, in a
cubic spring network with nonrotatable springs that are solidly
attached to nodes [11–13], each node has six degrees of free-
dom while each spring provides six constraints.

Networks with too few mechanical constraints are flex-
ible or hypostatic, and may be deformed without energy
expenditure. A mode of deformation that costs no energy is
called a flex. Networks with more constraints than required
for rigidity are overconstrained or hyperstatic and can sustain
self-stresses. Self-stresses, also called cycles, are sets of link
tensions in equilibrium without external forces. Networks that
have just the number and positioning of constraints needed for
minimal rigidity are called isostatic and have neither flexes
nor cycles. They are minimally rigid in the same sense as
trees are minimally connected [14]: removing any single link
renders some subset of the network not rigidly connected to
the rest. Because the problems of finding spring tensions from
external forces and that of finding joint positions form spring
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lengths are both uniquely determined, such well-balanced
networks are also said to be statically and kinematically
determinate [15].

Notably, the same mechanical arguments determining the
rigidity of load-bearing structures are relevant at atomic scales
as well, e.g., regarding the dynamics of covalently bonded
glass-forming fluids, as noticed by Phillips [3]. Phillips ob-
served that the glass-forming ability of a melt is maximized
when its chemical composition is such that the number of
mechanical atomic degrees of freedom is exactly saturated by
the hard constraints provided by covalent bonds. It was then
suggested that such mechanically balanced random covalent
networks would be rigid but nearly stress-free [16]. Further
work by Thorpe [17,18] tried to conceptualize these obser-
vations in the context of random rigidity percolation (RRP)
[19], which then remained a predominant model in the study
of rigidity-related properties of covalent glass formers [20].
According to the then-accepted picture, the single observed
maximum in glass-forming ability as the chemical compo-
sition is varied would correspond to the single second-order
transition in RRP.

However, RRP never gives rise to rigid and stress-free,
that is, isostatic, networks. Fluctuations in local connectivity
create self-stressed regions [21] intermixed with undercon-
strained or floppy regions [22], even if constraint balance is
satisfied globally. Constraint balance is a necessary but not
sufficient condition for isostaticity. The spontaneous assembly
of a rigid and stress-free, or isostatic, structure requires some
mechanism by which self-stresses are avoided as the network
connectivity is increased toward the rigidization point. The
first known example of a naturally occurring system in which
such a mechanism exists, and thus self-organizes onto an
isostatic structure, was provided by packings of frictionless
elastic disks or spheres [4], which is a model for metallic
glasses [23].

In the meantime, Boolchand found experimental evidence
indicating that certain network glass formers show not one
but two rigidity transitions as a function of chemical compo-
sition, with an intermediate phase displaying almost no aging,
a minimum in nonreversible heat flow, and improved glass
formation ability [24,25]. These properties of the intermediate
phase are consistent with the suppression of self-stress, and
could not be explained by the then-prevalent RRP model. Sub-
sequently, Thorpe and Phillips proposed a modified rigidity
percolation model [26,27] in which, by assuming that excess
constraints are avoided on energy minimization grounds, two
structural transitions are obtained, giving rise to an intermedi-
ate phase that is rigid and nearly stress-free, thus providing a
possible conceptual framework for Boolchand et al.’s experi-
mental findings [28].

The discovery of self-organized isostaticity in sphere pack-
ings [4] and network glasses [26,27] brought about interest in
the study of isostatic networks and their relevance in natu-
ral systems, particularly glasses. Recently, it was argued by
Wyart and collaborators [5,29] that the excess density of low-
energy vibrational modes observed in amorphous systems,
i.e., the boson peak [30], can be explained as being a con-
sequence of a proliferation of soft modes that is characteristic
of isostatic networks. Soft, or floppy modes, are deformations
which cost little elastic energy, and are thus associated with

a small vibrational frequency. Its importance for the glass
transition phenomenology and phase transitions is now well
established [31–33].

There are, however, important structural differences be-
tween network glasses and sphere packings. In packings,
contact forces cannot be tensile. This condition, on one hand,
implies that no localized self-stresses are possible, from which
a rigorous proof of isostaticity [4] can be constructed. In net-
work glasses, on the other hand, isostaticity is hypothetical. Its
theoretical justification is based on self-stress minimization, a
mechanism that may or may not be at work, depending on
the glass-formation conditions [34]. But, more importantly,
the property of compressive tensions in packings ensures that
their bulk modulus is nonzero [5]. The condition of com-
pressivity of contact forces implies that disorder in random
packings is not uncorrelated. Precise correlations exist among
the disorder variables of a packing, e.g., sphere positions and
contacts, to ensure that no link force is tensile. In random
isostatic networks such as those that are thought to exist in
network glasses, bond forces can have any sign. Therefore,
no such correlations exist, and link forces will grow with size
upon loading, giving rise to negligible elastic modulii for these
systems [35,36]. This is why randomly disordered isostatic
networks cannot be used [6,7] as models for the static elastic
properties of compressive packings. But randomly disordered
isostatic networks, on the other hand, constitute adequate
models to represent network glasses, which do not have a
constraint on tension signs that would impose correlations on
the disorder variables.

In previous work, we have studied how static response
functions [37–39] and elastic modulii [35] behave in propaga-
tive isostatic networks that possess geometric disorder. These
studies clearly show that many anomalous elastic properties of
isostatic networks only manifest themselves in the presence
of disorder. The physical properties of disordered isostatic
networks, therefore, will in general strongly depart from those
of their regular counterparts, something that does not happen
in hyperstatic networks.

In this paper, we investigate how random site displace-
ments of magnitude ε (hot-solid disorder [40]) affect the
ability of square and cubic networks, which are isostatic if
connected via rotatable springs, to withstand an isotropic
compressive load. It is important to once again remark that
this strong sensitivity to disorder does not exist in hyperstatic
systems. For comparison, consider cubic networks whose
nodes are solidly joined by nonrotatable springs [11–13]. As
mentioned already, such systems have more mechanical con-
straints than node degrees of freedom, and therefore they are
not isostatic but redundantly rigid or hyperstatic. Their elastic
properties are almost unchanged in the presence of disorder
[12]. Although our focus is on square and cubic networks,
similar conclusions are valid for other regular isostatic net-
works with a finite compressive modulus, e.g., Kagome [41].
Finally, notice that hot-solid disorder provides an approxi-
mate static description for the effects of thermal fluctuations
on elastic response [42,43], particularly at low temperatures,
where entropic effects are not important.

Previous numerical studies [36] of the compressive mod-
ulus B of square networks with hot-solid disorder [40] of
magnitude ε revealed the following remarkable properties.
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For regular (ε = 0) square networks with periodic boundary
conditions (PBCs), the bulk modulus is constant, B = 1, for
any size L. For any nonzero ε, however, B decreases with
increasing linear system size L as 1/L if ε2L << 1, and as
1/L2 if ε2L > 1. The bulk modulus B is thus discontinuous at
ε = 0, for any size L.

Additionally, the equilibrium deformation < (δ�r)2 >
1/2

under load is found to diverge as 1/ε in the ε → 0 limit,
although it is exactly zero for ε = 0. The square network
with PBCs is, within linear elasticity, mechanically unstable
in the following sense: A large regular network with ε = 0
has a finite bulk modulus, and its sites remain unmoved un-
der isotropic compression, but the slightest amount of initial
deformation ε �= 0 renders it unable to withstand a load: the
elastic modulus goes to zero with size and its sites suffer
enormous displacement, actually diverging as 1/ε. Notice that
this, being a statement that holds within linear elasticity, is
equally valid for compression and extension of the network.
The instability of these networks under site disorder is, there-
fore, not equivalent to the buckling of a compressed elastic
element, which is a higher-order effect, does not require dis-
order, and most importantly does not happen under extension.
These particularities of square networks with PBCs derive
from the existence of degenerate flexes [44], or zero-energy
deformabilities, at ε = 0.

Isostatic networks with fixed boundaries, on the other hand,
do not possess such flexes, and display a rather different be-
havior. They have a constant bulk modulus as ε → 0, and their
average equilibrium deformation under compression goes to
zero as ε in that limit. Furthermore, their elastic modulus
decays as 1/L for large ε.

Imposing fixed boundaries amounts to fixing two perpen-
dicular lines of site in two dimensions, and three planes of
site in three dimensions, network with periodic boundaries. In
other words, fixing ∼L(d−1) sites of a d-dimensional network.
In this paper, we consider the more general case of cubic
and square systems with periodic boundaries, in which ∼Lθ

sites are fixed, where the scaling dimension of fixed sites
satisfies 0 � θ � d . The density of overconstraints is thus
asymptotically zero, so all networks that we analyze will be
said to be asymptotically isostatic.

We analytically derive the bulk modulus B of such net-
works as a function of model parameters L (linear size), ε

(disorder strength), and θ (scaling dimension of fixed sites).
For this purpose, the bulk modulus B is written in terms of
the number Ncycles and size Mc of cycles, i.e., subgraphs of
the network that can carry self-stress, plus some approximate
knowledge of the relative variability ν of stresses in these cy-
cles. The number and size of cycles on cubic and square cycles
with Lθ fixed sites can be easily estimated. The dependence
of ν on disorder is not exactly known, but can be adequately
guessed in the limits of large and small disorder, so an analytic
expression for B as a function of model parameters can be
found. The validity of these analytic results is then verified
numerically by solving the elastic equations with the help of
a conjugate gradient [45] iterative procedure for square and
cubic networks.

The layout of this paper is as follows. Section II de-
tails the procedure by which the compressive modulus is

calculated. Starting from a general expression for B [5]
derived in Appendix A, we use approximations that are appro-
priate for square and cubic networks, arriving at Eq. (3), which
gives the bulk modulus B in terms of geometric properties of
self-stressed subgraphs (or cycles) and the variability of the
tensions they sustain.

In Sec. III these geometric properties of cycles are deter-
mined for the particular case under scrutiny, that is, disordered
square and cubic networks, using graph-rigidity notions enu-
merated in Appendix B. These results are then used to find the
bulk modulus B in the various cases under consideration. The
relationship between the bulk modulus decay exponent μ and
the scaling dimension θ of the number constraints in excess of
minimal rigidity is given by (16).

Section IV explains our numerical methodology and
presents our numerical results for square and cubic networks.
It is discussed here how our numerical results validate our
analytical predictions. It is also shown in this section that
B(L, ε) times an appropriate power of size can be written as
a function of a single scaling variable λ that depends on size
L and disorder ε, and separates the regimes of small and large
disorder. Finally, Sec. V offers a discussion of our results,
open questions, and future work.

II. DISORDERED CUBIC NETWORKS

We start with a square or cubic network of linear springs
with unit lattice spacing and periodic boundaries across all
dimensions. As in previous work [35,36], hot-solid disorder
[40] is introduced by randomly displacing each site within
a sphere of radius ε and then adjusting all spring lengths �s

so they become unstressed in this configuration. The system
is then loaded by isotropically by expanding all springs ac-
cording to �s → �s(1 + κ ), with κ << 1. After numerically
solving the elastic equations to find the new equilibrium site
positions, the bulk modulus is calculated as B =< n2

i j > / <

(δ�)2 >=< n2
i j > /(< �2

i j > κ2), where ni j is the tension in
spring i j, in equilibrium.

In Appendix A, it is shown that the bulk modulus B can be
written [5] in general as

B = 1

Nlinks

Ncycles∑
c=1

(∑
i j nc

i j�i j/ < �2 >1/2
)2∑

i j (n
c
i j )

2
, (1)

where
∑

i j is a sum over the Nlinks springs in the network,∑Ncycles

c=1 is a sum over cycles, nc
i j is the normalized tension on

link i j in cycle c, and �i j is the repose length of spring i j.
We introduce the following approximations, which are

valid for slightly disordered regular lattices and may not apply
in general. If the link-length variability is not too large, that is
if �i j ≈< �2 >1/2, we can write

B = 1

Nlinks

Ncycles∑
c=1

(∑
i j nc

i j

)2∑
i j (n

c
i j )

2
. (2)

Considering now a simple Gaussian approximation for the
variability of tensions on a cycle, assume that cycle c is
comprised of Mc links (Mc is the mass of cycle c) and that
link tensions nc

i j on these links can be described by nc
i j =

nc + σcξ
c
i j , with ξ c

i j a normal random variable. Correlations

035001-3



CRISTIAN F. MOUKARZEL AND GERARDO G. NAUMIS PHYSICAL REVIEW E 106, 035001 (2022)

in link tensions are ignored. We then have that (
∑

i j nc
i j )

2 ≈
M2

c n2
c + Mcσ

2
c and

∑
i j (n

c
i j )

2 ≈ Mc(n2
c + σ 2

c ). Therefore,

B = 1

Nlinks

Ncycles∑
c=1

Mcn2
c + σ 2

c

n2
c + σ 2

c

= 1

Nlinks

Ncycles∑
c=1

1 + Mcn2
c/σ

2
c

1 + n2
c/σ

2
c

= 1

Nlinks

Ncycles∑
c=1

1 + νcMc

1 + νc
, (3)

where we have defined νc = n2
c/σ

2
c , an up-to-now unknown

parameter that quantifies the relative variability of link self-
stresses within cycle c.

Two limit cases are of interest. If link tensions are approx-
imately constant on each cycle c, we have that ν � 1 and we
get

B =
∑Ncycles

c=1 Mc

Nlinks
, (4)

which equals the fraction of all links involved in self-stress
states, or cycles. If, on the other hand, link tensions vary
wildly to the point of having random signs, ν ≈ 0, and

B = Ncycles

Nlinks
, (5)

i.e., the number of cycles per link.
We later show in Sec. IV B that, for disordered cubic

networks, the relevant scaling variable is λ = Lε2, such that
link tensions are constant for λ << 1 and random for λ > 1.
These two cases are what we call, respectively, the regimes of
small and large disorder.

III. COUNTING AND MEASURING CYCLES

Appendix B enumerates general constraint-counting no-
tions that are necessary for the calculations in this section.
Here these concepts are applied to regular and disordered
cubic and square networks, with and without fixed sites, to
calculate the relevant properties of their cycles. This informa-
tion is then used in Eq. (3) to obtain their bulk modulus in
each case.

A. Regular networks

To begin, let us consider a regular (ε = 0) square or cubic
network with periodic boundaries in the absence of fixed sites.
Each line (ring actually, because of PBCs) of L collinear links
is a cycle because it can support self-stresses. Thus, the net-
work has dLd−1 cycles with mass Mc = L each. Furthermore,
in the absence of disorder, all links on a line sustain the same
exact self-stress, and therefore ν = n2

c/σ
2
c → ∞. Using (3),

we obtain

B = dLd−1

dLd
L = 1. (6)

The addition of any number of fixed sites for zero disorder
does not change this result, as under homogeneous link ex-
pansion all sites remain in their original locations anyway. In

other words, B = 1 for zero disorder, with any arbitrary set of
fixed sites.

B. Disordered networks without fixed sites

The above calculation does not hold for nonzero ε, no
matter how small. The reason for this is that when sites are
disordered, a closed line of nonaligned consecutive links no
longer makes an independent cycle. While perfectly aligned
links are a degenerate configuration and can sustain a self-
stress, this ceases to be valid when sites are misaligned, even
if only slightly so, as argued previously. With disorder, the
remaining number of cycles is d , as shown previously on
constraint-counting grounds. Thus a fraction d/(dL(d−1)) of
all cycles disappears when ε �= 0 and arbitrary small. As-
suming, as it seems valid for arbitrarily small disorder, that
ν → ∞ also in this case, the bulk modulus will be reduced by
the same fraction, so we obtain

B ∼ L−(d−1), (7)

which is valid for periodic networks with arbitrarily small but
nonzero disorder.

C. Fixing sites

Fixing an arbitrary set of sites has the effect of removing
some degrees of freedom from Ndof in Eq. (B1), thus inducing
new cycles without simultaneously producing new flexes (as
a degeneracy does). Each fixed site removes d degrees of
freedom, thus inducing d new cycles, see Fig. 1. Studying the
effect of fixing sites is only relevant for disordered networks
since, as argued already, a regular network with PBC has all
its links in cycles and thus B = 1, no matter if some sites are
fixed or not.

When Nfixed sites are fixed, Eq. (B1) is modified to read

Nflexes = Ndof − dNfixed − Nconstr + Nredund. (8)

Let us first consider the case of fixed lines and planes of sites.

D. Networks with fixed boundaries

Assume that, on a square network, any two perpendicular
lines of sites are fixed, as shown in Fig. 1(a). Because of
periodicity, this is equivalent to having rigid boundaries sur-
rounding the lattice. In this case, all 2L flexes of the system
are eliminated and 2L cycles are created, which persist for
nonzero disorder. Each line of site can sustain a stress, basi-
cally independently from one another when ε is small. This
network thus has 2L cycles, each of mass Mc = L. Similarly,
if three perpendicular planes of sites are fixed on a cubic
network, a system with rigid boundaries is obtained, which
has 3L2 cycles, each being a line of mass L. So, generally, by
fixing boundaries, we obtain dL(d−1) persistent cycles, each of
mass Mc = L.

Using (3), we can now write

B = 1

Nlinks

Ncycles∑
c=1

1 + νcMc

1 + νc

= 1

dLd
dL(d−1) 1 + νcL

1 + νc
= 1/L + νc

1 + νc
. (9)
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FIG. 1. These 6 x 6 grids with periodic boundaries illustrate how
cycles (independent subsets of self-stressed links—thick lines) are
induced on cubic and square networks with weak hot-solid disorder
when some sites (black circles) are fixed. If a (horizontal or verti-
cal) line contains a single fixed site, all links on this line can be
subjected to the same self-stress and thus belong to a cycle. Each
fixed site induces d new cycles. (a) Fixed boundaries are imposed
in two dimensions by fixing an entire row and column of sites, in
which case all links belong to some cycle. In three dimensions, fixed
boundaries are obtained by fixing all sites on three orthogonal planes.
For boundaries of this sort, the scaling dimension of fixed sites is
θ = d − 1, and there is a total of dL(d−1) cycles, each with mass L
(the number of links in the cycle). (b) In this example, two sites A
and B have been fixed, inducing four cycles: two on horizontal lines,
each with mass L = 6, plus two vertical cycles limited by nodes A
and B, with masses, respectively, 2 and 4. The self-stress can be
independently specified for all links in each cycle. Notice that the
above only holds for networks with nonzero disorder. On regular
networks with PBC, there are dLd−1 cycles, each of mass L, so all
links are in cycles.

When ε → 0, all stresses are the same on each line and thus
ν → ∞. In this limit, B → 1, which is the same result (6) that
holds for regular networks with ε = 0. Disordered networks
with fixed boundaries, therefore, have a continuous bulk mod-
ulus as ε → 0.

In the limit of large disorder (more on what is meant by this
later), stresses on each cycle vary wildly, being both positive
and negative. In this limit, ν → 0 and we obtain B = 1/L.

Since the scaling dimension of fixed sites is θ = d − 1
in both cases considered here, we can write that for large

disorder the bulk modulus scales as L
−μlarge with μlarge =

d − θ = 1, and for small disorder as L
−μsmall with μsmall =

d − θ − 1 = 0.
Now consider fixing three mutually perpendicular lines of

sites in a cubic lattice, i.e., a fixed set with scaling dimension
θ = 1 in space dimension d = 3. This removes 2L flexes on
each of three mutually perpendicular planes (6L flexes in
total), thus introducing 6L cycles, each of mass L. In three and
larger dimensions (d > 3 was not studied numerically in this
paper), this result would read Ncycles = d (d − 1)L(d−2), each
with mass L. The bulk modulus is then, according to (3),

B = (d − 1)
1/L2 + νc/L

1 + νc
, (10)

which holds when d mutually perpendicular lines of sites are
fixed in d > 2 dimensions. Again, for ε → 0 we have that
ν → ∞ and thus B ∼ 1/L, while for large disorder ν → 0

FIG. 2. Bulk compressive modulus B versus linear size L of
cubic networks with periodic boundary conditions for small (ε2 <<

1/L, empty symbols) and large (ε2 > 1/L, full symbols) disorder
ε. Data for three regular sets of fixed sites with scaling exponent
θ are shown in this figure: (a) No fixed sites (θ = 0, triangles),
(b) three perpendicular lines of fixed sites (θ = 1, circles), and
(c) three perpendicular planes of fixed sites (θ = 2, squares). Full
lines are power-law fits with fixed decay exponents, respectively,
0, 1, 2, and 3, as given by (16).

and B ∼ 1/L2. Also for this case we conclude that μsmall =
d − θ and μlarge = d − θ − 1.

For cubic networks, these results imply that the scaling
exponent μ should take the values 2, 1, and 0 for small ε, and
3, 2, and 1 for large ε, respectively, for PBCs (no fixed sites),
three lines of fixed sites, and three planes of fixed sites (or
fixed boundary conditions). This is well verified numerically,
as Fig. 2 shows.

E. Fractal set of fixed sites

Let us consider a more general situation. Assume that, on a
disordered (ε �= 0) square or cubic network of linear extension
L, composed of Ld sites with PBCs, a number aLθ of ran-
domly chosen sites of the bulk are fixed, with 0 < a < 1 and
0 � θ � d . Each contiguous set of (approximately, because of
disorder) collinear links delimited by one or more fixed sites
constitutes a new cycle. Each fixed site induces d cycles on
mutually perpendicular lines, so we have that a system with
aLθ fixed sites has a total number of cycles adLθ , ignoring
the small number d of initial cycles that already exist in the
absence of fixed sites.

The typical mass of these cycles can be calculated as fol-
lows. The global density of fixed sites is ρfixed = aL−(d−θ ).
Thus, on average, a line of L sites will have N fxd

L = Lρfixed =
aL−(d−θ−1) fixed sites. Figure 1(b) shows an example in which
two sites have been fixed on the same column. The distribution
of the number k of fixed sites on a given line is binomial:

Pk =
(

L

k

)
(ρfixed)k (1 − ρfixed)(L−k). (11)

If a line has k fixed sites on it, then it has k cycles. We will
assume that fixed sites are roughly equidistant along the line,
so the typical mass of each cycle can be taken to be Mc = L/k,
which obviously only holds for k > 0. The case k = 0 need
not be considered since in this case there are no cycles (for
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nonzero disorder) on this line, and thus no contribution to the
bulk modulus B.

Using (3) and for a given set {kl} of numbers of fixed sites
on each line l = 1, 2, . . . , dL(d−1), we have that

B({kl}) = 1

Nlinks

dL(d−1)∑
l=1

(1 − δ0
kl

)kl
1 + (L/kl )ν

1 + ν

= 1

dLd

dL(d−1)∑
l=1

(1 − δ0
kl

)
kl + Lν

1 + ν
, (12)

where we have made a simplifying assumption that ν is the
same for all cycles. We have written the sum over cycles as
a sum over lines with nonzero k, with a multiplier kl that
accounts for the number of cycles on line l , each with mass
Mc = L/kl . Taking averages over the distribution of kl :

< B > = dL(d−1)

dLd

{
< kl > +Lν

1 + ν
− P0

Lν

1 + ν

}

= ρfixed + ν(1 − P0)

1 + ν
. (13)

For small ε, each cycle is essentially a straight line and
therefore all links in a cycle suffer the same stress, in which
case ν → ∞ and B = (1 − P0). For large disorder, stresses
of random signs exist on links of a cycle and thus ν → 0,
resulting in B = ρfixed. Therefore,

< B > =
{

(1 − P0) for small ε

ρfixed for large ε.

Given that P0 = (1 − ρfixed)L = (1 − aL−(d−θ ) )L, we have
that, for large L,

(1 − P0) ≈
{

1 if θ � (d − 1)
N fxd

L if θ < (d − 1),
(14)

and, therefore,

〈B〉 =
⎧⎨
⎩

1 small ε, θ � (d − 1)
N fxd

L = aL−(d−θ−1) small ε, θ < (d − 1)
(N fxd

L /L) = aL−(d−θ ) large ε.

(15)

Our results for the scaling exponent μ in B ∼ L−μ in this
entire section can be condensed in the following form. If the
set of fixed sites scales as Lθ , the bulk modulus B scales

as L
−μsmall for small disorder, and as L

−μlarge for large
disorder, where

μsmall = max{0, (d − θ − 1)},
μlarge = (d − θ ). (16)

Notice that this result holds, at least for the cases discussed in
this section, irrespectively of how fixed sites are distributed in
the network, and only depends on the scaling exponent θ of
fixed sites.

IV. NUMERICAL RESULTS

To test the theoretical predictions in previous sections, we
provide here numerical simulations made on different kinds
of networks.

A. Scaling exponent μ

The bulk modulus B was numerically calculated for a vari-
ety of square and cubic disordered spring networks, with the
help of a conjugate gradient (CG) CITE algorithm. As already
noted [36], the amount of numerical work needed to obtain
a solution increases very fast for ε → 0 whenever there are
remaining flexes in the regular network. For small ε, a naive
CG algorithm no longer converges for moderate sizes. This
turns out to be due to the fact that the equilibrium deformation
< (δ�r)2 > diverges as 1/ε2 in this limit. Analytical consider-
ations (to be presented elsewhere) allow one to calculate the
leading 1/ε behavior in a small-ε expansion of the equilibrium
solution. This allowed us to start the iterative procedure from
the approximate analytical solution resulting from the small-ε
expansion, which is very close to the true solution, thus greatly
improving numerical convergence times for small disorder. In
this way, we obtained small-disorder results for regimes that
would otherwise be inaccessible using a naive CG algorithm.
After sample averaging, we obtained B as a function of L and
ε for each boundary condition.

Let us start by describing the cases in which fixed sites are
confined to lines or planes. Figure 2 shows the bulk modu-
lus versus size for cubic networks with PBCs and no fixed
sites (θ = 0, triangles), fixed sites along three edges (θ = 1,
circles), and fixed sites on three planes (θ = 2, squares), in
the limits of small (Lε2 << 1, empty symbols) and large
(Lε2 > 1, full symbols) disorder. In these cases, 16 predicts
that μ must take the values 0, 1, 2, and 3. Full lines in Fig. 2
are fits using a power law where the exponent is fixed and
given by 16, and only the prefactor is adjusted. As shown in
the figure, very good consistency with analytical predictions
is found.

Now we consider fixed sites that, instead of being con-
fined to lines or planes, are randomly scattered in the bulk,
that is, their embedding dimension equals d . We do this for
both square and cubic networks. So, for d = 2 and d = 3 we
calculate numerically the bulk modulus for several values of
the size L and for several values of θ ranging between 0 and
d . This is done both for small and large disorder.

These numerical results for B versus L are then fitted using
B ∼ CL−μ, where now both C and μ are fitting variables.
Figure 3 shows the fitted decay exponent μ versus θ in two
and three dimensions, in the regimes of small and large disor-
der. The consistency with (16), indicated by the dashed lines,
is again very good.

B. Identification of small and large disorder regimes

In Figs. 4–6, we present numerical results for the bulk
modulus B in the cases of fractal sets of fixed sites randomly
scattered in the bulk, no fixed sites, fixed lines, and fixed
planes of sites. Figure 4 shows the size-scaling behavior of
the bulk modulus versus size L, for several values of the
disorder ε. These plots clearly show that B decays initially
with an exponent μsmall for small L, crossing over to a larger
exponent μlarge for L > L0(ε), as predicted analytically. The
results in Fig. 4 can be fitted rather well (dashed lines) using

035001-6



SCALING TO ZERO OF COMPRESSIVE MODULUS IN … PHYSICAL REVIEW E 106, 035001 (2022)

FIG. 3. Numerically fitted decay exponent μ of the bulk modulus
B ∼ L−μ versus fractal dimension θ of the set of fixed sites, for
cubic (full triangles—blue online) and square (empty triangles—red
online) networks, in the limits of large (Lε2 > 1, upward-pointing tri-
angles) and small (Lε2 << 1, downward triangles) disorder. Dashed
lines show our theoretical predictions for this exponent, which are
given by Eq. (16).

the empirical expression

B(L, ε) = B0

L
μsmall + cL

μlarge
, (17)

where μsmall and μlarge are fixed and given by (16), while
B0 and c are fitting constants that depend on ε. This can be
rewritten as

B(L, ε) = B0L
−μsmall

1

1 + (L/L0)�μ
, (18)

where we have defined �μ = μlarge − μsmall and B0/c =
L�μ

o . Here L0(ε) is a crossover length beyond which B decays

as L
−μlarge. Our results for L0 from numerical fits indicate

that this crossover length diverges as an inverse power of ε

for ε → 0. Furthermore, B0 is found to be roughly constant
for ε < 10−2. For later use, we notice that, for small ε and
L/L0 << 1, (18) can be expanded to read

B(L, ε) ≈ B0L
−μsmall (1 − (L/L0)�μ), (19)

where B0 is a constant.
The bulk modulus versus ε for fixed L is presented in Fig. 5

for several of the fixed-site sets that we studied. We fitted
(lines in Fig. 5)

log10 B(L, ε) = log10 B(L, 0) − m2(L)ε2 + m4(L)ε4 (20)

for B(L, 0), m2, and m4 to these data. Results for B(L, 0)
(see Fig. 2—empty symbols) from these numerical fits are
very well described by a simple power-law fit B(L, 0) =
B0L

−μsmall , where μsmall is theoretically predicted expo-
nent given by [Eq. (16)] μsmall = d − θ − 1 for θ � (d − 1).

We can then write, for small ε,

B(L, ε) ≈ B0L
−μsmall (1 − m2ε

2), (21)

with B0 a constant. Consistency between (19) and (21) re-
quires that (L/L0)�μ = m2ε

2. Therefore, m2 ∼ L�μ and L0 ∼
ε−2/�μ. We conclude that, in the scaling regime of large L and

FIG. 4. Bulk modulus B of disordered cubic networks versus
linear system size L for ε = 0.33 (pluses), 0.23 (crosses), 0.16 (aster-
isks), 0.11 (empty squares), 0.08 (full squares), 0.05 (empty circles),
0.038 (full circles), 0.026 (empty upward triangles), 0.018 (full
upward triangles), 0.012 (empty downward triangles), 0.009 (full
downward triangles), 0.006 (empty rhombi). The case of zero disor-
der, which has B = 1, is not shown. Graphs on the left column were
obtained by fixing sites on boundaries, respectively, with scaling
dimensions (from top to bottom) θ = 0 (no fixed sites), 1 (three lines
are fixed), and 2 (three planes are fixed). Graphs on the right column
were obtained by fixing a random set of bulk sites with fractal di-
mension (from top to bottom): θ = 0.5, 1, and 2. In all cases, dashed
lines are fits for C1 and C2 of B(L) = C1/(L

μsmall + C2L
μlarge ) to

the numerical data, where μsmall and μlarge are fixed and equal to
the theoretical values given by (16).

small ε, B(L, ε) × L
μsmall should only depend on the scaling

variable

λ = ε2L�μ ∼ (L/L0)�μ. (22)

This is satisfied by our numerical results, as shown in Figs. 6
and 7. Figure 6 shows that B can be written as

L
−μsmallg(ε2L�μ). (23)

The scaling function g(x) behaves as a constant when x →
0 and decays as 1/x for large x. This results in B(L, ε) ∼
L

−μsmall for ε2L�μ << 1 and B(L, ε) ∼ L
−μlarge for

ε2L�μ � 1.
For the systems studied in this paper, disorder is then small

whenever ε2L�μ << 1 and large whenever ε2L�μ � 1. No-
tice that �μ = 1 for θ � (d − 1), which is the case of all plots
in Fig. 6. In Fig. 7, we present scaling results for θ > d − 1 in
which case �μ < 1 and goes to zero as θ → d . These results
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FIG. 5. Bulk modulus B versus disorder ε, for L = 4 (pluses),
8 (crosses), 12 (asterisks), 16 (empty squares), 20 (full squares),
24 (empty circles), 28 (full circles), 32 (empty upward triangles),
36 (full upward triangles), 40 (empty downward triangles), 44 (full
downward triangles), 48 (empty rhombi), 56 (full rhombi), 70 (empty
pentagons), and, 90 (full pentagons). Graphs on the left column were
obtained by fixing sites on boundaries, respectively, with scaling
dimensions (from top to bottom) θ = 0 (no fixed sites), 1 (three
lines are fixed), and 2 (three planes are fixed). Graphs on the right
column were obtained by fixing a random set of bulk sites with fractal
dimension (from top to bottom): θ = 0.5, 1, and 2. Full lines are fits
using the empirical expression (20).

show that B scales also in this regime. In the extreme case
θ = d , B no longer depends on size.

V. DISCUSSION

We have considered the bulk compressive modulus B ∼
L−μ of cubic networks with hot-solid disorder with strength
ε, which are isostatic, by analytical and numerical means. By
adding a nonextensive number ∼Lθ of excess constraints in
d dimensions, we obtained asymptotically isostatic networks
in which the departure from true isostaticity is quantified by
θ . For these, the decay exponent μ takes θ -dependent values
between 0 and d that are given by (16) for the limits of small
and large disorder. To arrive at these results, an approximate
analytical expression (3) was derived. This gives B in terms
of the mass and number of cycles, plus a measure ν of the
relative variability of link tensions within a cycle.

Counting and measuring cycles under various conditions is
not difficult for cubic systems, so one is left with a formula
in which the only remaining unknown is ν, i.e., the inverse
link tension variability defined in Sec. II. Although we do not
know the exact dependence of ν on L and ε, some amount
of guessing aided by numerical results allowed us to conclude

FIG. 6. Data collapse: Bulk modulus B times L
μsmall versus

scaling variable λ = ε2L�μ for all ε and L values used in Figs. 4 and
5. Graphs on the left column were obtained by fixing sites on bound-
aries, respectively, with scaling dimensions (from top to bottom)
θ = 0 (no fixed sites), 1 (three lines are fixed), and 2 (three planes
are fixed). Graphs on the right column were obtained by fixing a
random set of bulk sites with fractal dimension (from top to bottom):
θ = 0.5, 1, and 2. All results in this figure are for θ � d − 1, in
which case �μ = μlarge − μsmall = 1 [see Eq. (16)].

FIG. 7. Data collapse: Bulk modulus B times L
μsmall versus

scaling variable λ = ε2L�μ for all ε and L values used in Figs. 4
and 5. All plots are for a random set of bulk fixed sites with fractal
dimension θ such that d − 1 � θ � d . For these plots, θ > d − 1,
in which case �μ = μlarge − μsmall = d − θ < 1 [see Eq. (16)].
Values of θ are 2.25 (top left), 2.50 (top right), 2.75 (bottom left),
and 3.00 (bottom right).
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that there are two extreme regimes, respectively, L�με2 << 1,
where link tensions on each cycle are approximately con-
stant so ν → ∞, and L�με2 � 1, in which link tensions vary
wildly and therefore ν → 0. The bulk modulus scales to zero
with different exponents μsmall and μlarge in the regimes
of small and large disorder, and these exponents differ by
�μ = 1, for θ � d − 1 and �μ = d − θ when θ > d − 1
[see (16)]. Notice that large disorder is not intended to mean
that ε itself is large, but that 1 � ε > 1/

√
L.

These results imply the existence of an elastic length scale
L0(ε), which diverges in the limit of small ε. Elastic proper-
ties only display their true asymptotic behavior if the system
length L is much larger than this scale [6,7]. In connection
with this observation, notice that B can be written in terms
of the scaling variable λ = Lε2 as B(L, ε)Lμsmall = g(λ)
for 0 � θ � d , as Figs. 6 and 7 show. The scaling function
g(λ) is a constant for λ → 0 and decays as 1/λ for λ � 1.
Other elastic properties, not discussed here, were numerically
found to also scale as a function of λ. The way in which
these results were justified analytically demonstrates that for
L � L0 = ε−2/�μ, link tensions vary randomly in sign, de-
spite the fact that the system is subjected to homogeneous
compression. This wild variation in link tensions is certainly
remarkable as one could naively expect a compressive load to
induce mostly compressive link tensions, but this is certainly
not the case. Notice again that an amount of disorder as small
as ε0 ∼ L−�μ/2 is enough for this random stress variation to
take place.

Another important conclusion follows from Fig. 4: when-
ever θ < d − 1, B does not converge to one when ε → 0 but
decays as L

−μsmall , even though B = 1 for ε = 0 exactly. B
is then discontinuous at ε = 0 when θ < d − 1, for any value
of L. This discontinuity can be explained by noticing that
only self-stressed subgraphs (or cycles) contribute to the bulk
modulus [see Eq. (3)]. The regular network with ε = 0 is in
a degenerate configuration and, because of this, it has dLd−1

cycles, resulting in B = 1 [Eq. (6)]. However, for any nonzero
amount of disorder, no matter how small, only d cycles re-
main. In this case, Eq. (3) gives B ∼ L−(d−1) [Eq. (7)] when
ε → 0. The discontinuity in B results from a discontinuity in
the number of cycles, which in turn is a consequence of the
fact that the regular network sits on an unstable degenerate
configuration. A toy model shown in Fig. 8 (right) illustrates
at a basic level this effect of degeneracies. When the two bars
are aligned, so the system is in a degenerate configuration, a
horizontal motion of the walls relative to one another would be
opposed by bar tensions, and the elastic response is nonzero.
On the other hand, if the bars are only slightly misaligned, the
system is no longer degenerate and thus the elastic response is
zero.

For the general case of d-dimensional isostatic networks
considered here, the elastic response in the presence of disor-
der does not become zero but very small and decreases with
size. This comes about due to a proliferation of soft modes,
which is explained as follows. Although a large number of
flexes technically disappear from the system for nonzero dis-
order (see Appendix B), they still have a residual effect on
the bulk modulus of the disordered network. A collective
motion of a line of collinear sites is defined to be a flex if the

FIG. 8. Left: This network is underconstrained, as it has four
degrees of freedom (two per site) but only three constraints (links).
For it, F1 is an admissible load but F2 is not. The network thus has a
flex, which is the vertical motion of the site held by only one spring.
Any (infinitesimal) spring deformation is realizable on this network.
Center: A network with unrealizable spring deformations, e.g., any
such in which the vertical thick line increases its length and the lateral
thick lines diminish theirs. A cycle is formed by the thick lines,
which can be under stress in equilibrium in the absence of external
load. This network has four degrees of freedom and five constraints,
and is therefore overconstrained or hyperstatic. Right: Point s has
two degrees of freedom and two constraints. Thus Ncycles = Nflexes

as explained in Appendix B. In position s1 any force acting on s
can be supported by link tensions, so Nflexes = 0 and link tensions
are zero in the absence of external load so Ncycles = 0. This network
is statically (Ncycles = 0) and kinematically (Nflexes = 0) determinate
[15]. When in position s2, a degeneracy arises. Site s can be displaced
perpendicularly to its links, thus Nflexes = 1. Furthermore there is
a possible state of equilibrated self-stress in which both links are
equally tensioned in the absence of external forces, thus Ncycles =
1. This network is both statically (Ncycles �= 0) and kinematically
(Nflexes �= 0) indeterminate.

forces opposing this motion are exactly zero. For small ε, all
link tensions opposing these collective motions, while being
nonzero, will be extremely weak. This is so because forces
opposing this motion will be provided by links to contiguous
lines. And those, for small epsilon, are almost perpendicular
to the direction of motion. Therefore, a flex (or zero mode) in
zero disorder will be transformed into a soft mode whenever
ε is nonzero but small. These modes are softer the smaller
ε is. They account for a very weak elastic response under
mechanical loading of the network, but one that is associated
with large site displacements in equilibrium.

An entirely different situation arises when a flex is removed
from a regular square or cubic network by fixing one or more
of the sites on a line. After disordering this network, strong
forces opposing the collective flexlike motion come from links
within (not perpendicular to) the flex, since one or more of its
sites are now fixed. In this case, no soft mode results when
disorder is introduced. Soft modes arise only from flexes that
cease to exist due to disorder, i.e., when the system moves
away from a degenerate geometric configuration. If all flexes
are removing from a network by fixing sites, then, after in-
troducing disorder, no soft mode remains, and in this case the
bulk modulus goes to B = 1 in the limit of small disorder.

Let us make some final remarks on how to generalize some
of the results presented in Sec. III E. Therein we remarked
that the bulk modulus scaling exponent μ does not depend
on whether fixed sites with fractal dimension θ are randomly
scattered in the bulk or confined to lines or planes. We also
explicitly calculated in Sec. III D the bulk modulus when
entire lines (θ = 1) or planes (θ = 2) of fixed sites are present,
and noted that the resulting scaling exponents μ are the same
as for randomly scattered sites in the bulk with the same
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θ . It is not difficult to generalize these calculations for the
case in which the embedding dimension dE of fixed sites is
smaller than the space dimension d . For example, one can
fix sites with fractal dimension θ < 1, all confined to three
lines (dE = 1) or with θ < 2 on three planes (dE = 2). This
only reduces the number of cycles by a factor of L(θ−dE ) with
respect to the case of fixing full lines or planes. The result
thus stays the same, i.e., the bulk exponent μ only depends on
θ and not on the embedding dimension dE of fixed sites. We
verified this numerically for a few cases with dE = 1, 2 and
θ < dE in three dimensions.

According to these results and in contrast to sphere pack-
ings, isostatic network glasses [46] are expected to have
a negligibly small compressive modulus. This happens on
any isostatic network in which disorder is not specifically
chosen to limit link tensions. This property of randomly
disordered isostatic networks raises the possibility [47] that
self-stress minimization alone may not be enough to produce
a self-organized isostatic network in melts that glassify under
pressure. The elastic energy of the network will then have an
additional compressive contribution, which is larger the more
easily compressible the network is. It seems, in principle,
possible then, that at large enough pressures, this term disen-
courages the formation of extended isostatic networks, which
are easily compressed, in favor of the more rigid hyperstatic
ones.

Insofar as static hot-solid disorder provides an acceptable
approximate description (ignoring entropic effects at low tem-
peratures) for the effects of weak thermal fluctuations, our
results suggest that a small nonzero temperature will desta-
bilize a regular square network under compression. This is to
be contrasted with the effects of thermal fluctuations on the
shear modulus G of square networks [42,43] which are found
to increase with temperature.

Summarizing, in this paper, we presented an analytical
method to deal with the elastic properties of weakly disor-
dered isostatic networks. The method relies on writing the
bulk modulus B as a function of the mass and number of
cycles, as well as on the relative variability of link tensions on
these cycles. Simple assumptions were used for the variability
of tensions on a cycle. Our numerical results are in excellent
agreement with those obtained from the analytical methods
presented here. The main conclusions of the numerical and
analytical study can be briefly stated as follows. An observed
discontinuity of B at ε = 0 is due to a jump in the number
of self-stressed subgraphs in that limit. For nonzero disorder
ε, B decays as an inverse power law of the system size L.
The decay exponent μ in B ∼ L−μ is obtained analytically
and validated numerically, and its dependence on the model
parameters is clarified. It is shown that the scaling variable
λ = ε2L defines two asymptotic disorder regimes in which μ

takes different values. After a suitable size rescaling, the bulk
modulus can be written as a function of λ alone. Our results
stress the importance of considering large enough lattice sizes
in order to reach the asymptotic limit.
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APPENDIX A: FORMALIZATION

For similar treatments of elastic networks see, e.g.,
Refs. [5,15,44]. Consider an arbitrary elastic network made
of N sites i = 1, 2, . . . , N located at �ri, with nearest-neighbor
(NN) vectors �ri j = �r j − �ri. Each NN pair is connected by a
spring whose repose length �0

i j equals |�ri j |. We will refer to
NN pair interactions indistinctly as links, bars, contacts, or
springs. The network so built is, in the absence of external
load, in static equilibrium at {�ri}.

In d dimensions, each site has d degrees of freedom.
The total number of positional degrees of freedom is thus
Ndof = Nd . Let Nlinks be the number of springs in the network.
We define the link versors �ei j = �ri j/|�ri j |.

1. Force matrix F̂ and cycles

If external forces �Fi (a load) act on sites, link tensions ni j

will be induced (compression is defined to be positive), which
in equilibrium must satisfy∑

j∈νi

ni j �ei j = �Fi or F̂ |n〉 = |F 〉. (A1)

Here F̂ is a Ndof × Nlinks force matrix relating site (or node)
forces �Fi to bar tensions ni j . Notice that (A1) may not have a
solution for arbitrary node forces �Fi. For example, a freely
floating network cannot satisfy (A1) if �Fi do not satisfy∑

i
�Fi = 0. A set of forces �Fi for which a solution {ni j} of (A1)

exists for a given network is called admissible.
Cycles are sets of links that can be in nontrivial equilib-

rium under zero external site forces, i.e., nonzero tensions ni j

satisfying

F̂ |nc〉 = |0〉. (A2)

Cycles are also known as overconstrained subgraphs, self-
stressed subgraphs, self-equilibrated stresses, or sets of
dependent bars in several contexts. The general solution ni j

for bar tensions, if it exists, is not unique whenever the net-
work has cycles. If, on the other hand F̂ has a left inverse
F̂−1

L , then |n〉 = F̂−1
L |F 〉 and the solution ni j is unique. This

only holds if the network does not have cycles, in which case
it is said to be statically determinate [15].

The existence of a left inverse for an m × n matrix requires
its rank to be n. In this case, the rank has to be Nlinks, i.e.,
the number of springs. This can only be true if Nlinks � Ndof

because the rank of an m × n matrix cannot be larger than
its smallest dimension. So, for a network to not have cy-
cles, it cannot have more springs than degrees of freedom.
This is, however, a necessary, not sufficient, condition for the
existence of an inverse, for reasons (the possible existence of
degeneracies) that will be discussed later on in Sec. B.

In general, spring tensions can be written as

|n〉 = |n〉0 + F̂−1
L |F 〉 = F̂−1

L |F 〉 +
∑

c

|nc〉, (A3)
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where |F 〉 are admissible external forces and |n〉0 are self-
stresses. These last are, as already mentioned, zero if F̂ has
rank Nlinks. Notice that, although this might not be the best
numerical approach for large systems, the rank can be found
by using a singular value decomposition [48].

2. Displacement matrix D̂ and flexes

An arbitrary site displacement {δ�ri} generates link defor-
mations, or extensions, given by

δ�i j = �ei j · (δ�r j − δ�ri ) or |δ�〉 = D̂|δr〉, (A4)

where D̂ is a Nlinks × Ndof matrix relating link extensions to
site displacements. An arbitrary set of link extensions is called
realizable if there are site deformations {δ�ri} satisfying (A4).
A flex, also called flexibility, isometry, deformability, soft
mode, or floppy mode in different contexts, is a set of site
displacements |δrflex〉 that is mapped to zero bar deformations
by D̂, that is, satisfies

D̂
∣∣δrflex

〉 = 0. (A5)

In general, site displacements can be written as

|δr〉 = D̂−1
L |δ�〉 +

∑
f lexes

∣∣δrflex
〉
, (A6)

where |δ�〉 is a realizable spring stretch. D̂−1
L |δ�〉 the part of

the site displacements that is normal to all flexes, and is the
only term that contributes to the elastic energy of the network.
Flexes do not exist if D̂ has a left inverse, i.e., if its rank
is Ndof. In this case, the network is said to be kinematically
determinate [15].

A freely floating network in euclidean space has at least
d (d + 1)/2 flexes, which correspond to rigid translations and
rotations. Therefore, the rank of D̂ can be at most Ndof −
d (d + 1)/2 for this case.

3. Relation between F̂ and D̂
If an elastic network suffers an arbitrary infinitesimal dis-

placement around equilibrium, the total work is zero,∑
i

δ�ri · �Fi −
∑

i j

ni jδ�i j = 0,

〈δr|F 〉 = 〈δ�| f 〉, (A7)

which amounts to stating that under such displacement, the
work done by external forces equals the excess energy stored
in springs, i.e., the principle of virtual work [2]. Therefore,〈

δr
∣∣F̂ ∣∣ f

〉 = 〈
δr

∣∣D̂T
∣∣ f

〉 ⇒ F̂ = D̂T . (A8)

The elastic energy stored in the network’s springs (k = 1) is

E = 1

2
〈δ�|δ�〉 = 1

2
〈 f | f 〉 = (DEF )

1

2

〈
δr

∣∣M̂∣∣δr
〉

⇒ M̂ = D̂T D̂. (A9)

4. Nonadmissibility of external forces |F〉 implies flexes

For any set of bar tensions |n〉, adequate external forces
|F 〉 can always be found that satisfy equilibrium: those given
by F̂ |n〉 = |F 〉. However, in general, not any set of external

forces |F 〉 is admissible, i.e., can be equilibrated by bar ten-
sions |n〉. See Fig. 8.

Claim: If a network has nonadmissible external forces, it
has flexes.

Proof: If a network has nonadmissible external force sets
|F 〉, then F̂ does not span its image. There must then exist
Nflexes site-displacement vectors |δrflex〉 such that F̂ |n〉 is or-
thogonal to |δrflex〉 for all |n〉 i.e., 〈δrflex|F̂ | f 〉 = 0 for f =
1, 2, . . . , Nflexes. Therefore, 〈δrflex|F̂ = 〈0| ⇒ F̂T |δr f 〉 =
D̂|δrflex〉 = |0〉, and |δrflex〉 is a flex, according to (A5).

Admissible force sets are orthogonal to all flexes of a
framework. For example, sets of external forces that satisfy
global equilibrium for a freely floating network must be or-
thogonal to the flexes that represent rototranslations of the
system, which amounts to saying that they must have zero
resultant and torque. Admissible force sets |F 〉 are those that
can be written as D̂−1

L |n〉 for some spring-tension vector |n〉.

5. Nonrealizability of bar deformations |δ�〉 implies cycles

Notice that while any site displacement |δr〉 will gener-
ate some link stretch |δ�〉, not any |δ�〉 is compatible with
the network’s geometric constraints, that is, realizable. Bond
stretchings |δ�〉 may exist, for which no |δr〉 satisfies D̂|δr〉 =
|δ�〉. In this case, the nonrealizable part D̂|δr〉 − |δ�〉 of the
stretch is nonzero. If spring repose lengths are forced to
change by |δ�〉, the nonrealizable part will give rise to a
variation in the elastic energy stored in springs that is given
by

δE δ� = 1

2
min{|δr〉}

〈
D̂δr − δ�

∣∣D̂δr − δ�
〉
. (A10)

See Fig. 8.
Claim: If a network has irrealizable bar stretches, it has

cycles.
Proof: If |δ�〉 is not realizable, there is no |δr〉 satisfying

D̂|δr〉 = |δ�〉, so D̂ does not span its image space. There
must then be Ncycles vectors of spring tensions 〈nc|, which are
orthogonal to D̂|δr〉 for any |δr〉, i.e., 〈nc|D̂|δr〉 = 0 for c =
1, 2, . . . , Ncycles. Equivalently, 〈nc|D̂=0, therefore D̂T |nc〉=0,
for c = 1, . . . , Ncycles. But because of (A8), this means that
F̂ |nc〉 = 0, and thus |nc〉 is a cycle, or self-equilibrated stress,
according to (A2). Therefore, there are Ncycles sets of self-
equilibrated link tensions, and some subsets of the network
are overconstrained.

6. Energy upon imposed link deformations and elastic modulii

Assume that the repose lengths of all springs are modified
by a stretch (a link deformation) |δ�〉. We may decompose

|δ�〉 = |δ�〉R +
Ncycles∑
c=1

〈nc|δ�〉
〈nc|nc〉 |nc〉

= |δ�〉R +
{Ncycles∑

c=1

|nc〉 ⊗ 〈nc|
〈nc|nc〉

}
|δ�〉

= D̂|δreq〉 + P̂self|δ�〉
= D̂|δreq〉 + |〉, (A11)
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where P̂self is a projector onto cycles and |δ�〉R = D̂|δreq〉 is
the realizable part of |δ�〉. This part does not contribute to
the (minimum) energy produced by the stretch because it is
canceled by site displacements once in equilibrium, so we
finally get

E δ� = 1

2
〈|〉 = 1

2

Ncycles∑
c=1

〈nc|δ�〉2

〈nc|nc〉 , (A12)

with |〉 = P̂self|δ�〉 the nonrealizable part of |δ�〉, written as

|〉 =
Ncycles∑
c=1

〈nc|δ�〉
〈nc|nc〉 |nc〉 =

Ncycles∑
c=1

〈ρc|δ�〉|ρc〉,

where |ρc〉 are normalized self-stress states. Given the
minimal energy cost (A12) of a bond deformation, the cor-
responding modulus is written as [5]

Y = 2E δ�

〈δ�|δ�〉 =
Ncycles∑
c=1

〈nc|δ�〉2

〈nc|nc〉〈δ�|δ�〉

=
Ncycles∑
c=1

〈ρc|δ�〉2

〈δ�|δ�〉 . (A13)

To calculate the bulk, or compressive, modulus B in a system
with PBC, we take an homogeneous expansion of all links
|δ�〉 = κ (�1, �2, . . . , �Nlinks ). Then 〈nc|δ�〉 = κ

∑
i j nc

i j�i j , and
〈δ�|δ�〉 = κ2 ∑

i j �
2
i j , so (A13) reads

B =
Ncycles∑
c=1

(∑
i j nc

i j�i j
)2∑

i j (n
c
i j )

2
∑

i j (�i j )2

= 1

Nlinks

Ncycles∑
c=1

(∑
i j nc

i j�i j/ < �2 >1/2
)2∑

i j (n
c
i j )

2
. (A14)

APPENDIX B: CONSTRAINT COUNTING

To discuss how cycles are identified and measured in this
paper, we now introduce some basic notions on constraint
counting. Constraint counting, i.e., determining the balance
between the number of constraints (links) and degrees of
freedom (sites’ positions), is relatively simple for generic site
locations, and allows one to determine the rigid properties of
a network in terms of its connectivity matrix alone, without
making reference to any specific property of site locations.
Loosely speaking, generic configurations are those resulting,
with probability almost one, when site positions are random.
For example, three points on a line is not a generic but de-
generate configuration, as are four points lying on a plane.
Nongeneric configurations occur with zero probability when
sites are randomly located.

Constraint-counting under generic conditions is based on
the following topological concepts. Each site has d positional
degrees of freedom in d dimensions. A network with Ld

sites thus has Ndof = dLd . Each link (a rotatable spring with
nonzero length) determines the distance between two sites
and thus provides one constraint on the set of allowed site
positions. This is the kinematic approach to the rigidity of
frameworks, in which site positions are the unknowns and one

asks to what extent a given set of bar lengths determines these
unknowns [8–10].

Cubic or square networks have dLd links and therefore
Nconstr = dLd for them. A flex (also a floppy or soft mode
in the context of vibrational properties) is an isometry of
the network, i.e., an infinitesimal transformation of site po-
sitions that keeps all link lengths unchanged. Each flex of the
network implies a nonadmissible load, i.e., a load direction
that cannot be equilibrated by tensions on springs. A subset
of the network’s sites is said to be mutually rigid or rigidly
connected if all their relative distances are fixed by the links
induced by this subset. A rigidly connected subset might
still have (global) flexes, as, e.g., on Euclidean geometries,
d + d (d − 1)/2 rototranslations keep all intersite distances
unchanged for freely floating networks. A load is admissible
under such circumstances only if it has zero resultant and zero
torque, i.e., it is orthogonal to all remaining flexes, as already
mentioned.

If a link is added between two sites that are already
mutually rigid, no new flex is removed. This link is called
redundant, and the network so generated is said to be overcon-
strained. Each redundancy induces a new cycle, i.e., a subset
of the network that can independently sustain self-stress in the
absence of external load, as illustrated if one imagines that this
new spring is too short or too long compared to the distance
between the sites it connects. Therefore, the number Nredund of
redundant links is exactly the number of cycles Ncycles that we
need to know to calculate the bulk modulus.

It is important not to confuse the number of redundancies
or cycles Nredund with the number Mc of links in a self-stressed
subgraph. This confusion might sometimes result from a
somewhat unfortunate use of terminology in the literature.
All links in a self-stressed subgraph are sometimes said to
be redundant or dependent. They may all indeed be called
redundant, but only in the sense that any one of them can
be removed without inducing new flexibilities. But as soon
as this one is removed, all other links in the cycle cease to
be redundant. Said differently, i.e., considering the addition
instead of the removal of a link, the addition of a single
redundant link will, in general, induce self-stress in several
other links, thus one may have Nredund = 1 but Mc will be
larger than one.

The basic constraint-counting relationship linking the
quantities defined above reads

Nflexes = Ndof − Nconstr + Nredund

= Ndof − Nconstr + Ncycles, (B1)

which means that the number Nflexes of remaining degrees
of freedom results from subtracting the number (Nconstr −
Nredund) of independent constraints, i.e., those that effectively
remove one degree of freedom, from the initial number of
degrees of freedom Ndof.

Actually, (B1) is valid in general and not only for generic
rigidity. Under generic conditions, the identification of re-
dundant constraints, without being easy in itself, is merely
a matter of studying the connectivity matrix of the network.
Even in the generic case, this task is far from trivial and
requires specialized graph-theoretical methods [49,50], which
furthermore only work for particular circumstances. The
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existence of degeneracies further complicates this task, as cer-
tain constraints may become redundant that otherwise would
not be for generic configurations.

One can illustrate the effect of degeneracy by means of a
trivial example in two dimensional space (see Fig. 8). Con-
sider a single site s connected by two links to two fixed
points A and B. A site in d = 2 has two degrees of free-
dom, thus Ndof=2. Fixed sites have no degree of freedom by
definition. Each link is a constraint and therefore Nconstr=2.
Equation (B1) then implies Nflexes = Ncycles, since Nredund =
Ncycles as explained.

In a generic configuration such as s1 in Fig. 8, points A,
B, and s are not aligned. In this case, no link is redundant
and therefore Nflexes=Nredund=0. Point s will in this case be
rigidly fixed by its two links. There are no cycles and therefore
both links are stress-free in the absence of external load on
s. There are no flexes either, and therefore any force acting
on s constitutes an admissible load that will be supported by
adequate forces emanating from the fixed sites A and B.

A degeneracy arises whenever A, B, and s are aligned, such
as s2 in Fig. 8. In this case, point s can be infinitesimally
displaced (thus, Nflexes = 1) perpendicularly to the alignment
line, since neither link can exert a restoring force in this direc-
tion. According to (B1), we must also have Nredund = 1, which
implies Ncycles = 1. The degenerate cycle that ensues corre-
sponds to having both links under the same arbitrary stress,
a situation under which point s remains equilibrated. We thus
see that while (B1) holds in both the generic and degenerate
cases, degeneracies can render some links redundant, leading
to the appearance of additional flexes and cycles.

Particularizing now to the case of a regular (ε = 0) cubic
or square network with PBCs, which is in a degenerate
configuration, we then note that each of the dLd−1 lines of
collinear links constitutes an independent cycle. Each of these
lines can carry an independent arbitrary tension nc, the same
on all of its L links, and this will be an equilibrium state in the
absence of external load. According to (B1), there must also
be dLd−1 independent flexes in this system. These are easily
identified. Each line of collinear sites can be infinitesimally
displaced in the direction of collinearity, since all other
incoming links are normal to this motion and therefore can
exert no opposing force.

However, when ε �= 0 (the generic case), lines of collinear
sites can no longer be freely displaced, as this motion would
be opposed, if only weakly, by forces on links to contiguous
lines of sites, which are no longer perpendicular to the di-
rection of motion. Therefore, a number of flexes (and cycles)
suddenly disappear from the system for any nonzero ε. A few
(trivial) flexes do remain, however. A rigid translation of all
sites in any of the d directions is still an isometry or flex. Ro-
tations are not isometries [44] in a network that is connected
periodically along each of the d space directions (and thus has
the topology of a d + 1 dimensional torus). Therefore, only d
flexes remain and, consequently, the disordered network still
has d cycles, which we do not care to identify for the purposes
of this paper (their number is finite and thus their contribution
to the bulk modulus is negligible). We therefore conclude
that any amount of disorder ε, no matter how slight, removes
d (Ld−1 − 1) flexes and cycles from a square or cubic network
with PBCs. This accounts for the observed discontinuity in the
elastic modulus at ε = 0.

[1] J. C. Maxwell, On the calculation of the equilibrium and stiff-
ness of frames, London, Edinburgh, Dublin Philos. Mag. J. Sci.
27, 294 (1864).

[2] P. Nagarajan, Matrix Methods of Structural Analysis, 1st ed.
(CRC Press, Taylor & Francis, Boca Raton, FL, 2019).

[3] J. C. Phillips, Topology of covalent non-crystalline solids I:
Short-range order in chalcogenide alloys, J. Non-Cryst. Solids
34, 153 (1979).

[4] C. F. Moukarzel, Isostatic Phase Transition and Instability in
Stiff Granular Materials, Phys. Rev. Lett. 81, 1634 (1998).

[5] M. Wyart, On the rigidity of amorphous solids, Ann. Phys.
(Paris) 30, 1 (2005).

[6] C. F. Moukarzel and G. G. Naumis, Comment on “Penrose
Tilings as Jammed Solids,” Phys. Rev. Lett. 115, 209801
(2015).

[7] O. Stenull and T. C. Lubensky, Penrose Tilings as Jammed
Solids, Phys. Rev. Lett. 113, 158301 (2014).

[8] L. Asimow and B. Roth, Rigidity of graphs, Trans. Am. Math.
Soc. 245, 279 (1978).

[9] L. Asimow and B. Roth, Rigidity of graphs 2, J. Math. Anal.
Appl. 68, 171 (1979).

[10] H. Crapo, Structural rigidity, Struct. Topol. 1, 26 (1979).
[11] L. K. Johnson, C. Richburg, M. Lew, W. R. Ledoux, P. M.

Aubin, and E. Rombokas, 3d printed lattice microstructures to
mimic soft biological materials, Bioinspir. Biomim. 14, 016001
(2018).

[12] D. Yan, J. Chang, H. Zhang, J. Liu, H. Song, Z. Xue, F.
Zhang, and Y. Zhang, Soft three-dimensional network materials
with rational bio-mimetic designs, Nat. Commun. 11, 1180
(2020).

[13] J. Chang, D. Yan, J. Liu, F. Zhang, and Y. Zhang, Mechanics
of three-dimensional soft network materials with a class of bio-
inspired designs, J. Appl. Mech. 89, 071004 (2022).

[14] C. Moukarzel and P. M. Duxbury, Comparison of rigidity and
connectivity percolation in two dimensions, Phys. Rev. E 59,
2614 (1999).

[15] S. Pellegrino and C. R. Calladine, Matrix analysis of stati-
cally and kinematically indeterminate frameworks, Int. J. Solids
Struct. 22, 409 (1986).

[16] G. H. Döhler, R. Dandoloff, and H. Bilz, A topological-
dynamical model of amorphycity, J. Non-Cryst. Solids 42, 87
(1980).

[17] M. F. Thorpe, Rigidity percolation in glassy structures, J. Non-
Cryst. Solids 76, 109 (1985).

[18] J. C. Phillips and M. F. Thorpe, Constraint theory, vector per-
colation and glass-formation, Solid State Commun. 53, 699
(1985).

[19] S. Feng and P. N. Sen, Percolation on Elastic Networks: New
Exponent and Threshold, Phys. Rev. Lett. 52, 216 (1984).

[20] M. Thorpe and P. M. Duxbury, Rigidity Theory and Applica-
tions, Fundamental Materials Research (Kluwer Academic &
Plenum Press, New York, 1999).

035001-13

https://doi.org/10.1080/14786446408643668
https://doi.org/10.1016/0022-3093(79)90033-4
https://doi.org/10.1103/PhysRevLett.81.1634
https://doi.org/10.1051/anphys:2006003
https://doi.org/10.1103/PhysRevLett.115.209801
https://doi.org/10.1103/PhysRevLett.113.158301
https://doi.org/10.1090/S0002-9947-1978-0511410-9
https://doi.org/10.1016/0022-247X(79)90108-2
https://upcommons.upc.edu/handle/2099/521
https://doi.org/10.1088/1748-3190/aae10a
https://doi.org/10.1038/s41467-020-14996-5
https://doi.org/10.1115/1.4054458
https://doi.org/10.1103/PhysRevE.59.2614
https://doi.org/10.1016/0020-7683(86)90014-4
https://doi.org/10.1016/0022-3093(80)90010-1
https://doi.org/10.1016/0022-3093(85)90056-0
https://doi.org/10.1016/0038-1098(85)90381-3
https://doi.org/10.1103/PhysRevLett.52.216


CRISTIAN F. MOUKARZEL AND GERARDO G. NAUMIS PHYSICAL REVIEW E 106, 035001 (2022)

[21] C. Moukarzel and P. M. Duxbury, Stressed Backbone and Elas-
ticity of Random Central-Force Systems, Phys. Rev. Lett. 75,
4055 (1995).

[22] D. J. Jacobs and M. F. Thorpe, Generic Rigidity Percolation:
The Pebble Game, Phys. Rev. Lett. 75, 4051 (1995).

[23] S. R. Nagel, Metallic glasses, in Advances in Chemical Physics,
edited by I. Prigogine and S. A. Rice, Vol. 51 (John Wiley &
Sons, Ltd., 1982), pp. 227–275.

[24] D. Selvanathan, W. J. Bresser, and P. Boolchand, Stiffness
transitions in SixSe1−x glasses from raman scattering and
temperature-modulated differential scanning calorimetry, Phys.
Rev. B 61, 15061 (2000).

[25] P. Boolchand, D. G. Georgiev, and B. Goodman, Discovery of
the intermediate phase in chalcogenide glasses, J. Optoelectron.
Adv. Mater. 3, 703 (2001).

[26] M. V. Chubynsky and M. F. Thorpe, Self-organization and
rigidity in network glasses, Curr. Opin. Solid State Mater. Sci.
5, 525 (2001).

[27] M. F. Thorpe, M. V. Chubynsky, D. J. Jacobs, and J. C. Phillips,
Non-randomness in network glasses and rigidity, Glass Phys.
Chem. 27, 160 (2001).

[28] P. Boolchand, M. Bauchy, M. Micoulaut, and C. Yildirim,
Topological phases of chalcogenide glasses encoded in the melt
dynamics, Phys. Status Solidi B 255, 1800027 (2018).

[29] N. Xu, M. Wyart, A. J. Liu, and S. R. Nagel, Excess Vibrational
Modes and the Boson Peak in Model Glasses, Phys. Rev. Lett.
98, 175502 (2007).

[30] T. S. Grigera, V. Martin-Mayor, G. Parisi, and P. Verrocchio,
Phonon interpretation of the ’boson peak’ in supercooled liq-
uids, Nature 422, 289 (2003).

[31] A. Huerta and G. G. Naumis, Relationship between glass transi-
tion and rigidity in a binary associative fluid, Phys. Lett. A 299,
660 (2002).

[32] G. G. Naumis and J. C. Phillips, Bifurcation of stretched ex-
ponential relaxation in microscopically homogeneous glasses,
J. Non-Cryst. Solids 358, 893 (2012).

[33] J. C. Mauro, A. Tandia, K. Deenamma Vargheese, Y. Z. Mauro,
and M. M. Smedskjaer, Accelerating the design of functional
glasses through modeling, Chem. Mater. 28, 4267 (2016).

[34] C. F. Moukarzel, Two rigidity-percolation transitions on binary
Bethe networks and the intermediate phase in glass, Phys. Rev.
E 88, 062121 (2013).

[35] C. F. Moukarzel, Elastic collapse in disordered isostatic net-
works, Europhys. Lett. 97, 36008 (2012).

[36] C. F. Moukarzel, Elastic anomalies in disordered square net-
works, J. Stat. Mech.: Theory Exp. (2015) P04008.

[37] C. F. Moukarzel, Random multiplicative processes and the
response functions of granular packings, J. Phys.: Condens.
Matter 14, 2379 (2002).

[38] C. F. Moukarzel, Random multiplicative response functions in
granular contact networks, in Challenges in Granular Physics,
edited by Thomas Halsey and A. Mehta (World Scientific, Sin-
gapore, 2003).

[39] C. F. Moukarzel, Response functions in isostatic packings, in
The Physics of Granular Media, edited by Haye Hinrichsen and
D. E. Wolf (Wiley-VCH, Berlin, 2005), pp. 23–43.

[40] J. M. Ziman, Models of Disorder, 2nd ed. (Cambridge Univer-
sity Press., Oxford, 1982).

[41] A. Souslov, A. J. Liu, and T. C. Lubensky, Elasticity and Re-
sponse in Nearly Isostatic Periodic Lattices, Phys. Rev. Lett.
103, 205503 (2009).

[42] M. Dennison, M. Sheinman, C. Storm, and F. C. MacKintosh,
Fluctuation-Stabilized Marginal Networks and Anomalous En-
tropic Elasticity, Phys. Rev. Lett. 111, 095503 (2013).

[43] L. Zhang and X. Mao, Finite-temperature mechanical instability
in disordered lattices, Phys. Rev. E 93, 022110 (2016).

[44] S. D. Guest and J. W. Hutchinson, On the determinacy
of repetitive structures, J. Mech. Phys. Solids 51, 383
(2003).

[45] M. R. Hestenes, Methods of conjugate gradients for solving
linear systems, J. Res. Natl. Bur. Stand. 49, 409 (1952).

[46] P. Boolchand, G. Lucovsky, J. C. Phillips, and M. F. Thorpe,
Self-organization and the physics of glassy networks, Philos.
Mag. 85, 3823 (2005).

[47] C. F. Moukarzel, Rigidity percolation in a field, Phys. Rev. E
68, 056104 (2003).

[48] S. Pellegrino, Structural computations with the singular value
decomposition of the equilibrium matrix, Int. J. Solids Struct.
30, 3025 (1993).

[49] C. Moukarzel, An efficient algorithm for testing the generic
rigidity of graphs in the plane, J. Phys. A: Math. Gen. 29, 8079
(1996).

[50] D. J. Jacobs and M. F. Thorpe, Generic rigidity percolation in
two dimensions, Phys. Rev. E 53, 3682 (1996).

035001-14

https://doi.org/10.1103/PhysRevLett.75.4055
https://doi.org/10.1103/PhysRevLett.75.4051
https://doi.org/10.1103/PhysRevB.61.15061
https://apps.dtic.mil/sti/pdfs/ADA400350.pdf#page=124
https://doi.org/10.1016/S1359-0286(02)00018-9
https://doi.org/10.1023/A:1011336511583
https://doi.org/10.1002/pssb.201800027
https://doi.org/10.1103/PhysRevLett.98.175502
https://doi.org/10.1038/nature01475
https://doi.org/10.1016/S0375-9601(02)00519-4
https://doi.org/10.1016/j.jnoncrysol.2011.12.083
https://doi.org/10.1021/acs.chemmater.6b01054
https://doi.org/10.1103/PhysRevE.88.062121
https://doi.org/10.1209/0295-5075/97/36008
https://doi.org/10.1088/1742-5468/2015/04/P04008
https://doi.org/10.1088/0953-8984/14/9/327
https://doi.org/10.1103/PhysRevLett.103.205503
https://doi.org/10.1103/PhysRevLett.111.095503
https://doi.org/10.1103/PhysRevE.93.022110
https://doi.org/10.1016/S0022-5096(02)00107-2
https://doi.org/10.6028/jres.049.044
https://doi.org/10.1080/14786430500256425
https://doi.org/10.1103/PhysRevE.68.056104
https://doi.org/10.1016/0020-7683(93)90210-X
https://doi.org/10.1088/0305-4470/29/24/030
https://doi.org/10.1103/PhysRevE.53.3682

